
A special case of the generalized pooling problem

arising in the mining industry

Natashia Boland∗ Thomas Kalinowski† Fabian Rigterink† Martin Savelsbergh∗

April 26, 2016

Abstract

Iron ore and coal are substantial contributors to Australia’s export economy. Both are blended products
that are made-to-order according to customers’ desired product qualities. Mining companies have a great
interest in meeting these target qualities since deviations generally result in contractually agreed penalties.
This paper studies a variation of the generalized pooling problem (GPP) arising in this context. The GPP
is a minimum cost network flow problem with additional bilinear constraints to capture the blending of raw
materials. In the variation we study, costs are not associated with network flows but with deviations from
target qualities. We propose a bilinear program (BLP) that we solve locally using nonlinear programming
solvers to obtain upper bounds. We linearly relax the BLP using McCormick relaxations and solve
the resulting linear program (LP) to obtain lower bounds. A computational study on 26 instances,
representing a real-life industry setting and having quarterly, half-yearly, annual and triannual planning
horizons, shows that even for large-scale BLPs, these bounds can be calculated efficiently.

Keywords Blending, generalized pooling problem, bilinear programming, nonlinear programming

1 Introduction and problem description

Mine –
extract

Stockpile –
runoff mine
stock

Process –
crush &
wash

Stockpile –
raw material
stock

Transport –
mine to port

Stockpile &
assemble –
finished
product
stock

Export –
load & ship

Figure 1: Schematic of a mining supply chain

The aim of this paper is to model the raw material stock blending and finished product stock blending of a
mining supply chain, shown in Figure 1. The notation that we use throughout this paper is given in Table 1.
The key features of the mining supply chain blending model are as follows.

• After the raw material is mined and processed, it is stored on stockpiles for intermediate storage. We
refer to the stockpiles as supply points, or inventories, denoted by S := {1, . . . , S}.

• Important properties of the material to be blended are represented as a set of qualities Q := {1, . . . , Q}.
In the case of coal these may be ash, moisture, sulfur and volatile matter. We assume that for all
qualities, customers prefer small quality values.

• For all i ∈ S, supply comes in at known points in time t ∈ T si := {tsi1, . . . , tsiT s
i
}, where tsiT s

i
> . . . > tsi1 >

0. The quantity and quality of incoming supply, sit and qikt for all k ∈ Q, respectively, is also known a
priori. When a raw material is stored on a stockpile, the inventory’s quantity and quality change. For

∗Georgia Institute of Technology, Atlanta, GA, USA
†The University of Newcastle, Callaghan, Australia

1



all i ∈ S and t ∈ T si , let Iit capture the quantity stored on inventory i at time t, and for all k ∈ Q, let
xsikt capture the value of quality k of that inventory at that time. We assume linear blending, i.e., the
inventory’s new quality is a weighted linear combination of the inventory’s old quality and the quality
of the incoming supply. Iit and xsikt not only incorporate the preceding incoming supply’s quantities,
sit′ , and qualities, qikt′ , for all t′ ∈ T si , t′ ≤ t, but also the succeeding outgoing demand. It will become
apparent in Section 3 why we choose this notation.

• Demand goes out at known points in time t ∈ T d := {td1, . . . , tdTd}, where tdTd > . . . > td1 > 0. We use
the raw material stored on the stockpiles to meet the demand dt. Let yit be the flow from supply point
i ∈ S to the demand point at time t ∈ T d. Note that

∑
i∈S yit = dt must hold. For all k ∈ Q, let

xdkt be the quality after blending the yit flows, i.e. the quality of dt. Again, we assume linear blending.
If demand is met with product that does not satisfy prescribed quality specifications, a penalty is
incurred. The penalty is thus a function of xd. The particular penalty function we use in this paper is
described in the next section.

We assume that every raw material flow (may it be as incoming supply, outgoing demand or as a flow
between the supply points and the demand point) happens instantaneously. The quantities and qualities are
also updated instantaneously. We do not consider any transfer times or costs between the supply points and
the demand point. We assume that, at any time, the past, aggregated, incoming supply is larger than or
equal to the past, aggregated outgoing demand: demand can always be met. The problem is to decide how
much from each supply should be used to meet the demand at each demand time point, so as to minimize the
total penalty. As we shall show in Section 3, this problem can be viewed as a pooling problem; we call it the
mining pooling problem (MPP). The pooling problem was first proposed by Haverly [12] in 1978. Since then,
an extensive literature has been published. Reviews on the pooling problem and its variations are found in
[4, 8, 16]. We also refer the reader to two PhD theses on this subject [10, 15]. There are a number of solution
techniques to solve pooling problems such as successive linear programming, the reformulation-linearization
technique and linear relaxations. In this paper, we study the latter. Applications are found in chemical
engineering, e.g. in petroleum refining [16]. A description of a computational tool that globally optimizes
pooling problems, APOGEE, has been published recently [17]. The literature on pooling problems arising in
the mining industry is, however, sparse [6, 9, 19].

2 Bilinear programming model

Recall that the objective is to minimize the total penalty that has to be paid by the mining company as
a consequence of meeting demand with product having qualities that do not satisfy prescribed product
specifications. Here, we use a penalty function that consists of two linear pieces for each quality k ∈ Q and
for each demand time point t ∈ T d. Let ukt be the contractually agreed soft upper bound on quality k for
demand time point t. The left piece represents quality values xdkt < ukt for which no penalty has to be paid.
The right piece represents quality values xdkt ≥ ukt, for which the mining company has to pay a nonnegative
per unit penalty pkt. We define the excess quality function ekt(x

d
kt) := max{0, xdkt−ukt} to be the deviation

of xdkt from ukt if xdkt ≥ ukt, and 0 otherwise. The penalty incurred from quality k in meeting demand d
is then given by the per unit penalty pkt multiplied by ekt(x

d
kt), the deviation of the quality value xdkt from

its soft upper bound ukt, multiplied by the demand dt (hence a per unit penalty). This yields the piecewise
affine convex objective function

g(xd) =
∑
k∈Q

∑
t∈T d

pktekt(x
d
kt)dt.

Penalty constraint: The objective function above is modelled linearly by the introduction of new variables,
δukt, for each k ∈ Q and t ∈ T d, that are required to satisfy the following constraints:

δukt ≥ 0, ∀k ∈ Q, t ∈ T d, (1a)

δukt ≥ xdkt − ukt, ∀k ∈ Q, t ∈ T d. (1b)

2



Table 1: Overview of the notation

Sets and indices

i ∈ S := {1, . . . , S} Supply points
k ∈ Q := {1, . . . , Q} Qualities
t ∈ T si := {tsi1, . . . , tsiT s

i
} Time points at which supply comes in at i ∈ S

t ∈ T d := {td1, . . . , tdTd} Time points at which demand goes out

Variables

Inventory and flow variables

Iit Inventory at i ∈ S at t ∈ T si
yit Flow from i ∈ S to the demand point at t ∈ T d

Quality variables

xsikt Quality value of k ∈ Q of Iit
xdkt Quality value of k ∈ Q of dt
δukt, Deviation of xdkt from ukt if xdkt ≥ ukt, else 0

Parameters

Inventory and flow parameters

Ii0 Initial inventory at i ∈ S
sit Incoming supply at i ∈ S at t ∈ T si
dt Outgoing demand at t ∈ T d

Quality parameters

xsik0 Quality value of k ∈ Q of Ii0
ukt Soft upper bound on xdkt
pkt Per unit penalty to be paid if xdkt ≥ ukt
qikt Quality value of k ∈ Q of sit

Functions

P (i, t) := {t′ ∈ T si : t′ < t}

p(i, t) :=

{
max{P (i, t)} if P (i, t) 6= ∅
0 otherwise

Predecessor(s) within T si , i ∈ S: P (i, t) ⊂ T si is the set of
supply time points in T si preceding t ∈ T si and p(i, t) ∈ T si
is the immediate predecessor to t.

S(i, t) := {t′ ∈ T si : t′ > t}
s(i, t) := min{S(i, t)}

Successor(s) within T si , i ∈ S: S(i, t) ⊂ T si is the set of
supply time points in T si succeeding t ∈ T si and s(i, t) ∈
T si is the immediate successor to t (provided that t 6=
max{T si } ⇔ S(i, t) 6= ∅).

PT s
i

(t) := {t′ ∈ T si : t′ ≤ t}
pT s

i
(t) := max{PT s

i
(t)}

Cross-predecessor(s): PT s
i

(t) ⊂ T si is the set of supply

time points in T si preceding the demand time point t ∈ T d
and pT s

i
(t) ∈ T si is the immediate predecessor to t ∈ T d.

ST d(i, t) :=


{t′ ∈ T d : t ≤ t′ < s(i, t)}

if S(i, t) 6= ∅
{t′ ∈ T d : t ≤ t′}

otherwise
sT d(i, t) := min{ST d(i, t)}

Cross-successor(s): ST d(i, t) ⊂ T d is the set of demand
time points in T d succeeding the supply time point t ∈ T si
and sT d(i, t) ∈ T d is the immediate successor to t ∈ T si
(provided that t 6> max{T d} ⇔ ST d(i, t) 6= ∅).

3



The optimization model requires the function

f(δu) =
∑
k∈Q

∑
t∈T d

pktδ
u
ktdt

to be minimized. This objective, together with constraints (1a) and (1b), and nonnegativity of all pkt, ensure
that, in any optimal solution, δukt = max{0, xdkt − ukt}, for each k ∈ Q and t ∈ T d.

Supply side inventory constraints: When supply comes in, the inventory’s quantity and quality change. The
following constraints capture the change in quantity:

Iit = Iit′ + sit −
∑

t′′∈ST d (i,t)

yit′′ , ∀i ∈ S, t ∈ T si , t′ = p(i, t). (2)

Supply side inventory blending constraints: The following constraints capture the change in quality. The
inventory’s new quality is a weighted linear combination of the inventory’s old quality and the quality of the
incoming supply:

xsikt =
xsikt′Iit′ + qiktsit

Iit′ + sit
, ∀i ∈ S, k ∈ Q, t ∈ T si , t′ = p(i, t). (3)

Since each stockpile i is assumed to be instantaneously, perfectly blended at each supply time point, for
times t between consecutive supply time points, the quality values of a stockpile remain constant: all material
taken off the stockpile to meet demand at such times have precisely the quality values at the time the last
supply was added, (xsikpT s

i
(t))k∈Q, and these are identical to the quality values of the material remaining in

the stockpile after material has been take off to meet demand. Thus quality values need only be calculated
at the supply time points as shown above, and these can be used to determine the quality values of material
taken off to meet demand, as shown in the next constraint.

Demand side blending constraints: To calculate the quality after blending the yit flows, i.e. the quality of dt,
we linearly blend the preceding inventory qualities weighted by the yit flows (where we use

∑
i∈S yit = dt):

xdktdt =
∑
i∈S

t′=pT s
i
(t)

xsikt′yit, ∀k ∈ Q, t ∈ T d. (4)

Bounding constraints: Both Iit and yit are nonnegative. Iit is bounded above by Iuit, which is deduced from
using as little raw material as possible from supply point i to meet demand. yit is bounded above by dt,
which is deduced from using only raw material from supply point i to meet demand. xsikt and xdkt are at least
as good as the worst quality and at most as good as the best quality of all incoming supply. Thus, we have

0 ≤ Iit ≤ Iuit, ∀i ∈ S, t ∈ T s
i , (5a)

0 ≤ yit ≤ dt, ∀i ∈ S, t ∈ T d, (5b)

min{qikt′ | t′ ∈ T s
i , t′ ≤ t} ≤ xs

ikt ≤ max{qikt′ | t′ ∈ T s
i , t′ ≤ t}, ∀i ∈ S, k ∈ Q, t ∈ T s

i , (5c)

min{qikt′ | i ∈ S, t′ ∈ T s
i , t′ ≤ t} ≤ xd

kt ≤ max{qikt′ | i ∈ S, t′ ∈ T s
i , t′ ≤ t}, ∀k ∈ Q, t ∈ T d, (5d)

where Iuit :=
∑
t′∈T s

i

t′≤t

sit′ −max

{
0,
∑
t′∈T d

t′≤t

dt′ −
∑
i′∈S
i′ 6=i

∑
t′∈T s

i′
t′≤t

si′t′

}
, ∀i ∈ S, t ∈ T si .

We are now ready to formulate the mining pooling problem (MPP):

min
δu,I,y,xs,xd

f(δu) s.t. (1)− (5). (MPP)

(3) and (4) are bilinear functions with bilinear terms of the form Ixs and yxs, respectively. Such forms are
not convex, thus MPP is a nonconvex, nonlinear program. It can be viewed as a special case of the generalized
pooling problem, which we define next.

4



Input 1

Input 2

Input 3

Pool 1

Pool 2

Output 1

Output 2

Figure 2: Example of a GPP graph

3 A special case of the generalized pooling problem

We consider an acyclic directed graph G = (N,A), where N is the set of nodes and A the set of arcs. N is
partitioned into three nonempty subsets I, L, J ⊂ N : I is the set of inputs, L the set of pools and J the set of
outputs. Flows are blended in pools and outputs. We assume that A ⊆ (I ×L)∪ (L×L)∪ (L× J)∪ (I × J),
i.e., there are no arcs between two inputs ((I×I) = ∅) or two outputs ((J×J = ∅)) and no arcs from pools to
inputs ((L× I) = ∅) or outputs to pools ((J ×L) = ∅) or outputs to inputs ((J × I) = ∅). We further assume
that every pool has in-degree and out-degree of at least 1. Similarly, every input (output) has out-degree
(in-degree) of at least 1. Problem instances with A∩ (L×L) = ∅ are referred to as standard pooling problems
(SPPs) and as generalized pooling problems (GPPs), otherwise. An example of a GPP graph is shown in
Figure 2. Both SPPs and GPPs can be modelled as bilinear programs. Problem instances with L = ∅ are
referred to as blending problems (BPs). BPs can be modelled as linear programs.

It is worth noting that (2)–(4) constitute the main constraints of what is commonly referred to in the literature
as the p-formulation (concentration model) of the GPP [10]. There are alternative formulations such as the
q-formulation (proportion model), the pq-formulation, the hybrid formulation, and multi-commodity flow
formulations [2, 3, 4, 7].

The GPP is stated as a static problem, to be solved at one point in time, whereas MPP is a dynamic
problem, deciding how to blend at multiple time points over a planning horizon. Nevertheless, the following
construction enables us to represent the MPP using a GPP graph, and hence shows that the MPP can be
viewed as a special case of the GPP.

1. Nodes

(a) I nodes: For all i ∈ S, t ∈ T si , create an input node it.

(b) L nodes: For all i ∈ S, t ∈ T si , create a pool node it.

(c) J nodes: For all t ∈ T d, create an output node t.

2. Arcs

(a) (I × L) arcs: For all i ∈ S, t ∈ T si , create an arc from input node it to pool node it. Flows on
these arcs represent sit.

(b) (L× L) arcs: For all i ∈ S, t ∈ T si , t′ = p(i, t), create an arc from pool node it′ to pool node it.
Flows on these arcs represent Iit′ .

(c) (L× J) arcs: For all i ∈ S, t ∈ T d, t′ = pT s
i

(t), create an arc from pool node it′ to output node
t. Flows on these arcs represent yit.

4 Linear relaxation of the bilinear program

On the one hand, we can solve MPP as it is with a nonlinear programming solver able to handle nonconvex
problems. However, state-of-the-art global solvers such as BARON [18] and Couenne [5] are relatively slow

5



and struggle to solve large-scale nonconvex problems. On the other hand, local solvers such as Ipopt [20] are
fast, but only find locally optimal solutions, which provide upper bounds on the MPP. In the GPP literature,
a standard approach to finding lower bounds is to substitute the Ixs and yxs terms in constraints (3) and
(4) by an auxiliary variable, z, so that (3) and (4) become linear, and the problem assumes the form of a
bilinear program (BLP):

min
x,y,z

f(x, y, z)

s.t. g(x, y, z) ≤ 0,
h(x, y, z) = 0,

zij = xiyj , ∀ (i, j) ∈ B,
xL ≤ x ≤ xU ,
yL ≤ y ≤ yU ,

(BLP)

where x (y) is a vector of I (J) continuous variables, zij is the bilinear term of xi and yj (i ∈ {1, . . . , I},
j ∈ {1, . . . , J}), B = {(i, j) | zij = xiyj} is the set of bilinear terms, f(x, y, z) is a linear function and
g(x, y, z) and h(x, y, z) are linear vector functions [11].

Then one relaxes the bilinear terms zij = xiyj for all (i, j) ∈ B individually using so-called McCormick
relaxations. Let xy be a bilinear term and let xL, xU , yL and yU be the lower and upper bounds on x and
y, respectively. In [14], McCormick introduces a linear relaxation of xy using the following four inequalities:

z ≥ xyL + xLy − xLyL, z ≥ xyU + xUy − xUyU ,
z ≤ xyL + xUy − xUyL, z ≤ xyU + xLy − xLyU .

Al-Khayyal and Falk prove in [1] that the former two of these four inequalities provide the convex envelope
while the latter two provide the concave envelope of xy. In other words, the four inequalities form the convex
hull of xy. The convex and concave envelopes (or under- and overestimators) of xy on [−1, 1] × [−1, 1] are
shown in Figure 3. We will refer to the linear relaxation of MPP obtained in this way as MPP-L.

−1 −0.5 0
0.5 1 −1

0

1−1

0

1

x
y −1 −0.5 0 0.5

1

−1
0

1

−1

0

1

x
y

Figure 3: Under- (red) and overestimators (blue) of xy on [−1, 1]× [−1, 1]

5 Computational study

Our industry partner provided us with an example data set representing supply and demand data (including
quality specifications and contract penalties) of a real-life mining company for the time horizon 2009–2012.
We split the data into problem instances of years, half-years and quarters. All problem instances share the
following characteristics:

• There are two supply points, i.e. S = 2.

• There are four qualities: ash, moisture, sulfur and volatile matter, i.e. Q = 4.

In the original data set, there are T s1 +T s2 = 4132 supplies and T d = 530 demands. However, we pre-processed
all problem instances to ensure feasibility and to decrease their size as follows:

6



• Consider a supply point i ∈ S and two time points at which supply comes in, t, t′ ∈ T si , t < t′. If
there exists no time point at which demand goes out in between t and t′, i.e. there exists no t′′ ∈ T d,
t ≤ t′′ < t′, then sit and sit′ (and their respective quality values qikt and qikt′) can be equivalently
represented as a single incoming supply at time point t′. The quality values of snewit′ = sit+sit′ are then
calculated as

qnewikt′ =
qiktsit + qikt′sit′

sit + sit′
, ∀k ∈ Q.

This is true for any number of incoming supplies for which there exists no outgoing demand in between.
Applying this pre-processing step reduces T s1 to 234 and T s2 to 244.

• If at any time the cumulative incoming supply is smaller than the cumulative outgoing demand (i.e.
demand cannot be met), we adjust the demand data. More precisely, we iteratively delete any demand
dt, t ∈ T d, where ∑

i∈S

∑
t′∈T s

i

t′≤t

sit′ <
∑
t′∈T d

t′≤t

dt′ .

This reduces T d to 349.

Figure 4 shows the quantity of incoming (aggregated) supply and outgoing (aggregated) demand, Figure 5
the quality of incoming supply and soft upper bounds on outgoing demand over time.

2010 2011 2012
0

50

100

150

200

s i
t
,
d
t

(k
t)

s1t
s2t
dt

0

2.5

5

7.5

10

12.5

∑∑
s i
t
,
∑ d t

(M
t)

∑∑
sit∑
dt

Figure 4: Quantity of incoming (aggregated) supply and outgoing (aggregated) demand over time

The linear problem MPP-L was solved with CPLEX 12.6.0.0 [13], and the nonlinear problem MPP with
Ipopt 3.10.2 [20]. Table 2 shows the test results. Our computational study implies that, even for large-scale
BLPs, both locally optimal upper bound solutions and McCormick relaxation lower bounds can be calculated
efficiently. However, the gap between the lower and upper bounds is in some cases quite large, ranging from
1.7% to 41.9% on the instances tested, with an average of 19.4% (accurate to one decimal place). To close
the gap, one may now consider partitioning I, y and xs to tighten the McCormick relaxations, and combine
solution of MPP-L with a branch-and-bound algorithm; this is the subject of future research.

Acknowledgements This research was supported by the ARC Linkage Grant no. LP110200524, Hunter
Valley Coal Chain Coordinator (hvccc.com.au) and Triple Point Technology (tpt.com).

7

http://www.hvccc.com.au
http://www.tpt.com


2010 2011 2012
8.5

9

9.5

10

Ash (k = 1)

q i
1
t
,
d
1
t

(%
)

q11t
q21t
u1t

2010 2011 2012

6

8

10

12

Moisture (k = 2)

q i
2
t
,
d
2
t

(%
)

q12t
q22t
u2t

2010 2011 2012
0.6

0.7

0.8

0.9

Sulfur (k = 3)

q i
3
t
,
d
3
t

(%
)

q13t
q23t
u3t

2010 2011 2012
20

22

24

26

28

30

Volatile matter (k = 4)

q i
4
t
,
d
4
t

(%
)

q14t
q24t
u4t

Figure 5: Quality of incoming supply and soft upper bounds on outgoing demand over time

8



Table 2: Number of variables (#Vars), number of constraints (#Cons), objective value (Obj) and solve time in seconds for all problem instances,
MPP-L and MPP

MPP-L MPP

Instance T s1 T s2 T d #Vars #Cons Obj Time #Vars #Cons Obj Time Gap

All (2009–2012) 234 244 349 12,480 31,931 35,381,254 7.03 5880 5531 47,319,100 0.02 25%

2009 Year 38 37 49 1841 4720 2,609,254 0.01 865 816 4,141,872 0.01 37%

Half-year 2 38 37 49 1841 4720 2,609,254 0.01 865 816 4,141,872 0.01 37%

Quarter 3 17 16 21 791 2018 1,611,342 0.00 375 354 2,281,114 0.00 29%
Quarter 4 20 20 26 972 2482 1,022,164 0.00 460 434 1,757,963 0.01 42%

2010 Year 83 89 122 4416 11,302 8,747,566 1.05 2080 1958 11,822,217 0.01 26%

Half-year 1 42 46 63 2262 5775 4,860,413 0.02 1070 1007 7,192,454 0.01 32%
Half-year 2 42 44 58 2146 5496 3,612,735 0.37 1010 952 4,242,027 0.01 15%

Quarter 1 20 21 28 1021 2601 2,378,455 0.00 485 457 2,963,570 0.00 20%
Quarter 2 21 24 30 1109 2831 1,938,588 0.01 525 495 2,999,773 0.00 35%
Quarter 3 20 21 24 949 2437 1,956,998 0.00 445 421 2,456,252 0.00 20%
Quarter 4 22 23 31 1127 2872 427,871 0.00 535 504 599,408 0.01 29%

2011 Year 62 61 94 3275 8341 16,672,957 0.63 1555 1461 20,659,190 0.01 19%

Half-year 1 35 34 49 1763 4498 9,563,052 0.01 835 786 10,517,145 0.01 9%
Half-year 2 27 28 42 1455 3693 8,507,098 0.01 695 653 10,935,728 0.01 22%

Quarter 1 18 19 26 933 2371 5,680,948 0.00 445 419 6,348,302 0.00 11%
Quarter 2 17 15 21 778 1981 3,057,259 0.00 370 349 3,185,907 0.01 4%
Quarter 3 11 10 14 509 1287 2,037,150 0.00 245 231 2,264,541 0.01 10%
Quarter 4 15 15 22 770 1948 4,219,145 0.00 370 348 5,028,387 0.01 16%

2012 Year 51 56 78 2779 7093 10,392,413 0.02 1315 1237 11,320,438 0.01 8%

Half-year 1 30 36 45 1652 4223 7,250,497 0.01 780 735 7,630,918 0.01 5%
Half-year 2 21 20 31 1075 2724 3,040,012 0.00 515 484 3,385,814 0.01 10%

Quarter 1 14 14 16 636 1628 1,400,109 0.00 300 284 1,626,699 0.00 14%
Quarter 2 16 18 22 822 2096 2,917,539 0.00 390 368 2,967,360 0.00 2%
Quarter 3 14 14 22 744 1874 2,254,115 0.00 360 338 2,395,868 0.00 6%
Quarter 4 8 8 9 354 897 396,687 0.00 170 161 534,669 0.00 26%

9



References

[1] F. A. Al-Khayyal and J. E. Falk. Jointly Constrained Biconvex Programming. Mathematics of Operations
Research, 8(2):273–286, 1983.

[2] M. Alfaki and D. Haugland. A multi-commodity flow formulation for the generalized pooling problem.
Journal of Global Optimization, 56(3):917–937, 2013.

[3] M. Alfaki and D. Haugland. Strong formulations for the pooling problem. Journal of Global Optimization,
56(3):897–916, 2013.

[4] C. Audet, J. Brimberg, P. Hansen, S. Le Digabel, and N. Mladenović. Pooling Problem: Alternate
Formulations and Solution Methods. Management Science, 50(6):761–776, 2004.

[5] P. Belotti. COUENNE: a user’s manual. coin-or.org/Couenne/couenne-user-manual.pdf.

[6] A. Bley, N. Boland, G. Froyland, and M. Zuckerberg. Solving mixed integer nonlinear programming
problems for mine production planning with stockpiling. Optimization Online e-prints, November 2012.
optimization-online.org/DB HTML/2012/11/3674.html.

[7] N. Boland, T. Kalinowski, and F. Rigterink. New multi-commodity flow formulations for the pool-
ing problem. Journal of Global Optimization, 2016. Advance online publication, 42 pages. DOI:
10.1007/s10898-016-0404-x.

[8] S. S. Dey and A. Gupte. Analysis of MILP Techniques for the Pooling Problem. Operations Research,
63(2):412–427, 2015.

[9] J. E. Everett. Iron ore production scheduling to improve product quality. European Journal of Opera-
tional Research, 129(2):355–361, 2001.

[10] A. Gupte. Mixed integer bilinear programming with applications to the pooling problem. PhD thesis,
Georgia Institute of Technology, 2012. hdl.handle.net/1853/45761.

[11] M. M. F. Hasan and I. A. Karimi. Piecewise Linear Relaxation of Bilinear Programs Using Bivariate
Partitioning. AIChE Journal, 56(7):1880–1893, 2010.

[12] C. A. Haverly. Studies of the Behavior of Recursion for the Pooling Problem. SIGMAP Bulletin,
25:19–28, 1978.

[13] IBM. IBM ILOG CPLEX Optimization Studio: CPLEX User’s Manual, Version 12 Release 6, 2015.

[14] G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I – Convex
underestimating problems. Mathematical Programming, 10(1):147–175, 1976.

[15] R. Misener. Novel Global Optimization Methods: Theoretical and Computational Studies on Pooling
Problems with Environmental Constraints. PhD thesis, Princeton University, 2012.
arks.princeton.edu/ark:/88435/dsp015q47rn787.

[16] R. Misener and C. A. Floudas. Advances for the pooling problem: Modeling, global optimization, and
computational studies. Applied and Computational Mathematics, 8(1):3–22, 2009.

[17] R. Misener, J. P. Thompson, and C. A. Floudas. APOGEE: Global optimization of standard, generalized,
and extended pooling problems via linear and logarithmic partitioning schemes. Computers & Chemical
Engineering, 35(5):876–892, 2011.

[18] N. V. Sahinidis. BARON: A General Purpose Global Optimization Software Package. Journal of Global
Optimization, 8(2):201–205, 1996.

[19] G. Singh, R. Garćıa-Flores, A. T. Ernst, P. Welgama, M. Zhang, and K. Munday. Medium-Term Rail
Scheduling for an Iron Ore Mining Company. Interfaces, 44(2):222–240, 2014.

[20] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57, 2005.

10

http://www.coin-or.org/Couenne/couenne-user-manual.pdf
http://www.optimization-online.org/DB_HTML/2012/11/3674.html
http://dx.doi.org/10.1007/s10898-016-0404-x
http://hdl.handle.net/1853/45761
http://arks.princeton.edu/ark:/88435/dsp015q47rn787

	Introduction and problem description
	Bilinear programming model
	A special case of the generalized pooling problem
	Linear relaxation of the bilinear program
	Computational study

