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Abstract We investigate projected scaled gradient (PSG) methods for con-
vex minimization problems. These methods perform a descent step along a
diagonally scaled gradient direction followed by a feasibility regaining step via
orthogonal projection onto the constraint set. This constitutes a generalized
algorithmic structure that encompasses as special cases the gradient projection
method, the projected Newton method, the projected Landweber-type meth-
ods and the generalized Expectation-Maximization (EM)-type methods. We
prove the convergence of the PSG methods in the presence of bounded pertur-
bations. This resilience to bounded perturbations is relevant to the ability to
apply the recently developed superiorization methodology to PSG methods,
in particular to the EM algorithm.

1 Introduction

In this paper we consider convex minimization problems of the form{
minimize J(x)
subject to x ∈ Ω. (1)

The constraint set Ω ⊆ Rn is assumed to be nonempty, closed and convex,
and the objective function J : Ω 7→ R is convex. Many problems in engineer-
ing and technology can be modeled by (1). Gradient-type iterative methods
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are advocated techniques for such problems and there exists an extensive lit-
erature regarding projected gradient or subgradient methods as well as their
incremental variants, see, e.g., [6,30,38,48,54].

In particular, the weighted Least-Squares (LS) and the Kullback-Leibler
(KL) distance (also known as I -divergence or cross-entropy [23]), which are two
special instances of the Bregman distances [18, p. 33], are generally adopted
as proximity functions measuring the constraints-compatibility in the field of
image reconstruction from projections [9,10,21,35]. Minimization of the LS or
the KL distance with additional constraints, such as nonnegativity, naturally
falls within the scope of (1). Correspondingly, the Landweber iteration [39]
is a general gradient method for weighted LS problems [2, Section 6.2], [12,
Section 4.6], [36], [47], [53], while the class of expectation-maximization (EM)
algorithms [57] are essentially scaled gradient methods for the minimization
of KL distance [3,29,40].

Motivated by the scaled gradient formulation of EM-type algorithms, we
focus our attention on the family of projected scaled gradient (PSG) methods,
the basic iterative step of which is given by

xk+1 := PΩ(xk − τkD(xk)∇J(xk)), (2)

where τk denotes the stepsize, D(xk) is a diagonal scaling matrix and PΩ is the
orthogonal (Euclidean least distance) projection onto Ω. To our knowledge,
the PSG methods presented here date back to [4, Eq. (29)] and they resemble
the projected Newton method studied in [5].

From the algorithmic structural point of view, the family of PSG methods
includes, but is not limited to, the Goldstein-Levitin-Polyak gradient projec-
tion method [4,27,41], the projected Newton method [5], and the projected
Landweber method [2, Section 6.2], [53], as well as generalized EM-type meth-
ods [29,40]. The PSG methods should be distinguished from the scaled gradient
projection (SGP) methods in the literature [3,7]. PSG methods belong to the
class of two-metric projection methods [25], which adopt different norms for
the computation of the descent direction and the projection operation while
SGP methods utilize the same norm for both.

The main purpose of this paper is to investigate the convergence behavior
of PSG methods and their bounded perturbation resilience. This is inspired
by the recently developed superiorization methodology (SM) [14,15,33]. The
superiorization methodology works by taking an iterative algorithm, investi-
gating its perturbation resilience, and then, using proactively such permitted
perturbations, forcing the perturbed algorithm to do something useful in addi-
tion to what it is originally designed to do. The original unperturbed algorithm
is called the “Basic Algorithm” and the perturbed algorithm is called the “Su-
periorized Version of the Basic Algorithm”.
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If the original algorithm1 is computationally efficient and useful in terms of
the application at hand, and if the perturbations are simple and not expensive
to calculate, then the advantage of this methodology is that, for essentially
the same computational cost of the original Basic Algorithm, we are able to
get something more by steering its iterates according to the perturbations.

This is a very general principle, which has been successfully used in some
important practical applications and awaits to be implemented and tested
in additional fields; see, e.g., the recent papers [55,56], for applications in
intensity-modulated radiation therapy and in nondestructive testing. The prin-
ciples of superiorization and perturbation resilience along with many references
to works in which they were used, are reviewed in the recent [13] and [31]. A
chronologically ordered bibliography of scientific publications on the superi-
orization methodology and perturbation resilience of algorithms has recently
been compiled and is being continuously updated by the second author. It is
now available at: http://math.haifa.ac.il/yair/bib-superiorization-censor.html.

In a nutshell, the SM lies between feasibility-seeking and constrained min-
imization. It is not quite trying to solve the full-fledged constrained minimiza-
tion; rather, the task is to seek a superior feasible solution in terms of the
given objective function. This can be beneficial for cases when an exact ap-
proach to constrained minimization has not yet been discovered, or when exact
approaches are computer resources demanding or computation time consum-
ing. In such cases, existing feasibility-seeking algorithms that are perturbation
resilient can be turned into efficient algorithms that perform superiorization.

The basic idea of the SM originates from the discovery that some feasibility-
seeking projection algorithms for convex feasibility problems are bounded
perturbations resilient [8]. SM thus takes advantage of the perturbation re-
silience property of the String-Averaging Projections (SAP) [17] or Block-
Iterative Projections (BIP) [24,49] methods to steer the iterates of the original
feasibility-seeking projection method towards a reduced, but not necessarily
minimal, value of the given objective function of the constrained minimization
problem at hand, see, e.g., [14,52].

The mathematical principles of the SM over general consistent “problem
structures” with the notion of bounded perturbation resilience were formu-
lated in [14]. The framework of the SM was extended to the inconsistent case
by using the notion of strong perturbation resilience [33]. Most recently, the
effectiveness of the SM was demonstrated by a performance comparison with
the projected subgradient method for constrained minimization problems [15].

But the SM is not limited to handling just feasibility-seeking algorithms.
It can take any “Basic Algorithm” that is bounded perturbations resilient
and introduce certain permitted perturbations into its iterates, such that the
resulting algorithm is automatically steered to produce an output that is su-

1 We use the term “algorithm” for the iterative processes discussed here, even for those
that do not include any termination criterion. This does not create any ambiguity because
whether we consider an infinite iterative process or an algorithm with a termination rule is
always clear from the context.
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perior with respect to the given objective function. See Subsection 4.1 below
for more details on this point.

Specifically, efforts have been recently made to derive a superiorized ver-
sion of the EM algorithm, and this is why we study the bounded perturbation
resilience of the PSG methods here. Superiorization of the EM algorithm was
first reported experimentally in our previous work with application to biolu-
minescence tomography [37]. Such superiorized version of the EM iteration
was later applied to single photon emission computed tomography [43]. The
effectiveness of superiorization of the EM algorithm was further validated with
a study using statistical hypothesis testing in the context of positron emission
tomography [26].

These efforts with regard to the EM algorithm prompted our research
reported here. Namely, the need to secure bounded perturbations resilience of
the EM algorithm that will justify the use of a superiorized version of it to
seek total variation (TV) reduced values of the image vector x in an image
reconstruction problem that employs an EM algorithm, see Section 4 below.

The fact that the algebraic reconstruction technique (ART), see, e.g., [32,
Chapter 11] and references therein, is related to the Landweber iteration [36,
60] for weighted LS problems and the fact that EM is essentially a scaled
gradient method for KL minimization [3,29,40] prompt us to investigate the
PSG methods, which encompass both, with bounded perturbations.

So, in view of the above considerations, we ask if the convergence of PSG
methods will be preserved in the presence of bounded perturbations? In this
study, we provide an affirmative answer to this question. First we prove the
convergence of the iterates generated by

xk+1 := PΩ(xk − τkD(xk)∇J(xk) + e(xk)), (3)

with {e(xk)}∞k=0 denoting the sequence of outer perturbations and satisfying

∞∑
k=0

‖e(xk)‖ < +∞. (4)

This convergence result is then translated to the desired bounded perturbation
resilience of PSG methods (in Section 4 below).

The algorithmic structure of (3)–(4) is adapted from the general frame-
work of the feasible descent methods studied in [45]. Compared with [45], our
algorithmic extension has two aspects. Firstly, the diagonally scaled gradient
is incorporated, which allows to include additional cases such as generalized
EM-type methods. Secondly, the perturbations in [45] were given as

‖e(xk)‖ ≤ γ‖xk − xk+1‖ for some γ > 0, ∀k, (5)

so as not to deviate too much from gradient projection methods, while in our
case the perturbations are assumed to be just bounded.

Bounded perturbations as in (4) were previously studied in the context of
inexact matrix splitting algorithms for the symmetric monotone linear com-
plementarity problem [46]. This was further investigated in [42] under milder
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assumptions by extending the proof of [44]. Additionally, convergence of the
feasible descent method with nonvanishing perturbations and its generaliza-
tion to incremental subgradient-type methods were also reported in [58] and
[59], respectively.

The paper is organized as follows. In Section 2, we introduce the PSG
methods by studying two particular cases of the proximity function minimiza-
tion problems for image reconstruction. In Section 3, we present our main
convergence results for the PSG method with bounded perturbations, namely,
the convergence of (3)–(4). We call the latter “outer perturbations” because of
the location of the term e(xk) in (3). In Section 4, we prove the bounded per-
turbation resilience of the PSG method by establishing a relationship between
the inner perturbations and the outer perturbations.

2 Projected Scaled Gradient Methods

In this section, we introduce the background and motivation of the projected
scaled gradient (PSG) methods for (1). As mentioned before, the PSG methods
generate iterates according to the formula

xk+1 = PΩ(xk − τkD(xk)∇J(xk)), k = 0, 1, 2, . . . (6)

where {τk}∞k=0 is a sequence of positive stepsizes and {D(xk)}∞k=0 is a sequence
of diagonal scaling matrices. The diagonal scaling matrices not only play the
role of preconditioning the gradient direction, but also induce a general algo-
rithmic structure that encompasses many existing algorithms as special cases.

In particular, the PSG methods include the gradient projection method [4,
27,41], which corresponds to the situation when D(xk) ≡ In for any k with
In the identity matrix of order n. In case when D(xk) ≈ ∇2J(xk)−1, namely
when the diagonal scaling matrix is an adequate approximation of the inverse
Hessian, the PSG method reduces to the projected Newton method [5]. In fact,
the selection of various diagonal scaling matrices give rise to different concrete
algorithms. How to choose appropriate diagonal scaling matrices depends on
the particular problem.

We investigate the class of projected scaled gradient (PSG) methods by
concentrating on two particular cases of (1). Consider the following linear
image reconstruction problem model with nonnegativity constraint,

Ax = b, x ≥ 0, (7)

where A = (aij)
m,n
i,j=1 is an m× n matrix in which ai = (aij)

n
j=1 ∈ Rn is the ith

column of its transpose AT , and x = (xj)
n
j=1 ∈ Rn and b = (bi)

m
i=1 ∈ Rm are

all assumed to be nonnegative. For simplicity, we denote Ω0 := Rn+ hereafter.
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2.1 Projected Landweber-type Methods

The linear problem model (7) can be approached as the following constrained
weighted Least-Squares (LS) problem,{

minimize JLS(x)
subject to x ∈ Ω0,

(8)

where the weighted LS functional JLS(x) is defined by

JLS(x) :=
1

2
‖b−Ax‖2W =

1

2
〈W (b−Ax), b−Ax〉 , (9)

with W the weighting matrix depending on the specific problem. The gradient
of JLS(x) for any x ∈ Rn is

∇JLS(x) = −ATW (b−Ax). (10)

The projected Landweber method [2, Section 6.2] for (8) uses the iteration

xk+1 = PΩ0(xk + τkA
TW (b−Axk)). (11)

By (10), the above (11) can be written as

xk+1 = PΩ0
(xk − τk∇JLS(xk)), (12)

which obviously belongs to the family of PSG methods for (8) with the diagonal
scaling matrix D(xk) ≡ In for any k.

The projected Landweber method with diagonal preconditioning for (8),
as studied in [53], uses the iteration

xk+1 = PΩ0
(xk + τkV A

TW (b−Axk)), (13)

where V is a diagonal n × n matrix satisfying certain conditions, see [53, p.
446, (i)-(iii)]. By (10), (13) is equivalent to the iteration

xk+1 = PΩ0(xk − τkV∇JLS(xk)), (14)

and hence, it also belongs to the family of PSG methods with D(xk) ≡ V for
any k.

In general, the projected Landweber-type methods for (8) is given by

xk+1 = PΩ0
(xk − τkDLS∇JLS(xk)), (15)

where the diagonal scaling matrices are typically constant positive definite
matrices of the form,

DLS := diag

{
1

sj

}
, sj ∈ R and sj > 0, for all j = 1, 2, . . . , n, (16)

with sj possibly constructed from the linear system matrix A of (7) for each
j, and being sparsity pattern oriented [16, Eq. (2.2)].
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2.2 Generalized EM-type Methods

The Kullback-Leibler distance is a widely adopted proximity function in the
field of image reconstruction. Using it, we seek a solution of (7) by minimizing
the Kullback-Leibler distance between b and Ax, as given by

JKL(x) := KL(b, Ax) =

m∑
i=1

(
bi log

bi
〈ai, x〉

+
〈
ai, x

〉
− bi

)
, (17)

over nonnegativity constraints, i.e.,{
minimize JKL(x)
subject to x ∈ Ω0.

(18)

The gradient of JKL(x) is

∇JKL(x) =

m∑
i=1

(
1− bi
〈ai, x〉

)
ai. (19)

The class of EM-type algorithms is known to be closely related to KL
minimization. The kth iterative step of the EM algorithm in Rn is given by

xk+1
j =

xkj∑m
i=1 a

i
j

m∑
i=1

bi
〈ai, xk〉

aij , for all j = 1, 2, . . . , n. (20)

The following convergence results of the EM algorithm are well-known. For
any positive initial point x0 ∈ Rn++, any sequence {xk}∞k=0, generated by (20),
converges to a solution of (7) in the consistent case, while it converges to the
minimizer of the Kullback-Leibler distance KL(b, Ax), defined by (17), in the
inconsistent case [34].

It is known that the EM algorithm can be viewed as the following scaled
gradient method, see, e.g., [3,29,40], whose kth iterative step is

xk+1 = xk −DEM(xk)∇JKL(xk), (21)

where the n× n diagonal scaling matrix is defined by

DEM(x) := diag

{
xj∑m
i=1 a

i
j

}
. (22)

Thus the EM algorithm belongs to the class of PSG methods with τk ≡ 1 for
all k and the diagonal scaling matrix given by D(x) ≡ DEM(x) for any x.

More generally, generalized EM-type methods for (18) can be given by

xk+1 = PΩ0
(xk − τkDKL(xk)∇JKL(xk)), (23)
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with {τk}∞k=0 as relaxation parameters [18, Section 5.1] and {DKL(xk)}∞k=0 as
diagonal scaling matrices. The diagonal scaling matrices for the generalized
EM-type methods are typically of the form, see, e.g., [29],

DKL(x) := diag

{
xj
ŝj

}
, with ŝj ∈ R and ŝj > 0 for j = 1, 2, . . . , n, (24)

where ŝj might be dependent on the linear system matrix A of (7) for any j.
When ŝj =

∑m
i=1 a

i
j for any j, then DKL(x) coincides with the matrix DEM(x)

given by (22).

It is worthwhile to comment here that it is natural to obtain incremental
versions of PSG methods when the objective function J(x) is separable, i.e.,
J(x) =

∑m
i=1 Ji(x) for some integer m. The separability of both the weighted

LS functional (9) and the KL functional (17) facilitates the derivation of in-
cremental variants for the projected Landweber-type methods and generalized
EM-type methods. While the incremental methods enjoy better convergence
at early iterations, relaxation strategies are required to guarantee asymptotic
acceleration [30].

3 Convergence of the PSG Method with Outer Perturbations

In this section, we present our main convergence results of the PSG method
with bounded outer perturbations of the form (3)–(4). The stationary points
of (1) are fixed points of PΩ(x−∇J(x)) [12, Corollary 1.3.5], i.e., zeros of the
residual function

r(x) := x− PΩ(x−∇J(x)). (25)

We denote the set of all these stationary points by

S := {x ∈ Rn | r(x) = 0} , (26)

and assume that S 6= ∅. We also assume that (1) has a solution and that
J∗ := infx∈Ω J(x). We will prove that sequences generated by a PSG method
converge to a stationary point of (1) in the presence of bounded perturbations.

We focus our attention on objective functions J(x) of (1) that are assumed
to belong to a subclass of convex functions, in the notation of [48, p. 65],
J ∈ S1,1µ,L(Ω), which means that∇J is Lipschitz continuous onΩ with Lipschitz
constant L, i.e., there exists a L > 0, such that

‖∇J(x)−∇J(y)‖ ≤ L‖x− y‖, for all x, y ∈ Ω, (27)

and that J is strongly convex on Ω with the strong convexity parameter µ
(L ≥ µ), i.e., there exists a µ > 0, such that

J(y) ≥ J(x) + 〈∇J(x), y − x〉+
1

2
µ‖y − x‖2, for all x, y ∈ Ω. (28)
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The convergence of gradient methods without perturbations for this subclass
of convex functions, S1,1µ,L(Ω), is well-established, see [48].

Motivated by recent works on superiorization [14,15,33] and the framework
of feasible descent methods [45], we investigate convergence of the PSG method
with bounded perturbations for (1), that is,

xk+1 = PΩ(xk − τkD(xk)∇J(xk) + e(xk)), (29)

where {τk}∞k=0 is a sequence of positive scalars with

0 < inf
k
τk ≤ τk ≤ sup

k
τk < 2/L, (30)

and {D(xk)}∞k=0 is a sequence of diagonal scaling matrices. Denoting ek :=
e(xk), the sequence of perturbations {ek}∞k=0 is assumed to be summable, i.e.,

∞∑
k=0

‖ek‖ < +∞. (31)

To ensure that the scaled gradient direction does not deviate too much from
the gradient direction, we define

θk := ∇J(xk)−D(xk)∇J(xk), (32)

and assume that
∞∑
k=0

‖θk‖ < +∞. (33)

3.1 Preliminary Results

In this subsection, we prepare some relevant facts and pertinent conditions
that are necessary for our convergence analysis. The following lemmas are
required by subsequent proofs. The first one is known as the descent lemma
for a function with Lipschitz continuous gradient, see [6, Proposition A.24].

Lemma 3.1 Let J : Rn → R be a continuously differentiable function whose
gradients are Lipschitz continuous with constant L. Then, for any L′ ≥ L,

J(x) ≤ J(y) + 〈∇J(y), x− y〉+
L′

2
‖x− y‖2, for all x, y ∈ Rn. (34)

The second lemma reveals well-known characterizations of projections onto
convex sets, see, e.g., [6, Proposition 2.1.3] or [54, Fig. 11].

Lemma 3.2 Let Ω be a nonempty, closed and convex subset of Rn. Then, the
orthogonal projection onto Ω is characterized by

(i) For any x ∈ Rn, the projection PΩ(x) of x onto Ω satisfies

〈x− PΩ(x), y − PΩ(x)〉 ≤ 0, ∀y ∈ Ω. (35)
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(ii) PΩ is a nonexpansive operator, i.e.,

‖PΩ(x)− PΩ(y)‖ ≤ ‖x− y‖, ∀x, y ∈ Rn. (36)

The third lemma is a property of the orthogonal projection operator, which
was proposed in [25, Lemma 1], see also [6, Lemma 2.3.1].

Lemma 3.3 Let Ω be a nonempty, closed and convex subset of Rn. Given
x ∈ Rn and d ∈ Rn, the function ϕ(t) defined by

ϕ(t) :=
‖PΩ(x+ td)− x‖

t
(37)

is monotonically nonincreasing for t > 0.

The fourth lemma is from [46, Lemma 2.2], which originates from [19,
Lemma 2.1], see also [22, Lemma 3.1] or [54, p. 44, Lemma 2] for a more
general formulation.

Lemma 3.4 Let {αk}∞k=0 ⊂ R+ be a sequence of nonnegative real numbers.
If it holds that 0 ≤ αk+1 ≤ αk + εk for all k ≥ 0, where εk ≥ 0 for all k ≥ 0
and

∑∞
k=0 εk < +∞, then the sequence {αk}∞k=0 converges.

In our analysis we make use of the following two conditions, which are
Assumptions A and B, respectively, in [45], and are called “local error bound”
condition and “proper separation of isocost surfaces” condition, respectively.
The error bound condition estimates the distance of an x ∈ Ω to the solu-
tion set S, defined above, by the norm of the residual function, see [51] for
a comprehensive review. Denote the distance from a point x to the set S by
d(x, S) = miny∈S ‖x− y‖.

Condition 1 For every v ≥ infx∈Ω J(x), there exist scalars ε > 0 and β > 0
such that

d(x, S) ≤ β‖r(x)‖ (38)

for all x ∈ Ω with J(x) ≤ v and ‖r(x)‖ ≤ ε.

The second condition, which says that the isocost surfaces of the function
J(x) on the solution set S should be properly separated, is known to hold for
any convex function [45, p. 161].

Condition 2 There exists a scalar ε > 0 such that

if u, v ∈ S and J(u) 6= J(v) then ‖u− v‖ ≥ ε. (39)

Next, we show that the above two conditions are satisfied by functions
belonging to S1,1µ,L(Ω). Since Condition 2 certainly holds for a strongly convex
function, we need to prove that Condition 1 is also fulfilled. The early roots
of the proof of the next lemma, which leads to this fact, can be traced back
to Theorem 3.1 of [50].

Lemma 3.5 The error bound condition (38) holds globally for any J ∈ S1,1µ,L(Ω).
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Proof By the definition of the residual function (25), we have

x− r(x) = PΩ(x−∇J(x)) ∈ Ω. (40)

For any given x∗ ∈ S, by the optimality condition of the problem (1), see, e.g.,
[54, p. 203, Theorem 3] or [6, Proposition 2.1.2], we know that

〈∇J(x∗), x− x∗〉 ≥ 0, ∀x ∈ Ω. (41)

Since x− r(x) ∈ Ω for all x ∈ Ω, then, by (41), we obtain,

〈−∇J(x∗), x− r(x)− x∗〉 ≤ 0. (42)

From Lemma 3.2 (i) and (40), we get

〈(x−∇J(x))− PΩ(x−∇J(x)), x∗ − PΩ(x−∇J(x))〉 ≤ 0

⇒ 〈(x−∇J(x))− (x− r(x)), x∗ − (x− r(x))〉 ≤ 0

⇒ 〈∇J(x)− r(x), x− r(x)− x∗〉 ≤ 0

⇒ 〈∇J(x), x− r(x)− x∗〉 ≤ 〈r(x), x− r(x)− x∗〉. (43)

Summing up both sides of (42) and (43), yields

〈∇J(x)−∇J(x∗), x− r(x)− x∗〉 ≤ 〈r(x), x− r(x)− x∗〉
⇒ 〈∇J(x)−∇J(x∗), x− x∗〉 ≤ 〈r(x),∇J(x)−∇J(x∗) + x− x∗〉. (44)

By the strong convexity of J(x), we have that [48, Theorem 2.1.9 ],

〈∇J(x)−∇J(x∗), x− x∗〉 ≥ µ‖x− x∗‖2. (45)

Combing (44) with (45), leads to

µ‖x− x∗‖2 ≤ 〈r(x),∇J(x)−∇J(x∗) + x− x∗〉
≤ (‖∇J(x)−∇J(x∗)‖+ ‖x− x∗‖)‖r(x)‖
≤ (L+ 1)‖x− x∗‖‖r(x)‖

⇒ ‖x− x∗‖ ≤ (L+ 1)/µ ‖r(x)‖, (46)

and, hence,

d(x, S) ≤ (L+ 1)/µ ‖r(x)‖. (47)

Consequently, the error bound condition (38), namely Condition 1 holds.
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3.2 Convergence Analysis

In this subsection, we give the detailed convergence analysis for the PSG
method with bounded outer perturbations of (29). The proof techniques follow
the track of [42,44–46] and extend them to adapt to our case here. We first
prove the convergence of the sequence of objective function values {J(xk)}∞k=0

at points of any sequence {xk}∞k=0 generated by the PSG method with bounded
outer perturbations of (29). We then prove that any sequence of points {xk}∞k=0,
generated by the PSG method with bounded outer perturbations of (29), con-
verges to a stationary point.

The following proposition estimates the difference of objective function
values between successive iterations in the presence of bounded perturbations.

Proposition 3.1 Let Ω ⊆ Rn be a nonempty closed convex set and assume
that J(x) is strongly convex on Ω with convexity parameter µ, and that ∇J is
Lipschitz continuous on Ω with Lipschitz constant L such that L ≥ µ. Further,
let {τk}∞k=0 be a sequence of positive scalars that fulfills (30), let {ek}∞k=0 be
a sequence of perturbation vectors as defined above that fulfills (31), and let
{θk}∞k=0 be as in (32) and for which (33) holds. If {xk}∞k=0 is any sequence,
generated by the PSG method with bounded outer perturbations of (29), then
there exists an η1 > 0 such that

J(xk)− J(xk+1) ≥ η1‖xk − xk+1‖2 − ‖δk‖‖xk − xk+1‖ (48)

with δk defined via the above-mentioned τk, e
k and θk, by

δk :=
1

τk
ek + θk. (49)

Proof Lemma 3.1 implies that

J(xk)− J(xk+1) ≥ 〈∇J(xk), xk − xk+1〉 − L

2
‖xk − xk+1‖2. (50)

By (29) and Lemma 3.2, we have

〈xk+1 − xk, xk − τkD(xk)∇J(xk) + ek − xk+1〉 ≥ 0. (51)

Rearrangement of the last relation and using (32) leads to

〈∇J(xk), xk − xk+1〉 ≥ 1

τk
‖xk − xk+1‖2 +

1

τk
〈ek, xk − xk+1〉

+ 〈θk, xk − xk+1〉. (52)

By (49) and the Cauchy-Schwarz inequality we then obtain

〈∇J(xk), xk − xk+1〉 ≥ 1

τk
‖xk − xk+1‖2 − ‖δk‖‖xk − xk+1‖. (53)

Combining (53) with (50) leads to

J(xk)− J(xk+1) ≥ (
1

τk
− L

2
)‖xk − xk+1‖2 − ‖δk‖‖xk − xk+1‖. (54)
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By defining τ := sup
k
τk and

η1 :=
1

τ
− L

2
, (55)

the proof is complete.

From Proposition 3.1 and Lemma 3.4, we obtain the following theorem on
the convergence of objective function values.

Theorem 3.1 If the problem (1) has a solution, namely J∗ = infx∈Ω J(x),
then under the conditions of Proposition 3.1, the sequence of function values
{J(xk)}∞k=0 calculated at points of any sequence {xk}∞k=0, generated by the
PSG method with bounded outer perturbations of (29), converges.

Proof From Proposition 3.1, we can further get

J(xk)− J(xk+1) ≥ η1
(
‖xk − xk+1‖ − 1

2η1
‖δk‖

)2

− 1

4η1
‖δk‖2, (56)

and since J(x) ≥ J∗, for all x ∈ Ω, the above relation implies that

0 ≤ J(xk+1)− J∗ ≤ J(xk)− J∗ +
1

4η1
‖δk‖2. (57)

By defining τ := inf
k
τk and using Minkowski’s inequality, we get

‖δk‖2 ≤ 1

τ2k
‖ek‖2 + ‖θk‖2 ≤ 1

τ2
‖ek‖2 + ‖θk‖2, (58)

which implies, by (31) and (33), that
∑∞
k=1 ‖δk‖2 < +∞. Then, by Lemma

3.4 and (57), the sequence {J(xk)−J∗}∞k=0 converges, and hence the sequence
{J(xk)}∞k=0 also converges.

In what follows, we prove that any sequence, generated by the PSG method
with bounded outer perturbations of (29), converges to a stationary point of
S. The following propositions lead to that result. The first proposition shows
that ‖xk−xk+1‖ is bounded above by the difference between objective function
values at corresponding points plus a perturbation term.

Proposition 3.2 Under the conditions of Proposition 3.1, let {xk}∞k=0 be any
sequence generated by the PSG method with bounded outer perturbations of
(29). Let η1 be given by (55) and {δk}∞k=0 be given by (49). Then, it holds that

‖xk − xk+1‖ ≤
√

2

η1

∣∣J(xk)− J(xk+1)
∣∣1/2 +

1

η1
‖δk‖. (59)
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Proof By the basic inequality (p+ q)2 ≤ 2(p2 + q2),∀p, q ∈ R, we can write

‖xk − xk+1‖2 ≤ 2

((
‖xk − xk+1‖ − 1

2η1
‖δk‖

)2

+

(
1

2η1
‖δk‖

)2
)
. (60)

From (56) and (60), we have

‖xk − xk+1‖2 ≤ 2

η1

(
J(xk)− J(xk+1)

)
+

1

η21
‖δk‖2, (61)

which allows us to use the inequality
√
a2 + b2 ≤ a+b,∀a, b ≥ 0, yielding (59).

The next proposition gives an upper bound on the residual function of (25)
in the presence of bounded perturbations.

Proposition 3.3 Under the conditions of Proposition 3.1, if {xk}∞k=0 is any
sequence generated by the PSG method with bounded outer perturbations of
(29), then there exists a constant η2 > 0 such that, for the residual function
of (25) we have, for all k ≥ 0,

‖r(xk)‖ ≤ η2(‖xk − xk+1‖+ ‖ek‖+ ‖θk‖). (62)

Proof From (29), it holds true, by (36), that

‖xk+1 − PΩ(xk − τkD(xk)∇J(xk))‖ ≤ ‖ek‖. (63)

Then, we can get

‖xk − PΩ(xk − τkD(xk)∇J(xk))‖
≤ ‖xk − xk+1‖+ ‖xk+1 − PΩ(xk − τkD(xk)∇J(xk))‖
≤ ‖xk − xk+1‖+ ‖ek‖. (64)

By Lemma 3.3, the left-hand side of (64) is bounded below, according to

‖xk − PΩ(xk − τkD(xk)∇J(xk))‖ ≥ τ̂‖xk − PΩ(xk −D(xk)∇J(xk))‖ (65)

with τ̂ := min{1, inf
k
τk} > 0. By (64) and (65), we then obtain

‖xk − PΩ(xk −D(xk)∇J(xk))‖ ≤ 1

τ̂
(‖xk − xk+1‖+ ‖ek‖). (66)

By the nonexpansiveness of the projection operator (36), and the triangle
inequality, we see that the residual function, defined by (25), satisfies

‖r(xk)‖ ≤ ‖xk − PΩ(xk −D(xk)∇J(xk))‖
+ ‖PΩ(xk −D(xk)∇J(xk))− PΩ(xk −∇J(xk))‖
≤ ‖xk − PΩ(xk −D(xk)∇J(xk))‖+ ‖∇J(xk)−D(xk)∇J(xk)‖

≤ 1

τ̂
(‖xk − xk+1‖+ ‖ek‖) + ‖θk‖), (67)

which, by choosing η2 :=
1

τ̂
, completes the proof.
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The next proposition estimates the difference between the objective func-
tion value at the current iterate and the optimal value. The proof is inspired
by that of [45, Theorem 3.1].

Proposition 3.4 Under the conditions of Proposition 3.1, if {xk}∞k=0 is any
sequence generated by the PSG method with bounded outer perturbations of
(29), then there exists a constant η3 > 0 and an index K3 > 0 such that for
all k > K3

J(xk+1)− J∗ ≤ η3
(
‖xk − xk+1‖+ ‖ek‖+ ‖θk‖

)2
. (68)

Proof Note that (31) and (33) imply that limk→∞ ‖ek‖ = 0 and limk→∞ ‖θk‖ =
0, respectively, hence, limk→∞ ‖δk‖ = 0. Then, Theorem 3.1 and Proposition
3.2 imply that

lim
k→∞

‖xk − xk+1‖ = 0, (69)

and Proposition 3.3 shows that

lim
k→∞

‖r(xk)‖ = 0. (70)

Condition 1 guarantees that there exist an index K2 > K1 and a scalar β > 0
such that for all k > K2

‖xk − x̂k‖ ≤ β‖r(xk)‖, (71)

where x̂k ∈ S is a point for which d(xk, S) = ‖xk− x̂k‖. The last two relations
(70) and (71) then imply that

lim
k→∞

(xk − x̂k) = 0, (72)

and, using the triangle inequality and (69), we get

lim
k→∞

(x̂k − x̂k+1) = 0. (73)

In view of Condition 2, and since x̂k ∈ S for all k ≥ 0, (73) implies that there
exists an integer K3 > K2 and a scalar J∞ such that

J(x̂k) = J∞, for all k > K3. (74)

Next we show that J∞ = J∗. For any k > K3, since x̂k is a stationary point
of J(x) over Ω, it is true that

〈∇J(x̂k), x− x̂k〉 ≥ 0, ∀x ∈ Ω. (75)

From the optimality condition of constrained convex optimization [6, Propo-
sition 2.1.2], we obtain that

J(x) ≥ J(x̂k) = J∞, ∀x ∈ Ω. (76)
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Fig. 1 An illustration of the geometric relationship between points xk, xk+1, x̌k and x̂k

By the definition of J∗, we have J(x) ≥ J∞ ≥ J∗ for any x ∈ Ω, and hence

J∞ = J∗. (77)

If not, then J∞ > J∗, which means that J∞ will be the infimum of J(x) over
Ω instead of J∗ and contradiction occurs.
Since Ω is convex and xk+1 is the projection of xk−τkD(xk)∇J(xk)+ek onto
Ω (See Fig. 1), by Lemma 3.2 (i), the following inequality holds

〈xk − τkD(xk)∇J(xk) + e(xk)− xk+1, xk+1 − x̂k〉 ≥ 0, (78)

and arrangement of the terms leads to

〈∇J(xk), xk+1 − x̂k〉

≤ 〈θk +
1

τk
ek, xk+1 − x̂k〉+

1

τk
〈xk − xk+1, xk+1 − x̂k〉

≤
(
‖θk‖+

1

τ
‖ek‖+

1

τ
‖xk − xk+1‖

)
‖xk+1 − x̂k‖, (79)

where τ := inf
k
τk, as defined in (58). By using the mean value theorem again,

there is an x̌k lying in the line segment between xk+1 and x̂k such that

J(xk+1)− J(x̂k) = 〈∇J(x̌k), xk+1 − x̂k〉. (80)

Combining (79) and (80), yields, in view of (74) and (77), since we are looking
at k > K3 > K2 > K1,

J(xk+1)− J∗

= J(xk+1)− J(x̂k)

= 〈∇J(x̌k)−∇J(xk), xk+1 − x̂k〉+ 〈∇J(xk), xk+1 − x̂k〉
≤ ‖∇J(x̌k)−∇J(xk)‖‖xk+1 − x̂k‖+ 〈∇J(xk), xk+1 − x̂k〉

≤
(
L‖x̌k − xk‖+ ‖θk‖+

1

τ
‖ek‖+

1

τ
‖xk − xk+1‖

)
‖xk+1 − x̂k‖. (81)

To finish the proof we further bound from above the right-hand side of (81).
For the term ‖x̌k − xk‖, we note that x̌k is in the line segment between xk+1

and x̂k, thus,

‖xk+1 − x̌k‖+ ‖x̌k − x̂k‖ = ‖xk+1 − x̂k‖ ≤ ‖xk − xk+1‖+ ‖xk − x̂k‖, (82)

which, when combined with

‖x̌k − xk‖ ≤ ‖xk − xk+1‖+ ‖xk+1 − x̌k‖, (83)
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and

‖x̌k − xk‖ ≤ ‖xk − x̂k‖+ ‖x̂k − x̌k‖, (84)

yields

‖x̌k − xk‖ ≤ ‖xk − xk+1‖+ ‖xk − x̂k‖. (85)

On the other hand, (71) and (62) allows us to write

‖xk − x̂k‖ ≤ βη2(‖xk − xk+1‖+ ‖ek‖+ ‖θk‖), for all k > K3. (86)

Thus, we have for the term L‖x̌k − xk‖, using (85) and (86),

L‖x̌k − xk‖ ≤ L
(
‖xk − xk+1‖+ ‖xk − x̂k‖

)
≤ L

(
‖xk − xk+1‖+ βη2(‖xk − xk+1‖+ ‖ek‖+ ‖θk‖)

)
≤ L(1 + βη2)(‖xk − xk+1‖+ ‖ek‖+ ‖θk‖). (87)

For the term ‖xk+1 − x̂k‖ in (79), we use the triangle inequality and (86) to
get

‖xk+1 − x̂k‖ ≤ ‖xk − xk+1‖+ ‖xk − x̂k‖
≤ ‖xk − xk+1‖+ βη2(‖xk − xk+1‖+ ‖ek‖+ ‖θk‖)
≤ (1 + βη2)(‖xk − xk+1‖+ ‖ek‖+ ‖θk‖). (88)

Finally, the term ‖θk‖+
1

τ
‖ek‖+

1

τ
‖xk − xk+1‖ in the right-hand side of (81)

can also be bounded above by

‖θk‖+
1

τ
‖ek‖+

1

τ
‖xk − xk+1‖ ≤ (1 +

1

τ
)(‖xk − xk+1‖+ ‖ek‖+ ‖θk‖). (89)

Defining

η3 := (L+ Lβη2 + 1 +
1

τ
)(1 + βη2), (90)

and using all the bounds from above, i.e., (81), (85), (86) and (88), we obtain

J(xk+1)− J∗ ≤ η3
(
‖xk − xk+1‖+ ‖ek‖+ ‖θk‖

)2
, for all k > K3, (91)

which completes the proof.

Combining Theorem 3.1, Proposition 3.2 and Proposition 3.4, it can be seen
that limk→∞ J(xk) = J∗. As an immediate application of the Proposition 3.4,
we get the following intermediate proposition that leads to the final result.

Proposition 3.5 Under the conditions of Proposition 3.1, if {xk}∞k=0 is any
sequence generated by the PSG method with bounded outer perturbations of

(29), and if λk :=
√
J(xk)− J∗ for all k ≥ 0, then

∞∑
k=0

λk < +∞.
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Proof There exist real numbers 0 < η4 < 1 and η5 > 0 such that√
J(xk+1)− J∗ ≤ η4

√
J(xk)− J∗ + η5(‖ek‖+ ‖θk‖). (92)

To prove this claim, we use (a+ b)2 ≤ 2(a2 + b2) and (68) to get

J(xk+1)− J∗ ≤ η3
(
‖xk − xk+1‖+ ‖ek‖+ ‖θk‖

)2
≤ 2η3‖xk − xk+1‖2 + 2η3(‖ek‖+ ‖θk‖)2, (93)

then apply (61),with added and subtracted J∗, to obtain

J(xk+1)− J∗ ≤ 4η3
η1

(
J(xk)− J∗

)
− 4η3

η1

(
J(xk+1)− J∗

)
+

2η3
η21
‖δk‖2

+ 2η3(‖ek‖+ ‖θk‖)2. (94)

Rearranging terms yields

J(xk+1)− J∗ ≤ 4η3
η1 + 4η3

(
J(xk)− J∗

)
+

2η3
η1(η1 + 4η3)

‖δk‖2

+
2η1η3
η1 + 4η3

(‖ek‖+ ‖θk‖)2. (95)

On the other hand, (58) leads to

‖δk‖2 ≤ 1

τ2
‖ek‖2 + ‖θk‖2 ≤ 1

τ̂2
(
‖ek‖2 + ‖θk‖2

)
(96)

with τ := inf
k
τk and τ̂ := min{1, inf

k
τk} > 0 as defined earlier. Therefore,

J(xk+1)− J∗ ≤ 4η3
η1 + 4η3

(
J(xk)− J∗

)
+

(
2η3

η1(η1 + 4η3)

1

τ̂2
+

2η1η3
η1 + 4η3

)
(‖ek‖+ ‖θk‖)2. (97)

Using
√
a+ b ≤

√
a+
√
b gives√

J(xk+1)− J∗ ≤
√

4η3
η1 + 4η3

√
J(xk)− J∗

+

√
2η3

η1(η1 + 4η3)

1

τ̂2
+

2η1η3
η1 + 4η3

(
‖ek‖+ ‖θk‖

)
. (98)

Denoting η4 :=

√
4η3

η1 + 4η3
and η5 :=

√
2η3

η1(η1 + 4η3)

1

τ̂2
+

2η1η3
η1 + 4η3

, we obtain

(92) and, from the definition of η4 and the fact that η1 > 0, η3 > 0,

0 < η4 < 1. (99)
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It follows from (92) that

λk+1 ≤ η4λk + η5(‖ek‖+ ‖θk‖). (100)

Then, for all M > N ,

M∑
k=N+1

λk =

M−1∑
k=N

λk+1

≤ η4
M−1∑
k=N

λk + η5

M−1∑
k=N

(‖ek‖+ ‖θk‖)

≤ η4λN + η4

M∑
k=N+1

λk + η5

M∑
k=N

(‖ek‖+ ‖θk‖). (101)

Consequently,

M∑
k=N+1

λk ≤
η4

1− η4
λN +

η5
1− η4

M∑
k=N

(‖ek‖+ ‖θk‖). (102)

And hence,
∞∑

k=N+1

λk ≤
η4

1− η4
λN +

η5
1− η4

∞∑
k=N

(‖ek‖+ ‖θk‖). (103)

The proof now follows by (31), (33).

Finally, we are ready to prove that sequences generated by the PSG method
with bounded outer perturbations of (29) converge to a stationary point in S.
We do this by combining Proposition 3.2, Proposition 3.3 and Proposition 3.5.

Theorem 3.2 Under the conditions of Proposition 3.1, if {xk}∞k=0 is any se-
quence generated by the PSG method with bounded outer perturbations of (29),
then it converges to a stationary point of the problem (1), i.e., to a point in S.

Proof Obviously,

|J(xk)− J(xk+1)|1/2 ≤
(
|J(xk)− J∗|+ |J(xk+1)− J∗|

)1/2
≤ λk + λk+1, (104)

which implies, by Proposition 3.5, that
∞∑
k=0

|J(xk)− J(xk+1)|1/2 < +∞. (105)

This, along with Proposition 3.2, guarantees that
∞∑
k=0

‖xk − xk+1‖ < +∞, (106)

which implies that the sequence {xk}∞k=0 generated by (29)–(33) converges.
Denoting x∗ := limk→∞ xk and using Proposition 3.3 we get from (62) that
‖r(x∗)‖ = 0, i.e., x∗ ∈ S, and the proof is complete.
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4 Bounded Perturbation Resilience of PSG Methods

In this section, we prove the bounded perturbation resilience (BPR) of PSG
methods. This property is fundamental for the application of the superior-
ization methodology (SM) to them. We do this by establishing a relationship
between BPR and bounded outer perturbations given by (3)–(4).

4.1 Bounded Perturbation Resilience

The superiorization methodology (SM) of [14,15,33] is intended for nonlinear
constrained minimization (CM) problems of the form:

minimize {φ(x) | x ∈ Ψ} , (107)

where φ : Rn → R is an objective function and Ψ ⊆ Rn is the solution set of
another problem. The set Ψ could be the solution set of a convex feasibility
problem (CFP) of the form: find a vector x∗ ∈ Ψ := ∩Ii=1Ci, where the sets
Ci ⊆ Rn (1 ≤ i ≤ I) are closed convex subsets of the Euclidean space Rn,
see, e.g., [1,11,20] or [18, Chapter 5] for results and references on this broad
topic. In such a case we deal in (107) with a standard CM problem. Here we
are interested in the case wherein Ψ is the solution set of another CM, namely
the one presented at the beginning of the paper,

minimize {J(x) | x ∈ Ω} , (108)

i.e., we wish to look at,

Ψ := {x∗ ∈ Ω | J(x∗) ≤ J(x) for all x ∈ Ω} , (109)

assuming that Ψ is nonempty.
In either case, or any other case of the set Ψ , the SM strives not to solve

(107) but rather the task is to find a point in Ψ that is superior (i.e., has a
lower, but not necessarily minimal, value of the φ objective function value) to
one returned by an algorithm that solves (108) alone. This is done in the SM by
first investigating the bounded perturbation resilience of an algorithm designed
to solve (108) and then proactively using such permitted perturbations in order
to steer the iterates of such an algorithm toward lower values of the φ objective
function while not loosing the overall convergence to a point in Ψ . See [14,15,
33] for details of the SM. A recent review of superiorization-related previous
work appears in [15, Section 3].

In this paper we do not perform superiorization of any algorithm. Such
superiorization of the EM algorithm with total variation (TV) serving as the
φ objective function and an application of the approach to an inverse problem
of image reconstruction for bioluminescence tomography will be presented in
a sequel paper. Our aim here is to pave the way for such an application by
proving the bounded perturbation resilience that is needed in order to do
superiorization.
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For technical reasons that will become clear as we proceed, we introduce
an additional set Θ such that Ψ ⊆ Θ ⊆ Rn and assume that we have an
algorithmic operator AΨ : Rn → Θ, that defines a Basic Algorithm as follows.

Algorithm 4.1 The Basic Algorithm
Initialization: x0 ∈ Θ is arbitrary;
Iterative Step: Given the current iterate vector xk, calculate the next

iterate xk+1 by
xk+1 = AΨ

(
xk
)
. (110)

The bounded perturbation resilience (henceforth abbreviated by BPR) of
such a basic algorithm is defined next.

Definition 4.2 Bounded Perturbation Resilience (BPR) An algorith-
mic operator AΨ : Rn → Θ is said to be bounded perturbations resilient if the
following holds. If Algorithm 4.1 generates sequences {xk}∞k=0 with x0 ∈ Θ,
that converge to points in Ψ, then any sequence {yk}∞k=0, starting from any
y0 ∈ Θ, generated by

yk+1 = AΨ

(
yk + βkv

k
)
, for all k ≥ 0, (111)

where (i) the vector sequence {vk}∞k=0 is bounded, and (ii) the scalars {βk}∞k=0

are such that βk ≥ 0 for all k ≥ 0, and
∑∞
k=0βk <∞, and (iii) yk + βkv

k ∈ Θ
for all k ≥ 0, also converges to a point in Ψ .

Comparing this definition with [14, Definition 1], [33, Subsection II.C] and
[15, Definition 4.2], we observe that (iii) in Definition 4.2 above is needed
only if Θ 6= Rn. In that case, the condition (iii) of Definition 4.2 above is
enforced in the superiorized version of the basic algorithm, see step (xiv) in
the “Superiorized Version of Algorithm P” in [33, p. 5537] and step (14) in
“Superiorized Version of the ML-EM Algorithm” in [26, Subsection II.B]. This
will be the case in the present work.

An important special case, from which the superiorization methodology
originally grew and developed, is when Ψ is the solution set of the (linear)
convex feasibility problem and AΨ is a string-averaging projection method.
This was discussed and experimented with for problems of image reconstruc-
tion from projections wherein the function φ of (107) was the total variation
(TV) of the image vector x, see [8,24].

Note also that in later works [15,33] the notion of BPR was replaced by
that of strong perturbation resilience which caters to situations where Ψ might
be empty, however we still work here with the above asymptotic notion of
BPR and assume that Ψ is nonempty. Treating the PSG method as the Basic
Algorithm AΨ , our strategy was to first prove convergence of the PSG iterative
algorithm with bounded outer perturbations, i.e., convergence of

xk+1 = PΩ(xk − τkD(xk)∇J(xk) + ek). (112)

We show next how the convergence of this yields BPR according to Definition
4.2. Such a two steps strategy was also applied in [8, p. 541].
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A superiorized version of any Basic Algorithm employs the perturbed ver-
sion of the Basic Algorithm as in (111). A certificate to do so in the superi-
orization method, see [13], is gained by showing that the Basic Algorithm is
BPR (or strongly perturbation resilient, a notion not discussed in the present
paper). Therefore, proving the BPR of an algorithm is the first step toward
superiorizing it. This is done for the PSG method in the next subsection.

4.2 The BPR of PSG Methods as a Consequence of Bounded Outer
Perturbation Resilience

In this subsection, we prove the BPR of the PSG method whose iterative
step is given by (6). To this end we treat the right-hand side of (6) as the
algorithmic operator AΨ of Definition 4.2, namely, we define for all k ≥ 0,

AΨ

(
xk
)

:= PΩ(xk − τkD(xk)∇J(xk)), (113)

and identify the solution set Ψ there with the set S of (26), and identify the
additional set Θ there with the constraint set Ω of (1).

According to Definition 4.2, we need to show convergence of any sequence
{xk}∞k=0 that, starting from any x0 ∈ Ω, is generated by

xk+1 = PΩ
(
(xk + βkv

k)− τkD(xk + βkv
k)∇J(xk + βkv

k)
)
, (114)

for all k ≥ 0, to a point in S of (26), where {vk}∞k=0 and {βk}∞k=0 obey the
conditions (i) and (ii) in Definition 4.2, respectively, and also (iii) in Definition
4.2 holds.

The next theorem establishes the bounded perturbation resilience of the
PSG methods. The proof idea is to build a relationship between BPR and the
convergence of PSG methods with bounded outer perturbations of (3)–(4).

We caution the reader that we introduce below the assumption that the set
Ω is bounded. This forces us to modify the problems (8) and (18) by replacing
Ω0 with some bounded subset of it in order to apply our results. While this is
admittedly a mathematically weaker result than we hoped for, we note that
this would not be a harsh limitation in practical applications wherein such
boundedness can be achieved from problem-related practical considerations.

Theorem 4.1 Given a nonempty closed convex and bounded set Ω ⊆ Rn,
assume that J ∈ S1,1µ,L(Ω) (i.e., J obeys (27) and (28)) and there exists at least
one point xΩ ∈ Ω such that ‖∇J(xΩ)‖ < +∞. Let {τk}∞k=0 be a sequence of
positive scalars that fulfills (30), {D(x)}∞k=0 be a sequence of diagonal scaling
matrices that is either of form (16) or (24), and let {θk}∞k=0 be as in (32) and
for which (33) holds. Under these assumptions, if the vector sequence {vk}∞k=0

is bounded and the scalars {βk}∞k=0 are such that βk ≥ 0 for all k ≥ 0, and∑∞
k=0 βk < ∞, then, for any x0 ∈ Ω, any sequence {xk}∞k=0, generated by

(114) such that xk +βkv
k ∈ Ω for all k ≥ 0, converges to a point in S of (26).



Bounded Perturbation Resilience of Projected Scaled Gradient Methods 23

Proof The proof is in two steps. For the first step, we build a relationship
between (114) and bounded outer perturbations of (3)–(4). For the second
step, we invoke Theorem 3.2 and establish the convergence result.
Step 1. We show that any sequence generated by (114) satisfies

xk+1 = PΩ
(
xk − τkD(xk)∇J(xk) + ek

)
, (115)

with
∑∞
k=0 ‖ek‖ < +∞. Since Ω is a bounded subset of Rn, there exists a

rΩ > 0 such that Ω ⊆ B(xΩ , rΩ), where B(xΩ , rΩ) ⊆ Rn is a ball centered at
xΩ with radius rΩ . Then, for any x ∈ Ω,

‖x− xΩ‖ ≤ rΩ ⇒ ‖x‖ ≤ ‖xΩ‖+ rΩ . (116)

The Lipschitzness of ∇J(x) on Ω and (116) imply that, for any x ∈ Ω,

‖∇J(x)−∇J(xΩ)‖ ≤ L‖x− xΩ‖ ⇒ ‖∇J(x)‖ ≤ ‖∇J(xΩ)‖+ LrΩ . (117)

Since the sequence {xk}∞k=0 generated by (114) is contained in Ω, due to the
projection operation PΩ , and xk+βkv

k is also in Ω, it holds that, for all k ≥ 0,
xk and xk + βkv

k satisfy (116), and that ∇J(xk) and ∇J(xk + βkv
k) satisfy

(117). Besides, the boundness of {vk}∞k=0 implies that there exist a v > 0 such
that ‖vk‖ ≤ v for all k ≥ 0. Therefore, we have

‖βkvk‖ ≤ vβk. (118)

From (114), the outer perturbation term ek of (115) is given by

ek =
(
xk + βkv

k − τkD(xk + βkv
k)∇J(xk + βkv

k)
)
−
(
xk − τkD(xk)∇J(xk)

)
= βkv

k + τk
(
D(xk)∇J(xk)−D(xk + βkv

k)∇J(xk + βkv
k)
)
. (119)

Given that D(x) is either of form (16) or (24), we consider them separately.
In what follows, we repeatedly use the fact that ‖ABx‖ ≤ ‖AB‖F ‖x‖ ≤
‖A‖F ‖B‖F ‖x‖ for any A,B ∈ Rn×n and x ∈ Rn, with ‖ · ‖F the Frobenius
norm of matrix, see, e.g., [28, Section 2.3].

(i) Assume that D(x) is of form (16), namely that D(x) ≡ DLS for any x. For
this case, combining (119) with (27), (30) and (118), and by the Minkowski
inequality, we get

‖ek‖ = ‖βkvk + τkDLS

(
∇J(xk)−∇J(xk + βkv

k)
)
‖

≤ ‖βkvk‖+ τk‖DLS‖F ‖∇J(xk)−∇J(xk + βkv
k)‖

≤ ‖βkvk‖+ τk‖DLS‖FL‖βkvk‖
≤ (1 + 2‖DLS‖F )vβk. (120)

(ii) Assume that D(x) is of form (24), namely that D(x) := D̂X with D̂ =
diag{1/ŝj} and X = diag{xj} diagonal matrices. In this case, combining
(119) with (27), (30), (116), (117), (118), and by the Minkowski inequality,
we get

‖ek‖ = ‖βkvk + τk
(
D(xk)∇J(xk)−D(xk + βkv

k)∇J(xk + βkv
k)
)
‖
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= ‖βkvk + τk
(
D(xk)∇J(xk)−D(xk + βkv

k)∇J(xk)
)

+ τk
(
D(xk + βkv

k)∇J(xk)−D(xk + βkv
k)∇J(xk + βkv

k)
)
‖

≤ ‖βkvk‖+ τk‖D̂(Xk − X̂k)∇J(xk)‖
+ τk‖D̂X̂k(∇J(xk)−∇J(xk + βkv

k))‖
≤ ‖βkvk‖+ τk‖D̂‖F ‖Xk − X̂k‖F ‖∇J(xk)‖+ τk‖D̂X̂k‖FL‖βkvk‖
≤ (1 + τk‖D̂‖F ‖∇J(xk)‖+ τkL‖D̂‖F ‖X̂k‖F )‖βkvk‖ (121)

≤ (1 + 2‖D̂‖F ‖∇J(xk)‖/L+ 2‖D̂‖F ‖xk + βkv
k‖)vβk (122)

≤
(

1 + 2‖D̂‖F (‖∇J(xΩ)‖/L+ ‖xΩ‖+ 2rΩ)
)
vβk, (123)

where Xk := diag{xkj }, X̂k := diag{(xk + βkv
k)j}, and (121) holds by the

fact that ‖Xk − X̂k‖F = ‖xk − (xk + βkv
k)‖ = ‖βkvk‖, and (122) holds

since ‖X̂k‖F = ‖xk + βkv
k‖, and (123) holds by (116) and (117).

Defining a constant

CΩ := v + 2v ·max
{
‖DLS‖F , ‖D̂‖F (‖∇J(xΩ)‖/L+ ‖xΩ‖+ 2rΩ)

}
, (124)

and considering (120) or (123), yields that in either case (i) or case (ii),

‖ek‖ ≤ CΩβk. (125)

Then,
∑∞
k=0 βk < +∞ implies that

∑∞
k=0 ‖ek‖ < +∞.

Step 2. Under the given conditions, by invoking Theorem 3.2, we know
that, for any x0 ∈ Ω, any sequence {xk}∞k=0, generated by (115) in which∑∞
k=0 ‖ek‖ < +∞, converges to a point in S of (26). Hence, the sequence

generated by (114) also converges to the same point of S.

Acknowledgments

We greatly appreciate the constructive comments of two anonymous review-
ers and the Coordinating Editor which helped us improve the paper. This
work was supported in part by the National Basic Research Program of China
(973 Program) (2011CB809105), the National Science Foundation of China
(61421062) and the United States-Israel Binational Science Foundation (BSF)
grant number 2013003.

References

1. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility
problems. SIAM Rev. 38, 367–426 (1996)

2. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of
Physics, Bristol, UK (1998)



Bounded Perturbation Resilience of Projected Scaled Gradient Methods 25

3. Bertero, M., Lantéri, H., Zanni, L.: Iterative image reconstruction: a point of view. In:
Censor, Y., Jiang, M., Louis, A.K. (eds.) Mathematical Methods in Biomedical Imag-
ing and Intensity-Modulated Radiation Therapy (IMRT), Publications of the Scuola
Normale Superiore, vol. 7, pp. 37–63. Edizioni della Normale, Pisa, Italy (2008)

4. Bertsekas, D.P.: On the Goldstein-Levitin-Polyak gradient projection method. IEEE
Trans. Autom. Control 21, 174–184 (1976)

5. Bertsekas, D.P.: Projected Newton methods for optimization problems with simple con-
straints. SIAM J. Control Optim. 20, 221–246 (1982)

6. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont, MA, USA (1999)
7. Bonettini, S., Zanella, R., Zanni, L.: A scaled gradient projection method for constrained

image deblurring. Inverse Probl. 25, 015002 (23pp) (2009)
8. Butnariu, D., Davidi, R., Herman, G.T., Kazantsev, I.G.: Stable convergence behavior

under summable perturbations of a class of projection methods for convex feasibility
and optimization problems. IEEE J. Sel. Top. Signal Process. 1, 540–547 (2007)

9. Byrne, C.L., Censor, Y.: Proximity function minimization using multiple Bregman pro-
jections, with applications to split feasibility and Kullback-Leibler distance minimiza-
tion. Ann. Oper. Res. 105, 77–98 (2001)

10. Byrne, C.L.: Iterative image reconstruction algorithms based on cross-entropy mini-
mization. IEEE Trans. Image Process. 2, 96–103 (1993)

11. Byrne, C.L.: Applied Iterative Methods. A K Peters, Wellesley, MA, USA (2008)
12. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture

Notes in Mathematics, vol. 2057. Springer, Heidelberg, Germany (2013)
13. Censor, Y.: Weak and strong superiorization: Between feasibility-seeking and min-

imization. An. St. Univ. Ovidius Constanta, Ser. Mat., accepted for publication.
http://arxiv.org/abs/1410.0130.

14. Censor, Y., Davidi, R., Herman, G.T.: Perturbation resilience and superiorization of
iterative algorithms. Inverse Probl. 26, 065008 (12pp) (2010)

15. Censor, Y., Davidi, R., Herman, G.T., Schulte, R.W., Tetruashvili, L.: Projected sub-
gradient minimization versus superiorization. J. Optim. Theory Appl. 160, 730–747
(2014)

16. Censor, Y., Elfving, T., Herman, G.T., Nikazad, T.: On diagonally relaxed orthogonal
projection methods. SIAM J. Sci. Comput. 30, 473–504 (2008)

17. Censor, Y., Zaslavski, A.J.: Convergence and perturbation resilience of dynamic string-
averaging projection methods. Comput. Optim. Appl. 54, 65–76 (2013)

18. Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms, and Applications.
Oxford University Press, New York, NY, USA (1997)

19. Cheng, Y.C.: On the gradient-projection method for solving the nonsymmetric linear
complementarity problem. J. Optim. Theory Appl. 43, 527–541 (1984)

20. Chinneck, J.W.: Feasibility and Infeasibility in Optimization: Algorithms and Computa-
tional Methods. International Series in Operations Research and Management Science,
vol. 118. Springer, New York, NY, USA (2008)

21. Combettes, P.L.: Inconsistent signal feasibility problems: Least-squares solutions in a
product space. IEEE Trans. Signal Process. 42, 2955–2966 (1994)
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