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Abstract. Spectral functions of symmetric matrices – those depending on matri-
ces only through their eigenvalues – appear often in optimization. A cornerstone
variational analytic tool for studying such functions is a formula relating their subd-
ifferentials to the subdifferentials of their diagonal restrictions. This paper presents a
new, short, and revealing derivation of this result. We then round off the paper with
an illuminating derivation of the second derivative of C2-smooth spectral functions,
highlighting the underlying geometry. All of our arguments have direct analogues
for spectral functions of Hermitian matrices, and for singular value functions of
rectangular matrices.
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1 Introduction

This work revolves around spectral functions. These are functions on the space of
n×n symmetric matrices Sn that depend on matrices only through their eigenvalues,
that is, functions that are invariant under the action of the orthogonal group by
conjugation. Spectral functions can always be written in a composite form f ◦ λ,
where f is a permutation-invariant function on Rn and λ is a mapping assigning to
each matrix X the vector of eigenvalues (λ1(X), . . . , λn(X)) in nonincreasing order.

A pervasive theme in the study of such functions is that various variational
properties of the permutation-invariant function f are inherited by the induced
spectral function f ◦λ; see e.g. [1–5,16–18]. Take convexity for example. Supposing

University of Washington, Department of Mathematics, Seattle, WA 98195; Research of
Drusvyatskiy and Kempton was partially supported by the AFOSR YIP award FA9550-15-1-0237.

* E-mail: ddrusv@uw.edu; http://www.math.washington.edu/∼ddrusv/
† E-mail: yumiko88@uw.edu;

1



that f is closed and convex, the main result of [7] shows that the Fenchel conjugate
of f ◦ λ admits the elegant representation

(f ◦ λ)? = f ? ◦ λ. (1.1)

An immediate conclusion is that f ◦λ agrees with its double conjugate and is there-
fore convex, that is, convexity of f is inherited by the spectral function f ◦ λ. A
convenient characterization of the subdifferential ∂(f ◦ λ)(X) in terms of ∂f(λ(X))
then readily follows [7, Theorem 3.1] — an important result for optimization spe-
cialists.

In a follow up paper [8], Lewis showed that even for nonconvex functions f , the
following exact relationship holds:

∂(f ◦ λ)(X) = {U(Diag v)UT : v ∈ ∂f(λ(X)), U ∈ OnX}, (1.2)

where
OnX := {U ∈ On : X = U(Diagλ(X))UT}.

Here, the symbol On denotes the group of orthogonal matrices and the symbols
∂(f ◦ λ) and ∂f may refer to the Fréchet, limiting, or Clarke subdifferentials; see
e.g. [14] for the relevant definitions. Thus calculating the subdifferential of the
spectral function f ◦λ on Sn reduces to computing the subdifferential of the usually
much simpler function f on Rn. For instance, subdifferential computation of the k’th
largest eigenvalue function X 7→ λk(X) amounts to analyzing a piecewise polyhedral
function, the k’th order statistic on Rn [8, Section 9]. Moreover, the subdifferential
formula allows one to gauge the underlying geometry of spectral functions, through
their “active manifolds” [1], for example.

In striking contrast to the convex case [7], the proof of the general subdifferential
formula (1.2) requires much finer tools, and is less immediate to internalize. This
paper presents a short, elementary, and revealing derivation of equation (1.2) that
is no more involved than its convex counterpart. Here’s the basic idea. Consider
the Moreau envelope

fα(x) := inf
y

{
f(y) +

1

2α
|x− y|2

}
.

Similar notation will be used for the envelope of f ◦λ. In direct analogy to equation
(1.1), we will observe that the Moreau envelope satisfies the equation

(f ◦ λ)α = fα ◦ λ,

and derive a convenient formula for the corresponding proximal mapping. The case
when f is an indicator function was treated in [2], and the argument presented here
is a straightforward adaptation, depending solely on the Theobald–von Neumann
inequality [19,20]. The key observation now is independent of the eigenvalue setting:
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membership of a vector v in the proximal or in the Fréchet subdifferential of any
function g at a point x is completely determined by the local behavior of the univari-
ate function α 7→ gα(x+αv) near the origin. The proof of the subdifferential formula
(1.2) quickly flows from there. It is interesting to note that the argument uses very
little information about the properties of the eigenvalue map, with the exception
of the Theobald–von Neumann inequality. Consequently, it applies equally well in
a more general algebraic setting of certain isometric group actions, encompassing
also an analogous subdifferential formula for functions of singular values derived
in [11,12,15]; a discussion can be found in the appendix of the arXiv version of the
paper. A different Lie theoretic approach in the convex case appears in [9].

We complete the paper by reconsidering the second-order theory of spectral
functions. In [10, 16, 17], the authors derived a formula for the second derivative of
a C2-smooth spectral function. In its simplest form it reads

∇2F (Diag a)[B] = Diag
(
∇2f(a)diag(B)

)
+A ◦B,

where A ◦B is the Hadamard product and

Aij =

{
∇f(a)i−∇f(a)j

ai−aj if ai 6= aj

∇2f(a)ii −∇2f(a)ij if ai = aj
.

This identity is quite mysterious, and its derivation is largely opaque geometrically.
In the current work, we provide a transparent derivation, making clear the role of
the invariance properties of the gradient graph. To this end, we borrow some ideas
from [17], while giving them a geometric interpretation.

The outline of the manuscript is as follows. Section 2 records some basic notation
and an important preliminary result about the Moreau envelope (Lemma 2.1). Sec-
tion 3 contains background material on orthogonally invariant functions. Section 4
describes the derivation of the subdifferential formula and Section 5 focuses on the
second-order theory – the main results of the paper.

2 Notation

This section briefly records some basic notation, following closely the monograph
[14]. The symbol E will always denote an Euclidean space (finite-dimensional real
inner product space) with inner product 〈·, ·〉 and induced norm | · |. A closed ball
of radius ε > 0 around a point x will be denoted by Bε(x). The closure and the
convex hull of a set Q in E will be denoted by clQ and convQ, respectively.

Throughout, we will consider functions f on E taking values in the extended
real line R := R∪{±∞}. For such a function f and a point x̄, with f(x̄) finite, the
proximal subdifferential ∂pf(x̄) consists of all vectors v ∈ E such that there exists
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constants r > 0 and ε > 0 satisfying

f(x) ≥ f(x̄) + 〈v, x− x̄〉 − r

2
|x− x̄|2 for all x ∈ Bε(x̄).

Whenever f is C2-smooth near x̄, the proximal subdifferential ∂pf(x̄) consists only
of the gradient ∇f(x̄). A function f is said to be prox-bounded if it majorizes some
quadratic function. In particular, all lower-bounded functions are prox-bounded.
For prox-bounded functions, the inequality in the definition of the proximal sub-
differential can be taken to hold globally at the cost of increasing r [14, Propo-
sition 8.46]. The Fréchet subdifferential of f at x̄, denoted ∂̂f(x̄), consists of all
vectors v ∈ E satisfying

f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o(|x− x̄|).

Here, as usual, o(|x − x̄|) denotes any term satisfying o(|x−x̄|)
|x−x̄| → 0. Whenever

f is C1-smooth near x̄, the set ∂̂f(x̄) consists only of the gradient ∇f(x̄). The
subdifferentials ∂pf(x̄) and ∂̂f(x̄) are always convex, while ∂̂f(x̄) is also closed.
The limiting subdifferential of f at x̄, denoted ∂f(x̄), consists of all vectors v ∈ E so
that there exist sequences xi and vi ∈ ∂̂f(xi) with (xi, f(xi), vi)→ (x̄, f(x̄), v). The
same object arises if the vectors vi are restricted instead to lie in ∂pf(xi) for each
index i; see for example [14, Corollary 8.47]. The horizon subdifferential, denoted
∂∞f(x̄), consists of all limits of λivi for some sequences vi ∈ ∂f(xi) and λi ≥ 0
satisfying xi → x̄ and λi ↘ 0. This object records horizontal “normals” to the
epigraph of the function. For example, f is locally Lipschitz continuous around x̄ if
and only if the set ∂∞f(x̄) contains only the zero vector.

The two key constructions at the heart of the paper are defined as follows.
Given a function f : E → R and a parameter α > 0, the Moreau envelope fα and
the proximal mapping Pαf are defined by

fα(x) := inf
y∈E

{
f(y) +

1

2α
|y − x|2

}
,

Pαf(x) := argmin
y∈E

{
f(y) +

1

2α
|y − x|2

}
.

Extending the definition slightly, we will set f0(x) := f(x). It is easy to see that f is
prox-bounded if and only if there exists some point x ∈ E and a real α > 0 satisfying
fα(x) > −∞.

The proximal and Fréchet subdifferentials are conveniently characterized by a
differential property of the function α 7→ fα(x + αv). This observation is recorded
below. To this end, for any function ϕ : [0,∞) → R, the one-sided derivative will
be denoted by

ϕ′+(0) := lim
α↘0

ϕ(α)− ϕ(0)

α
.
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Lemma 2.1 (Subdifferential and the Moreau envelope).
Consider an lsc, prox-bounded function f : E → R, and a point x with f(x) finite.
Fix a vector v ∈ E and define the function ϕ : [0,∞) → R by setting ϕ(α) :=
fα(x+ αv). Then the following are true.

(i) The vector v lies in ∂̂f(x) if and only if

ϕ′+(0) =
|v|2

2
. (2.1)

(ii) The vector v lies in ∂pf(x) if and only if there exists α > 0 satisfying x ∈
Pαf(x+ αv), or equivalently

ϕ(α) = f(x) +
|v|2

2
α.

In this case, the equation above continues to hold for all α̃ ∈ [0, α].

Proof. Claim (ii) is immediate from definitions; see for example [14, Proposition
8.46]. Hence we focus on claim (i). To this end, note first that the inequality

fα(x+ αv)− f(x)

α
≤ |v|

2

2
holds for any v ∈ E. (2.2)

Consider now a vector v ∈ ∂̂f(x) and any sequences αi ↘ 0 and xi ∈ Pαi
(x+ αiv).

We may assume xi 6= x since otherwise there’s nothing to prove. Clearly xi tend to
x and hence

fαi
(x+ αiv)− f(x) = f(xi)− f(x) +

1

2αi
|(xi − x)− αiv|2

≥ o(|xi − x|) +
1

2αi
|xi − x|2 +

αi
2
|v|2.

Consequently, we obtain the inequality

fαi
(x+ αiv)− f(x)

αi
≥ |xi − x|

αi
· o(|xi − x|)
|xi − x|

+
1

2

∣∣∣xi − x
αi

∣∣∣2 +
|v|2

2
.

Taking into account (2.2) yields the inequality

0 ≥ |xi − x|
αi

·
(
o(|xi − x|)
|xi − x|

+
1

2

∣∣∣xi − x
αi

∣∣∣) .
In particular, we deduce xi−x

αi
→ 0, and the equation (2.1) follows.

Conversely suppose that equation (2.1) holds, and for the sake of contradiction
that v does not lie in ∂̂f(x). Then there exists κ > 0 and a sequence yi → x
satisfying

f(yi)− f(x)− 〈v, yi − x〉 ≤ −κ|yi − x|.
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Then for any α > 0, observe

fα(x+ αv)− f(x)

α
≤ 1

α

(
f(yi)− f(x) +

1

2α
|(yi − x)− αv|2

)
≤ −κ |yi − x|

α
+

1

2

∣∣∣yi − x
α

∣∣∣2 +
|v|2

2
.

Setting αi := |yi−x|
κ

and letting i tend to ∞ yields a contradiction.

3 Symmetry and orthogonal invariance

Next we recall a basic correspondence between symmetric functions and spectral
functions of symmetric matrices. The discussion follows that of [8]. Henceforth Rn

will denote an n-dimensional real Euclidean space with a specified basis. Hence one
can associate Rn with a collection of n-tuples (x1, . . . , xn), in which case the inner
product 〈·, ·〉 is the usual dot product. The finite group of coordinate permutations
of Rn will be denoted by Πn. A function f : Rn → R is symmetric whenever it is
Πn-invariant, meaning

f(πx) = f(x) for all x ∈ Rn and π ∈ Πn.

It is immediate to verify that if f is symmetric, then so is the Moreau envelope fα
for any α ≥ 0. This elementary observation will be important later.

The vector space of real n × n symmetric matrices will be denoted by Sn and
will be endowed with the trace inner product 〈X, Y 〉 = trXY , and the induced
Frobenius norm |X| =

√
trX2. For any x ∈ Rn, the symbol Diagx will denote the

n × n matrix with x on its diagonal and with zeros off the diagonal, while for a
matrix X ∈ Sn, the symbol diagX will denote the n-vector of its diagonal entries.

The group of real n×n orthogonal matrices will be written asOn. The eigenvalue
mapping λ : Sn → Rn assigns to each matrix X in Sn the vector of its eigenvalues
(λ1(X), . . . , λn(X)) in a nonincreasing order. A function F : Sn → R is spectral if it
is On-invariant under the conjugation action, meaning

F (UXUT ) = F (X) for all X ∈ Sn and U ∈ On.

In other words, spectral functions are those that depend on matrices only through
their eigenvalues. A basic fact is that any spectral function F on Sn can be written
as a composition of F = f ◦ λ for some symmetric function f on Rn. Indeed, f can
be realized as the restriction of F to diagonal matrices f(x) = F (Diagx).

Two matrices X and Y in Sn are said to admit a simultaneous spectral decom-
position if there exists an orthogonal matrix U ∈ On such that UXUT and UY UT

are both diagonal matrices. It is well-known that this condition holds if and only
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if X and Y commute. The matrices X and Y are said to admit a simultaneous or-
dered spectral decomposition if there exists an orthogonal matrix U ∈ On satisfying
UXUT = Diagλ(X) and UY UT = Diagλ(Y ). The following result characterizing
this property, essentially due to Theobald [19] and von Neumann [20], plays a central
role in spectral variation analysis.

Theorem 3.1 (Von Neumann-Theobald). Any two matrices X and Y in Sn satisfy
the inequality

|λ(X)− λ(Y )| ≤ |X − Y |.

Equality holds if and only if X and Y admit a simultaneous ordered spectral decom-
position.

This result is often called a trace inequality, since the eigenvalue mapping being
1-Lipschitz (as in the statement above) is equivalent to the inequality

〈λ(X), λ(Y )〉 ≥ 〈X, Y 〉 for all X, Y ∈ Sn.

4 Derivation of the subdifferential formula

In this section, we derive the subdifferential formula for spectral functions. In what
follows, for any matrix X ∈ Sn define the diagonalizing matrix set

OX := {U ∈ On : U(Diagλ(X))UT = X}.

The spectral subdifferential formula readily follows from Lemma 2.1 and the follow-
ing intuitive proposition, a proof of which can essentially be seen in [2, Proposition
8].

Theorem 4.1 (Proximal analysis of spectral functions).
Consider a symmetric function f : Rn → R. Then the equation

(f ◦ λ)α = fα ◦ λ holds. (4.1)

In addition, the proximal mapping admits the representation:

Pα(f ◦ λ)(X) =
{
U
(
Diag y

)
UT : y ∈ Pαf(λ(X)), U ∈ OX

}
. (4.2)

Moreover, for any Y ∈ Pα(f ◦ λ)(X) the matrices X and Y admit a simultaneous
ordered spectral decomposition.

Proof. For any X and Y , applying the trace inequality (Theorem 3.1), we deduce

f(λ(Y )) +
1

2α
|Y −X|2 ≥ f(λ(Y )) +

1

2α
|λ(Y )− λ(X)|2 ≥ fα(λ(X)). (4.3)
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Taking the infimum over Y , we deduce (f ◦λ)α(X) ≥ fα(λ(X)). On the other hand,
for any U ∈ OX , the inequalities hold:

(f ◦ λ)α(X) = inf
Y

{
f(λ(Y )) +

1

2α
|Y −X|2

}
= inf

Y

{
f(λ(Y )) +

1

2α
|UTY U −Diagλ(X)|2

}
≤ fα(λ(X)).

This establishes (4.1).
To establish equation (4.2), consider first a matrix U ∈ OX and a vector y ∈

Pαf(λ(X)), and define Y := U(Diag y)UT . Then we have

(f ◦ λ)(Y )+
1

2α
|Y −X|2 = f(y) +

1

2α
|y − λ(X)|2 = fα(λ(X)) = (f ◦ λ)α(X).

Hence the inclusion Y ∈ Pα(f ◦ λ)(X) is valid, as claimed. Conversely, fix any
matrix Y ∈ Pα(f ◦ λ)(X). Then plugging in Y into (4.3), the left-hand-side equals
(f ◦ λ)α(X) and hence the two inequalities in (4.3) hold as equalities. The second
equality immediately yields the inclusion λ(Y ) ∈ Pαf(λ(X)), while the first along
with Theorem 3.1 implies that X and Y admit a simultaneous ordered spectral
decomposition, as claimed.

Combining Lemma 2.1 and Theorem 4.1, the main result of the paper readily
follows.

Theorem 4.2 (Subdifferentials of spectral functions). Consider an lsc symmetric
function f : Rn → R. Then the following equation holds:

∂(f ◦ λ)(X) =
{
U
(
Diag v

)
UT : v ∈ ∂f(λ(X)), U ∈ OX

}
. (4.4)

Analogous formulas hold for the proximal, Fréchet, and horizon subdifferentials.

Proof. Fix a matrix X in the domain of f ◦ λ and define x := λ(X). Without loss
of generality, suppose that f is lower-bounded. Indeed if this were not the case,
then since f is lsc there exists ε > 0 so that f is lower-bounded on the ball Bε(x).
Consequently adding to f the indicator function of the symmetric set ∪π∈ΠBε(πx)
assures that the function is lower-bounded.

We first dispense with the easy inclusion ⊆ for all the subdifferentials. To this
end, recall that if V is a proximal subgradient of f ◦ λ at X, then there exists
α > 0 satisfying X ∈ Pα(f ◦ λ)(X + αV ). Theorem 4.1 then implies that X
and V commute. Taking limits, we deduce that all Fréchet, limiting, and horizon
subgradients of f ◦λ at X also commute with X. Recalling that commuting matrices
admit simultaneous spectral decomposition, basic definitions immediately yield the
inclusion ⊆ in equation (4.4) for the proximal and for the Fréchet subdifferentials.
Taking limits, we deduce the inclusion ⊆ in (4.4) for the limiting and for the horizon
subdifferentials, as well.
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Next, we argue the reverse inclusion. To this end, define V := U(Diag v)UT for
an arbitrary matrix U ∈ OX and any vector v ∈ Rn. Then Theorem 4.1, along with
the symmetry of the envelope fα, yields the equation

(f ◦ λ)α(X + αV )− f(λ(X))

α
=
fα(x+ αv)− f(x)

α
.

Consequently if v lies in ∂pf(x), then Lemma 2.1 shows that for some α > 0 the

right-hand-side equals |v|
2

2
, or equivalently |V |

2

2
. Lemma 2.1 then yields the inclusion

V ∈ ∂p(f ◦ λ)(X). Similarly if v lies in ∂̂f(x), then the same argument but with α

tending to 0 shows that V lies in ∂̂(f ◦λ)(X). Thus the inclusion ⊇ in equation (4.4)
holds for the proximal and for the Fréchet subdifferentials. Taking limits, the same
inclusion holds for the limiting and for the horizon subdifferentials. This completes
the proof.

Remark 4.3. It easily follows from Theorem 4.2 that the inclusion ⊇ holds for the
Clarke subdifferential. The reverse inclusion, however, requires a separate argument
given in [8, Sections 7-8].

In conclusion, we should mention that all the arguments in the section apply
equally well for Hermitian matrices (with the standard Hermitian trace product),
with the orthogonal matrices replaced by unitary matrices. Entirely analogous ar-
guments also apply for functions of singular values of rectangular matrices (real or
complex). For more details, see the appendix in the arXiv version of the paper.

5 Hessians of C2-smooth spectral functions

In this section, we revisit the second-order theory of spectral functions. To this
end, fix for the entire section an lsc symmetric function f : Rn → R and define the
spectral function F := f ◦ λ on Sn. It is well known that f is C2-smooth around a
matrix X if and only if F is C2-smooth around λ(X); see [10, 16–18]. Moreover, a
formula for the Hessian of F is available: for matrices A = Diag(a) and B ∈ Sn we
have

∇2F (A)[B] = Diag
(
∇2f(a)diag(B)

)
+A ◦B,

where A ◦B is the Hadamard product and

Aij =

{
∇f(a)i−∇f(a)j

ai−aj if ai 6= aj

∇2f(a)ii −∇2f(a)ij if ai = aj
.

The assumption that A is a diagonal matrix is made without loss of generality,
as will be apparent shortly. In this section, we provide a transparent geometric
derivation of the Hessian formula by considering invariance properties of gph∇F .
Some of our arguments give a geometric interpretation of the techniques in [17].
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Remark 5.1 (Hessian and the gradient graph). Throughout the section we will appeal
to the following basic property of the Hessian. For any C2-smooth function g on an
Euclidean space, the vector z := ∇2g(a)[b] is the unique vector satisfying (z,−b) ∈
Ngph∇g(a,∇g(a)).

Consider now the action of the orthogonal groupOn on Sn by conjugation namely
U.X = UXUT . Recall that F is invariant under this action, meaning F (U.X) =
F (X) for all orthogonal matrices U . This action naturally extends to the product
space Sn×Sn by setting U.(X, Y ) = (U.X,U.Y ). As we have seen, the graph gph∇F
is then invariant with respect to this action:

U.gph∇F = gph∇F for all U ∈ On.

One immediate observation is that Ngph∇F (U.X,U.Y ) = U.Ngph∇F (X, Y ). Conse-
quently we deduce

(Z,−B) ∈ Ngph∇F (X, Y ) ⇐⇒ (U.Z,−U.B) ∈ Ngph∇F (U.X,U.Y )

The formula
∇2F (X)[B] = UT .∇2F (U.X)[U.B] (5.1)

now follows directly from Remark 5.1, whenever F is C2-smooth around X. As a
result, when speaking about the operator ∇2F (X), we may assume without loss of
generality that X and ∇F (X) are both diagonal matrices.

Next we briefly recall a few rudimentary properties of the conjugation action; see
for example [6, Sections 4, 8, 9]. We say that a n× n matrix W is skew-symmetric
if W T = −W . Then it is well-known that On is a smooth manifold and the tangent
space to On at the identity matrix consists of skew-symmetric matrices:

TOn(I) = {W ∈ Rn×n : W is skew-symmetric}.

The commutator of two matrices A,B ∈ Rn×n, denoted by [A,B] is the matrix
[A,B] := AB − BA. An easy computation shows that the commutator of a skew-
symmetric matrix with a symmetric matrix is itself symmetric. Moreover, the iden-
tity

〈X, [W,Z]〉 = 〈[X,W ], Z〉

holds for any matrices X,Z ∈ Sn and skew-symmetric W . For any matrix A ∈ Sn,
the orbit of A, denoted by On.A is the set

On.A = {U.A : U ∈ On}.

Similarly, the orbit of a pair (A,B) ∈ Sn × Sn is the set

On.(A,B) = {(U.A, U.B) : U ∈ On}.
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An standard computation1 now shows that orbits are smooth manifolds with tangent
spaces

TOn.A(A) = {[W,A] : W is skew-symmetric},
TOn.(A,B)(A,B) = {([W,A], [W,B]) : W is skew-symmetric}.

Now supposing that F is twice differentiable at a matrix A ∈ Sn×n, the graph
gph∇F certainly contains the orbit On.(A,∇F (A)). In particular, this implies that
the tangent space to gph∇F at (A,∇F (A)) contains the tangent space to the orbit:

{([W,A], [W,∇F (A)]) : W skew-symmetric}.

Thus for any B ∈ Sn, the tuple (∇2F (A)[B],−B) is orthogonal to the tuple
([W,A], [W,∇F (A)]) for any skew-symmetric matrix W . We record this elemen-
tary observation in the following lemma. This also appears as [17, Lemma 3.2].

Lemma 5.2 (Orthogonality to orbits). Suppose F is C2-smooth around A ∈ Sn.
Then for any skew-symmetric matrix W and any B ∈ Sn, we have〈

∇2F (A)[B], [W,A]
〉

= 〈B, [W,∇F (A)]〉 .

Proof. This is immediate from the preceding discussion.

Next recall that the stabilizer of a matrix A ∈ Sn is the set:

Stab(A) = {U ∈ On : U.A = A}.

Similarly we may define the set Stab(A,B).

Lemma 5.3 (Tangent space to the stabilizer). For any matrices A,B ∈ Sn, the
tangent spaces to Stab(A) and to Stab(A,B) at the identity matrix are the sets

{W ∈ Rn×n : W skew-symmetric, [W,A] = 0},{
W ∈ Rn×n : W skew-symmetric, [W,A] = [W,B] = 0

}
,

respectively.

(Proof sketch). Define the orbit map θ(A) : On → On.A by setting θ(A)(U) := U.A. A
quick computation shows that θ(A) is equivariant with respect to left-multiplication
action of On on itself and the conjugation action of On on On.A. Hence the equiv-
ariant rank theorem ( [6, Theorem 7.25]) implies that θ(A) has constant rank. In
fact, since θ(A) is surjective, it is a submersion. It follows that the stabilizer

Stab(A) = (θ(A))−1(A)

is a smooth manifold with tangent space at the identity equal to the kernel of the
differential d θ(A)

∣∣
U=I

(W ) = [W,A]. The expression for the tangent space to Stab(A)
immediately follows. The analogous expression for Stab(A,B) follows along similar
lines.

1Compute the differential of the mapping On 3 U 7→ U.A
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With this, we are able to state and prove the main theorem.

Theorem 5.4 (Hessian of C2-smooth spectral functions). Consider a symmetric
function f : Rn → R and the spectral function F = f ◦ λ. Suppose that F is C2-
smooth around a matrix A := Diag(a) and for any matrix matrix B ∈ Sn define
Z := ∇2F (A)[B]. Then equality

diag(Z) = ∇2f(a)[diag(B)],

holds, while for indices i 6= j, we have

Zij =

{
Bij

(
∇f(a)i−∇f(a)j

ai−aj

)
if ai 6= aj

Bij

(
∇2f(a)ii −∇2f(a)ij

)
if ai = aj.

Proof. First observe that clearly f must be C2 smooth at a. Now, sinceA is diagonal,
so is the gradient ∇F (A). So without loss of generality, we can assume ∇F (A) =
Diag(∇f(a)).

Observe now that (Z,−B) is orthogonal to the tangent space of gph∇F at
(A,∇F (A)). On the other hand, for any vector a′ ∈ Rn, we have equality〈(

Z
−B

)
,

(
Diag(a′)−Diag(a)

Diag(∇f(a′))−Diag(∇f(a))

)〉
=

〈(
diag(Z)
−diag(B)

)
,

(
a′ − a

∇f(a′)−∇f(a)

)〉
.

It follows immediately that the tuple (diag(Z),−diag(B)) is orthogonal to the tan-
gent space of gph∇f at (a,∇f(a)). Hence we deduce the equality diag(Z) =
∇2f(a)[diag(B)] as claimed.

Next fix indices i and j with ai 6= aj, and define the skew-symmetric matrix
W (i,j) := eie

T
j − eje

T
i , where ek denotes the k’th standard basis vector. Applying

Lemma 5.2 with the skew-symmetric matrix W = 1
ai−ajW

(i,j), we obtain

−2Zij =
〈
Z,
[

1
ai−ajW

(i,j), A
]〉

= −
〈

[ 1
ai−ajW

i,j, B
]
,∇F (A)

〉
= −

〈
diag[ 1

ai−ajW
i,j, B

]
,∇f(a)

〉
= −2Bij

(
∇f(a)i −∇f(a)j

ai − aj

)
.

The claimed formula Zij = Bij

(
∇f(a)i−∇f(a)j

ai−aj

)
follows.

Finally, fix indices i and j, with ai = aj. Observe now the inclusion

Stab(A) ⊂ Stab(∇F (A)).

Indeed for any matrix U ∈ Stab(A), we have

∇F (A) = ∇F (UAUT ) = U∇F (A)UT .
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This in particular immediately implies that the tangent space Tgph∇F (A,∇F (A)) is
invariant under the action of Stab(A), that is

U.Tgph∇F (A,∇F (A)) = Tgph∇F (A,∇F (A))

for any U ∈ Stab(A). Hence their entire orbit Stab(A).(X, Y ) of any tangent vector
(X, Y ) ∈ Tgph∇F (A,∇F (A)) is contained in the tangent space Tgph∇F (A,∇F (A)).
We conclude that the tangent space to such an orbit Stab(A).(X, Y ) at (X, Y ) is
contained in Tgph∇F (A,∇F (A)) as well.

Define now the matrices Ei := Diag(ei) and Ẑ := Diag(∇2f(a)[ei]). Because F
is C2-smooth, clearly the inclusion (Ei, Ẑ) ∈ Tgph∇F (A,∇F (A) holds. The above
argument, along with Lemma 5.3, immediately implies the inclusion

{([W,Ei], [W, Ẑ]) : W skew-symmetric, [W,A] = 0} ⊆ Tgph∇F (A,∇F (A))

and in particular, ([W,Ei], [W, Ẑ]) is orthogonal to (Z,−B) for any skew-symmetric
W satisfying [W,A] = 0. To finish the proof, simply set W = W (i,j). Then since
ai = aj, we have [W,A] = 0 and therefore

−2Zij =
〈
Z, [W (i,j), Ei]

〉
= 〈B, [W (i,j), Ẑ]〉 = −

〈
[W (i,j), B], Ẑ

〉
= −2Bij

(
∇2f(a)ii −∇2f(a)ij

)
,

as claimed. This completes the proof.

Remark 5.5. The appealing geometric techniques presented in this section seem
promising for obtaining at least necessary conditions for the generalized Hessian, in
the sense of [13], of spectral functions that are not necessarily C2-smooth. Indeed
the arguments presented deal entirely with the graph gph∇f , a setting perfectly
adapted to generalized Hessian computations. There are difficulties, however. To
illustrate, consider a matrix Z ∈ ∂2F (A|V ). Then one can easily establish properties
of DiagZ analogous to those presented in Theorem 5.4, as well as properties of Zij
for indices i and j satisfying ai 6= aj. The difficulty occurs for indices i and j with
ai = aj. In this case, our argument used explicitly the fact that tangent cones to
gph ∂f are linear subspaces, a property that is decisively false in the general setting.
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