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In this paper we derive and exploit duality in general two-stage adaptive linear optimization models. The

equivalent dualized formulation we derive is again a two-stage adaptive linear optimization model. Therefore,

all existing solution approaches for two-stage adaptive models can be used to solve or approximate the dual

formulation. The new dualized model differs from the primal formulation in its dimension and uses a different

description of the uncertainty set. We show that the optimal primal affine policy can be directly obtained

from the optimal affine policy in the dual formulation. We provide empirical evidence that the dualized

model in the context of two-stage lot-sizing on a network and two-stage facility location problems solves an

order of magnitude faster than the primal formulation with affine policies. We also provide an explanation

and associated empirical evidence that offer insight on which characteristics of the dualized formulation

make computations faster. Furthermore, the affine policy of the dual formulations can be used to provide

stronger lower bounds on the optimality of affine policies.
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1. Introduction

Many applications for decision making under uncertainty can be naturally modeled as

two-stage adaptive optimization models. In these models some of the decisions have to

be made here-and-now before the realization of the uncertain parameter is known. The

other decisions are of a wait-and-see type, which are chosen after the realization of the

uncertain parameter is known. One way of dealing with these problems is via stochastic

optimization. These methods assume that a probabilistic description of the realization is

known and optimize for expected values. For references on these techniques we refer to

Birge and Louveaux (2011) and Kali and Wallace (1994). Stochastic models, especially in a
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two-stage setting, are known to suffer from the ‘curse of dimensionality’ and are therefore

likely not tractable, see e.g. Shapiro and Nemirovski (2005). A different approach is to

model these two-stage problems in a robust setting. Robust optimization techniques do

not require a probabilistic description of the uncertainty set and have proven to be very

useful in a number of practical applications. A selection of applications that use a two-stage

robust setting are: unit commitment in the energy sector (Bertsimas et al. 2013, Wang

et al. 2013, Zhao and Zeng 2012), emergency supply chain planning (Ben-Tal et al. 2011),

facility location problems (Ardestani-Jaafari and Delage 2014, Atamtürk and Zhang 2007,

Gabrel et al. 2014a), Capacity expansion of network flows (Ordóñez and Zhao 2007, Yin

et al. 2009) and many others, see e.g. the survey papers by Bertsimas et al. (2011) and

Gabrel et al. (2014b).

In the last decade or so, there has been a rise in solution techniques tailored to solve two-

stage optimization models in a robust setting. One of the first and very popular method is

the use of affine policies for the wait-and-see decisions proposed by Ben-Tal et al. (2004).

This method is appealing because it is computationally tractable for problem instances

of moderate to large size. Furthermore, the affine policies appear to be near optimal in

practical applications (Ardestani-Jaafari and Delage 2014, Ben-Tal et al. 2004, 2005). The

use of affine policies is even provably optimal in some special cases (Bertsimas et al. 2010,

Iancu et al. 2013). Other methods designed to solve two-stage adaptive optimization mod-

els are: approximation by static solutions (Bertsimas and Goyal 2010), finite adaptability

(Bertsimas and Caramanis 2010), enumeration of vertices of the uncertainty set (Bertsi-

mas and Goyal 2012), column generation algorithms (Zeng and Zhao 2013) and iterative

partitioning of the uncertainty set (Postek and Den Hertog 2014, Bertsimas and Dunning

2014).

In this paper we derive a new dualized formulation of two-stage adaptive linear mod-

els that allow for faster computations and stronger bounds. More specifically, the main

contributions of this paper can be summarized as follows:

1. We provide a dualized two-stage two-stage adaptive model for linear two-stage mod-

els with continuous wait-and-see decisions. The new model is derived by consecutively

dualizing over the wait-and-see decisions and the uncertain parameters. The new dualized

formulations have the same set of feasible (and optimal) here-and-now decisions as the

original two-stage models. It has different dimensions, uncertain parameters, wait-and-see
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decisions and constraints than the original two-stage adaptive model. Since the model is

again a two-stage adaptive model, all existing solution techniques for two-stage adaptive

models can be used to solve it.

2. We show that both formulations also have the same set of feasible and optimal here-

and-now decisions when we solve the models using the popular method of affine policies.

Furthermore, we show how the original affine policy can be obtained instantly from the

affine policy in the dualized formulation.

3. We describe an algorithm to strengthen the lower bound method from Hadjiyiannis

et al. (2011) to asses the (sub)optimality of affine policies described using both affine

policies from the original and the dualized formulation.

4. We provide empirical evidence that the dualized model in the context of two-stage lot-

sizing on a network and two-stage facility location problems solves an order of magnitude

faster than the primal formulation with affine policies and provides stronger lower bounds.

Furthermore, we provide an explanation and associated empirical evidence that offer insight

on which characteristics of the dualized formulation make computations faster.

Our dualized formulation can be used for general two-stage adaptive linear models with

both continuous and integer here-and-now decisions. However, since we dualize over the

second stage variables, the new dualized formulation only works for continuous second

stage decisions. Furthermore, to end up with tractable models, our method focuses on

polyhedral uncertainty sets.

The rest of this paper is organized as follows. In Section 2, we introduce the two-stage

adaptive optimization model and derive the new dualized two-stage model. We explain

the use of affine policies in the primal and dual formulation in Section 3. Section 4 gives

the computational algorithm to obtain stronger bounds on the optimal value of the fully

adaptive model. In Sections 5 and 6, we present our numerical results and show the

computational advantage of the dualized formulation. Section 7 gives some concluding

remarks.

Notation. Throughout the paper we write vectors and matrices in bold font and scalars

in normal font. We use the vector e to denote the vector of all ones and I for the iden-

tity matrix. The vector 0 and matrix O consist of only zero entries. All inequality signs

represent componentwise inequalities.
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2. Duality in Two-stage Adaptive Formulations

We first state the usual two-stage formulation in Section 2.1. The new dualized formulation

is given in Section 2.2. We also indicate similarities in structure with the primal formulation

and the differences in the two formulations.

2.1. The Primal Formulation

We consider a general two-stage adaptive optimization model with continuous wait-and-see

decisions. In the first stage we set the value of the here-and-now decisions x that have

to be decided before the realization of the uncertain parameter is known. The continuous

wait-and-see decisions y≥ 0 have to be chosen after the value of the uncertain parameter

is revealed. We take a polyhedral description of the uncertainty set of the form:

U = {ζ ≥ 0 : Dζ ≤ d} , (1)

with D ∈ Rp×L and d ∈ Rp. This type of uncertainty sets includes popular sets such as

the box-uncertainty and budget uncertainty set (Bertsimas and Sim 2004). The two-stage

adaptive optimization problem has a linear objective and a set of linear uncertain con-

straints. With this general setting we can state the following description of a two-stage

linear adaptive optimization model:

min
x

c>x

s.t. ∀ζ ∈ U : ∃y≥ 0 : Ax+By≥Rζ+ r

x∈X ,

(2)

where X ⊂ Rn is a set with additional constraints on the here-and-now decisions (some

of the x variables may be integer). The wait-and-see variable y has dimension k and we

denote the number of constraints in the model by m. The matrix R is chosen constant in

this model, so the model only has uncertainty in the right-hand side. This is mainly done

for exposition and all our results can be extended to the case where R depends on the

here-and-now decision x, for example by taking

R(x) =R0 +
n∑
i=1

Rixi,

for some matricesR0,R1, . . . ,Rn. For our dual derivation to work, we must have the matrix

B to be fixed independent of ζ. Hence, we only consider the case of fixed recourse. Without
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loss of generality, there is no uncertainty in the objective function and it only includes here-

and-now decisions. Objectives including uncertain parameters and wait-and-see decisions

can be modelled as an instance of (2) using an epigraph formulation, see (Ben-Tal et al.

2009, pp. 10-11). These epigraph formulations are also used in the models of our numerical

examples in Sections 5 and 6.

2.2. The New Dualized Formulation

The main contributions of this paper come from the next theorem, giving a dual formulation

of (2).

Theorem 1. The here-and-now decision x is feasible (and optimal) for (2) with

nonempty uncertainty set U as in (1) if and only if x is feasible (and optimal) for

min
x

c>x

s.t. ∀w ∈ V : ∃λ≥ 0 :

w
>(Ax− r)−d>λ≥ 0

D>λ≥R>w

x∈X ,

(3)

where V =
{
w≥ 0 : B>w≤ 0, e>w= 1

}
.

The proof of this theorem is split in two parts. The first part comes from a result known

in the literature and the second part is the new contribution leading to the dualized

formulation. The result from the literature transforms (2) into a bilinear optimization

model by applying duality to the wait-and-see variables. The result from this part is used

frequently in the literature, in various settings, to solve two-stage adaptive optimization

problems using column generation and Benders decomposition type algorithms (see e.g.

Bertsimas et al. (2013), Minoux (2011), Thiele et al. (2009), Zeng and Zhao (2013) and

Zhao and Zeng (2012)) or to derive an exact solution for special cases (Ordóñez and Zhao

2007). This known result is given in Lemma 1.

Lemma 1. The here-and-now decision x is feasible (and optimal) for (2) if and only if

x is feasible (and optimal) for

min
x∈X

max
ζ∈U

max
w≥0

{
c>x+w>(Rζ+ r−Ax) | B>w≤ 0

}
. (4)
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Proof. For a given x∈X we can write (2) as

min
x∈X

max
ζ∈U

min
y≥0

{
c>x | Ax+By≥Rζ+ r

}
.

The result then follows by dualizing over y. �

Note that for every ζ the variable w ensures that the problem returns ∞ whenever

there exists a ζ that violates the constraints in the original model (2). The result from

Lemma 1 is also used in Kuhn et al. (2011) to assess the suboptimality of affine policies

in a two-stage stochastic setting. Their bound can also be used in robust settings, but one

has to assign a distribution to the uncertainty set a priori. The authors explain that in

that case the quality of the bound depends on the a priori distribution that is chosen. For

the rest of the proof we first dualize (4) further to end up with an equivalent two-stage

adaptive optimization formulation.

Proof of Theorem 1. Consider, for fixed w, the inner maximization problem in (4).

Dualizing over ζ gives

min
x∈X

max
w≥0

min
λ≥0

{
c>x+w>(r−Ax) +d>λ | D>λ≥R>w, B>w≤ 0

}
= min
x∈X

max
w∈Ṽ

min
λ≥0

{
c>x+w>(r−Ax) +d>λ | D>λ≥R>w

}
, (5)

where in the last line we introduced Ṽ =
{
w≥ 0 : B>w≤ 0

}
. Introducing a variable γ we

write the model using an epigraph formulation

min
x,γ

c>x+ γ

s.t. ∀w ∈ Ṽ : ∃λ≥ 0 :

w
>(r−Ax) +d>λ≤ γ

D>λ≥R>w

x∈X .

(6)

To end up with our final result (3) we have to prove that γ = 0 for any optimal solution

and that we can add the additional restriction e>w = 1 to bound the uncertainty set Ṽ

without affecting the set of feasible solutions. From (5) it follows that there has to be an

optimal adaptive policy λ∗(w) that satisfies

d> (λ∗(w)) = min
λ≥0
{d>λ | D>λ≥R>w}.
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Note that this policy is not only worst-case optimal, but chooses the best wait-and-see

decision λ(w) for every scenario w. For the scenario 0∈ Ṽ we have

d> (λ∗(0)) = min
λ≥0
{d>λ | D>λ≥ 0}= min

λ≥0
max
ζ≥0
{λ> (d−Dζ)}= 0,

where the last equality holds since U = {ζ ≥ 0 : Dζ ≤ d} is nonempty. Using this optimal

decision for the parameter 0∈ Ṽ, we see that

γ ≥ 0>(r−Ax) +d>λ∗(0) = 0. (7)

Now, let t≥ 0 and w≥ 0. Then we have

d> (λ∗(tw)) = min
λ≥0
{d>λ | D>λ≥R>(tw)}

= min
λ≥0
{d>(tλ) | D>λ≥R>w}= d> (tλ∗(w)) .

Hence, we can impose scalar multiplicity on the adaptive policy λ∗(w) without affecting the

value of d> (λ∗(w)). That is, for every w ∈ Ṽ and scalar t≥ 0 we impose λ∗(tw) = tλ(w).

From (7) we have that γ ≥ 0. Suppose for the sake of contradiction that for an optimal

here-and-now decision (x, γ) we have γ > 0. Then there exist an w ∈ Ṽ, w 6= 0 such that

w>(r−Ax) +d>λ∗(w) = γ > 0.

Since Ṽ is a cone, we have that (tw)∈ Ṽ for every t≥ 0 and w ∈ Ṽ. Therefore, we have by

scalar multiplicity of λ∗(w)

(tw)>(r−Ax) +d>λ∗(tw) = tγ > γ for all t > 1.

This contradicts the assumption that γ > 0 is feasible. Hence, we must have γ = 0. Finally,

consider a solution that is feasible for all values in the further restricted uncertainty set

V =
{
w≥ 0 : B>w≤ 0, ||w||1 = 1

}
=
{
w≥ 0 : B>w≤ 0, e>w= 1

}
.

Then, by scalar multiplicity of λ∗(w), we can directly construct the other feasible wait-

and-see decisions for all other w ∈ Ṽ (with ||w||1 6= 1). �

Any two-stage adaptive optimization model with fixed recourse, continuous wait-and-see

decisions and a polyhedral uncertainty set can be readily formulated as an instance of (2).

Theorem 1 then directly provides practitioners with the alternative dual formulation (3).

Table 1 highlights some differences such as the number of wait-and-see variables, uncertain

parameters and constraints in the primal and dual formulation. In our numerical examples

in Sections 5 and 6 we clarify these differences with explicit values for m, k, L and p.
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Table 1 Comparing dimensions of uncertainty parameters, variables and number of constraints in the original

two-stage adaptive formulation (2) and in our new dualized formulation (3).

Primal formulation (2) Dual formulation (3)

# uncertain parameters L m

# wait-and-see decisions k p

# constraints on variables m L+ 1

# constraints on uncertain parameter p k+ 1

3. Solving the Primal and Dual Formulation with Affine Policies

The model (3) is again a two-stage adaptive optimization model with a nonnegative

bounded polyhedral uncertainty set and is therefore another instance of (2). Hence, we can

directly apply all exact and approximation methods to solve adaptive optimization prob-

lems mentioned in the introduction. We first show the equivalence of the dual formulation

with the nonadaptive robust counterpart in the static case. We then continue to show that

the optimal solutions of both formulations are the same when we solve the models with

affine policies.

3.1. Static Robust Optimization

If we take B =O, then (2) is the following robust optimization model without wait-and-see

decisions:

min
x

c>x

s.t. ∀ζ ∈ U : Ax≥Rζ+ r

x∈X ,

(8)

where U is as in (1). This problem is hard to solve in its current form since each constraint

has to hold for an infinite number of values for ζ. To reformulate the problem, we can

consider the uncertainty constraintwise (see Ben-Tal et al. (2009)), i.e., we only have to

look at one row

∀ζ ∈ U : Aix≥Riζ+ ri (9)

at a time, where Ai,Ri and ri are respectively the i-th row of A,R and r. To make this

model tractable we can reformulate each constraint using standard duality techniques to

obtain the robust counterpart, see e.g. Ben-Tal et al. (2009).
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Lemma 2 (Robust Counterpart). Constraint (9) is satisfied if and only if there

exists a πi ∈Rp such that

Aix−πi
>
d≥ ri

D>πi ≥Ri

πi ≥ 0.

Note that this dualization approach can also be used for any other polyhedral uncertainty

set. For notational convenience we shall use matrix variables for the rest of the section. If

we write Π = [πi, . . . ,πm], then by Lemma 2 we have that (8) is equivalent to

min
x,Π

c>x

s.t. Ax−Π>d≥ r

D>Π≥R>

x∈X ,Π≥O.

(10)

We can also find a dual formulation for the static model (8) using the dual formulation

that is derived in Theorem 1. In that way, we end up with the same dual formulation as

in (3), but with the simple uncertainty set

V =
{
w≥ 0 : e>w= 1

}
. (11)

For these robust models with B =O the uncertainty set (11) has only m extreme points

e1,e2, . . . ,em. As shown in (Bertsimas and Goyal 2012, Lemma 1), linear policies are

optimal if there are only m extreme points, where m is the size of the uncertainty set.

Furthermore, by taking the linear policy λ(w) = Πw in (3) we end up with the same

robust counterpart as (10).

3.2. Solving the Two-stage Formulations with Affine Policies

Let us now return to the general case in which B 6=O, so we do need to take the wait-

and-see decisions y into account. In principle, an optimal policy y(ζ) in (2) can be any

function of the uncertain parameter ζ. However, this results in an intractable model where

we would have to optimize over all possible functions. To come up with tractable models

Ben-Tal et al. (2004) suggest to restrict the wait-and-see decisions to be affine in ζ:

y(ζ) =u+V ζ,
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where u ∈ Rm and V ∈ Rm×L are respectively a vector and a matrix of here-and-now

variables. Although this restriction might seem very severe, it turns out to perform very

good in practical applications, see Ben-Tal et al. (2004, 2005), and is even provably optimal

in some specific cases, see Bertsimas et al. (2010), Iancu et al. (2013). With this decision

rule, we obtain the following robust counterpart for (2) with affine policies

min
x,u,V

c>x

s.t. ∀ζ ∈ U :

 Ax+B(u+V ζ)≥Rζ+ r

u+V ζ ≥ 0

x∈X .

(12)

This model does not have wait-and-see variables. Therefore, we can apply Lemma 2 to

reformulate each constraint and obtain the robust counterpart. Introducing the auxiliary

(matrix) variables Π∈Rp×m and Ξ∈Rp×k we can write down the robust counterpart as

min
x,u,V ,Π,Ξ

c>x

s.t. Ax+Bu−Π>d≥ r

BV ≥R−Π>D

u−Ξ>d≥ 0

D>Ξ +V > ≥O

Π,Ξ≥O

x∈X .

(13)

For the dualized formulation we can also impose linear restrictions, i.e.,

λ(w) =Qw, (14)

where we now introduce here-and-now variables Q ∈Rp×m to construct the decision rule.

Note that we restricted ourselves now to linear policies in the dual formulation instead of

affine policies. However, leaving out the constant term does not restrict the set of feasible

and optimal here-and-now decisions as follows from the next proposition.

Proposition 1. If (x, λ(w) = q+Qw) is feasible for (3), then (x, λ̃(w) = Q̃w) with

Q̃= qe>+Q is also feasible.



Bertsimas and de Ruiter: Duality in Two-stage Adaptive Linear Optimization: Faster Computation and Stronger Bounds
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 11

Proof. For all w ∈ V we have e>w= 1. Therefore, for all w ∈ V the following relation

holds

λ̃(w) = Q̃w= (qe>+Q)w= q+Qw=λ(w).

Hence, if λ(w) is a feasible policy for (15), then so is λ̃(w). �

Substituting the linear policy (14) in (3), we obtain the following model

min
x,Q

c>x

s.t. ∀w ∈ V :


w>(Ax− r)−d>(Qw)≥ 0

D>Qw≥R>w

Qw≥ 0

x∈X .

(15)

A robust counterpart for (15) can be derived using standard LP dualization as in Lemma

2. With the introduction of the auxiliary variables ε ∈ Rk, Λ ∈ Rk×L and Ω ∈ Rk×p, the

resulting robust counterpart can be written as

min
x,Q,ε,Ω,Λ

c>x

s.t. Ax+Bε−Q>d≥ r

BΛ≥R−Q>D

BΩ +Q> ≥O

ε≥ 0, Λ,Ω≥O

x∈X .

(16)

The next theorem shows that the primal and dual formulation have the same set of feasible

(and optimal) here-and-now decisions.

Theorem 2. The solution (x,Q,ε,Ω,Λ) is feasible for (16) if and only if

(x,u,V ,Π,Ξ) is feasible for (13), where

u= ε+ Ωd

V = Λ−ΩD

Π = Ω>B>+Q
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Ξ = Ω>.

The proof is direct and therefore omitted. Theorem 2 is not only useful because it

proves equivalence of the primal and dual formulation with affine policies. It also allows

us to solve the dual formulation (16) with affine policies and directly obtain the optimal

affine policy of the original formulation (or vice versa). Despite this equivalence there may

be significant computational benefits from solving two stage problems using the dualized

formulation rather than the primal formulation. This can be seen by comparing the two

robust counterparts (13) and (16). We compare the number of affine constraints and the

number of sign restrictions in Table 2. We use the same parameters as in Table 1 for

the number of uncertain parameters (L), the number of wait-and-see decisions (k), the

number of affine constraints on the variables (m) and the number of affine constraints in

the uncertainty set (p). We observe that the total number of constraints (affine constraints

Table 2 Comparing the number of affine constraints and sign restrictions in (13) and (16)

Primal formulation (13) Dual formulation (16)

# affine constraints (1 +L)(m+ k) m(1 +L+ p)

# sign restrictions p(m+ k) k(1 +L+ p)

and sign restrictions) is the same in both formulations. However, there is a difference in

the break down into the number of affine constraints and the number of sign restrictions.

This is important since sign restrictions are much easier to handle by solvers than affine

constraints. From Table 2 we see that for a large number of wait-and-see decisions k,

relative to the number of constraints in the original model and uncertainty set (m and

p), the dual formulation (16) can most likely be solved more efficiently than the primal

formulation (13). We observe these computational benefits in our numerical examples in

Sections 5 and 6 where we present Table 2 with some explicit values for L, k, m and p.

Finally, we note that the models (12) and (15) can also be solved via cutting plane

methods, see Mutapcic and Boyd (2009). There have been extensive numerical studies that

show that in some cases cutting plane algorithms require slightly less computation time

than solving the robust counterpart constructed by Lemma 2 (Fischetti and Monaci 2012,
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Bertsimas et al. 2015). We have also solved our numerical examples with the cutting plane

algorithm described in those papers. As with the reformulation approach, we observe that

the dual formulation (15) can be solved an order of magnitude faster than the primal prob-

lem. This approach is however not elaborated further for two reasons. First, to construct

the primal solution from the dual solution by Theorem 2 we need the auxiliary variables

that are introduced by the reformulation. Second, initial findings showed that the cutting

plane algorithm is a lot slower for the problems considered Sections 5 and 6. We were only

able to solve the smaller instances in reasonable time via cutting planes.

4. Stronger Bounds on the Optimality Gap of Affine policies

In general, the restriction from fully adaptive policies to affine policies is both for the primal

and dual formulation an approximation of the fully adaptive solution. It is important to

provide methods that can efficiently determine bounds on the (sub)optimality of affine

policies. Here we extend a method that was first presented in Hadjiyiannis et al. (2011)

to provide bounds on the optimality gap of affine policies. We first explain the initial idea

from Hadjiyiannis et al. (2011) and then describe the algorithm that provides stronger

bounds.

The main idea is to solve the fully adjustable model (2) only for a finite subset of the

uncertainty set. Clearly, any optimal solution to this model results in a lower bound since we

only guarantee feasibility for a strict subset of the uncertainty region. If we denote the finite

subset by
{
ζ1,ζ2, . . . ,ζN

}
, then we end up with the following equivalent deterministic

optimization model

min
x,y1,...,yN

c>x

s.t. Ax+Byi ≥Rζi + r ∀i= 1, . . . ,N

x∈X ,y1, . . . ,yN ≥ 0.

(17)

The crucial question is of course which scenarios to include. It is shown by Bertsimas

and Goyal (2012) that the lower bound is tight if we include all extreme points of the

uncertainty set. This is in practice undoable since there can be a huge number of extreme

points, each resulting in an extra variable and constraint in (17). Another straightforward

way would be to sample N scenarios uniformly at random from V. The model (17) remains
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tractable for relatively large N , but for all our examples we obtain useless bounds, even

when the number of random samples N is as big as 105. We therefore have to pick the

scenarios in a more specific way. To do so, we first introduce the notion of binding scenarios.

Definition 1 (Binding scenarios). Let f : U ×X →R be a function of the uncertain

parameter ζ ∈ U and here-and-now decision x ∈ X . For a given x ∈ X the parameter ζ̂ is

called binding for the robust constraint

f(ζ,x)≤ 0 ∀ζ ∈ U

if f(ζ̂,x) = 0.

In the primal formulation with affine policies we only have here-and-now decisions x,u

and V . Furthermore, each robust constraint is linear in the here-and-now decision and the

uncertain parameter. Therefore, a binding scenario can easily be found for each constraint

by solving a small linear optimization model ζ̂ = arg maxζ∈U f(ζ,x) and check whether the

maximum is equal to zero (up to a certain precision). The hope is that scenarios that are

binding the solution with affine policies are also binding the fully adaptive solution.

The method by Hadjiyiannis et al. (2011) only uses the information derived from the

primal formulation with affine policies (2). Using Theorem 2 we can directly construct the

optimal affine policy in the dual formulation once the optimal affine policy in the primal

formulation is known. Using this other affine policy we can construct another subset of V

consisting of binding scenarios in the dual formulation. The resulting deterministic model

of the dual formulation with a finite subset {w1,w2, . . . ,wM} is given by

min
x,λ1,...,λM

c>x

s.t. (wj)>(Ax− r)−d>λj ≥ 0 ∀j = 1, . . . ,M

D>λj ≥R>wj ∀j = 1, . . . ,M

x∈X ,λ1, . . . ,λM ≥ 0.

(18)

Combining the constraints from (17) and (18) results in a model that provides a stronger

lower bound than the one that only uses the binding scenarios from the primal formulation.

We can now give Algorithm 1 that provides the strengthened bound on the optimal value

of the fully adaptive model. Step 1 provides us with a feasible solution and an upper bound

on the optimal value of the fully adaptive problem. The objective value of the model in step
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Algorithm 1 Stronger bounds on optimality of affine policies

1: Solve (13) to get optimal optimal here-and-now x, affine policy y(ζ) = u+ V ζ and

auxiliary variables Π,Ξ.

2: Construct the dual affine policy λ(w) =Qw using Theorem 2.

3: Find the binding scenarios {ζ1,ζ2, . . . ,ζN} in (12) and {w1,w2, . . . ,wM} in (15).

4: Solve the sampled problem with binding scenarios for the primal and dual

min
x,y1,...,yN ,λ1,...,λM

c>x

s.t. Ax+Byi ≥Rζi + r ∀i= 1, . . . ,N

y1, . . . ,yN ≥ 0

(wj)>(Ax− r)−d>λj ≥ 0 ∀j = 1, . . . ,M

D>λj ≥R>wj ∀j = 1, . . . ,M

λ1, . . . ,λM ≥ 0

x∈X .

4 gives us the new lower bound. A binding scenario for each constraints in (12) and (15)

can be found directly using the optimal affine policies from step 1 and 2. We omit here the

elaborate description of a more efficient way to finding the set of binding scenarios in step

3 via KKT conditions which is described in Hadjiyiannis et al. (2011). However, step 3 is

not the most time consuming step as solving the model with affine policies in step 1 takes

by far the most time. Finally, we note that we can also solve the dual formulation (16)

with affine policies in step 1 and obtain the primal affine policy in step 2 using Theorem

2.

5. Example 1: Lot-sizing on a Network

In this section we present a natural example in which (15) takes an order of magnitude

less time to solve than the primal formulation (12). Also, the new lower bound on the fully

adaptive model (2) derived from Algorithm 1 is much stronger than the lower bound from

Hadjiyiannis et al. (2011) that only used the binding scenarios from the primal formulation.

5.1. Problem Setting

In lot-sizing on a network we have to determine the stock allocation xi for i = 1, . . . ,N

stores prior to knowing the realization of the demand at each location. The demand ζ is
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uncertain and assumed to be in a budget uncertainty set:

U =
{
ζ : 0≤ ζ ≤ ζ̂e, e>ζ ≤ Γ

}
.

After we observe the realization of the demand we can transport stock yij from store i

to store j at cost tij in order to meet all demand. The aim is to minimize the worst case

storage costs (with unit costs ci) and the cost arising from shifting the products from one

store to another. This network flow model can now be written as a specific instance of the

primal problem (2) as follows:

min
x,α

α

s.t. ∀ζ ∈ U : ∃y≥ 0 :

 α≥
∑N

i=1 cixi +
∑N

i=1

∑N
j=1 tijyij

ζi ≤
∑N

j=1 yji−
∑N

j=1 yij +xi i= 1, . . . ,N

0≤ xi ≤Ki i= 1, . . . ,N,

(19)

where the first line in (19) is for the epigraph formulation. The second line contains the

balance equations: we have to shift stock to and from node i such that the initial storage

plus the net shift in stock still exceeds the demand at node i. The last constraints restrict

the capacity of the stock at each node. Note that this model can be seen as a network flow

model with multiple sources and multiple sinks.

5.2. Test Case and Numerical Results

We pick N ∈ {10,20,30, . . . ,100} locations uniformly at random from [0,10]2. Let tij, the

cost to transport one unit of demand from location i to j, be the Euclidean distance

and the unit storage cost ci be equal to 20. The individual maximum demand ζ̂ and the

capacity Ki of each store is set to 20 units. The total demand in the network is set to

Γ = 20
√
N . This is to avoid trivial and unrealistic cases where either all demand can occur

at a single store (Γ = 20) or where the demand in each store is independent (Γ = 20N). All

computations were carried out with Gurobi 6.0.3 (Gurobi Optimization 2015) on an Intel

i7-4770 3.40GHz Windows computer with 8GB of RAM. All modeling was done using the

modeling language JuMP (Lubin and Dunning 2015).

We solve both (13) and (15) and depict the average solution times over 10 runs in

Table 3, as well as the objective value and the lower bounds. The stock allocation
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Table 3 Compare performance of primal and dualized formulation with affine policies for the lot-sizing

example. The percentages in the last columns depict the optimality gap derived from each lower bound compared

to the objective value. All results are averaged over 10 runs.

Solver time (sec) Objective value Lower Bound (Gap%)

N Primal Dual Primal Primal/Dual

10 < 0.1 < 0.1 928 797 (14.0%) 824 (11.1%)

20 0.3 0.1 1353 1113 (17.7%) 1190 (12.0%)

30 2.6 0.8 1670 1356 (18.8%) 1465 (12.3%)

40 11.8 2.6 1947 1562 (19.8%) 1728 (11.3%)

50 42.0 7.3 2188 1728 (21.0%) 1934 (11.6%)

60 142.2 20.5 2421 1912 (21.0%) 2160 (10.8%)

70 366.0 41.3 2598 1996 (23.2%) 2312 (11.0%)

80 826.9 88.7 2781 2136 (23.2%) 2495 (10.3%)

90 1647.1 179.8 2953 2252 (23.8%) 2641 (10.6%)

100 4026.2 231.0 3130 2408 (23.1%) 2799 (10.6%)

(the here-and-now decision) for the N = 30 instance is depicted in Figure 1. The lower

bound from the primal is obtained using the method from Hadjiyiannis et al. (2011).

The primal/dual bound is the strengthened bound resulting from Algorithm 1. Solving

the model via the new dualized formulation (16) reduces the computation an order of

magnitude compared with the original primal formulation (13). For the larger instances

we see that the primal formulation is approximately 20 times slower. These results are

averaged over 10 runs to avoid random peak performances, but in each individual run

we observed the significant decrease in computation time. The strengthened primal/dual

bound from Algorithm 1 is much tighter than the primal bound, more than halving the

optimality gap for the larger instances.

5.3. Why is the dual formulation faster?

To understand the significant faster computation time of the dual formulation displayed

in Table 3, we look at the dimensions (number of uncertain parameters, wait-and-see

decisions, constraints on variables and constraints on uncertain parameters) for the case

N = 20. We give the values of these dimensions in Table 3 using the same format as is in

Table 1. We observe that the primal and dual formulation have the same characteristics,
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Figure 1 Stock allocation for an instance with 30 stores on the grid [0,10]2. The filled dots have stock and the

larger the dots are, the more stock is allocated. The open dots are stores that do not have any stock

allocated.

Table 4 Comparing dimensions of variables, uncertainties and number of constraints in the primal and dual

formulation for the lot-sizing instance with N = 20 stores.

Primal formulation (2) Dual formulation (3)

# uncertain parameters 20 21

# wait-and-see decisions 400 21

# constraints on variables 21 21

# constraints on uncertain parameter 21 401

except for the number of wait-and-see decisions and the number of constraints on the

uncertain parameter in the uncertainty set. Given these values, we can explicitely calculate

the number of affine constraints and the number of sign restrictions using the formulas

from Table 2. The resulting number of constraints and sign restrictions are given in Table

5. We observe that the primal formulation (13) has about 50 times more affine constraints

than the dual formulation (16). The dual formulation does have a lot more sign restrictions

on its variables, but these are significantly simpler for solvers. To investigate the claim that

the number of affine constraints are indeed the cause of the speedup we adapt the N = 20

instance from the network lot-sizing model (19). From Table 2 we see that increasing p,

the number of affine constraints in the uncertainty set U , leads to an increase of affine

constraints in the dual formulation with affine policies. At the same time, the value of p
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Table 5 Comparing the number of affine constraints and sign restrictions in (13) and (16) for the lot-Sizing

instance with N = 20 stores.

Primal formulation (13) Dual formulation (16)

# affine constraints 8841 882

# sign restrictions 8841 16800

does not affect the number of affine constraints in the primal formulation. To increase p,

we add nonreduntant constraints of the following type to the polyhedral description of U :∑
i∈S

ζi ≤ 20
√
|S|, (20)

where S ⊂ {1, . . . ,N} is a random subset of size 1
2
N . The number of constraints p can be

increased at will by adding more of these constraints. Note that increasing p also increases

the total number of variables and the number of sign constraints, but these grow in more or

less the same order of magnitude in both formulations. If we consider the case N = 20, then

we find that the number of affine constraints in (13) and (16) is equal when the number

of constraints in the uncertainty set U equals p= 400. Note that p≥ 21, since we need 21

constraints to describe the budget uncertainty set. The case with p= 21 is therefore just

our original network lot-sizing problem (19). We measure the difference in computation

time between the primal and the dual formulation by the quotient

Solver time for (13)

Solver time for (16)
.

In Figure 2, we plotted this quotient for each random instance with p ∈ {21,22, . . . ,1000}

constraints in the uncertainty set. We already know from Table 3 that the dual formulation

with affine policies solves the original instance three or more times faster than the primal

formulation. If we start adding constraints, the computational advantage progressively

decreases and after a point it dissapears.

6. Example 2: Facility Location Problem

The second example we consider is a facility location problem that has also been studied in

Ardestani-Jaafari and Delage (2014) and Baron et al. (2011). Similar two-stage adaptive

models can be found in Zeng and Zhao (2013). In our results we again observe a significant

reduce in computational time required for solving the dualized formulation with affine
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Figure 2 The computation time of the primal formulation (13) divided by the time needed to solve the primal

formulation (13) for N = 20 and various number of affine constraints in the uncertainty set p. For

p = 400 both (13) and (16) have the same number of affine constraints. Values above the horizontal

line at 1 indicate that the dual formulation is solved faster than the primal formulation and vice versa

for values smaller than 1.

policies over the primal formulation with affine policies. For this problem, however, the

strenghtened bounds from Algorithm 1 only slightly improve the bounds obtained from

the primal formulation.

6.1. Problem Setting

We consider a facility location problem where we can build factories at candidate sites

s ∈ S = {1, . . . , S}, which have to serve customers c ∈ C = {1, . . . ,C} in the area. The

uncertain demand for customer c is modelled as (1− ζc)d̄c, with d̄c the nominal demand of

customer c and ζc the uncertain shock in the demand. We take again a budget uncertainty

set of the form

U =
{
ζ : 0≤ ζ ≤ ζ̂e, e>ζ ≤ Γ

}
,

where Γ is our budget parameter1. There are two types of decisions in this model. First,

strategic here-and-now decisions that have to be decided before the demand is known.

We have a binary variable xs to decide whether the facility at site s is opened and a

1 In fact, Ardestani-Jaafari and Delage (2014) also consider negative values of the uncertainy parameter. It is not
hard to see that these are nonbinding scenarios and we can therefore use this uncertainty set instead.
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continuous variable ps to set the capacity level at each opened facility site. Second, wait-

and-see decisions ysc on the production at facility s which is transported to customer c.

Each unit of demand can generate a revenue of η. There are also several costs incurred

for the various strategic and operations decisions. Opening a facility s has a fixed cost fs

and a cost of bs per unit of capacity installed. The production of one unit at facility s

has cost gs and transporting the goods to customer c bears an additional cost hsc. The

goal is to maximize the total profit. This problem can be modelled as a two-stage adaptive

optimization model, see Ardestani-Jaafari and Delage (2014):

max
t,x,p

α−
∑
s∈S

(bsps + fsxs)

s.t. ∀ζ ∈ U : ∃y≥ 0 :


∑

s∈S,c∈C (η− gs−hsc)ysc ≥ α∑
c∈C ysc ≤ ps ∀s∈ S∑
s∈S ysc ≤ d̄c− ζcd̄c ∀c∈ C

p≤Mx, x∈ {0,1}N .

(21)

Note that we have a maximization objective, but this can easily be turned into a minimiza-

tion objective by the relation maxx∈X f(x) =−minx∈X (−f(x)) before applying Theorem

1.

6.2. Test Case and Numerical Results

We consider the same setting as in Ardestani-Jaafari and Delage (2014), which is based

on the set-up of an earlier paper on robust facility location planning by Baron et al.

(2011). We randomly generate C customers and S sites on a unit square. For the cost

parameters we take fs = 50000, bs = 0.1, gs = 0.1, η = 1. The nominal demand is drawn

uniformly at random from [17500,22500] and ζ̂ = 0.15. The transportation cost tij is just

the Euclidean distance between two points i and j. We take S = 10 possible sites and

C ∈ {10,20,30,40,50}. The cases with C = 10 and C = 20 are in Ardestani-Jaafari and

Delage (2014) referred to as small and medium instances. For the larger instances the

computational time vastly increased and they did not report results on the models with

affine policies. We use the same computer and optimization software as mentioned in

Section 5.

The results for various numbers of customers C and various percentage levels of uncer-

tainty Γ are given in Table 6. We use the standard notion of budget uncertainty where a
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budget of 30% means that 30% of the uncertain prameters can be at their extreme value

of ζ̂ = 0.15. A graph indicating the location and the facilities that are opened for one case

is given in Figure 3.
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0

0.2

0.4

0.6

0.8

1

Figure 3 Solution for one facility location instance with S = 10 possible sites and C = 50 customers on [0.1]2.

The uncertainty level is set at Γ = 50%. Facility locations are indicated by triangles, customers by open

circles. The filled triangles are the locations that are picked to be open.

The most striking result is that the dual formulation with affine policies is again solved

an order of magnitude faster than the primal formulation with affine policies. This holds

especially true for the larger instances and larger values of Γ. We again look at the dimen-

sions of the primal and the dual formulation using Table 1 for its dimensions and Table

2 for the different constraints. For the the case with C = 50 customers we present these

results in Table 7 and Table 8.

Again we see a smaller number of difficult affine constraints in the dual version in

exchange for a larger number of easy-to-handle sign restrictions.

If we take a look at the bounds we see they are very close to the objective value, which

shows that the use of affine policies is nearly optimal. This observation was also made

for the smaller instances in Ardestani-Jaafari and Delage (2014). For Γ = 100%, the lower

bound is the most far away from the objective value. This is surprising, as for this case (box

uncertainty) we know that affine (in fact, static) policies are provably optimal (Ben-Tal

et al. 2009, Theorem 14.2.4).



Bertsimas and de Ruiter: Duality in Two-stage Adaptive Linear Optimization: Faster Computation and Stronger Bounds
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 23

Table 6 Numerical results for facility location problem with affine policies. The percentages in the last columns

depict the optimality gap derived from each upper bound compared to the objective value. All results are

averaged over 5 runs.

Solver time (sec) Objective value Upper Bound (Gap%)

C Γ% Primal Dual Primal Combined P/D

10 10 0.2 0.7 30946 32233 (3.3%) 32167 (3.1%)

30 0.8 1.2 27894 30474 (8.0%) 29835 (6.1%)

50 1.1 1.3 25409 28763 (10.5%) 27897 (7.9%)

70 2.0 1.5 23416 24895 (5.6%) 24430 (3.6%)

90 2.6 0.9 21889 26511 (18.3%) 26353 (17.5%)

100 1.9 0.7 21516 29136 (28.4%) 26803 (19.6%)

20 10 7.4 3.6 85895 87264 (1.3%) 87264 (1.3%)

30 10.4 4.2 79996 82235 (2.3%) 81883 (2.0%)

50 18.0 5.2 75404 77060 (1.8%) 76827 (1.6%)

70 23.4 5.4 71872 77473 (6.4%) 76854 (5.6%)

90 21.2 4.7 69104 69874 (0.9%) 69712 (0.7%)

100 11.8 1.1 68226 80301 (14.7%) 79810 (14.1%)

30 10 55.2 30.3 173069 174547 (0.7%) 174004 (0.5%)

30 112.5 35.4 163953 168422 (2.3%) 166642 (1.4%)

50 144.3 35.8 156451 160911 (2.3%) 157913 (0.7%)

70 220.1 40.8 150070 156881 (3.6%) 153511 (1.8%)

90 251.2 31.9 144873 150741 (3.4%) 149310 (2.6%)

100 111.8 6.4 143010 164214 (12.4%) 159182 (9.5%)

40 10 307.4 114.5 243639 244628 (0.3%) 244219 (0.2%)

30 787.8 220.7 230556 234272 (1.3%) 233557 (1.1%)

50 986.2 197.4 219446 222396 (1.1%) 221665 (0.8%)

70 1735.4 199.0 209942 212479 (1.0%) 211588 (0.7%)

90 1761.8 154.9 202456 203607 (0.5%) 203011 (0.2%)

100 877.7 25.7 200044 223373 (9.7%) 222408 (9.3%)

50 10 1049.0 326.3 341060 341951 (0.2%) 341859 (0.2%)

30 2153.2 530.4 323989 327184 (0.8%) 325526 (0.4%)

50 2766.5 557.1 308882 312840 (1.1%) 311457 (0.7%)

70 4542.5 536.8 295599 298961 (1.0%) 298129 (0.7%)

90 5830.9 469.6 284574 292716 (2.3%) 291174 (1.8%)

100 3582.1 68.2 280704 304575 (7.1%) 302579 (6.5%)
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Table 7 Comparing dimensions of variables, uncertainties and number of constraints in the primal and dual

formulation for the facility location problem (21) with C = 50 customers.

Primal formulation (2) Dual formulation (3)

# uncertain parameters 50 61

# wait-and-see decisions 500 51

# constraints on variables 61 51

# constraints on uncertain parameter 51 501

Table 8 Comparing the number of affine constraints and sign restrictions in (13) and (16) for the facility

location problem (21) with C = 50 customers.

Primal formulation (13) Dual formulation (16)

# affine constraints 28661 6222

# sign restrictions 28661 51000

7. Concluding Remarks

In this paper, we have used duality for the second-stage decisions and uncertain parameters

to derive an equivalent formulation of a primal two-stage adaptive model. The resulting

dualized formulation is again a two-stage adaptive model. We show that optimal affine

policies for the primal formulation can be directly constructed from optimal affine policies

in the dual formulation. Via two examples of lot-sizing and a facility location problem, we

show that the dualized models, when coupled with affine policies, can reduce computational

time to solve adaptive problems by an order of magnitude. Furthermore, we provide an

algorithm that uses the affine policies in the dual model to strengthen bounds on the

optimality gap of affine policies.
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Ordóñez, F., J. Zhao. 2007. Robust capacity expansion of network flows. Networks 50 136–145.

Postek, K., D. Den Hertog. 2014. Multi-stage adjustable robust mixed-integer optimization via iterative

splitting of the uncertainty set. Submitted for publication.

Shapiro, A., A. Nemirovski. 2005. On complexity of stochastic programming problems. Continuous opti-

mization. Springer, 111–146.

Thiele, A., T. Terry, M. Epelman. 2009. Robust linear optimization with recourse. Rapport technique 4–37.

Wang, Q., J.-P. Watson, Y. Guan. 2013. Two-stage robust optimization for nk contingency-constrained unit

commitment. Power Systems, IEEE Transactions on 28 2366–2375.

Yin, Y., S. M. Madanat, X.-Y. Lu. 2009. Robust improvement schemes for road networks under demand

uncertainty. European Journal of Operational Research 198 470–479.

Zeng, B., L. Zhao. 2013. Solving two-stage robust optimization problems using a column-and-constraint

generation method. Operations Research Letters 41 457–461.

Zhao, L., B. Zeng. 2012. Robust unit commitment problem with demand response and wind energy. Power

and Energy Society General Meeting, 2012 IEEE . 1–8.


	Introduction
	Duality in Two-stage Adaptive Formulations
	The Primal Formulation
	The New Dualized Formulation

	Solving the Primal and Dual Formulation with Affine Policies
	Static Robust Optimization
	Solving the Two-stage Formulations with Affine Policies

	Stronger Bounds on the Optimality Gap of Affine policies
	Example 1: Lot-sizing on a Network
	Problem Setting
	Test Case and Numerical Results
	Why is the dual formulation faster?

	Example 2: Facility Location Problem
	Problem Setting
	Test Case and Numerical Results

	Concluding Remarks

