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Abstract. In this paper we establish conditions under which uniqueness of
market equilibrium is obtained in a setup where prior to trading of electricity,
transmission capacities between different market regions are fixed. In our setup,
firms facing fluctuating demand decide on the size and location of production
facilities. They make production decisions constrained by the invested capacities,
taking into account that market prices (partially) reflect scarce transmission
capacities between the different market zones. For this type of peak-load pricing
model on a network we state general conditions for existence and uniqueness of
the market equilibrium and provide a characterization of equilibrium investment
and production. The presented analysis covers the cases of perfect competition
and monopoly—the case of strategic firms is approximated by a conjectural
variations approach. Our result is a prerequisite for analyzing regulatory policy
options with computational multilevel equilibrium models, since uniqueness of
the equilibrium at lower levels is of key importance when solving these models.
Thus, our paper contributes to an evolving strand of literature that analyzes
regulatory policy based on computational multilevel equilibrium models and
aims at taking into account individual objectives of various agents, among
them not only generators and customers but also, e.g., the regulator deciding
on network expansion.

1. Introduction

The peak-load pricing literature analyzes investment incentives in industries
where demand is fluctuating and storability of the output is limited; see Crew et al.
(1995) for an overview. In such an environment firms will find it optimal to invest
in a differentiated portfolio of base- and peak-load technologies. For the case of
perfectly competitive markets, the unique equilibrium of this game is welfare optimal,
i.e., firms take the right investment and production decisions. The approach of
peak-load pricing is currently extensively used to analyze electricity markets, e.g.,
by Murphy and Smeers (2005) or Joskow and Tirole (2007), and many others.

The scope of this paper is to extend existence and uniqueness results of the
peak-load pricing literature to the case where producers and consumers interact on a
network. This is an important contribution to the literature on liberalized electricity
markets, where typically private firms decide on investment and production, guided
by incentives from spot market trading. In such an environment an adequate model
of peak-load pricing on a network must account for the network constraints that the
agents face at the spot markets whenever they are reflected in the spot market prices.
One of the results of our analysis is that the consideration of network constraints in
a model of peak-load pricing does not require additional assumptions to guarantee
uniqueness of the equilibrium. That means, all assumptions on cost and demand
functions that guarantee a unique solution in the absence of network considerations
will always guarantee uniqueness when also considering network constraints. The
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ability to establish a unique solution of this game is a prerequisite to meaningfully
analyze complementary decisions taken by other agents—such as the regulator’s
decisions on network expansion or the regulatory framework itself; see e.g., the
analysis in Grimm et al. (2016a).

In this paper we propose a framework that captures trading at spot markets, where
market prices reflect scarce network capacities. Demand at each node is fluctuating.
We analyze a setup where firms decide on size and location of production facilities
and make production decisions that are constrained by the invested capacities,
taking into account regionally differentiated prices reflecting network constraints.
We provide general conditions that allow to establish uniqueness of the resulting
market equilibrium under perfect competition, characterize this equilibrium, and
provide an intuitive example. In an extension we show that our results still hold
if strategic behavior of firms is approximated based on the conjectural variations
approach, analogously to the approach chosen, e.g., by Wogrin et al. (2013).

As a key contribution we show that uniqueness of the market outcome in our
setting can be guaranteed relying on the usual assumptions used in the entire
literature on modeling liberalized electricity markets. In particular, this implies
that uniqueness can be obtained without strong assumptions regarding convexity of
investment and production cost. The latter is convenient in theoretical modeling,
but typically not easily applicable, and thus not assumed, in numerical models.
When it comes to applying numerical models in order to answer questions concerning
market design, uniqueness of the outcome is important for several reasons. First,
comparison of market designs in models that lead to multiple predictions of the
outcome is difficult. A solution could be to resort to specifically tailored equilibrium
selection procedures, which are, however, controversially discussed in the literature;
see, e.g., Ralph and Xu (2011) for two-stage stochastic programs or Huppmann
and Egerer (2015) and Ruiz and Conejo (2015), which apply a specific equilibrium
selection mechanism. Second, a model with multiple outcomes can hardly be used to
analyze interaction of the modeled environment and some complementary decisions.
An example is the analysis of the interdependency of generation investment and
line expansion in electricity market models; see, e.g., Jenabi et al. (2013) or Grimm
et al. (2016a).

To the best of our knowledge, our contribution is the first to establish uniqueness of
the peak-load pricing equilibrium on a network. This is an important cornerstone to
the multilevel analysis of situations where competitive firms have to make production
and investment decisions facing network constraints. As it is well acknowledged
in the literature, multiple solutions of lower level problems hinder the solution,
interpretation, and comparison of results obtained in a multilevel context; see,
e.g., Dempe (2002), Colson et al. (2007), or Gabriel et al. (2012). Our result is
thus important to meaningfully analyze energy policy options in computational
equilibrium models, which include network expansion plans or alternative regulatory
regimes.

It should be emphasized that our approach does not cover cases where further
technical constraints, such as AC or DC flow models in electricity, are reflected in
spot market prices. A prominent example is the consideration of a fully-fledged
physical model upon the determination of spot market prices, as it is practiced
in a system with nodal pricing. Instead, our analysis captures situations where
electricity is traded between different market regions with uniform electricity prices
and the transmission capacities between the regions are predetermined (i.e., they
are independent of realized power flows). Note that this approach of congestion
management at the market stage does not perfectly capture physical network
constraints but aims at reflecting the main bottlenecks within the market clearing
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procedure. In practice this covers both the case of regular explicit auctions as well as
implicit auctions for the assignment of scarce transmission capacities. Note that from
a modeling perspective where all market participants hold rational expectations and
play equilibrium strategies, the outcome of explicit cross border auctions corresponds
to the outcome of fully coordinated implicit auctions (see, e.g., Ehrenmann and
Smeers (2005a) or Daxhelet and Smeers (2007)). Explicit auctions are typically
introduced at early stages of interconnecting liberalized electricity markets. In the
past, these procedures had been used in markets in North America and also in
Australia as well as Europe. Today, while some European countries switched to
more complex flow based coupling, explicit auctions are still used in Switzerland,
Greece, and the Balkan countries. A very prominent example outside Europe is Latin
America, where explicit trading of cross border capacities takes place among various
Latin American countries (see Yépez-García et al. (2011)). Note that whenever
transmission capacities are exogenously determined prior to the bidding process also
a regime of implicit auctions is fully covered by our results. However, more recent
developments of flow based market coupling in some European countries or nodal
pricing in Northern America are not covered.

As a summary, our study contributes to enabling a rigorous analysis of explicit and
implicit auctioning of scarce transmission capacity as it is typically introduced as a
first step to connect recently liberalized markets. Therefore, besides the applicability
to existing systems in Europe or Latin America, our results can be helpful for the
analysis of future developments in Asia and Africa, where the interconnection of
electricity markets may proceed. The consideration of more complex flow models is
out of the scope of this paper and topic of future research.

Our work contributes to several strands of the literature. First, it directly extends
the peak-load pricing literature to peak-load pricing on a network. The seminal
contributions to the analysis of peak-load pricing date back to Boiteux (1949) and
Steiner (1957). For a more recent summary of the main findings and contributions
see Crew et al. (1995). These contributions establish existence and uniqueness of
the perfectly competitive market equilibrium in the absence of network constraints.
More recently this literature has also been extended to the case of strategic firms,
e.g., by Murphy and Smeers (2005), Hu and Ralph (2007), Zöttl (2010), Grimm
and Zöttl (2013), or Wogrin et al. (2013). Only Zöttl (2010) and Grimm and
Zöttl (2013) consider specific conditions that guarantee uniqueness of the resulting
market equilibrium with strategic firms. In the general case with multiple and
discrete production technologies, however, uniqueness cannot be obtained in a
framework with strategic firms, not even in the absence of network restrictions. In
our contribution we thus chose to approximate the case of strategic interaction by a
conjectural variations approach, similar to the one applied recently by Wogrin et al.
(2013), which allows for the establishment of a unique solution.

Our article also contributes to the literature on market interaction in the presence
of network constraints. This literature dates back to early contributions by Vickrey
(1971) and Bohn et al. (1984), who were among the first to study optimal pricing
on a network with several spatially located consumers and producers. Hogan (2012)
or Chao and Peck (1996) build on those seminal contributions to analyze optimal
transmission pricing in electricity markets under nodal pricing—a regime that
nowadays is used in various electricity markets in the US, Canada, and some other
countries. European and Australian electricity markets, however, predominantly
use a system of zonal prices, where only predetermined “available transfer capacities”
between zones are taken into account upon trading at the spot market. For a
discussion also see Pérez-Arriaga and Olmos (2005), Ehrenmann and Smeers (2005a),
or Ehrenmann and Neuhoff (2009). All those studies do not focus on uniqueness
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of the problem under consideration and most importantly abstract from firms’
endogenous choice of production capacities, which is at the heart of our analysis.

The paper is organized as follows. In Sect. 2 we introduce the notation used
throughout the paper and the considered peak-load pricing model is stated. Moreover,
an equivalent reformulation of this model is given, which is used in Sect. 3 to prove
the uniqueness of solutions of the peak-load pricing framework. Section 4 provides
an illustrative example of our findings. Finally, Sect. 5 concludes and states some
topics of further research.

2. A Framework of Peak-Load Pricing on a Network

2.1. Notation and Model Formulation. We consider a general transport net-
work modeled by a connected and directed graph G = (N,A) with node set N
and arc set A. Flow on arc a is denoted by fa, which is limited by the arc capac-
ity f̄a ∈ R+, i.e., |fa| ≤ f̄a. Throughout the paper we make use of the standard
δ-notation, i.e., the set of in- and outgoing arcs of a node set M ⊆ N is given by

δin(M) := {a = (m,n) ∈ A : m /∈M,n ∈M},
δout(M) := {a = (n,m) ∈ A : n ∈M,m /∈M}.

The time horizon (or scenario set) that we consider in our peak-load pricing frame-
work is given as an interval T = [t0, te] ⊂ R with t0 < te. Demand dn(t) ≥ 0 is
located at every node n ∈ N . Elastic demand at node n ∈ N and time t ∈ T is
modeled by a continuous function pn(t, ·) : R+ → R. For later reference we note
the following additional assumption on the demand functions:

Assumption 1. All demand functions pn(t, ·), t ∈ T, are strictly decreasing, i.e.,
∂dpn(t, d) < 0.

Under Assumption 1, we can specify the definition of our demand functions to
pn(t) : [0, d̄n(t)]→ R+, where d̄n(t) is the unique root of pn(t). Further note that
the gross consumer surplus, which is defined as∫ dn(t)

0

pn(t, x) dx,

is concave under Assumption 1 for all t ∈ T . Note that the assumption of elastic
demand is standard in economic market models (e.g., compare Mas-Colell et al.
(1995)), irrespectively of whether network constraints are considered or not.

Moreover, at every node n ∈ N a single production technology is located that is
characterized by its variable production costs cvar

n ∈ R+ and its capacity investment
costs cinv

n ∈ R+. The chosen setup of a single technology per node is without loss of
generality. All of our results also apply to the situation in which multiple producers
with different technologies are located at the nodes. This can be easily seen by
introducing an auxiliary node for every producer at the node and by connecting the
auxiliary nodes with the original nodes by arcs with “infinite” capacity. Production
at time t ∈ T is denoted by yn(t) ∈ R+ and capacity by ȳn ∈ R+, i.e., capacity
is constant over time. Since actual production is nonnegative and restricted by
the corresponding capacity, we have 0 ≤ yn(t) ≤ ȳn. It is crucial to note at this
point that we do not impose strict convexity on the cost structure considered
throughout this article. Both marginal cost of investment and of production of
each technology is assumed to be constant. This is closely in line with the entire
literature analyzing liberalized electricity markets (see the literature cited in Sect. 1),
where the assumption of increasing marginal cost would be clearly unusual and
unnatural. As a central contribution our results show that uniqueness in our setting
obtains for the non-strict convex cost structure usually relied on in the literature.
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We remark that we analyze a perfectly competitive environment, i.e., all firms are
price takers. Under the assumption of strategic firms it is easy to show that multiple
equilibria would obtain in the present setup. Typically, papers that focus on strategic
interaction analyze much simpler frameworks—and often still find multiple equilibria.
Since the focus of our paper is to show uniqueness of the market game (in order to
develop a basis to analyze policy proposals with computational equilibrium setups),
we have to restrict attention to the case of perfect competition. In order to shed
lights on a world with positive markups, in Sect. 3.3 we use a simplified approach
that draws on the idea of conjectural variations; see, e.g., Giocoli (2003). For later
reference, we formalize an additional assumption on the variable production costs.

Assumption 2. All variable production costs cvar
n , n ∈ N , are pairwise distinct.

This is a standard assumption in the peak-load-pricing literature; see, e.g., Crew
et al. (1995). In the case without a network it directly implies that, w.l.o.g., we may
assume for all producers n, n′ that it holds that cvar

n < cvar
n′ implies cinv

n > cinv
n′ . As

in our case the location of a producer plays an important role, we need to use the
formulation used in Assumption 2 as it generalizes to the network setting.

We now state the market model that is considered throughout the paper. To this
end, we make use of our main economic assumption of perfect competition. This
implies that “[. . . ] all consumers and producers act as price takes. The idea behind
the price-taking assumption is that if consumers and producers are small relative
to the size of the market they will regard market prices as unaffected by their own
actions”; see page 314 of Mas-Colell et al. (1995). Note that given the assumption
of price taking, the specific ownership structure of generation facilities across nodes
is irrelevant. Our assumption that each agent owns a single plant located at a
specific node of the transport network is just made for notational convenience, which
delivers equivalent results than situations where agents own several plants across
nodes but still act as price takers. Note that in the absence of network or production
constraints this assumption directly yields the result that under perfect competition
price is equal to marginal cost of production; see, e.g., Chap. 10.C in Mas-Colell
et al. (1995). Our results characterize the unique market equilibrium in the more
general case where both production and network constraints are relevant.

Using the assumption of perfect competition we can formulate the optimization
problems of all agents by using prices πn(t) as exogenously given data. We start
with a producer (located at node n ∈ N), who maximizes its profit by solving the
problem

max
yn(·),ȳn

∫
T

πn(t)yn(t) dt−
∫
T

cvar
n yn(t) dt− cinv

n ȳn

s.t. 0 ≤ yn(t) ≤ ȳn, t ∈ T.
In what follows we make the technical assumption that all demand, price, and
production functions are L2(T ), i.e., square-integrable, functions. Thus, considering
the optimization problems of the single players in continuous time leads to infinite-
dimensional problems in Banach spaces. In this setting, the optimality conditions
of the producer at node n state that there exist β±n (·) ∈ L2(T ;R+) such that

0 = πn(t)− cvar
n + β−n (t)− β+

n (t) for almost all t ∈ T,

0 =

∫
T

β+
n (t) dt− cinv

n ,

0 =

∫
T

yn(t)β−n (t) dt =

∫
T

(ȳn − yn(t))β+
n (t) dt,

0 ≤ yn(t) ≤ ȳn, t ∈ T,
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holds; see Hinze et al. (2009). On the other hand, the consumer (located at node n)
faces the problem

max
dn(·)

∫
T

∫ dn(t)

0

pn(t, x) dxdt−
∫
T

πn(t)dn(t) dt

s.t. dn(t) ≥ 0, t ∈ T,

for which the first-order conditions state the existence of γn(·) ∈ L2(T,R+) satisfying

0 = pn(t, dn(t))− πn(t) + γn(t) for almost all t ∈ T,

0 =

∫
T

dn(t)γn(t) dt,

0 ≤ dn(t).

Finally, the last player to model is the transmission system operator (TSO), who
operates the transmission network. The TSO faces the optimization problem

max
(fa(·))a∈A

∫
T

(πm(t)− πn(t))fa(t) dt

s.t. − f̄a ≤ fa(t) ≤ f̄a, t ∈ T,
for every arc a = (n,m), which is equivalent to its first-order optimality conditions,
i.e., the existence of ε±a (·) ∈ L2(T ;R+) with

0 = πm(t)− πn(t) + ε−a (t)− ε+
a (t) for almost all t ∈ T,

0 =

∫
T

(fa(t) + f̄a)ε−a (t) dt =

∫
T

(f̄a − fa(t))ε+
a (t) dt,

−f̄a ≤ fa(t) ≤ f̄a, t ∈ T.
Taking all these optimality conditions together and adding the flow balance equations∑

a∈δin(n)

fa(t)−
∑

a∈δout(n)

fa(t)− dn(t) + yn(t) = 0, t ∈ T, n ∈ N,

we obtain a mixed complementarity problem in which competitive prices clear the
market as it is well-known for competitive equilibrium models in discrete time.
Moreover, it can be seen that the presented model in continuous time is equivalent
to a single welfare maximization problem as it is the case for discrete time models
as well; see Hobbs and Helman (2004). In our setting, this problem reads

max
d(·),y(·),ȳ,f(·)

∑
n∈N

∫
T

∫ dn(t)

0

pn(t, x) dxdt−
∑
n∈N

∫
T

cvar
n yn(t) dt−

∑
n∈N

cinv
n ȳn (1a)

s.t.
∑

a∈δin(n)

fa(t)−
∑

a∈δout(n)

fa(t)− dn(t) + yn(t) = 0, t ∈ T, n ∈ N,

(1b)

− f̄a ≤ fa(t) ≤ f̄a, t ∈ T, a ∈ A, (1c)
0 ≤ yn(t) ≤ ȳn, t ∈ T, n ∈ N, (1d)
0 ≤ dn(t), t ∈ T, n ∈ N. (1e)

The equivalence can be shown by comparing the first-order optimality conditions of
Problem (1) with the complementarity system consisting of the optimality conditions
of all players.

Note that the objective function (1a) models total social welfare, which is the
difference of gross consumer surplus aggregated over all scenarios (first term) and
production as well as capacity investment costs (second and third term). Con-
straint (1b) models flow balance for every node in every scenario. It can be shown



UNIQUENESS OF MARKET EQUILIBRIUM ON A NETWORK 7

that the dual values αn(t) are exactly the competitive equilibrium prices πn(t) of the
above mentioned complementarity system which clear the market. Constraint (1d)
states production restrictions according to capacity investment that is taken once
for every node and which is thus independent of a specific time t. The network
model covered by our analysis corresponds to a regular flow model, where flows on
each line are subject to an upper capacity limit; see (1c). In all industries where
firms’ interaction is limited by network constraints those constraints are crucially
relevant. Depending on the specifically considered industry also further constraints
might be imposed on the market interaction of firms. Our results do not cover
cases where such further constraints do play a central role. This is, for instance,
the case when the physical transport laws need to be considered as mentioned in
the introduction. In this case, e.g., the assumption of strict convexity of the cost
structure or specifically tailored equilibrium selection procedures could be applied
to restore uniqueness. An explicit and direct application of our results in the case
of liberalized electricity markets is the case of firms’ interaction in different price
zones where congestion between zones is managed by implicit or explicit auction
procedures; see, e.g., Ehrenmann and Neuhoff (2009) and Ehrenmann and Smeers
(2005a).

We remark that we choose to state our peak-load pricing model (1) in continuous
time for two reasons. First, it allows for a technically easier derivation and exposition
of the results presented in Sect. 3; see, e.g., Assumptions 3 and 4. Second, the
setting also allows for an easy extension to a nondeterministic setting. We may
assume that we are given an additional probability measure on the set T ; in this
case the integral over T in (1a) transforms into

Et

[∑
n∈N

∫ dn(t)

0

pn(t, x) dx−
∑
n∈N

cvar
n yn(t)

]
−
∑
n∈N

cinv
n ȳn,

where the expectation is taken over the given measure. For our results to hold
in this case, one only has to make the technical assumption that the probability
measure in question has a square-integrable density. Moreover, the measure is not
restricted to only describe fluctuating demand over time but can also be used to
model uncertainty about the demand (and possibly renewable supply) situation
in the future. This argument illustrates that our approach is able to capture the
incentives to install peak-load plants that respond to shortage events. In this respect,
we have to note that our model captures investment incentives that origin from
market prices resulting from market clearing at the spot market. Ceteris paribus,
for smaller invested capacities market prices raise; see Assumption 1. The peak-load
pricing framework considered is thus not suited to model the total breakdown of
market clearing due to a shortage of installed capacities as it might occur during a
blackout. The analysis of mechanisms to address such problems can thus not be in
the focus of our analysis. Finally, another reason for the consideration of the model
in continuous time is that it is more general than the setting of discrete time: All
our assumptions and theoretical results carry over to the case of discrete time.

Model (1) is a concave optimization problem over a polytopal feasible set, where
the boundedness follows from the production constraints (1d). Note again that
in the considered setting the competitive market outcome can also be obtained
equivalently from the welfare maximization problem. Next to the assumption of price
taking behavior (this assumption is dropped in Sect. 3.3) this requires the absence
of externalities and the completeness of markets. In the context of investment
in electricity markets the assumption of complete markets has been challenged
recently by observing that different agents typically tend to have different discount
rates which gives rise to inefficiencies. For a recent analysis of this issue see, e.g.,
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Ehrenmann and Smeers (2011, 2013). The present results do not include the case of
diverging discount rates, however.

2.2. Model Reformulation. Our goal is to show that the presented peak-load
pricing framework has a unique solution. To this end, we equivalently reformulate
Model (1) as

max
ȳ

ψ(ȳ) :=

∫
T

φ(t, ȳ) dt−
∑
n∈N

cinv
n ȳn, (2)

where φ(t, ȳ) is defined as the optimal value function of the subproblem for fixed
time t:

φ(t, ȳ) := max
dt,yt,ft

∑
n∈N

∫ dn(t)

0

pn(t, x) dx−
∑
n∈N

cvar
n yn(t) (3a)

s.t.
∑

a∈δin(n)

fa(t)−
∑

a∈δout(n)

fa(t)− dn(t) + yn(t) = 0, n ∈ N,

(3b)

− f̄a ≤ fa(t) ≤ f̄a, a ∈ A, (3c)
0 ≤ yn(t) ≤ ȳn, n ∈ N, (3d)
0 ≤ dn(t), n ∈ N. (3e)

Here and in what follows, quantities without node or arc indices denote the vector of
the corresponding quantities; e.g., d := (dn(·))n∈N is the vector of demand functions
at all nodes n ∈ N .

Note that the master problem (2) is an unconstrained optimization problem and
does not explicitly depend on the network flow model. Subproblem (3) is again a
concave maximization problem over a polytopal feasible set in which the capacity
investments are fixed.

This reformulated model has a strong similarity to a two-stage stochastic program.
If we interpret the time integral (after normalization) as the expected welfare we
see that in the first stage we choose long-term capacity investments which then
parameterize the second stage, in which production and demand realize in dependence
on the scenarios.

3. Existence and Uniqueness

Since existence of solutions is trivial (e.g., (d, y, f) = (0, 0, 0) is always feasible),
we focus on uniqueness of the solution. To this end, we exploit the decomposition
into a master- and a subproblem introduced in Sect. 2.2. First, we prove uniqueness
of the Subproblem (3) in Sect. 3.1 and then show, using this result, the uniqueness
of the master problem (2) in Sect. 3.2. By this, it directly follows that the original
model (1) has a unique solution.

We remark that we choose a proof strategy that heavily relies on the specific
formulation of the problem at hand. The reason is that this way it is possible to
gain more insight into the structure of the solution compared to proof strategies
that rely on more general results from the literature: For instance, the results
from Mangasarian (1988) could be used to prove uniqueness of demands in the
subproblem but it would not allow for the insight of the existence of price clusters
within every solution.

Before we start by proving the uniqueness of the solution of Problem (1), we note
that replacing the linear cost functions∑

n∈N

∫
T

cvar
n yn(t) dt,

∑
n∈N

cinv
n ȳn,
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in the Objective (1a) by convex cost functions∑
n∈N

∫
T

ĉvar
n (yn(t)) dt,

∑
n∈N

ĉinv
n (ȳn) (4)

would yield a maximization problem that is strictly concave in d, y, and ȳ and that
thus obviously has a unique solution:

Theorem 1. Consider Problem (1) with strictly convex cost functions (4) and
suppose that Assumption 1 holds. Then, Problem (1) has a unique solution in
(d, y, ȳ).

Proof. See, e.g., the results from Mangasarian (1988). �

Note that the solution does not have to be unique w.r.t. to flows.

3.1. The Subproblem. We begin our considerations about the subproblem with
the repetition of the simple observation that the subproblem is a concave maximiza-
tion problem over a flow polyhedron with additional restrictions on the production
variables y. The latter implies that the feasible set is a polytope.

For the sake of simplicity, we drop the argument t in this section. That is, e.g.,
y = (yn(t))n∈N ∈ RN denotes the finite vector of production at all nodes for the
considered t ∈ T .

The first step is to show that it is sufficient to prove that there is a unique
solution if we fix the binding inequalities. For this, we define sets of active indices
in dependence of a feasible point z := (d, y, f):

A−f (z) := {a ∈ A : fa = −f̄a}, A+
f (z) := {a ∈ A : fa = f̄a},

A−y (z) := {n ∈ N : yn = 0}, A+
y (z) := {n ∈ N : yn = ȳn},

A−d (z) := {n ∈ N : dn = 0}.
We can now state the following lemma:

Lemma 1. Suppose Assumption 1 holds. Then, exactly one of the two following
cases occurs:

(1) There exist demands d∗ and productions y∗ such that every optimal solution
of Subproblem (3) is of the form (d∗, y∗, f) for some flow f .

(2) There exist two optimal solutions z′ := (d′, y′, f ′) and z′′ := (d′′, y′′, f ′′) of
Subproblem (3) with (d′, y′) 6= (d′′, y′′) and

A−y (z′) = A−y (z′′), A+
y (z′) = A+

y (z′′),

A−f (z′) = A−f (z′′), A+
f (z′) = A+

f (z′′),

A−d (z′) = A−d (z′′).

As with every two distinct solutions the whole segment between them lies in the
feasible set, the lemma is a consequence of the following observation: In the interior
of this segment, the binding patterns coincide. Hence we can always choose suitable
solutions. More formally, the lemma can be deduced from the following proposition.

Proposition 1. Let zλ := (dλ, yλ, fλ) be an infinite family of optimal solutions for
λ ∈ [0, 1] of the form

(dλ, yλ, fλ) := λ(d1, y1, f1) + (1− λ)(d0, y0, f0).

Let cT z ≤ r be a linear inequality such that cT zλ ≤ r holds for all λ ∈ [0, 1]. Then,
exactly one of the following cases occurs:

(1) cT zλ = r for all λ ∈ [0, 1],
(2) cT zλ < r for all λ ∈ (0, 1).
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Proof. By the definition of zλ we can write cT zλ = λcT z1 + (1− λ)cT z0. This leads
to the following observations: If cT z0 = cT z1 = r, we are in Case 1 and if cT z0 < r
and cT z1 < r both hold, we are in Case 2. Hence, it remains to treat the case where
exactly one of cT z0 = r or cT z1 = r holds. Without loss of generality we assume
that cT z0 = r and cT z1 < r hold. Then, for λ > 0 we have

cT zλ = λcT z1 + (1− λ)cT z0 = λcT z1 + (1− λ)r < λr + (1− λ)r = r.

Thus, we are in Case 2. �

For the following it is advantageous to use the concept of price clusters.

Definition 1. Given a solution z of Subproblem (3), we say that a partition
C = {Ci}Ii=1 partitions the node set N into price clusters, if for all C ∈ C holds,
that for all nodes in the cluster C the shadow prices of the flow conservation
constraints (i.e., the dual variables of Constraints (3b)) are equal. We also write
C(z) to emphasize the dependence on the solution z. An arc a = (n,m) is called
an inter-cluster arc, if n ∈ Ci and m ∈ Cj with i 6= j and we denote the set of
inter-cluster arcs by Ainter.

We now want to use a result shown by Schewe and Schmidt (2015) in a slightly
different situation; namely that price clusters of the network are characterized by
the binding constraints in (3c). For this we introduce another partition.

Definition 2. Given a solution z of Subproblem (3), we say that the partition
C = {Ci}Ii=1 of the node set N is the flow-induced partition, if each Ci is a connected
component of the graph G̃(z) = (V,A \Asat), where Asat := {a ∈ A : |fa| = f̄a}.

With this definition, the required result reads as follows:

Theorem 2. Let z∗ := (d∗, y∗, f∗) be an optimal solution of Subproblem (3) and
let C(z∗) be the corresponding flow-induced partition. Then,

φ(ȳ) = max
d,y

∑
n∈N

∫ dn

0

pn(x) dx−
∑
n∈N

cvar
n yn (5a)

s.t.
∑
n∈C

dn −
∑
n∈C

yn = f̂C , C ∈ C(z∗), (5b)

0 ≤ yn ≤ ȳn, n ∈ N, (5c)
0 ≤ dn, n ∈ N, (5d)

where f̂C =
∑
a∈δin(C) f

∗
a −

∑
a∈δout(C) f

∗
a is the total in- or outflow of zone C. This

implies that C(z∗) is a partition into price clusters.

Proof. The proof is given in Appendix A. �

Thus, Lemma 1 combined with the cited result states that whenever there exist
two different optimal solutions, there also exist two different solutions with the same
price clusters. Moreover, the flows between these clusters are unique since they are
at their bounds.

Lemma 2. Suppose Assumption 1 holds. Then, exactly one of the two following
cases occurs:

(1) There exist demands d∗ and productions y∗ such that every optimal solution
of Subproblem (3) is of the form (d∗, y∗, f) for some flow f .

(2) There exist two optimal solutions z′ := (d′, y′, f ′) and z′′ := (d′′, y′′, f ′′) of
Subproblem (3) with (d′, y′) 6= (d′′, y′′) such that
(a) C(z′) = C(z′′) and
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(b) for z′ and z′′ it holds that Constraint (3c) is tight for an arc a if and
only if a is an inter-cluster arc.

Proof. The lemma follows directly from Lemma 1 with the following additional
argument: Assume there exists an arc a = (n,m) with a ∈ A+

f (z′) and a is not
an inter-cluster arc, i.e., n,m ∈ C for some C ∈ C. We show that we can modify
solution z′ so that we obtain an optimal solution z̃′ with the same activity pattern
with the exception that A+

f (z̃′) = A+
f (z′) \ {a}. As a is not an inter-cluster arc,

there must exist a path P connecting n and m completely lying in cluster C such
that for all a ∈ P it holds that a /∈ A+

f (z′) ∪ A−f (z′), i.e., no flow bound on P is
active. That means it must be possible to send an additional amount of flow ε
along P without violating any bounds. Hence, we can reduce the amount of flow
sent along a by ε/2 and send the same amount along path P . This gives us a new
flow f̃ ′. Set z̃′ := (d′, y′, f̃ ′), then the flow bound for arc a is no longer active. As a
was an arbitrary non-inter-cluster arc, we can iterate this procedure until only flow
bounds on inter-cluster arcs are attained. This can be done with both z′ and z′′
and thus we obtain the desired result. �

The last lemma implies that the ambiguity of solutions has to be “inside” the
price clusters. Thus, we only have to consider these clusters in the following. Since
the network constraints do not play a role within the price clusters, Subproblem (3)
for a single cluster reduces to the concave maximization problem

max
d,y

∑
n∈C

∫ dn

0

pn(x) dx−
∑
n∈C

cvar
n yn (6a)

s.t.
∑
n∈C

dn −
∑
n∈C

yn = f̂C , (6b)

0 ≤ yn ≤ ȳn, n ∈ C, (6c)
0 ≤ dn, n ∈ C, (6d)

where C ⊆ N is the set of nodes of the considered price cluster and f̂C is total in-
or outflow of this cluster; see Theorem 2. The KKT conditions of this problem
comprise the dual feasibility conditions

pn(dn) + α+ γn = 0 for all n ∈ C,
−cvar

n − α+ β−n − β+
n = 0 for all n ∈ C,

where α ∈ R is the dual variable of Constraint (6b), β−n , β+
n , n ∈ N , are the dual

variables of the lower and upper production bounds in (6c), and γn is the dual variable
of the demand bounds (6d). This immediately implies a single price pC := −α with
pC = pn(dn) for all n ∈ C with dn > 0. Nodes n with dn = 0 do not contribute to
the objective value and hence their price can be ignored. Moreover,

pC − cvar
n + β−n − β+

n = 0 (7)

holds for all n ∈ C with dn > 0.
Our goal is now to show that productions and demands inside a cluster are

uniquely determined. The flow values within the price clusters, however, are not
unique, since we can always modify a solution with a flow along a cycle as long
as we stay inside the bounds. Since we do not consider, e.g., transportation costs,
these ambiguous flows do not interfere with the optimal demand and production
values and thus do not influence the objective function value. We summarize our
findings in the following theorem:
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Theorem 3. Suppose Assumptions 1 and 2 hold. Then, there are unique de-
mands d∗C and production y∗C such that every optimal solution of Model (6) has the
form (d∗C , y

∗
C , fC) for some fC .

Proof. Assume that the price inside the price cluster is given by pC . As the demand
functions pn are strictly decreasing and thus bijective, there is a unique demand dn
for every n ∈ C. Hence, there exists a function dC(p) that maps every price p to
the unique aggregate demand at that price point. We define d̂C(p) := dC(p)− f̂C .
As the demand function for each node is strictly decreasing, the aggregated function
d̂C(p) is strictly decreasing as well.

On the production side we can see that given a pC we can immediately determine
(by using Condition (7)) which nodes n ∈ C are definitely not producing (cvar

n > pC),
the ones definitely producing at maximum capacity (cvar

n < pC), and the ones where
the production amount is indeterminate, i.e., between 0 and ȳn (cvar

n = pC). Under
Assumption 2 there exists at most one node such that cvar

n = pC . Hence for all
nodes except at most one, the price pC uniquely determines the production values
of the nodes. Moreover, we obtain two functions ymin

C (p) and ymax
C (p) which are the

minimal, resp. maximal, production in the price cluster at a given price p. Both
of these functions are monotonically increasing. If we intersect the functions d̂C
and ymin

C , we observe that they have at most one intersection point and analogously
for the functions d̂C and ymax

C . From the construction of ymin
C and ymax

C it then
follows that there is exactly one price p∗C such that ymin

C ≤ d̂C(p∗C) ≤ ymax
C . Hence,

every optimal solution of our problem yields the same price p∗C . From the discussion
of the first paragraph the uniqueness of the demands then follows directly. For
the production the uniqueness is also clear for all nodes except at most one. The
production of this last node, however, is also uniquely determined by the market
clearing constraint. �

The proof allows us also to conclude that the dual variables β are unique as well;
see Condition (7).

Corollary 1. Suppose Assumption 1 and 2 hold. Then, the difference β+
n − β−n is

unique for all nodes n ∈ N . If ȳn > 0, the values of the dual variables β±n themselves
are unique as well.

All in all, we have the following result concerning Subproblem (3):

Theorem 4. Suppose Assumption 1 and 2 hold. Furthermore, let C = {Ci}Ii=1 be
the unique partition of the node set into price clusters, let Ainter := {a = (n,m) ∈
A : n ∈ Ci,m ∈ Cj , i 6= j} be the set of inter-cluster arcs. Then, the solution (d, y, f)
of Subproblem (3) is unique in (d, y, fAinter).

Proof. By Lemma 2 we need to consider two cases. In the first case we are done.
We need to show that the second case cannot occur. This, however, follows directly
from Theorem 3. �

3.2. The Master Problem. In this section we prove that—given the results of
the preceding section—the master problem (2) has a unique solution. To this
end, we prove that the Hessian H(ȳ) of ψ is negative definite. Since the linear
terms

∑
n∈N c

inv
n ȳn in (2) vanish in second order, the Hessian of ψ is completely

given by the Hessian of the integral terms. Thus, we have to compute the second
derivative H(ȳ) w.r.t. ȳ of ∫

T

φ(t, ȳ) dt. (8)
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Table 1. Subsets of the node set and time horizon as well as
(blocks of) considered Hessian matrices (all these sets depend on ȳ)

Set Explanation

Ci(t) ⊆ N ith price cluster at time t
C(t) = {Ci(t)}Iti=1 Partition of the node set into price clusters for time t
Ai(t) ⊆ Ci(t) Nodes of price cluster i ∈ {1, . . . , Iτ} in time t

with βn(t) > 0

T̂ Times t where solutions of Problem (9) do not satisfy
strict complementarity

Tτ ⊆ T Times t with equal price clusters Ci(t)
T = {Tτ}τ Price cluster specific time horizon partition
Tτ,j ⊆ Tτ times t with equal price clusters and

equal binding production nodes
{Tτ,j}j Price cluster and active production nodes specific

time horizon subset partition

H Hessian of ψ
H(t) Hessian of ψ for a single time t
Hτ Hessians of ψ for the time t ∈ Tτ
Hτ,i Submatrix (block) of Hτ induced by price cluster i
Hτ,i,j Submatrix (block) of Hτ,i induced

by active production nodes

We split this section into two parts: In Sect. 3.2.1, we determine the second derivative
w.r.t. ȳ of φ(t, ȳ) for a fixed time t. The subsequent Sect. 3.2.2 then considers the
second derivative of (8).

3.2.1. The Single-Scenario Case. In this section we compute the Hessian for a fixed
time t, i.e., the Hessian

H(t, ȳ) = ∇2
ȳȳφ(t, ȳ)

of φ(t, ȳ). The first-order partial derivatives are known from standard sensitivity
analysis (see, e.g., Boyd and Vandenberghe (2004)) of convex optimization:

∂

∂ȳn
φ(t, ȳ) = β+

n (t), n ∈ N,

where β+
n (t) is the dual variable corresponding to the upper bound in Constraint (3d).

We note that this condition only holds for ȳn > 0. We will later, however, make an
assumption (Assumption 4) that implies this for all nodes n ∈ N . Thus, we now
have to compute the derivative of β+

n (t) with respect to ȳm for all n,m ∈ N . In the
following we require a series of partitions of the node set and the time horizon. An
overview over all partitions and subsets is given in Table 1. For a fixed time t, we
obtain a partition C(t, ȳ) = {Ci(t, ȳ)}Iti=1 of the node set N into price clusters as
described in the last section. Now, we consider a single price cluster Ci(t, ȳ), i.e., we
fix some i ∈ {1, . . . , It} for the moment. It can be easily verified that the first-order
conditions of Subproblem (3) imply

β+
n (t) =

{
pi(t)− cvar

n , if yn(t) = ȳn,

0, if yn(t) < ȳn,

where pi(t) is the price of cluster Ci(t, ȳ). The derivative of β+
n (t) w.r.t. ȳm is

obviously zero for every node m ∈ N in the second case. The first case, i.e.,
the case in which yn(t) = ȳn with n ∈ Ci(t, ȳ) holds, is more complicated. Let
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Ai(t, ȳ) ⊆ Ci(t, ȳ) ⊆ N be the set of nodes of the price cluster Ci(t, ȳ) that are
strictly active, i.e., all nodes m ∈ N with β+

m(t) > 0, which implies ym(t) = ȳm. As
an auxiliary result we first need to compute the derivative of the total demand of
a single cluster with respect to the capacity of a single node of that cluster. To
this end, we first rewrite Model (6) for cluster Ci(t, ȳ) using the aggregated demand
function Pi(t, ·) and the total demand Di(t):

φCi(t)(ȳ) := max
Di(t),yi(t)

∫ Di(t)

0

Pi(t, x) dx−
∑

n∈Ci(t)

cvar
n yn(t) (9a)

s.t. Di(t)−
∑

n∈Ci(t)

yn(t) = f̂i(t), (9b)

0 ≤ yn(t) ≤ ȳn, n ∈ Ci(t), (9c)
Di(t) ≥ 0. (9d)

Proposition 2. Let t ∈ T and let (D(t), y(t);α(t), β±(t), γ−(t)) be an optimal
primal-dual solution of Problem (9) such that strict complementarity holds. Let
n∗ ∈ Ci(t, ȳ) be the node with largest variable costs in cluster Ci(t, ȳ) with yn∗(t) > 0.
If γ−(t) > 0 or β+

n∗(t) = 0 then
∂D(t)

∂ȳn
= 0, n ∈ Ci(t, ȳ).

If, however, γ−(t) = 0 and β+
n∗(t) > 0 holds, then for all n ∈ Ci(t, ȳ), we have

∂D(t)

∂ȳn
=

{
1, if yn(t) > 0,

0, otherwise.

Proof. After elimination of the dual variables of Constraint (9b), the KKT conditions
of Problem (9) contain the following equations:

P (t,D(t))− cvar
n + β−n (t)− β+

n (t) + γ−(t) = 0, n ∈ Ci(t, ȳ),

D(t)−
∑
n∈C

yn(t)− f̂i(t) = 0,

β−n (t)yn(t) = 0, n ∈ Ci(t, ȳ),

β+
n (t)(ȳn − yn(t)) = 0, n ∈ Ci(t, ȳ),

γ−(t)D(t) = 0.

This is a system F (x; ȳn) = 0 of equations with x = (D(t), y(t), β±(t), γ−(t)). Since
strict complementarity holds we may apply the implicit function theorem, yielding

JxF · Jȳnx = −JȳnF,
where, e.g., JxF denotes the Jacobian of F with respect to x. Solving this system
of equations yields the claim. �

We observe that

φ(t, ȳ) =

It∑
i=1

φi(t, ȳ) (10)

holds. Now we are able to compute the second partial derivatives of φ(t, ȳ).

Lemma 3. Let ȳ and t be given and assume that the solutions of Problem (9) fulfill
strict complementarity for all i ∈ {1, . . . , It}. If n ∈ Ci(t, ȳ) and m ∈ Cj(t, ȳ) with
i 6= j, then

∂

∂ȳm

∂

∂ȳn
φ(t, ȳ) = 0. (11)
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Figure 1. Illustration of Proposition 2 and Assumption 3; Ȳi :=∑i
k=1 ȳk. Strict complementarity holds in the left and right figure,

whereas it is violated in the middle case.

If n,m ∈ Ci(t, ȳ) and γ−(t) > 0 or β+
n∗(t) = 0, where γ−(t), β+

n∗(t) are the respective
dual variables of Problem (9) for cluster Ci(t, ȳ) and n∗ is defined as in Proposition 2,
then

∂

∂ȳm

∂

∂ȳn
φ(t, ȳ) = 0. (12)

Otherwise, i.e., γ−(t) = 0 and β+
n∗(t) > 0, we have

∂

∂ȳm

∂

∂ȳn
φ(t, ȳ) =

{
Bi(t, ȳ), if n,m ∈ Ai(t, ȳ),

0, otherwise,
(13)

where Bi(t, ȳ) < 0 is the negative slope of the aggregated demand function Pi(t, ȳ)
at the total demand Di(t, ȳ) of price cluster Ci(t, ȳ).

Proof. Equation (11) follows directly from Equation (10). For the remaining cases
we make the following observation:

∂

∂ȳm

∂

∂ȳn
φ(t, ȳ) =

∂

∂ȳm
β+
n (t).

The KKT conditions of Problem (9) imply

β+
n (t) = Pi(t,Di(t, ȳ))− cvar

n , n ∈ Ci(t, ȳ) with yn(t) > 0.

Thus, for n ∈ Ci(t) with yn(t) > 0 we can write
∂

∂ȳm
β+
n (t) =

∂

∂ȳm
Pi(t,Di(t, ȳ))

=
∂

∂Di(t)
Pi(t,Di(t, ȳ))

∂

∂ȳm
Di(t, ȳ) = Bi(t, ȳ)

∂

∂ȳm
Di(t, ȳ),

where Di(t, ȳ) is the (unique) total demand in an optimal solution of Model (9) for
price cluster Ci(t, ȳ) in dependence on ȳ.

The remaining Equations (12) and (13) follow directly from Proposition 2. �

We write down the necessary property from the preceding lemma.

Assumption 3. For ȳ let T̂ (ȳ) be the set of all t ∈ T such that there exists a price
cluster i ∈ {1, . . . , It} where the unique solution of Problem (9) does not satisfy
strict complementarity. We assume that T̂ (ȳ) has measure zero for all ȳ.

Before we turn to the multi-scenario case, we briefly discuss the mathematical
necessity of Assumption 3 and illustrate the economic interpretation of Proposition 2
and strict complementarity (or its violation) using the example of the production
constraints yn ≤ ȳn and their dual variables β+

n ≥ 0. We again drop the time
index for better readability. Figure 1 illustrates three possible aggregated demand
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functions (continuous and strictly decreasing curves) and a single aggregated supply
function for a price cluster. Total demand is positive in all three cases. The price
cluster equilibrium in the first case (left figure) is characterized by the intersection
of the aggregated demand curve and the variable production costs of the second
cheapest producer, say n2. In this case the production of n2 fulfills yn2

∈ (0, ȳn2
),

i.e., β−n = β+
n = 0, and strict complementarity holds. Dual feasibility then yields

P (D) = cvar
n2

, which can also be seen in the left figure. Moreover, it can be seen
that ∂ȳnD = 0 for all nodes n. The other case satisfying strict complementarity is
illustrated in the right figure: For all producing nodes m it holds that ym = ȳm.
Moreover, β+

n2
= P (D)− cvar

n2
> 0 (dashed line) is the earning of node n2. The right

figure also illustrates that ∂ȳnkD = 1 for all k ≤ 2 and ∂ȳnkD = 0 for all k > 2
holds; see Proposition 2. The only problematic case is shown in the middle figure:
Aggregated demand intersects aggregated supply at the rightmost point (Ȳn2

) of
producer n2 thus yielding yn2

= ȳn2
and β+

n2
= 0, i.e., strict complementarity does

not hold. The mathematical severity of this case is that ∂ȳnkD does not exist; only
directional derivatives exist and equal cvar

n3
− cvar

n2
> 0 and 0, respectively. Finally,

the middle figure suggests that this is a rare event because it only appears if the
aggregated demand curve intersects the supply curve in a finite number of special
points, i.e., Ȳni , i = 1, 2, . . . , out of a continuum of points.

To further illustrate Ass. 3 we consider the case without network constraints.
Then, for every fixed capacity investment there are only finitely many total demand
values for which strict complementarity does not hold. The assumption now states
that the set of scenarios in which these total demand values realize must have zero
measure. This is for instance the case if all scenario sets with equal total demand
have zero measure, which is, e.g., the case if D′t 6= Dt for all t 6= t′.

3.2.2. The Multi-Scenario Case. Up to this point, we have computed the second
derivative for a fixed time t. We now show that the complete Hessian

H(ȳ) =

∫
T

H(t, ȳ) dt

of (2) is negative definite. To this end, we partition the time horizon T in

T (ȳ) = {Tτ (ȳ)}τ ∪ T̂ (ȳ)

such that for all τ all times t ∈ Tτ (ȳ) have the same price clusters C(t, ȳ). We
remark that there only exist finitely many τ since there also exist only finitely many
price cluster configurations. This allows us to state the following proposition:

Proposition 3. Suppose Assumption 3 holds. Then, the Hessian H(ȳ) can be
written as

H(ȳ) =

∫
T

H(t, ȳ) dt =
∑
τ

∫
Tτ (ȳ)

H(t, ȳ) dt.

Note that the definition of T (ȳ) requires that the sets Tτ (ȳ) in T are measurable.
Under this assumption the definition permits the notations Hτ (ȳ) and Cτ (ȳ). The
following proposition readily follows from (11) and states that an entry of Hes-
sian H(t, ȳ) corresponding to two nodes n,m is zero for all nodes in different price
clusters and t ∈ Tτ (ȳ).

Proposition 4. Let (H(t, ȳ))n,m denote the entry in row n and column m of the
matrix H(t, ȳ). Then for all n,m ∈ N and for all τ we have that

(H(t, ȳ))n,m = 0, t ∈ Tτ (ȳ),

if n ∈ Cτ,i(ȳ) and m ∈ Cτ,j(ȳ) with i 6= j.
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Note that this proposition yields a block structure of H(t, ȳ), t ∈ Tτ (ȳ), induced
by the price clusters Cτ (ȳ) = {Cτ,i(ȳ)}Iτi=1 at these times. The corresponding matrix
block is denoted by Hτ,i(ȳ) and, after re-ordering of the nodes, we obtain

H(t, ȳ) = diag(Hτ,i(ȳ))Iτi=1.

We now partition the times Tτ (ȳ) further into {Tτ,j(ȳ)}j such that Ai(t, ȳ) = Ai(t
′, ȳ)

holds for all t, t′ ∈ Tτ,j(ȳ). We denote the corresponding activity patterns by Ai,j(ȳ).
The following proposition is a direct consequence of these partitions.

Proposition 5. For all t, t′ ∈ Tτ,j(ȳ) it holds that

H(t, ȳ)
∣∣
Cτ,i

= H(t′, ȳ)
∣∣
Cτ,i

,

where H(t, ȳ)
∣∣
Cτ,i

denotes the restriction of H(t, ȳ) to the block corresponding to Cτ,i.

This proposition allows us to introduce the notation

Hτ,i,j(ȳ) := H(t, ȳ)
∣∣
Cτ,i

for all t ∈ Tτ,j(ȳ). Moreover, note that Hτ,i,j(ȳ) is a matrix with a left-upper block
with values Bτ,i,j(ȳ) < 0 of size |Ai,j(ȳ)| and zeros elsewhere.

The rest of the proof is split up into two parts. First, we show that all Hes-
sians Hτ,i(ȳ) are negative semi-definite. Second, we show that under additional
assumptions, there exist some Hτ,i(ȳ) that are negative definite. Both results to-
gether finally imply the negative definiteness of the overall Hessian for all ȳ and
thus that the peak-load pricing model (1) has a unique solution.

Proposition 6. For all τ and all i, the corresponding block Hτ,i(ȳ) is negative
semi-definite.

Proof. Let τ and i be given. Then, by Proposition 5

Hτ,i(ȳ) =
∑
j

∫
Tτ,j(ȳ)

H(t, ȳ)
∣∣
Cτ,i

dt =
∑
j

µ(Tτ,j(ȳ))Hτ,i,j(ȳ)

holds with Hτ,i,j(ȳ) being rank-1-matrices in which all non-vanishing entries equal
Bτ,i,j(ȳ) < 0. Here, µ(Tτ,j(ȳ)) is the Lebesgue measure of Tτ,j(ȳ) in T . Since Hτ,i(ȳ)
is now shown to be a sum of negative semi-definite matrices, this shows that Hτ,i(ȳ)
itself is negative semi-definite. �

Note that from the latter proposition directly follows that Hτ (ȳ) is negative
semi-definite for all τ , since Hτ (ȳ) is a block-diagonal matrix with blocks Hτ,i(ȳ)

Proposition 7. Let τ and i be given. If the partition {Tτ,j(ȳ)}Jj=1, J = |Cτ,i(ȳ)|,
of Tτ (ȳ) can be chosen so that

Ai,j+1(ȳ) = Ai,j(ȳ) ∪ {nj+1}, Ai,1(ȳ) = {n1}
holds, where the nodes n1, . . . , nJ are ordered in such a way that cvar

nk
< cvar

n`
if and

only if k < ` for all 1 ≤ k, ` ≤ J , and if µ(Tτ,j(ȳ)) > 0 holds for all j, then Hτ,i(ȳ)
is negative definite.

Proof. The partition of the set of times and nodes readily implies

Hτ,i(ȳ) =
∑
j

µ(Tτ,j(ȳ))Hτ,i,j(ȳ) =:
∑
j

H̃τ,i,j(ȳ).

We now define B̃τ,i,j := µ(Tτ,j(ȳ))Bτ,i,j(ȳ). With this notation the following holds:

(H̃τ,i,j(ȳ))ν,ξ =

{
B̃τ,i,j , if ν, ξ ≤ j,
0, otherwise.
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We now apply Gaussian elimination: In the kth step we subtract row J − k+ 1 from
all rows 1 to J − k + 2. After J − 1 steps this yields the matrix

B̃τ,i,1
B̃τ,i,2 B̃τ,i,2

...
. . .

B̃τ,i,J−1 · · · B̃τ,i,J−1

B̃τ,i,J · · · B̃τ,i,J

 .

Since all diagonal elements B̃τ,i,j of the resulting matrix are strictly negative the
matrix is negative definite. �

The last proposition leads us to the following assumption:

Assumption 4. There exists a time partition index τ such that for all i = 1, . . . , It,
Tτ (ȳ) can be partitioned as {Tτ,j(ȳ)}Jj=1, J = |Cτ,i(ȳ)|, with

Ai,j+1(ȳ) = Ai,j(ȳ) ∪ {nj+1}, Ai,1(ȳ) = {n1},
where the nodes n1, . . . , nJ are ordered in such a way that cvar

nk
< cvar

n`
if and only if

k < ` for all 1 ≤ k, ` ≤ J and µ(Tτ,j(ȳ)) > 0 holds for all j.

This assumption is violated if there exist two nodes n, n′ for which the following
holds: For almost all time periods in which the nodes are part of the same price
cluster C either both yt,n = ȳn and yt,n′ = ȳn′ or both yt,n = 0 and yt,n′ = 0
hold. As such, this assumption can be seen as a natural extension of Assumption 2.
Not only do the variable costs need to be distinct, but there must exist enough
scenarios where this matters. If our scenario set does not fulfill the assumption,
i.e., informally speaking, that given two different nodes the following situation
occurs: In almost all scenarios where they are part of the same price cluster they
are always both producing at full capacity or both do not produce at all. In other
words, the scenario set is not large enough to distinguish between these two nodes.
Then, it is clear that the solution may not be unique. With realistic data, however,
this should not occur as producers are sufficiently different and scenario sets are
sufficiently large to ensure this condition. An assumption like this is also needed in
the classical peak-load-pricing setting without consideration of network constraints:
The difference between the variable costs of two producers needs to be large enough
such that there actually exist scenarios where this matters. Assumption 4 is a
weaker formulation since we only need to consider nodes that share price clusters.
Summing up all results of the last sections, we obtain the following main theorem:

Theorem 5. Suppose Assumptions 1–4 hold. Then, the matrix H(ȳ) is negative
definite and, thus, Model (1) has a unique solution in (d, y, fAinter).

3.3. The Case of Market Power. As we have argued earlier, it is impossible
to meaningfully analyze the proposed framework using a rigorous game theoretic
approach to strategic interaction among firms. Various papers have shown that
multiple equilibria already arise in a setup with strategic interaction in the absence of
networks; see, e.g., Zöttl (2010). In our contribution we thus choose to approximate
the case of strategic interaction by a conjectural variations approach, similar to the
one applied recently by Wogrin et al. (2013), which allows to establish a unique
solution. While this approach and its outcome cannot be related to a proper game
structure, it nevertheless might be suitable to capture important aspects of an
environment where firms manage to charge significant markups.
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To this end, we replace objective function (1a)

ψ1 :=
∑
n∈N

∫
T

∫ dn(t)

0

pn(t, x) dxdt−
∑
n∈N

∫
T

cvar
n yn(t) dt−

∑
n∈N

cinv
n ȳn

by
ψλ := λψ1 + (1− λ)ψ0, λ ∈ [0, 1], (14)

where

ψ0 :=
∑
n∈N

∫
T

pn(t, dn(t))dn(t) dt−
∑
n∈N

∫
T

cvar
n yn(t) dt−

∑
n∈N

cinv
n ȳn.

Note that this extension is a convex combination of the situation, in which competi-
tive firms trade on a market (ψ1) and the case of a monopoly (ψ0). It is easily seen
that this extension only affects the demand terms, i.e.,

ψλ = λ
∑
n∈N

∫
T

∫ dn(t)

0

pn(t, x) dx dt+ (1− λ)
∑
n∈N

∫
T

pn(t, dn(t))dn(t) dt

−
∑
n∈N

∫
T

cvar
n yn(t) dt−

∑
n∈N

cinv
n ȳn

holds. In the following, we show that all results presented so far are also valid for
the case of Objective (14) under the following additional assumption:

Assumption 5. All demand functions pn(t, ·) fulfill Assumption 1 and the additional
condition p′n(t, d) + p′′n(t, d)d < 0, where the derivatives are taken with respect to d.

We note that in the common case where pn(t) is a linear function, Assumption 1
directly implies Assumption 5.

Lemma 4. It holds that

ψλ =
∑
n∈N

∫
T

∫ dn(t)

0

pλn(t, x) dx dt−
∑
n∈N

∫
T

cvar
n yn(t) dt−

∑
n∈N

cinv
n ȳn,

where
pλn(t, x) := pn(t, x) + (1− λ)p′n(t, x)x.

If pn(t) fulfills Assumption 5, then pλn(t) fulfills Assumption 1.

Proof. We only have to consider the demand terms for fixed time t and node n
separately. Then, the proof is a straight forward application of integration by parts:∫ dn(t)

0

pλn(t, x) dx =

∫ dn(t)

0

pn(t, x) + (1− λ)p′n(t, x)xdx

=

∫ dn(t)

0

pn(t, x) dx+ (1− λ)

∫ dn(t)

0

p′n(t, x)x dx

=

∫ dn(t)

0

pn(t, x) dx

+ (1− λ)

(
[pn(t, x)x]

dn(t)
0 −

∫ dn(t)

0

pn(t, x) dx

)

= λ

∫ dn(t)

0

pn(t, x) dx+ (1− λ)pn(t, dn(t))dn(t).

The second claim is immediately clear. �
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This lemma shows that the model using the modified objective (14) is simply the
basic peak-load pricing model (1) with demand functions pn(t) replaced by pλn(t),
which are again strictly decreasing. Thus, all results from Section 3 also apply to
the model using Objective (14).

3.4. Characterization and Discussion. We now discuss how the optimal solution
of Problem (1) can be characterized. If we analyze the situation of a single scenario,
we observe that prices in neighboring clusters differ by the shadow price of their
saturated connecting arcs. Assume we are given two clusters CP and CC, where CP

supplies more than it demands and CC demands more than it supplies. Then, the
first-order conditions of Problem (3) directly imply that on all arcs connecting CP

with CC the flow direction is from CP to CC and that pCP < pCC . Thus, flow goes
from the lower to the higher price.

Focusing on the full problem, we are interested in how investments are taken. We
observe from the first-order conditions of Problem (2) that for the optimal solution
holds that

cinv
n =

∫
T

β+
n (t, ȳ) dt. (15)

This means that only those scenarios contribute to the investment costs of a node,
in which the node has variable costs that are strictly lower than the price in its
price cluster, i.e., β+

n (t, ȳ) > 0.
Combining these observations we see that the network structure induces invest-

ment incentives to install capacity close to consumers: The prices for nodes that
consume in many scenarios are high and thus it is interesting to invest there. If the
network exhibits a persistent bottleneck that manifests itself in most scenarios then
investment in capacity on the demand side of that bottleneck will be efficient even
if variable costs for the respective technology is higher.

It is also interesting to contrast the possibility of firms to earn money in the
different discussed settings. In the case of perfect competition, one can directly
deduce from the KKT conditions that the firms completely recover their investment
and variable costs. The firms are, however, not able to make a profit. Note that
this also applies to multiple technologies per node; see Sect. 2.1. Intuitively, in
the market equilibrium under perfect competition, whenever a production unit
would make positive profits, then it is profitable to increase investment in that
unit such that positive profits finally disappear in equilibrium. This logic applies
independently whether technologies are located at different nodes of the network or
at the same node. In the case of a monopoly, however, the firms are able to make a
profit. For firm n the profit is then given by∫

T

−p′(t, dn(t))dn(t)2 dt.

In the case where the parameter λ in our conjectural variations approach is between
0 and 1, the profit is scaled by the factor 1− λ accordingly.

The comparison to the classical peak-load pricing settings without a network is
instructive. Despite the difference in the respective subproblems (without network
the subproblem reduces to Problem (5) with a single cluster for all times t), the
overall structure (15) of the investment solution is similar. If we have only one price
cluster for all times (i.e., we have “no network”), the investment solution will strictly
prefer nodes with low variable costs irrespective of their position in the network.
This can lead to wildly different investment solutions and may especially lead to
over- resp. underinvestment in the case of persistent bottlenecks.

This immediately suggests that zonal pricing could be used in order to solve
the trade-off between the local distribution of capacity investments and network
expansion. The issue of investment incentives and in particular the interdependence
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1

Generation: cvar = 1 $/MWh, cinv = 2 $/MW
Demand: t1 : p = 8 − d, t2 : p = 8 − d, t3 : p = 4 − d

2

Generation:
cvar = 0.75 $/MWh
cinv = 4 $/MW
Demand:
t1 : p = 30 − d
t2 : p = 16 − d
t3 : p = 8 − d

3

Generation:
cvar = 0.5 $/MWh
cinv = 6 $/MW
Demand:
t1 : p = 16 − d
t2 : p = 30 − d
t3 : p = 8 − d

f +12 = 10 MW

f +23 = 2 MW

f +13 = 10 MW

Figure 2. Three-Node Network

with the congestion management regime has received increasing attention in recent
years (see, e.g., The European Commission (2015)). Up to now, the literature,
however, has focused mainly on important issues arising in the short run; see,
e.g., Ehrenmann and Neuhoff (2009), Ehrenmann and Smeers (2005b), R. Green
(2007), and Hogan (1999). The present contribution now helps to link congestion
management and generation investment. Contributions that use the uniqueness result
derived in this paper show that price clusters might adjust incentives in the right
direction (see, e.g., Grimm et al. (2016a) and the references therein). In this context,
policy makers and stakeholders are particularly interested in the proper configuration
of price clusters to achieve a welfare improvement (see, for instance, EFET (2016),
ENTSO-E (2015), EURELECTRIC (2016), and The European Commission (2015)).
In this respect, Grimm et al. (2016b) shows that price clusters need to be configured
carefully in order to actually achieve a welfare improvement. A multilevel mixed-
integer model for the computation of optimal price zone configurations has been
proposed very recently in Grimm et al. (2017).

The proper derivation of an ideal zone configuration with a limited number of
zones is still an open research problem, however.

We finally close this section with some technical remarks on the proven results.
The results are also valid for the case in which we replace the continuous time
horizon T = [t0, te] ⊂ R with a discrete set of time periods T = {t0, t1, . . . , te} with
ti < ti+1. However, some of the assumptions have to be adjusted accordingly.

4. Illustrative Example: Three-Node Network

In this section we consider a three-node network that illustrates our concepts
and theoretical results. The network and the scenario set are chosen such that they
allow us to discuss all relevant structural effects that are outcome of our theoretical
analysis, but still have manageable size. Important features of this example are
that the price clusters change over time and one scenario has non-unique flows. The
changing price clusters can be directly observed in the structure of the Hessians
corresponding to the different scenarios. As depicted in Fig. 2, the three nodes are
connected by three arcs. At the three nodes investment in production capacity can
take place with investment and production costs as shown in the figure. It can be
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Table 2. Parts of the Primal Solution of the Three-Node Network

Scen. d1 d2 d3 y1 y2 y3 f12 f23 f13

1 5.79 26.29 13.79 18.12 14.29 13.46 10 −2 2.33
2 6.21 14.21 25.46 18.12 14.29 13.46 1.91 2 10
3 3.25 7.25 7.25 0 4.29 13.46 2.26 −0.7 −5.51

directly seen that Assumption 2 holds, i.e., variable costs are pairwise distinct. We
consider three scenarios and, for the ease of presentation, use linear demand functions
that vary across these scenarios and fulfill Assumption 1. The scenarios last 1 h
and all data of the corresponding scenarios are constant during that time. Observe
that demand at node 1 is relatively low in all scenarios. Scenario 1 (scenario 2) is
characterized by the high (low) demand at node 2 and a comparatively low (high)
demand at node 3. In scenario 3 overall demand is low.

Table 2 and 3 list parts of the primal and dual solutions. The optimal solution
shows that it is efficient to install 18.12 MW of new capacity at node 1, 14.29 MW at
node 2, and 13.46 MW at node 3. Thus, the amount of installed capacity is ordered
with increasing investment costs. In scenario 1, arcs (1, 2) and (2, 3) are saturated.
Therefore, in scenario 1 there are two different price clusters, which are formed by
a flow-induced partition (see Definition 2): C1,1 = {2} and C1,2 = {1, 3}. As it
can be seen in Table 3, both prices (p) and dual variables of corresponding flow
balance constraints (α) are identical for nodes 1 and 3 (see Definition 1). In analogy
to scenario 1, in scenario 2 we also have two price clusters given the saturated
lines (1, 3) and (2, 3). Thus, we have C2,1 = {3} and C2,2 = {1, 2}.

Now consider the last scenario 3, in which no line is saturated. This yields a
single price cluster C3,1 = N . It can be easily seen that the intra-cluster flows are
not unique (see Theorem 3) since adding a small cycle flow is still feasible and does
not change the objective function value.

It can be also seen that the solution satisfies Assumption 3 since it is strictly
complementary—the case of the middle part of Figure 1 does not occur. Moreover,
we see that every node is the most expensive production node in its zone in at least
one scenario: For node 2 this holds in scenario 1, for node 3 in scenario 2, and for
node 1 this holds in each of the three scenarios. Thus, also the last Assumption 4
holds.

Regarding the profits of the firms one can easily check that all of them are zero;
see Section 3.4.

To show that optimal capacity investment is unique, we next compute the Hessian
of the master problem for the considered example. As stated in Proposition 3, the
Hessian

H =

−1 − 1
2 − 1

2

− 1
2 − 3

2 0

− 1
2 0 − 11

6


can be expressed as the sum of the Hessians Ht, t = 1, 2, 3:

H1 =

−
1
2 0 − 1

2

0 −1 0

− 1
2 0 − 1

2

 , H2 =

−
1
2 − 1

2 0

− 1
2 − 1

2 0

0 0 −1

 , H3 =

0 0 0

0 0 0

0 0 − 1
3

 .
The Hessian H is negative definite, i.e., Proposition 7 holds, and thus optimal
production and capacity investment is unique (see Theorem 5).
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Table 3. Prices and Parts of the Dual Solution of the Three-Node Network

Scen. p1 p2 p3 α1 α2 α3 β+
1 β+

2 β+
3

1 2.21 3.71 2.21 2.21 3.71 2.21 1.21 2.96 1.71
2 1.79 1.79 4.54 1.79 1.79 4.54 0.79 1.04 4.04
3 0.75 0.75 0.75 0.75 0.75 0.75 0 0 0.25

5. Conclusion

In this paper we have analyzed a framework of peak-load pricing on a network
where competitive firms take investment and production decisions facing network
constraints expressed by fixed inter-zonal capacities. We have shown existence
and uniqueness of the solution and characterized equilibrium investments. We
also presented an approach that sheds light on a market where markups can be
charged—although a full-fledged analysis of strategic interaction is not possible in
our setup.

As one of the results of our analysis we show that the consideration of net-
work constraints does not require any additional assumptions compared to those
guaranteeing uniqueness of the equilibrium in a standard peak-load pricing model
that disregards network constraints. Our results are an important prerequisite for
the analysis of energy policy proposals using multilevel computational equilibrium
frameworks. These approaches can only be meaningfully used if lower-level problems
have unique solutions that restrict feasible solutions at higher levels. This has been
emphasized by various authors, e.g., Dempe (2002), Colson et al. (2007), or Gabriel
et al. (2012). Our contribution provides such a result for electricity market analyses.
In Grimm et al. (2016a) the result is already used in order to analyze optimal
transmission expansion in liberalized electricity markets under different regulatory
regimes.

However, there are still open issues for future research. For instance, it would be
of impact to establish comparable uniqueness results for different extensions of our
model like the case of transportation costs or a DC load flow model.

Acknowledgements

This research has been performed as part of the Energie Campus Nürnberg
and supported by funding through the “Aufbruch Bayern (Bavaria on the move)”
initiative of the state of Bavaria and the Emerging Field Initiative (EFI) of the
Friedrich-Alexander-Universität Erlangen-Nürnberg through the project “Sustainable
Business Models in Energy Markets”. The authors acknowledge funding through
the DFG Transregio TRR 154, subprojects B07 and B08. The authors would like to
thank Miriam Schütte, Alexander Martin, and Vanessa Krebs for their comments
on an earlier version of this paper. Finally, we are also very grateful two three
anonymous referees, whose comments on the manuscript greatly helped to improve
the quality of the paper.

References

Bohn, R. E., M. C. Caramanis, and F. C. Schweppe (1984). “Optimal pricing in
electrical networks over space and time.” In: The Rand Journal of Economics,
pp. 360–376. JSTOR: 2555444.

Boiteux, M. (1949). “De la tarification des pointes de demande.” In: Revue générale
de l’électricité, pp. 321–340.

Boyd, S. and L. Vandenberghe (2004). Convex Optimization. Cambridge: Cambridge
University Press, pp. xiv+716.

http://www.jstor.org/stable/2555444


24 REFERENCES

Chao, H.-P. and S. Peck (1996). “A market mechanism for electric power trans-
mission.” In: Journal of Regulatory Economics 10.1, pp. 25–59. doi: 10.1007/
BF00133357.

Colson, B., P. Marcotte, and G. Savard (2007). “An overview of bilevel optimization.”
In: Annals of Operations Research 153.1, pp. 235–256. doi: 10.1007/s10479-
007-0176-2.

Crew, M. A., C. S. Fernando, and P. R. Kleindorfer (1995). “The theory of peak-load
pricing: A survey.” In: Journal of Regulatory Economics 8.3, pp. 215–248. doi:
10.1007/BF01070807.

Daxhelet, O. and Y. Smeers (2007). “The EU regulation on cross-border trade of
electricity: A two-stage equilibrium model.” In: European Journal of Operational
Research 181.3, pp. 1396–1412. doi: 10.1016/j.ejor.2005.12.040.

Dempe, S. (2002). Foundations of bilevel programming. Springer.
EFET (2016). ENTSO-E survey on market efficiency with regard to bidding zone

configuration. url: http://www.efet.org/Cms_Data/Contents/EFET/Folders/
Documents/EnergyMarkets/ElectPosPapers/~contents/5N624T44FQMQWVKC/
EFET_ENTSOE-BZ-consultation_26082016.pdf.

Ehrenmann, A. and K. Neuhoff (2009). “A Comparison of Electricity Market Designs
in Networks.” In: Operations Research 57.2, pp. 274–286. doi: 10.1287/opre.
1080.0624.

Ehrenmann, A. and Y. Smeers (2005a). “Inefficiencies in European congestion
management proposals.” In: Utilities policy 13.2, pp. 135–152. doi: 10.1016/j.
jup.2004.12.007.

Ehrenmann, A. and Y. Smeers (2005b). “Inefficiencies in European congestion
management proposals.” In: Utilities policy 13.2, pp. 135–152.

Ehrenmann, A. and Y. Smeers (2011). “Generation capacity expansion in a risky
environment: a stochastic equilibrium analysis.” In: Operations Research 59.6,
pp. 1332–1346.

Ehrenmann, A. and Y. Smeers (2013). “Risk adjusted discounted cash flows in
capacity expansion models.” In: Mathematical Programming 140.2, pp. 267–293.
doi: 10.1007/s10107-013-0692-6.

ENTSO-E (2015). All TSOs’ draft proposal for Capacity Calculation Regions (CCRs).
url: https://consultations.entsoe.eu/system-operations/capacity-
calculation-regions/consult_view.

EURELECTRIC (2016). ENTSO-E survey on market efficiency with regard to
bidding zone configuration. url: http://www.eurelectric.org/media/285598/
final-2016-2210-0014-01-e.pdf.

Gabriel, S. A., A. J. Conejo, J. D. Fuller, B. F. Hobbs, and C. Ruiz (2012). Com-
plementarity modeling in energy markets. Vol. 180. Springer Science & Business
Media.

Giocoli, N. (2003). “Conjecturizing Cournot: The conjectural variations approach to
duopoly theory.” In: History of Political Economy 35.2, pp. 175–204.

Green, R. (2007). “Nodal pricing of electricity: how much does it cost to get it
wrong?” In: Journal of Regulatory Economics 31.2, pp. 125–149.

Grimm, V., T. Kleinert, F. Liers, M. Schmidt, and G. Zöttl (2017). Optimal Price
Zones of Electricity Markets: A Mixed-Integer Multilevel Model and Global Solu-
tion Approaches. Tech. rep. Friedrich-Alexander-Universität Erlangen-Nürnberg.
url: http://www.optimization-online.org/DB_HTML/2017/01/5799.html.

Grimm, V., A. Martin, M. Schmidt, M. Weibelzahl, and G. Zöttl (2016a). “Trans-
mission and Generation Investment in Electricity Markets: The Effects of Market
Splitting and Network Fee Regimes.” In: European Journal of Operational Re-
search 254.2, pp. 493–509. doi: 10.1016/j.ejor.2016.03.044.

http://dx.doi.org/10.1007/BF00133357
http://dx.doi.org/10.1007/BF00133357
http://dx.doi.org/10.1007/s10479-007-0176-2
http://dx.doi.org/10.1007/s10479-007-0176-2
http://dx.doi.org/10.1007/BF01070807
http://dx.doi.org/10.1016/j.ejor.2005.12.040
http://www.efet.org/Cms_Data/Contents/EFET/Folders/Documents/EnergyMarkets/ElectPosPapers/~contents/5N624T44FQMQWVKC/EFET_ENTSOE-BZ-consultation_26082016.pdf
http://www.efet.org/Cms_Data/Contents/EFET/Folders/Documents/EnergyMarkets/ElectPosPapers/~contents/5N624T44FQMQWVKC/EFET_ENTSOE-BZ-consultation_26082016.pdf
http://www.efet.org/Cms_Data/Contents/EFET/Folders/Documents/EnergyMarkets/ElectPosPapers/~contents/5N624T44FQMQWVKC/EFET_ENTSOE-BZ-consultation_26082016.pdf
http://dx.doi.org/10.1287/opre.1080.0624
http://dx.doi.org/10.1287/opre.1080.0624
http://dx.doi.org/10.1016/j.jup.2004.12.007
http://dx.doi.org/10.1016/j.jup.2004.12.007
http://dx.doi.org/10.1007/s10107-013-0692-6
https://consultations.entsoe.eu/system-operations/capacity-calculation-regions/consult_view
https://consultations.entsoe.eu/system-operations/capacity-calculation-regions/consult_view
http://www.eurelectric.org/media/285598/final-2016-2210-0014-01-e.pdf
http://www.eurelectric.org/media/285598/final-2016-2210-0014-01-e.pdf
http://www.optimization-online.org/DB_HTML/2017/01/5799.html
http://dx.doi.org/10.1016/j.ejor.2016.03.044


REFERENCES 25

Grimm, V., A. Martin, M. Weibelzahl, and G. Zöttl (2016b). “On the long run
effects of market splitting: Why more price zones might decrease welfare.” In:
Energy Policy 94, pp. 453–467. doi: 10.1016/j.enpol.2015.11.010.

Grimm, V. and G. Zöttl (2013). “Investment Incentives and Electricity Spot Market
Competition.” In: Journal of Economics & Management Strategy 22.4, pp. 832–
851. doi: 10.1111/jems.12029.

Hinze, M., R. Pinnau, M. Ulbrich, and S. Ulbrich (2009). Optimization with PDE
Constraints. Vol. 23. Mathematical Modelling: Theory and Applications. Springer
Science & Business Media. doi: 10.1007/978-1-4020-8839-1.

Hobbs, B. F. and U. Helman (2004). “Complementarity-Based Equilibrium Modeling
for Electric Power Markets.” In: Modeling Prices in Competitive Electricity
Markets. Ed. by D. Bunn. London: Wiley.

Hogan, W. W. (1999). “Transmission congestion: the nodal-zonal debate revisited.”
In: Harvard University, John F. Kennedy School of Government, Center for
Business and Government. Retrieved August 29.

Hogan, W. W. (2012). “Multiple market-clearing prices, electricity market design
and price manipulation.” In: The Electricity Journal 25.4, pp. 18–32. doi: 10.
1016/j.tej.2012.04.014.

Hu, X. and D. Ralph (2007). “Using EPECs to model bilevel games in restructured
electricity markets with locational prices.” In: Operations Research 55.5, pp. 809–
827. doi: 10.1287/opre.1070.0431.

Huppmann, D. and J. Egerer (2015). “National-strategic investment in European
power transmission capacity.” In: European Journal of Operational Research
247.1, pp. 191–203. doi: 10.1016/j.ejor.2015.05.056.

Jenabi, M., S. M. T. F. Ghomi, and Y. Smeers (2013). “Bi-level game approaches for
coordination of generation and transmission expansion planning within a market
environment.” In: IEEE Transactions on Power Systems 28.3, pp. 2639–2650.
doi: 10.1109/TPWRS.2012.2236110.

Joskow, P. and J. Tirole (2007). “Reliability and competitive electricity markets.”
In: The RAND Journal of Economics 38.1, pp. 60–84. doi: 10.1111/j.1756-
2171.2007.tb00044.x.

Mangasarian, O. L. (1988). “A simple characterization of solution sets of convex
programs.” In: Operations Research Letters 7.1, pp. 21–26. doi: 10.1016/0167-
6377(88)90047-8.

Mas-Colell, A., M. D. Whinston, J. R. Green, et al. (1995). Microeconomic theory.
Vol. 1. Oxford university press New York.

Murphy, F. H. and Y. Smeers (2005). “Generation capacity expansion in imper-
fectly competitive restructured electricity markets.” In: Operations Research 53.4,
pp. 646–661. doi: 10.1287/opre.1050.0211.

Pérez-Arriaga, I. J. and L. Olmos (2005). “A plausible congestion management
scheme for the internal electricity market of the European Union.” In: Utilities
policy 13.2, pp. 117–134. doi: 10.1016/j.jup.2004.12.003.

Ralph, D. and H. Xu (2011). “Convergence of Stationary Points of Sample Average
Two-Stage Stochastic Programs: A Generalized Equation Approach.” In: Mathe-
matics of Operations Research 36.3, pp. 568–592. doi: 10.1287/moor.1110.0506.

Ruiz, C. and A. J. Conejo (2015). “Robust transmission expansion planning.” In:
European Journal of Operational Research 242.2, pp. 390–401. doi: 10.1016/j.
ejor.2014.10.030.

Schewe, L. and M. Schmidt (2015). The Impact of Physics on Pricing in Energy
Networks. Tech. rep. Friedrich-Alexander-Universität Erlangen-Nürnberg. doi:
10.2139/ssrn.2628611.

http://dx.doi.org/10.1016/j.enpol.2015.11.010
http://dx.doi.org/10.1111/jems.12029
http://dx.doi.org/10.1007/978-1-4020-8839-1
http://dx.doi.org/10.1016/j.tej.2012.04.014
http://dx.doi.org/10.1016/j.tej.2012.04.014
http://dx.doi.org/10.1287/opre.1070.0431
http://dx.doi.org/10.1016/j.ejor.2015.05.056
http://dx.doi.org/10.1109/TPWRS.2012.2236110
http://dx.doi.org/10.1111/j.1756-2171.2007.tb00044.x
http://dx.doi.org/10.1111/j.1756-2171.2007.tb00044.x
http://dx.doi.org/10.1016/0167-6377(88)90047-8
http://dx.doi.org/10.1016/0167-6377(88)90047-8
http://dx.doi.org/10.1287/opre.1050.0211
http://dx.doi.org/10.1016/j.jup.2004.12.003
http://dx.doi.org/10.1287/moor.1110.0506
http://dx.doi.org/10.1016/j.ejor.2014.10.030
http://dx.doi.org/10.1016/j.ejor.2014.10.030
http://dx.doi.org/10.2139/ssrn.2628611


26 REFERENCES

Schrijver, A. (2003). Combinatorial Optimization. Polyhedra and Efficiency. Vol. A:
Paths, flows, matchings. Berlin: Springer-Verlag, pp. xxxviii+647.

Steiner, P. O. (1957). “Peak loads and efficient pricing.” In: The Quarterly Journal
of Economics, pp. 585–610. JSTOR: 1885712.

The European Commission (2015). Commission Regulation (EU) 2015/1222 of 24
July 2015 establishing a guideline on capacity allocation and congestion manage-
ment. url: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=
CELEX:32015R1222&from=EN.

Vickrey, W. (1971). “Responsive pricing of public utility services.” In: The Bell
Journal of Economics and Management Science, pp. 337–346. JSTOR: 3003171.

Wogrin, S., B. F. Hobbs, D. Ralph, E. Centeno, and J. Barquín (2013). “Open
versus closed loop capacity equilibria in electricity markets under perfect and
oligopolistic competition.” In: Mathematical Programming 140.2, pp. 295–322.
doi: 10.1007/s10107-013-0696-2.

Yépez-García, R. A., T. M. Johnson, and L. A. Andrés, eds. (2011). Meeting the
Balance of Electricity Supply and Demand in Latin America and the Caribbean.
The World Bank. doi: 10.1596/978-0-8213-8821-1.

Zöttl, G. (2010). “A framework of peak load pricing with strategic firms.” In:
Operations Research 58.6, pp. 1637–1649. doi: 10.1287/opre.1100.0836.

Appendix A. Proof of Theorem 2

For completeness, we sketch a self-contained proof of Theorem 2, which is a
variant of a result given in Schewe and Schmidt (2015). For this we need two
observations: First, the max-flow-min-cut theorem immediately allows to us to write
down an alternative characterization of the feasibility of Subproblem (3). This is
a restatement of the well-known theorems of Gale and Hoffman for our particular
case, see Schrijver (2003, Chapter 11).

Proposition 8. The vector (d, y, f) is a feasible solution of Problem (3) if and only
if
∑
n∈N dn =

∑
n∈N yn and for all C ⊆ N , it holds that∑

n∈C
dn −

∑
n∈C

yn ≤ f̂C ,

where f̂C =
∑
a∈δin(C) f̄a +

∑
a∈δout(C) f̄a.

The second observation states that if two non-disjoint sets are tight at the upper
bound, its union and intersection are as well. As a byproduct we obtain that in
this case the connecting arcs between these two sets are unused. This result is also
well-known, see again Schrijver (2003).

Proposition 9. Let (d, y, f) be a feasible solution of Problem (3) and let X,Y ⊆ N
with X ∩ Y 6= ∅ such that∑

n∈X
(dn − yn) = f̂X ,

∑
n∈Y

(dn − yn) = f̂Y .

Then the following equations hold as well:∑
n∈X∩Y

(dn − yn) = f̂X∩Y ,
∑

n∈X∪Y
(dn − yn) = f̂X∪Y .

Now, we are ready to prove Theorem 2.

Proof of Theorem 2. Set z0 := (d∗, y∗) and let z1 = (d1, y1) be a solution of Prob-
lem (5). As z0 is feasible for Problem (5), φ(z0) ≤ φ(z1) holds. It remains to show
that φ(z0) ≥ φ(z1) holds. If there exists a flow f1 such that (d1, y1, f1) is feasible
for Problem (3), φ(z1) ≤ φ(z0) holds and we obtain the desired inequality. Assume
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no such flow exists. Then it follows from Proposition 8 that there exists a set U ⊂ N
with U 6= ∅ such that ∑

n∈U
d1
n −

∑
n∈U

y1
n > f̂U .

From the construction of C it follows from Proposition 9 that we may assume
that U ⊂ C for a C ∈ C. Set U to be the set of all such sets U and define
zλ := (1− λ)z0 + λz1 for λ ∈ [0, 1]. It now follows that there exists a λU > 0 for
each U ∈ U such that zλ satisfies∑

n∈U
dλn −

∑
n∈U

yλn ≤ f̂U .

Set ρ := minU∈U λU . Then, it again follows from Proposition 8 that there exists
a flow f such that (zρ, f) is feasible for Problem (3). Since ρ > 0, it also follows
φ(zρ) > φ(z0), which is a contradiction to the optimality of z∗. Hence, φ(z0) ≥ φ(z1)
holds. �

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Chair of Economic The-
ory, Lange Gasse 20, 90403 Nürnberg, Germany; 2 Friedrich-Alexander-Universität
Erlangen-Nürnberg, Discrete Optimization, Cauerstr. 11, 91058 Erlangen, Ger-
many; 3 Energie Campus Nürnberg, Fürther Str. 250, 90429 Nürnberg, Germany 4

Friedrich-Alexander-Universität Erlangen-Nürnberg, Industrial Organization and
Energy Markets, Lange Gasse 20, 90403 Nürnberg, Germany


	1. Introduction
	2. A Framework of Peak-Load Pricing on a Network
	2.1. Notation and Model Formulation
	2.2. Model Reformulation

	3. Existence and Uniqueness
	3.1. The Subproblem
	3.2. The Master Problem
	3.3. The Case of Market Power
	3.4. Characterization and Discussion

	4. Illustrative Example: Three-Node Network
	5. Conclusion
	Acknowledgements
	References
	Appendix A. Proof of Theorem 2

