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Abstract In this note we show that multiple solutions exist for the production-
inventory example in the seminal paper on adjustable robust optimization in [2].
All these optimal robust solutions have the same worst-case objective value, but
the mean objective values differ up to 21.9% and for individual realizations this
difference can be up to 59.4%. We show via additional experiments that these dif-
ferences in performance become negligible when using a folding horizon approach.
The aim of this paper is to convince users of adjustable robust optimization to
check for existence of multiple solutions. Using the production-inventory exam-
ple and an illustrative toy example we deduce three important implications of
the existence of multiple optimal robust solutions. First, if one neglects this ex-
istence of multiple solutions, then one can wrongly conclude that the adjustable
robust solution does not outperform the nonadjustable robust solution. Second,
even when it is a priori known that the adjustable and nonadjustable robust so-
lutions are equivalent on worst-case objective value, they might still differ on the
mean objective value. Third, even if it is known that affine decision rules yield
(near) optimal performance in the adjustable robust optimization setting, then
still nonlinear decision rules can yield much better mean objective values.
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1 Introduction

In [2] the Robust Optimization (RO) methodology is extended to multi-stage prob-
lems. The proposed Adjustable Robust Optimization (ARO) techniques appeared
to be very effective to solve uncertain multi-stage optimization problems. This
first paper on ARO has been cited more than 500 times already, and the ARO
methodology has been applied to a wide variety of problems (see e.g. the survey
papers [3,6]). Recently, it was shown that (A)RO problems may have multiple op-
timal solutions, and that not all of these solutions are Pareto robustly optimal [8].
A solution is called Pareto robustly optimal if there is no other robustly feasible
solution that has better objective value for at least one scenario, and for all other
scenarios in the uncertainty set the objective value is not worse.

In this note we show that the ARO model of the production-inventory problem in
[2], which is the seminal work on ARO, also has multiple optimal robust solutions.
Although in robust optimization one operates in a distribution-free environment,
an often used performance measure is the mean objective value, which is evaluated
posteriorly assuming some information on the distribution of the parameters. For
the cases considered in [2], we show that among the optimal robust solutions, the
difference in mean objective value can be as much as 21.9% and for individual re-
alizations the difference can be up to 59.4%. This underlines the importance of the
message in [8] that ARO problems may have multiple optimal robust solutions. In
such cases one can often find optimal robust solutions that are much better with
respect to the mean objective value than solutions that were initially found.

We also extend the experiments performed in [2] by including a folding horizon
approach. In a folding horizon approach the model is re-optimized in each period
using the available information at that point of time and only the decisions for
the current time are implemented. Using this approach we find that there are still
multiple optimal robust solutions, but the differences in mean costs diminish. This
is mainly due to the fact that the here-and-now decisions are unique in almost all
periods. As a last experiment, we also analyze the model and solutions we found
when replacing the worst-case objective by an expected value objective. For the
expected value objective we find that, for the seminal production-inventory prob-
lem considered here, the solution is unique.

In the second part of this note we discuss several important implications for prac-
tical ARO. The first implication is that, by ignoring the possibility of multiple
solutions, one can incorrectly conclude that the ARO solution is not better than
the RO solution, or even incorrectly conclude that ARO is (much) better than
RO. The second implication is that even in cases where it is a priori known that
RO and ARO are equivalent, i.e., they have the same worst-case optimal objective
value, one cannot conclude that there is no value in using ARO. This is because
in many cases there are ARO solutions that give much better solutions for the
mean costs. The third implication is that even in cases where affine decision rules
are (nearly) optimal, i.e., the optimal robust objective value cannot be improved
by using nonlinear decision rule, one cannot conclude that there is no value in
using nonlinear decision rules. Such a conclusion might be wrong, since nonlinear
decision rules may yield much better solutions for the expected objective value.
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These implications are illustrated by using both the production-inventory example
from [2], and a toy example.

Our aim is to convince users of ARO that one should always check for the ex-
istence of multiple solutions. In many papers on ARO it is not reported that one
checked for possible existence of multiple solutions. These papers run the risk that
much better solutions could have been found, or even that wrong conclusions have
been drawn. For example, researchers who use the same production-inventory ex-
ample as in the seminal work [2] to test new ARO methods, should be aware of
the fact that this problem has many optimal robust solutions with big differences
in mean costs.

2 Multiple adjustable robust solutions

To illustrate the implications of multiple adjustable robust solutions we use two
problems. The first problem is the production-inventory problem by [2] in its orig-
inal setting. The second problem is an illustrative toy example where the existence
of multiple solutions is more directly visible.

2.1 Production-inventory model by Ben-Tal et al. 2004 [2]

We have repeated the experiments for the production-inventory problem by [2].
All solutions are obtained using the commercial solver Gurobi 6.0 [7] programmed
in the YALMIP language [10] in MATLAB. All options of Gurobi were left at their
default values.

We have found three distinct optimal robust solutions for the original model by [2,
p. 369-370]. All of these solutions are optimal in a robust sense, i.e. they have the
same worst-case costs, but costs differ for individual (non worst-case) realizations
of the demand. The first solution was obtained by just solving the original model
with Gurobi. The average costs of this solution turned out to be much higher than
the solution reported by [2]. The second solution is the solution that performs
best on the mean costs among all optimal robust solutions. It can be found via the
following two-step approach similar to the methods used by [8] to find so-called
Pareto robustly optimal solutions:

1. Solve the original model from [2], which gives a solution with minimal worst-
case costs.

2. Change the objective into minimizing the costs for the nominal demand tra-
jectory. Furthermore, add a constraint that ensures that the worst-case costs
do not exceed the costs found in Step 1.

The solution obtained after step two is the ‘Best’ solution, the one that performs
best on the expected objective value among all optimal robust solutions that use
linear decision rules, assuming that nominal demand is equal to the expected de-
mand. The third solution is found by changing the objective in the second step into
mazximizing costs for the nominal demand trajectory. This we call the ‘Worst’ solu-
tion. Without the two-step approach, and some bad luck, one could have obtained
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Table 1 Performance of the Best, First and Worst optimal robust solutions.

\ \ |  Bestsol. | First sol. \ Worst sol. \

Performance gap

‘ Uncertainty Performance gap

level ‘ WC costs

Mean ‘ Std

Mean Std ‘ Mean | Std Mean ‘ Max ‘ Mean ‘ Max ‘
2.5% 35105 33932 | 178 | 35105 0 3.5% 7.2% 35105 0 3.5% 7.2%
5% 36389 34073 | 350 | 35953 | 142 | 5.5% 11.8% | 36389 0 6.8% 14.6%
10% 38990 34416 | 691 | 38136 | 232 | 10.8% | 24.9% | 38990 0 13.3% | 30.7%
20% 44273 35077 | 1373 | 40174 | 696 | 14.5% | 39.4% | 42766 | 315 | 21.9% | 59.4%

this solution as a ‘First’ solution, i.e. by solving the original problem formulation.
The performances of these three optimal robust solutions are given in Table 1. The
first column states the uncertainty level, for which we used the same levels as in
[2]. If the level of uncertainty is 2.5%, then this indicates that in each period the
realized demand could be up to 2.5% higher or lower than the nominal demand.
The three solutions are all robustly optimal, so they have the same worst-case
costs (WC costs). For each of those solutions we have determined the mean costs
and the standard deviation. In [2] the mean costs were approximated using 100
simulated demand trajectories drawn from a uniform distribution. The mean costs
can also be determined exactly since the objective is linear in the uncertain de-
mand. For the mean costs comparison we assume, as in the original paper, that the
mean demand is given by the nominal demand scenario. The standard deviation
was derived using the second moment of the uniform distribution, the distribution
that was also used in the seminal paper by [2] to sample the scenarios to calculate
average costs.

As is clear from Table 1, the performances of the three solutions differ signifi-
cantly. For both the ‘First’ solution and the ‘Worst’ solution we give the mean
and maximum performance gap. The mean performance gap is just the percent-
age increase of the mean costs compared to the mean costs of the ‘Best’ solution.
The maximum performance gap is the single demand trajectory that results in
the largest difference in costs between the ‘Best’ solution and the ‘Worst’ (or
‘First’) solution. To explain how this gap is calculated, we determine the cost for
the ‘Worst” and the ‘Best’ solution, when trajectory d realizes, by respectively
OPTw (d) and OPTg(d). These costs are linear in demand d because the original
objective is linear, fixed recourse and we use linear decision rules. The maximum
performance gap for the ‘Worst’ solution is given by

e OPTw(d) — OPT(d)
deil OPTg(d) ’

where U is the box uncertainty set (defined by a set of linear constraints) used in
this inventory problem. This is a linear-fractional maximization problem, which
can be written as a linear optimization problem using the well-known Charnes-
Cooper transformation [5]. The maximum performance gap for the ‘First’ solution
is defined and determined analogously. The ‘First’ solution, which is the solution
we obtained after solving the original LP problem with our solver, has mean costs
of up to 14.5% higher than the mean costs for the best solution for a 20% uncer-
tainty level. The ‘Worst’ solution has a performance gap of 21.9% for the same
uncertainty level. If we compare the performance for individual realizations, we
see that the costs can increase up to 39.4% and 59.4% for the ‘First’ and ‘Worst’
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Table 2 Performance of the best, first obtained and worst optimal robust solutions using the
folding horizon approach.

‘ ‘ Best FH sol. ‘ First FH sol. ‘ ‘Worst FH sol. ‘

Performance gap

Performance gap
Std Mean ‘ Max

Uncertainty
Std Mean ‘ Max Mean

level ‘ Mean

Std ‘ Mean

2.5% 33909 179 | 33912 179 | 0.0% 0.1% 33912 178 | 0.0% 0.1%
5% 34057 | 330 | 34061 328 | 0.0% 0.0% 34059 | 328 | 0.0% 0.0%
10% 34327 | 676 | 34350 | 667 | 0.1% 0.7% 34351 666 | 0.1% 0.7%
20% 34495 | 1361 | 34517 | 1348 | 0.1% 0.6% 34532 | 1339 | 0.1% 0.6%

solutions, respectively. For uncertainty levels up to 10% the mean costs for the
‘Worst’ solution are equal to the worst-case costs, meaning that the worst-case
costs are attained in every single scenario. Finally, as reported by [2], only for an
uncertainty level of 2.5% one can find a feasible nonadjustable solution implying
that production levels in each period must be determined at the beginning of the
planning horizon. The mean costs of 35279 for the nonadjustable solution are only
slightly higher than the mean costs for the adjustable ‘Worst’ solution. Note that
in the nonadjustable case there is no uncertainty in the objective, hence the mean
costs are equal to the worst-case costs.

The mean costs of the solution reported by [2], where no use of a two-step approach
was reported, coincides with the performance of our ‘Best solution’. We have tried
various settings for our solver to see whether we could also replicate their good
result as a ‘First’ solution. We tried both primal/dual simplex methods, interior
point methods and a mixture of both in Gurobi. We have also solved the model
for each of these options with crossover either enabled or disabled. If the crossover
option is enabled, then the solver will push a solution in the optimal facet to a
basic solution. None of these alterations led to a solution that was considerably
better than our ‘First’ solution depicted in Table 1.

One might wonder whether the same differences in mean costs still exist if a
so-called folding horizon (FH) is used. In a folding horizon approach the model is
re-optimized at each period using the available information at that point of time
and only the decisions for the current time are implemented. This is done for each
period t starting from the first period until the end of the planning horizon. Using
this folding horizon approach we again compared solutions that used the two-step
approach in each step (Best FH solution), without a two-step approach (First FH
solution) and when the two-step approach was used when maximizing for nominal
demand in the second step (Worst FH solution). An exact calculation of the mean
costs and the standard deviation is not possible for this experiment. Therefore, we
draw 100 demand trajectories independently and uniformly distributed in each pe-
riod. These trajectories are used to approximate the mean costs and the standard
deviation when using the folding horizon approach. Simulations were also used in
[2] to approximate the mean costs and the standard deviation for the non-folding
horizon approach. The results are depicted in Table 2. We stress that this folding
horizon approach was not used in [2]. Clearly, using the two-step approach does
not yield significantly better results for the folding horizon approach. However, it
might still be wise to use the two-step approach when a folding horizon is used.
Often the resulting costs are the same for both approaches, but for one of our
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simulated realizations the extra costs incurred when not using the two-step ap-
proach is 0.7%. Even stronger, for each simulated demand trajectory, the costs
when using the folding horizon approach (Best FH solution) were at most the
costs of the “First FH” solution. Finally, note that the mean costs for the folding
horizon solutions are not much lower than the mean costs of the ‘Best’ solution
given in Table 1, meaning that there is not much additional gain by re-optimizing
in each step as is done in the folding horizon approach. It is at a first glance sur-
prising that the effect of having multiple optimal solutions diminishes when using
a folding horizon approach. We found that this is mainly because the first stage
decisions are unique for almost all time periods and in all simulated scenarios. The
question whether or not the first stage decisions are unique can be answered by
fixing the worst case costs in the first step, as in the usual two step approach, and
then minimize or maximize the order quantity in the current time period. In this
way we get, for each time period ¢, a lower and upper bound on the feasible first
stage decisions. In Figure 1 we depict the lower and upper bounds for the 20%
uncertainty level for one out of the three factories. The behaviour of the solutions
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Fig. 1 Here-and-now decisions for factory 2 only differ in period 18 (5 scenarios depicted).

depicted was observed for all other cases as well: the vast majority of the first-
stage decisions are unique. We only witnessed non-unique optimal here-and-now
decisions in time periods 6 and 18, depending on the factory (1, 2 or 3) considered.

Finally, we also investigate what happens if we optimize the expected objective
value rather than the worst-case objective value in the non-folding horizon ap-
proach. This can be done at comparable computational costs, by replacing the
maximization over all realizations in the objective by an objective that solely con-
siders the nominal demand. This expected objective value was also used in [9] to
prove optimality of linear decision rules under stochastic and robust settings. The
authors did not study the existence of multiple adjustable solutions. We stress
that, although we now minimize an expected objective value, we still have a ro-
bust problem with ‘hard’ constraints, i.e., the constraints should be satisfied for
any realization within the uncertainty set. The main difference with the two step
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Table 3 Performance of the linear decision rule that minimizes the mean costs.

Uncertainty
level WwC Mean Std
2.5% 35108 | 33919 178
5% 36412 | 34031 357
10% 39040 | 34311 708
20% 44298 | 35066 | 1375

approach is that we do not fix the worst-case objective value as we did in the sec-
ond step. Arguably, this approach would make more sense in problems where the
objective is a ‘soft’ criterion as opposed to the contraints which are typically ‘hard’
restrictions. When minizing the expected objective value, the worst-case objective
value is ignored. Hence, in principle, the worst-case costs could be very high. To
find the worst-case objective value for a given linear decision rule, a posteriori, one
can simply maximize the costs over all possible realizations within the uncertainty
set. The results for the optimization problem, with the ‘soft’ expected objective
value, but ‘hard’ constraints, are depicted in Table 3. First of all, we note that
there is not much difference between the mean costs and the worst-case costs with
respect to the ‘Best’ robust solution given earlier in Table 1. There is only a very
minor increase in worst-case costs and a very minor decrease in the mean costs.
Hence, minimizing the mean costs yields a solution that has very similar costs to
the costs of the solution obtained when minimizing worst-case costs. Second, there
is no ‘Best’ and ‘Worst’ solution displayed in Table 3. This is because we found that
the obtained solution is unique, so there does not exist a linear decision rule, with
minimum mean costs, that has a different (neither better nor worse) guarantee on
the worst-case objective value.

2.2 Toy example

Our illustrative toy example is the following maximization problem:

max min axr —y
T,y a€l0,1]

subject to  y + b2 +b >0 Vb € [0,1] (toy-example)
0<x<1.

Let us first consider the case where both = and y are nonadjustable. We readily
see that the worst-case objective value is 0 and the two solutions, RO1 = (1,0)
and RO2 = (0,0), or any convex combination of these, are worst-case optimal.
Without a two-step approach the solver is indifferent between all these optimal
robust solutions since they all have optimal worst-case profits. The realized profits
as a function of scenario (a,b) are respectively pro, (a,b) = a and pro,(a,b) =0
and the two-step approach yields solution RO;.

Now suppose that y is adjustable and we restrict ourselves to linear decision rules
(LDR). Then we find that linear decision rules y(b) = —b or y(b) = —1b are optimal
in worst-case sense together with any nonadjustable z in [0, 1]. For the first solu-
tion LDR; we take (z,y) = (1, —b) and for the second solution LDRy = (0, —%b).
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Table 4 Comparison of the different nonadjustable and adjustable solutions.

| ROy | RO2 | LDRy | LDR, | NDRy | NDR, |

Here-and-now x 1 0 1 0 1 0
Wait-and-see* y 0 0 —b —%b —b2—b —%bg’
Profits for scenario (a,b) a 0 a+b %b a+b>+b %b3
Worst-case profits 0 0 0 0 0 0
Mean profits

(with unif. distr.) 1 0 1 1 2 1

*Note that for RO; and RO the variable y is a here-and-now variable.

The profits of these solutions for scenario (a, b) are respectively pr,pr, (a,b) = a+b
and prpr,(a,b) = %b. Again, without a two-step approach the solver would be
indifferent between these solutions since both have optimal worst-case objective
value of 0. The two-step approach yields solution LDR;.

Finally, we notice that the so-called perfect hindsight solution, where parame-
ters a and b are known before deciding upon z and y, equals (z,y) = (1, —b? — b)
for any a,b in [0,1]. This perfect hindsight solution can also be obtained in the
adjustable robust optimization model by allowing for nonlinear decision rules and
setting NDR1 = (1,—b® — b). The profits for this nonlinear decision rule (NDR)
are pNpR, (a,b) = a + b + b for scenario (a,b). Again, there are many more non-
linear decision rules that are optimal in worst-case sense, but have different mean
profits. One example is NDRy = (0, —$b®) which yields profit pnpr, (a,b) = 5b°.
All these results are summarized in Table 4.

In the table we use a uniform distribution to calculate the mean profits. For
robust optimization one usually assumes to have only very crude information on
the distribution function. Nevertheless, if we denote the mean profits of each so-
lution by Pro,, PROs, PLDR:»PLDR,, PNDR, and pNDR,, then we have

PNDR, > PLDR, > PRO, > PLDR> > PNDR> > PRO>

for a large class of distribution functions. All these inequalities are valid if (1) not
all probability mass of b lies on the extremes, i.e. P(b=0or b= 1) # 1 and (2)
the mean value of a and b is such that E(a) > 1E(b).

Note that for this toy example, contrary to the model from [2], there could be
a significant gain from the two-step method in the folding horizon approach. The
variable x has to be chosen in the first step of the optimization. As we have seen,
the optimal robust value is indifferent between any x in [0, 1]. In the second step
we shall always choose y = —b? — b. However, choosing * = 0 instead of z = 1
gives us a difference of a in the objective value. The two-step approach combined
with the folding horizon approach returns the optimal (folding horizon) solution,
which equals NDR;.
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Similar to our extended experiments for the numerical production-inventory ex-
ample, we can also replace the worst-case objective by an expected value objective.
Again, we find a unique solutions when using an expected value objective to the
following optimization model:

mac  E(a)e —E(y(b)

zy

subject to  y(b) + B24+b>0 vb € [0,1] (toy-example-mean)
0<z< 1.

Now, if E(a) > 0, then the solver returns the unique optimal z = 1. The only
optimal (and unique) static and linear decision rules are given by y(b) = 0 and
y(b) = —b, respectively. These are the same solutions as the best decision rules
for the optimization problem with worst-case objective value. For the nonlinear
decision rule we find that the optimal decision rule is

y(b) = —b—b* (almost surely).

3 Implications for robust optimization

The inventory-production problem and the toy example from the previous section
allow us to present some important implications. First, if we analyze and compare
the mean objective values of arbitrary optimal robust solutions for RO and ARO,
then false conclusions can be drawn regarding the added value of ARO over RO.
The mean objective value of an arbitrary optimal robust solution, obtained by
solving the original RO or ARO problem formulations, might very well be much
worse than the solution with best mean objective value among all optimal robust
solutions. This best performing solution can be obtained by carrying out the two-
step approach. In the production-inventory problem with uncertainty level 2.5%,
the worst-case objective values of the RO and ARO solution are nearly the same:
the difference is only 0.5%. If we compare the RO and ARQO solutions on average
costs, then the worst ARO solution is also only 0.5% better than the RO solu-
tion. The best ARO solution, however, is 3.5% better on average, which could be
overlooked if the two-step approach is not carried out. For the 20% uncertainty
level, the gap between the average performances of all optimal robust ARO so-
lutions can be as much as 21.9%. The toy example illustrates that an arbitrary
ARO solution is not guaranteed to do better than a RO solution with respect
to average performance. For instance, the average performance of robust solution
RO is better than the performance of ARO solution LDR3. On the other hand,
the optimal ARO solution LD R; is guaranteed to do better than any RO solution
on the average performance.

Second, one might be inclined to jump to the conclusion that ARO can be safely
ignored, when it is a priori known that ARO and RO are equivalent with respect
to the worst-case objective value. One of the situations that we know where ARO
is equivalent to RO is the case of constraint-wise uncertainty see [2, Theorem 2.1].
However, the equivalence is not necessarily true for the mean objective value as
well. Therefore, one should not ignore ARO for such problems. This is illustrated
by the toy example: the worst-case objective value is zero for both the RO and
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ARO solutions, but the mean objective values differ significantly.

Third, even if affine decision rules yield (near) optimal worst-case performance,
nonlinear decision rules, such as quadratic decision rules, can yield much better
performance on the mean objective value. Most applications of ARO restrict de-
cision rules to affine functions, which is referred to as affinely adjustable robust
optimization (AARO) [2]. Affine decision rules are known to perform optimal or
nearly optimal in many situations [1,4]. However, once again, this observation is
with respect to the worst-case objective value, and not for the mean objective
value. This is illustrated by the toy example. Here, the quadratic decision rule
NDR; has the same worst-case objective value as any of the other decision rules,
but the mean objective value is much better, and, in this particular case, even
optimal for each scenario (Bellman optimal).

The encompassing recommendation that follows from these implications is that
the two-step approach should always be conducted in any application of robust
optimization. The two-step approach enables the optimizer to fully exploit the
performance on the mean objective value of the solution, while guaranteeing no
deterioration in the worst-case performance. This is especially relevant for ARO,
where decision rules can be utilized to enhance the solution’s performance in other
than worst-case scenarios.
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