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Abstract

Exploiting sparsity in Semidefinite Programs (SDP) is critical to solving large-scale problems.
The chordal completion based maximal clique decomposition is the preferred approach for exploiting
sparsity in SDPs. In this paper, we show that the maximal clique-based SDP decomposition is
primal degenerate when the SDP has a low rank solution. We also derive conditions under which
the multipliers in the maximal clique-based SDP formulation is not unique. Numerical experiments
demonstrate that the SDP decomposition results in the schur-complement matrix of the Interior
Point Method (IPM) having higher condition number than for the original SDP formulation.

1 Introduction

Semidefinite programming (SDP) is a subfield of convex optimization concerned with the optimization of
a linear objective function over the intersection of the cone of symmetric positive semidefinite matrices
with an affine space. Many problems in operations research and combinatorial optimization can be
modeled or approximated as SDPs [3, 12]. For a SDP defined over the set of n× n symmetric matrices
and affine subspace of dimension m, the number of unknowns in the problem grows as O(n2). Since
the seminal work of Nesterov and Nemirovskii [9], Interior Point Methods (IPMs) have becomes the
preferred approach for solving SDPs. The complexity of the step computation in IPM is typically
O(mn3 +m2n2) [10].

Given the quadratic growth in m,n of the computational cost, it is imperative to exploit prob-
lem structure in solving large-scale SDPs. For SDPs modeling practical applications, the data ma-
trices involved are typically sparse. Denote by, N = {1, . . . , n} and by E = {(i, j) | i 6= j, (i, j) −
th entry of some data matrix is non-zero}. The set E, also called the aggregate sparsity pattern, repre-
sents the non-zero entries in the objective and constraint matrices, that is the sparsity in the problem
data. Consequently, only the entries of the matrix variable corresponding to the aggregate sparsity
pattern are involved in the problem. From the computational stand-point it is desirable to work only
with such entries to reduce the number of unknowns in the problem from O(n2) to O(|E|). However,
the semidefinite constraint couples all of the entries of the symmetric matrix. Fukuda et al [4] exploit
the result of Grone et al [6] to decompose the SDP defined on n × n symmetric matrices into smaller
sized matrices. Grone et al [6, Theorem 7] states that for a graph G(N,E) that is chordal: the positive
semidefinite condition on n × n matrix is equivalent to positive semidefinite condition on submatrices
corresponding to the maximal cliques that cover all the nodes and edges in the graph G(N,E). Nakata et
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al [8] implemented the decomposition within a SDP software package SDPA [13] and demonstrated the
scalability of the approach. More recently, the authors of SDPA have also extended the implementation
to take advantage of multi-core architectures [14]. More recently, Kim and Kojima [7] extended this
approach for solving semidefinite relaxations of polynomial optimization problems.

1.1 Our Contribution

In this paper, we study the properties of the conversion approach of [4, 8] which converts the original
SDP into an SDP with multiple sub-matrices and additional inequality constraints. We show that the
SDP resulting from the conversion approach is primal degenerate when the SDP solution has low-rank.
We show that this can occur even when the solution to the original SDP is primal non-degenerate. Thus,
this degeneracy is a consequence of the conversion approach. We also derive conditions under which
the dual multipliers are not unique. We demonstrate through numerical experiments that condition
numbers of schur-complement matrix of IPM are much higher for the conversion approach as compared
with the original SDP formulation. To the best of our knowledge, this is the first result describing the
degeneracy of the conversion approach.

The rest of the paper is organized as follows. § 2 introduces the SDP formulation and the maximal
clique decomposition. The conversion of approach of [4] is described in § 3. § 4 proves the primal
degeneracy and dual non-uniqueness of the conversion approach. Numerical experiments validating the
results are presented in § 5, followed by conclusions in § 6.

1.2 Notation

In the following, R denotes the set of reals and Rn is the space of n dimensional column vectors. For a
vector x ∈ Rn, [x]i denotes the i-th component of x and 0n ∈ Rn denotes the zero vector, ei ∈ Rn the
vector with 1 for the i-th component and 0 otherwise. The notation diag(λ1, . . . , λn) denotes a diagonal
matrix with the values λi on the diagonal. Given a vector v ∈ Rn and subset C ⊆ {1, . . . , n}, vC denotes
the subvector from [v]i for i ∈ C. Sn denotes the set of n × n real symmetric matrices and Sn+ (Sn++)
denotes the set of n × n real symmetric positive semi-definite (definite) matrices. Further, A � (�)0
denotes that A ∈ Sn+(Sn++). For a matrix A ∈ Sn, [A]ij denotes the (i, j)-th entry of the matrix A
and rank(A) denotes the rank of A. For a matrices A1, A2 ∈ Sn, range(A1, A2) denotes the subspace of
symmetric matrices spanned by A1, A2. Denote by N = {1, . . . , n}. The notation • denotes the standard
trace inner product between symmetric matrices A •B =

∑n
i=1

∑n
j=1[A]ij [B]ij for A,B ∈ Sn. For sets

Cs,Ct ⊆ N and A ∈ Sn, ACsCt
is a |Cs| × |Ct| submatrix A formed by removing rows and columns of A

that are not in Cs, Ct respectively.

1.3 Background on Graph Theory [2]

In this paper we only consider undirected graphs. Given a graph G(N,F), a cycle in F is a sequence of
vertices {i1, i2, . . . , iq} such that ij 6= ij′ , (ij , ij+1) ∈ F and (iq, i1) ∈ F. The cycle in F with q vertices
is called a cycle of length q. Given a cycle {i1, . . . , iq} in a F, a chord is an edge (ij , ij′) for |j − j′| > 1.
A graph G(N,F) is said to be chordal if every cycle of length greater than 3 has a chord. Given G(N,F),
F′ ⊇ F is called a chordal extension if the graph G′(N,F′) is chordal. Given a graph G(N,F), C ⊂ F is
called a clique if it satisfies the property that (i, j) ∈ F for all i, j ∈ C. A clique C is maximal if there
does not exist clique C′ ⊃ C. For a chordal graph, the maximal cliques can be arranged as a tree, called
clique tree, T (N , E) in which N = {C1, . . . ,C`} and (Cs,Ct) ∈ E are edges between the cliques.
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1.4 Matrix Terminology [4]

For a set F ⊂ N×N, Sn(F) denote the set of symmetric n× n matrices with only entries in F specified.
A matrix X̄ ∈ Sn(F) is called a symmetric partially specified matrix. A completion X ∈ Sn is called a
completion of X̄ ∈ Sn(F) if [X]ij = [X̄]ij for all (i, j) ∈ F. A completion X ∈ Sn of X̄ ∈ Sn(F) that is
positive semidefinite (definite) is said to be a positive semidefinite (definite) completion of X̄.

2 Maximal Clique Decomposition in SDP

Consider the following SDP:
min
X∈Sn

A0 •X

s.t. Ap •X = bp ∀ p = 1, . . . ,m

X � 0

(1)

where Ap ∈ Sn. Denote by E = {(i, j) | i 6= j, [Ap]ij 6= 0 for some 0 ≤ p ≤ m}. The set E, also
called the aggregate sparsity pattern [4], represents the non-zero entries in the objective and constraint
matrices, that is the sparsity in the problem data. Clearly, only the entries [X]jk for (j, k) ∈ E feature
in the objective and equality constraints in (1). In a number of practical applications, |E| << n2. From
a computational standpoint, it is desirable to work only with [X]jk for (j, k) ∈ E. In other words, we
want to solve

min
X̄∈Sn(E)

∑
(i,j)∈E

[A0 ]ij [X̄]ij

s.t.
∑

(i,j)∈E

[Ap ]ij [X̄]ij = bp ∀ p = 1, . . . ,m

X̄ has a positive semidefinite completion.

(2)

The result of [6] provides the conditions under which such a completion exist. We state this below in a
form convenient for further development as in [4, Theorem 2.5].

Lemma 1 ([4, Theorem 2.5]). Let G(N,F) be a chordal graph and let {C1, . . . .C`} be the family of all
maximal cliques. Then, X̄ ∈ Sn(F) has a positive semidefinite (definite) completion if and only if X̄
satisfies

X̄CsCs
� 0(� 0) ∀ s = 1, . . . , `. (3)

Using Lemma 1 Fukuda et al [4] proposed the conversion approach which we describe next.

3 Conversion Approach

Given the graph G(N,E), with E the aggregate sparsity pattern of SDP (1), the conversion approach [4]
proceeds by : (a) computing a chordal extension F ⊇ E; (b) the set of maximal cliques N = {C1, . . . ,C`}
of the graph G(N,F) are identified; (c) the clique tree T (N , E) is computed; and (d) a SDP is posed
in terms of matrices defined on the set of maximal cliques that is quivalent to SDP in (1). Additional
equality constraints are introduced to equate the overlapping entries in the maximal cliques. Prior to
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stating the SDP formulation we introduce notation that facilitates further development. Denote,

σs : N→ {1, . . . , |Cs|} mapping the original indices

to the ordering in the clique Cs

[As,p ]σs(i)σs(j) =

{
[Ap ]ij if s = min{t | (i, j) ∈ Ct}

0 otherwise

Es,ij =
1

2

(
eσs(i)e

T
σs(j) + eσs(j)e

T
σs(i)

)
∀ i, j ∈ Cs

(s, t) ∈ T ⇐⇒ (Cs,Ct) ∈ E
Cst = Cs ∩ Ct

(4)

where eσs(i) ∈ R|Cs|. The SDP in (1) can be equivalently posed using the above notation as,

min
Xs∈S|Cs|

∑̀
s=1

As,0 •Xs

s.t.
∑̀
s=1

As,p •Xs = bp ∀ p = 1, . . . ,m

Es,ij •Xs = Et,ij •Xt ∀ i ≤ j, i, j ∈ Cst,

(s, t) ∈ E
Xs � 0 ∀ s = 1, . . . , `.

(5)

We refer to the SDP in (5) as the conversion SDP for sake of brevity. In the following we analyze the
conversion approach for linear programming. Formal proofs for primal degeneracy of conversion SDP
are left for § 4.

3.1 Intuition for Primal Degeneracy

To motivate the primal degeneracy of conversion SDP we provide a conversion approach inspired de-
composition for linear programs (LPs). Consider a LP of the form,

min
x∈Rn

aT0 x

s.t. aTp x = bp ∀ p = 1, . . . ,m

x ≥ 0

(6)

where ai ∈ Rn and b ∈ Rm. Suppose we decompose the LP (6) using the sets in {C1, . . . ,C`} as,

min
xs∈R|Cs|

l∑
s=1

aT0,sxs

s.t.

l∑
s=1

aTs,pxs = bp ∀ p = 1, . . . ,m

[xs ]σLP
s (i) = [xt ]σLP

t (i) ∀ i ∈ Cst, (s, t) ∈ E
xs ≥ 0 ∀ s = 1, . . . , `

(7)
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where
σLP
s : N→ {1, . . . , |Cs|}

[as,p ]σLP
s (i) =

{
[ap ]i if s = min{t|i ∈ Ct}

0 otherwise
.

With the above definition of the matrices it is easy to see that the LPs in (6) and (7) are equivalent.
Further, if x∗ is an optimal solution to LP (6) then, x∗s = x∗Cs

is optimal for (7). Suppose, there exists
i ∈ Cs ∩ Ct for which [x∗ ]j = 0 then, the set of constraints

[xs ]σLP
s (i) = [xt ]σLP

t (i)

[xs ]σLP
s (i) = 0, [xt ]σLP

t (i) = 0

are linearly dependent. The linear dependency of the constraints can be avoided if the nonnegative
bounds on shared entries are enforced exactly once for each index i. For example, the non negativity
constraints in (7) can be enforced for each i ∈ N:

[xs ]σLP
s (i) ≥ 0 if s = smin(i).

In summary the degeneracy occurs due to a shared element activating the bound at the solution. In
a direct analogy, the conversion SDP in (5) primal degenerate when, rank(XCstCst

) < |Cst|. This
degeneracy is directly attributable to the duplication of the semidefinite constraints for the submatrix
XCstCst

in both Xs � 0 and Xt � 0 for every pair of (s, t) ∈ T : s 6= t. Unfortunately, the duplication
of the semidefinite constraints cannot be avoided in the case of SDP without losing the linearity. We
provide formal arguments for the degeneracy and dual multiplicity of the conversion SDP (5) in the
following section.

4 Primal Degeneracy & Dual Non-uniqueness of Conversion
Approach

We review the conditions for primal non-degeneracy and dual uniqueness for the SDP (1) introduced
by Alizadeh et al [1] in § 4.1. § 4.2 proves the primal degeneracy result for the conversion approach.

4.1 Primal Nondegeneracy and Dual Uniqueness in SDPs

Suppose X ∈ Sn with rank(X) = r with eigenvalue decomposition X = Qdiag(λ1, . . . , λr, 0, . . . , 0)QT

then, the tangent space TX of rank-r symmetric matrices is

TX =

{
Q

[
U V
V T 0

]
QT

∣∣∣U ∈ Sr, V ∈ Rr×(n−r)
}
. (8)

The null space of equality constraints NA is,

NA = {Y ∈ Sn|Ap • Y = 0 ∀ p = 1, . . . ,m} . (9)

Definition 1 ([1]). Suppose X is primal feasible for (1) with rank(X) = r then, X is primal nondegen-
erate if

TX + NA = Sn. (10)
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Lemma 2 ([1, Theorem 2]). Suppose X∗ ∈ Sn is primal nondegenerate and optimal for (1). Then
the optimal dual multipliers (ζ∗, S∗), for the equality and positive semidefinite constraints respectively,
satisfying the first order optimality conditions (11) are unique,

A0 +

m∑
p=1

ζ∗pAp − S∗ = 0

Ap •X∗ = bp ∀ p = 1, . . . ,m

X∗, S∗ � 0, X∗S∗ = 0.

(11)

4.2 Primal Degeneracy of Conversion SDP

Assumption 1. The SDP (1) has an optimal solution X∗ with rank(X∗) < |Cst| for some (s, t) ∈ E.

In the following we denote by X∗s the optimal solution to the conversion SDP (5). The following
result is immediate.

Lemma 3. rank(X∗s ) ≤ rank(X∗) ∀ s = 1, . . . , `.

Proof. By definition, X∗s = X∗CsCs
is a principal submatrix of X∗. The claim follows by noting that the

rank of any principal sub-matrix cannot exceed that of the original matrix.

The following result characterizes the eigenvectors of the matrices X∗s , X
∗
t for cliques s, t satisfying

Assumption 1. Without loss of generality and for ease of presentation, we assume that

σs(i) = σt(i) and 1 ≤ σs(i) ≤ |Cst| ∀ i ∈ Cst. (12)

Lemma 4. Suppose Assumption 1 holds for cliques s, t. Then, there exists u ∈ R|Cst| such that vs =
[uT 0T|Cs\Cst|]

T is a 0-eigenvector of X∗s and vt = [uT 0T|Ct\Cst|]
T is a 0-eigenvector of X∗t .

Proof. From Lemma 3, we have that rank(X∗s ), rank(X∗t ) < rank(X∗) < |Cst| where the second in-
equality follows from Assumption 1. Using the arguments in the proof of Lemma 3 we have that the
submatrix of X∗s , X

∗
t corresponding to Cst must have rank smaller than |Cst|. Hence, there exists a

vector u ∈ R|Cst| that lies in the nullspace of the principal submatrix. Taking the right and left products
with vs of the matrix X∗s ,

vTs X
s∗vs = uTX∗s1u = 0 =⇒ vTs X

∗
s vs

vTs vs
= 0

=⇒ vs is a 0− eigenvector of X∗s

where X∗s1 denotes the submatrix of X∗s corresponding to the indices of Cst. The claim on X∗t can be
proved similarly and this completes the proof.

The tangent space for the matrices Xs is defined as,

Ts,X =

{
Qs

[
U V
V T 0

]
QTs

∣∣∣U ∈ Srs , V ∈ Rrs×(|Cs|−rs)

}
(13)

whereXs =Qsdiag(λ1, . . . , λrs , 0, . . . , 0) (Qs)T and rs = rank(Xs). The tangent space for the conversion
SDP 5 is denoted by TX = ∪`s=1Ts,X . The null space of equality constraints for the conversion SDP (5)
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is,

N =

Ys ∈ S|Cs|

∣∣∣∣∣∣∣∣
∑̀
s=1

As,p • Ys = 0 ∀ p = 1, . . . ,m

Es,ij •Xs = Et,ij •Xt

∀ i ≤ j, i, j ∈ Cst, (s, t) ∈ E

 . (14)

Based on the definitions in (13),(14), the conversion SDP in (5) is primal non-degenerate if,

TX + N = Sn̄ ⇐⇒ T⊥X ∩ N⊥ = {0} where n̄ =
∑̀
s=1

|Cs|

T⊥X = ∪`s=1T⊥s,X

T⊥s,X =

{
Qs

[
0 0
0 W

]
QTs

∣∣ W ∈ S|Cs|−rs
}

N⊥ = subspace spanned by the constraints in (5).

(15)

We can now state the main result on the primal degeneracy of the conversion SDP (5).

Theorem 1. Suppose Assumption 1 holds. Then, the solution X∗s of the conversion SDP (5) is primal
degenerate.

Proof. From the conditions for primal non-denegeracy in (15) , we have that X∗s is primal degenerate
if, there exist scalars αp, βst,ij 6= 0 for some s = 1, . . . , ` such that

m∑
p=1

αpAs,p +
∑

(s,t)∈E

∑
i≤j∈Cst

βst,ijEs,ij ∈ T⊥s,X∗

m∑
p=1

αpAt,p −
∑

(s,t)∈E

∑
i≤j∈Cst

βst,ijEt,ij ∈ T⊥t,X∗ .
(16)

In the following we show that αp = 0 and some βst,ij 6= 0 for s, t satisfying Assumption 1 for which (16)
holds.

In the rest of the proof s, t denote a pair of cliques Cs,Ct satisfying Assumption 1. By Lemma 4 and
the definition of T⊥s,X∗ we have that,

vsv
T
s ∈ T⊥s,X∗ and vtv

T
t ∈ T⊥t,X∗ .

Define β̂st,ij = Es,ij • (vsv
T
s ) = vTs E

s
ijvs. By definition of β̂st,ij ,

vsv
T
s =

∑
i≤j∈Cst

β̂st,ijEs,ij . (17)

From (12), we also have that vtv
T
t =

∑
i≤j∈Cst

β̂st,ijEt,ij . Thus, the choice of

αp = 0, βst,ij =

{
β̂st,ij for s, t satisfying Assumption 1

0 otherwise

satisfies (16) for scalars αp, βst,ij not all 0. Thus, the solution to conversion SDP (5) is primal degenerate
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4.3 Dual Non-uniqueness in Conversion SDP

The solution X∗s and multipliers ζ∗s,p, ξ
∗
st,ij , S

∗
s satisfy the first order optimality conditions for the con-

version SDP (5),

As,0 +

m∑
p=1

ζ∗s,pAs,p +
∑

t:(s,t)∈E

∑
i≤j∈Cst

ξ∗st,ijEs,ij

−
∑

t:(t,s)∈E

∑
i≤j∈Cts

ξ∗ts,ijEs,ij − S∗s = 0

∑̀
s=1

As,p •X∗s = bp

Es,ij •X∗s = Et,ij •X∗t
X∗s , S

∗
s � 0, X∗sS

∗
s = 0.

(18)

Theorem 2. Suppose Assumption 1 holds and vTs S
∗
svs > 0 or vTt S

∗
t vt > 0. Then, the optimal multipliers

for the conversion SDP (5) are not unique.

Proof. Let ζ∗s,p, ξ
∗
st,ij , S

∗
s satisfy the first order optimality conditions (18) for the conversion SDP (5). In

the following we show by construction the existence of other multipliers satisfying the conditions in (18).
Suppose, vTs S

∗
svs = γ > 0. Since, vs is a 0-eigenvector of X∗s (Lemma 4) and X∗sS

∗
s = 0 (18) we have

that vs is also an eigenvector of S∗s . Thus, for all 0 ≤ δ ≤ γ,

X∗s (S∗s − δvsvTs ) = 0, S∗s − δvsvTs � 0

X∗t (S∗t + δvtv
T
t ) = 0, S∗t + δvsv

T
s � 0

(19)

Following the proof of Theorem 1 we have that there exist β̂st,ij such that (17) holds. Hence,∑
i≤j∈Cst

(ξ∗st,ij − δβ̂st,ij)Es,ij − (S∗s − δvsvTs )

=
∑

i≤j∈Cst

ξ∗st,ijEs,ij − S∗s .

Further, by Lemma 4 we also have that,

−
∑

i≤j∈Cst

(ξ∗st,ij − δβ̂st,ij)Et,ij − (S∗t + δvtv
T
t )

=−
∑

i≤j∈Cst

ξ∗st,ijEt,ij − S∗t

+

 ∑
i≤j∈Cst

δβ̂st,ijEt,ij − δvtvTt


=−

∑
i≤j∈Cst

ξ∗st,ijEt,ij − S∗t + δ(vtv
T
t − vtvTt )

=−
∑

i≤j∈Cst

ξ∗st,ijEt,ij − S∗t .
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Thus, for any 0 < δ ≤ γ replacing ξ∗st,ij , S
∗
s , S

∗
t with

ξ∗st,ij + δβ̂st,ij , S
∗
s − δvsvTs , S∗t + δvtv

T
t

will also result in satisfaction of the first order optimality conditions in (18). Hence, the multipliers are
not unique when vTs S

∗
svs > 0. The proof follows in an identical fashion for vTt S

∗
t vt > 0. This completes

the proof.

5 Numerical Experiments

We demonstrate the results of the previous section through numerical experiments on a simple SDP.
Consider the SDP with data

A0 =


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 , Ap = epe
T
p ∀ p = 1, . . . , 4. (20)

This form of the SDP has the same structure as the SDP relaxation for MAXCUT investigated by
Goemans and Williamson [5]. The eigenvalues and vectors of A0 are,

Λ0 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

 , Q0 =


− 1

2 0 1√
2
− 1

2
1
2 − 1√

2
0 − 1

2
1
2

1√
2

0 − 1
2

− 1
2 0 − 1√

2
− 1

2

 .
Since A0 has the smallest eigenvalue to be −1, the optimal solution to the SDP defined by (20) is
X∗ = 4q1q

T
1 where q1 is the first column of Q0 (the eigenvector of A0 corresponding to eigenvalue of

−1). The factor 4 ensures that the equality constraints are satisfied.

(a) G(N,E) (b) G(N,F) (c) C1 = {2, 3, 1},C2 = {2, 3, 4}

Figure 1: (a) Graph of the original SDP. (b) Graph of the chordal completion. (c) Maximal clique
decomposition of chordal completion.

For the data in (20), the graph of the aggregate sparsity sparsity pattern is depicted in Figure 1(a).
The G(N,E) is a 4-cycle and not chordal. Figure 1(b) shows a chordal extension where an edge (2, 3)
has been introduced. The maximal clique decomposition for the chordal graph G(N,F) is shown in
Figure 1(c). Note that we have ordered the vertices such that (12) for ease of presentation. The
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conversion SDP is given by the data,

C1 = {2, 3, 1},C2 = {2, 3, 4}

A1,0 =

1 0 1
0 1 1
1 1 1

 , A2,0 =

0 0 1
0 0 1
1 1 1


A1,1 = e3e

T
3 , A2,1 = 0;A1,2 = e1e

T
1 , A2,2 = 0

A1,3 = e3e
T
3 , A2,3 = 0;A1,4 = 0, A2,4 = e4e

T
4

E1,22 = E2,22 = e1e
T
1 , E1,23 = E2,23 =

1

2
(e1e

T
2 + e2e

T
1 )

E1,33 = E2,33 = e2e
T
2 .

The solution to the conversion SDP is,

X∗1 = X∗2 =

 1 1 −1
1 1 −1
−1 −1 1


Clearly, rank(X∗1 ) = rank(X∗2 ) = 1 < |C12|. Hence, Assumption 1 holds. The eigenvectors, eigenvalues
of S∗1 are,

Λ1 =

3 0 0
0 0 0
0 0 0

 , Q1 =


1√
3
− 1√

6
1√
2

1√
3
− 1√

6
− 1√

2

− 1√
3
− 2√

6
0

 .
5.1 Primal Degeneracy

As shown in Lemma 4 we have that u = [ 1√
2

1√
2
]T is a 0-eigenvector of the submatrix which corresponds

to the intersection of the cliques, C12. As shown in Lemma 4, v1 = v2 = [uT 0]T are 0-eigenvectors of
X∗1 , X

∗
2 respectively.

From the definition of Ts,X∗ it is easy to see that,

v1v
T
1 =

 1
2 − 1

2 0
− 1

2
1
2 0

0 0 0

 = Q1

0 0 0
0 0 0
0 0 1

QT1 ∈ T1,X∗

v1v
T
1 =

1

2
E1,22 − E1,23 +

1

2
E1,33.

Similarly, it can be shown that

− v2v
T
2 = Q1

0 0 0
0 0 0
0 0 −1

QT1 ∈ T1,X∗

− v2v
T
2 =

1

2
(−E2,22)− (−E2,23) +

1

2
(−E2,33).

Thus, there exists an element in T1,X∗ and T2,X∗ that is in the span of the constraints equating the
elements in C12. Hence, the conversion SDP is primal degenerate.
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5.2 Non-unique Multipliers

For the original SDP, the optimal multipliers are,

ζ∗ =


−1
−1
−1
−1

 , S∗ =


2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2

 .
For the conversion SDP, multipliers satisfying (18) are

ζ∗1 =


−1
−1
−1
0

 , ζ∗2 =


0
0
0
−1

 , ξ∗12,22 = 1, ξ∗12,23 = 0, ξ∗12,33 = 1

S∗1 =

1 0 1
0 1 1
1 1 2

 , S∗2 =

1 0 1
0 1 1
1 1 2

 .
The eigenvectors of S∗1 , S

∗
2 are Q1 while the eigenvalues are,

ΛS1 = ΛS2 =

0 0 0
0 3 0
0 0 1

 .
Thus it is easy to see that X∗1S

∗
1 = 0 and they satisfy strict complementarity. The same is also true

of X∗2 and S∗2 . The eigenvalue of v1 is 1 and satisfies the conditions in Theorem 2 and hence, for all
0 ≤ δ ≤ 1,

S∗1 − δv1v
T
1 � 0, X∗1 (S∗1 − δv1v

T
1 ) = 0

(ξ∗12,22 −
1

2
δ)E12,22 + (ξ∗12,23 + δ)E12,23

+ (ξ∗12,33 −
1

2
δ)E12,33 − (S∗1 − δv1v

T
1 )

= ξ∗12,22E12,22 + ξ∗12,23E12,23 + ξ∗12,33E12,33 − S∗1
Further, it can also be shown that,

(ξ∗12,22 −
1

2
δ)(−E12,22) + (ξ∗12,23 + δ)(−E12,23)

+ (ξ∗12,33 −
1

2
δ)(−E12,33)− (S∗2 + δv2v

T
2 )

= − ξ∗12,22E12,22 − ξ∗12,23E12,23 − ξ∗12,33E12,33 − S∗2
S∗2 + δv2v

T
2 � 0, X∗2 (S∗2 + δv2v

T
2 ) = 0.

Thus, we have that the multipliers

ζ∗1 , ζ
∗
2 , ξ

∗
12,22 −

1

2
δ, ξ∗12,23 + δ, ξ∗12,33 −

1

2
δ

S∗1 + δv1v
T
1 , S

∗
2 + δv2v

T
2

also satisfy the first order optimality conditions for conversion SDP. This shows that there are an infinite
set of multipliers for the conversion SDP.
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Figure 2: Plot of the condition number of the schur-complement matrix in the IPM against the optimality
gap. ◦ - original SDP formulation, 4 - conversion SDP.

5.3 Ill-conditioning in IPM

Since the multipliers are not unique, the matrix used in the step computation of the IPM for SDP
must be singular in the limit. Figure 2 plots the condition number of the schur-complement matrix in
SDPT3 [11] against the optimality gap. SDPT3 takes 7 iterations to solve either formulation. But the
plot clearly shows that the condition number of the schur-complement matrix is higher for the conversion
SDP. This is attributable to the non-uniqueness of the dual multipliers.

6 Conclusions & Future Work

We analyzed the conversion approach for SDP proposed by Fukuda et al [4]. The analysis showed that for
SDPs with a low rank solution, the conversion SDP was primal degenerate. We also provided conditions
under which the multipliers for the conversion SDP were non-unique. The theory was exemplified using
a simple 4× 4 SDP. In the example, the ill-conditioning in the schur-complement matrix was greater for
the conversion SDP. Nevertheless, this did not affect the number of iterations to reach the said tolerance.
We believe the effect of the ill-conditioning is likely to be more dramatic for larger problems and affect
convergence of IPM. This will be investigated in a future study.

References

[1] F. Alizadeh, J-P. A. Haeberly, and M. L. Overton. Complementarity and nondegeneracy in semidef-
inite programming. Mathematical Programming, 77(2):111–128, 1997.

[2] J. R. S. Blair and B. Peyton. An introduction to chordal graphs and clique trees. In A. George,
J. R. Gilbert, and J. W. H. Liu, editors, Graph Theory and Sparse Matrix Computation, volume 56
of The IMA Volumes in Mathematics and its Applications, pages 1–29. Springer New York, 1993.

[3] E. de Klerk. Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Appli-
cations. Kluwer Academic Publishers, 2002.

[4] M. Fukuda, M. Kojima, K. Murota, and K. Nakata. Exploiting Sparsity in Semidefinite Program-
ming via Matrix Completion I: General Framework. SIAM J. Optimization, 11(3):647–674, 2000.

12



[5] M. X. Goemans and D. P. Williamson. .879-approximation algorithms for MAX CUT and MAX
2SAT. In Proceedings of the twenty-sixth annual ACM symposium on Theory of computing, STOC
’94, pages 422–431, New York, NY, USA, 1994.
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