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Abstract

Given an undirected graph, the Vertex Coloring Problem (VCP) consists of assigning a color to
each vertex of the graph in such a way that two adjacent vertices do not share the same color and the
total number of colors is minimized. DSATUR-based Branch and Bound (DSATUR) is an effective
exact algorithm for the VCP. One of its main drawback is that a lower bound is computed only once
and it is never updated. We introduce a reduced graph which allows the computation of lower bounds
at nodes of the branching tree. We compare the effectiveness of different classical VCP bounds, plus
a new lower bound based on the 1-to-1 mapping between VCPs and Stable Set Problems. Our new
DSATUR outperforms the state of the art for random VCP instances with high density, significantly
increasing the size of instances solved to proven optimality. Similar results can be achieved for a subset
of high density DIMACS instances.

keywords: Graph Coloring, DSATUR, Branch and Bound.

1. Introduction
Given an undirected graph G = (V,E) with |V | = n vertices and |E| = m edges, a coloring C of G
is a partition of V into k non empty stable sets: C = {V1, . . . , Vk}, where all vertices belonging to Vi
are colored with the same color i (i = 1, . . . , k). The chromatic number of G, denoted by χ(G), is the
minimum number of stable sets (or equivalently colors) in a coloring ofG and the Vertex Coloring Problem
(VCP) is the problem of determining the chromatic number of the graphG. The VCP is one of the classical
NP-hard problems (see Garey and Johnson [5]) in graph theory with application in many areas including:
scheduling, timetabling, register allocation, frequency assignment, communication networks and many
others (see [4, 7, 10, 12, 22, 17, 23, 31]). We adress the interested reader to Malaguti and Toth [25] for a
complete survey on the topic. A preliminary version of this manuscript appeared in Furini et al. [39].

The VCP has received a large amount of attention in the last decades and many articles investigated
an exact implicit enumeration algorithm called DSATUR-based Branch and Bound (DSATUR), first intro-
duced by Brélaz [3] and then improved by Sewell [9] and San Segundo [27]. It is a Branch-and-Bound
algorithm where at each node of the branching tree the children nodes are created by assigning feasible
colors to a non-colored vertex; thus at each node of the branching tree, we have a partial coloring of G
and at each leaf we have a coloring of G. Formally, a partial coloring C̃ of G is a partition of a subset
of vertices Ṽ ⊂ V into k̃ stable sets or colors (C̃ = {Ṽ1, . . . , Ṽk̃}), while the remaining vertices V \ Ṽ
are non-colored. Many rules have been proposed in the literature to determine the sequence of vertices to
be colored (see Section 2 for further details on DSATUR). It is worth mentioning that DSATUR has also
been successfully applied to other variants of VCPs, see for example Méndez-Diaz et al. [38].
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In all the DSATUR versions proposed in the literature, a lower bound is computed once at the root node
of the algorithm as a heuristic maximal clique and it is never updated. A second trivial lower bound also
used in the literature is the number of colors k̃ of a partial coloring C̃. The principal idea of this manuscript
consists of updating and improving the quality of the lower bound during the branching scheme. In order
to do that, we introduce a Reduced Graph associated to a partial coloring which allows to update the lower
bounds. We implement and compare the classical lower bounds for VCP, i.e, the clique number, a bound
based on the stability number, the fractional chromatic number and the Hoffman bound. Since all these
bounds turn out to be useful only in reducing the number of nodes of DSATUR but not the computing
time, we investigate a new bound based on a 1-to-1 mapping between VCPs and Stable Sets Problems.
Thanks to this new bound we manage to reduce both the number of nodes and the computing time for
random VCP instances with high density and for a subset of high density DIMACS instances.

For random graphs DSATUR outperforms other exact algorithms, see San Segundo [27]. For DI-
MACS VCP instances instead, Branch-and-Price algorithms based on the Integer Linear Programming
(ILP) formulation of Mehrotra and Trick [8] guarantees the best performances. Many articles study ways
of improving this class of exact algorithms. Malaguti et al. [28] focus on finding the most efficient way
to solve the pricing subproblem, proposing a tabu-search metaheuristic which speeds up the computa-
tional convergence. Gualandi and Malucelli [29] propose instead to solve the pricing subproblem using
constraint programming techniques. Cook et al. [30] also work on this formulation tackling numerical
difficulties in the context of column generation, deriving a way of computing numerically safe bounds.
Finally, Morrison et al. [33] work on new branching rules that preserve the graph structure at each node
of the branching tree.

The remainder of the paper is organized as follows. In Section 2, we recall DSATUR and present
different vertex selection rules. In Section 3, we present and computationally compare the VCP lower
bounds. In Section 4, we introduce the Reduced Graph used to compute VCP lower bounds starting from
a partial coloring. In Section 5, we discuss extensive computational results and depict further possible
lines of research on the topic.

2. State of the art: DSATUR-based Branch and Bound
In this section, we recall the DSATUR-based Branch and Bound called for brevity DSATUR in the fol-
lowing. We base our review on the notation offered by San Segundo [27]. The algorithm is based on
DSATURh (see Brélaz [3]) which is a greedy heuristic algorithm where each vertex u ∈ V is iteratively
colored with a feasible color. Given a partial coloring C̃ and a vertex u ∈ V , the saturation degree
DSAT(u, C̃) corresponds to the number of different colors in its neighbourhood N(u). At each iteration
of DSATURh, the vertex with the highest DSAT value is colored until a feasible heuristic coloring of the
entire graph G is obtained, the number of colors is a valid upper bound for χ(G).

An exact branch and bound algorithm can be derived from DSATURh. Given a partial coloring and
an uncolored vertex u ∈ V , instead of fixing its color in a greedy way, a branching tree is created by
coloring u with all the feasible colors already used in the partial coloring plus a new one. At each node
of this branching tree, we are given a partial coloring C̃ with k̃ colors, an upper bound (UB) and a lower
bound (LB) on χ(G). Trivially, k̃ can be used as a lower bound for χC̃(G), i.e, the chromatic number
of G partially colored by C̃. A lower bound for χ(G) can be obtained executing DSATURh, since the
first colored vertices with different colors necessarily form a clique in G. Both bounds are weak and the
maximal heuristic clique found by DSATURh is typically never updated during the execution of DSATUR.

In Algorithm 1 and Algorithm 2, we give the pseudo code of DSATUR. Precisely, Algorithm 1 receives
in input the graph G to be colored and the lower/upper bounds computed via DSATURh and it produces in
output the optimal coloring C∗ of value χ(G). In Algorithm 2, the mechanism to create the children nodes
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is described, i.e, after an uncolored vertex is selected and if max{k̃, LB} < UB, up to k̃ + 1 children
nodes are created by coloring the selected vertex with all the feasible colors in C̃ plus a new one. In case
all vertices are colored and k̃ < UB, the best incumbent solution value and the best solution are updated
respectively.

Algorithm 1: DSATUR
Data: G = (V,E): graph to color
Result: optimal coloring C∗ of value χ(G)

1 LB,UB ← DSATURh;
2 DSATUR(∅);
3 return C∗

Algorithm 2: DSATUR(C̃)
1 if all the vertices are colored then
2 if k̃ < UB then
3 C∗ ← C̃, UB ← k̃;
4 end
5 else
6 if max{k̃, LB} < UB then
7 select a non-colored vertex v;
8 for every feasible color i ∈ C̃ plus a new one do
9 Ĉ ← C̃, add v in V̂i;

10 DSATUR(Ĉ);
11 end
12 end
13 end

The basic Vertex Selection Rule (VSR), proposed in Brélaz [3], consists of coloring the vertex with the
maximum DSAT value, thus it minimizes the number of children nodes. During the execution of DSATUR,
it often happens that many different vertices share the same maximum DSAT value, i.e., creating possible
ties. Rules to break ties have been introduced in the literature:

(i) In Brélaz [3], ties are broken considering the maximum degree or, in case of further ties, the lexico-
graphical order is used. The complexity of this rule is O(n2).

(ii) In Sewell [9] instead, ties are broken considering the maximum number of common available colors
in the neighborhood of uncolored vertices. The complexity of this rule is O(n3).

(iii) In San Segundo [27], the Sewell rule is extended considering only uncolored vertices that are also
candidates in the tie. In the worst case, the complexity is the same as Sewell’s rule but it is faster on
average.

In our implementation of DSATUR we follow the VSR proposed in San Segundo [27], this VSR has
computationally proven to produce the smallest branching tree and accordingly the best computing time
(see Section 5 for further details on our implementation of DSATUR).
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3. Lower bounds for the Vertex Coloring Problem
In this section we review the classical lower bounds for the VCP. In addition we present a new bound based
on a 1-to-1 mapping between VCPs and Stable Set Problems. For each bound we discuss the framework
used to compute it and its computational complexity. The focus of this manuscript is to explore the idea of
using these lower bounds to speed up the convergence of DSATUR. Accordingly not only the strength of
these bounds is important but also the computing time necessary to obtain them. Thus, we conclude this
section with an extensive computational comparison with a special attention on their potential impact on
the performances of DSATUR.

3.1 Lower bounds review
Clique number ω(G). Recalling that a clique is a subset of fully connected vertices, the clique number
ω(G) is the maximal size of a clique of G. The following holds:

χ(G) ≥ ω(G) (1)

This lower bound comes from the fact that in any clique all vertices should have different colors.
Trivially any heuristically found clique of size ωh(G) also provides a valid lower bound for the VCP
(χ(G) ≥ ωh(G)). In our computational tests, ωh(G) corresponds to the value of the heuristic clique
produced by DSATURh. Computing the clique number is NP-hard (see Garey and Johnson [5]) but in
practice very effective exact solvers are available in the literature. We address the interested reader to Wu
and Hao [36] for a recent survey on the topic. In our computational tests, we decided to use one of the
most efficient clique solvers, i.e., the combinatorial Branch and Bound and Dynamic Programming based
exact algorithm named Cliquer (see [11]).

Lower bound based on the stability number χα(G). Recalling that a stable set is a subset of fully
disconnected vertices, the stability number α(G) is the maximal size of a stable set of G. The following
holds:

χ(G) ≥ χα(G) =

⌈
n

α(G)

⌉
(2)

Since a coloring is a partition into stable sets, the best we can hope for is having all stable sets of
maximal size (see Schrijver [34] for further details). Computing α(G) is an NP-hard problem (see Garey
and Johnson [5]), but since α(G) is equivalent to the clique number ω(Ḡ) of the complement graph Ḡ =
(V, Ē1), we use Cliquer to efficiently obtain it.

Fractional Coloring number χf (G). Following the notation proposed in Schrijver [34], the Fractional
Coloring number χf (G) is the minimum value of λ1 + · · ·+λk with λ1, . . . , λk ∈ R+ such that there exist
stable sets S1, . . . , Sk with

λ1A
S1 + · · ·+ λkA

Sk = 1.

Where for any stable set S, AS denotes the incidence vector of S in R|V |; that is for any v ∈ G:

1Ē = {(i, j) : i, j ∈ V, i 6= j, (i, j) /∈ E}
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AS(v) :=

{
1 if v ∈ S,
0 otherwise.

The Fractional Coloring number corresponds to the linear programming relaxation of the VCP formu-
lation proposed by Mehrotra and Trick ([8]) and it is NP-hard to compute (see Grötschel et al. [6]). The
following holds:

χ(G) ≥ χ∗f (G) = dχf (G)e (3)

It is well known that χf (G) provides strong VCP bounds, but it requires Column Generation (CG) tech-
niques to be computed. All state-of-the-art Branch-and-Price algorithms rely on this bound since during
the branching scheme the stable sets previously generated in the branching nodes speed up the update of
this lower bound (see [28] for further details). Unfortunately, this warm start trick cannot be directly trans-
lated into our framework when we update the lower bound in DSATUR due to the nature of the Reduced
Graph which changes structures in function of the partial colorings (see Section 4 for further details). Ac-
cordingly, we do not go for efficiency in terms of computing time and we implement a basic CG approach
directly using CPLEX to solve the Restricted Master Problem and to solve the subproblems (we refer
the interested reader to [13] for further details on CG). Nevertheless this bound is kept in our analysis to
evaluate the quality of the other bounds.

Hoffman number χH(G). Hoffman proves that the following is a lower bound for χ(G) (see Hoffman
[1]):

χ(G) ≥ χ∗H(G) = dχH(G)e = 1− εmax(H)

εmin(H)
(4)

where H is the adjacency matrix of G while εmax and εmin are the largest and the smallest eigenvalues of
H respectively. The eigenvalues can be computed in a polynomial time using the C++ LAPACK library.

3.2 A new lower bound
Lower bound based on an auxiliary graph χGA(G). Cornaz and Jost [19] and Palubeckis [21] prove
a 1-to-1 correspondence between colorings in G and stable sets in an auxiliary graph GA. The following
Theorem holds:

Theorem 1 (Cornaz and Jost [19]) For any graph G and any acyclic orientation of its complementary
graph, there is a one-to-one correspondence between the set of all colorings of G and the set of all stable
sets of GA. Moreover, for any coloring {V1, . . . , Vk} and its corresponding stable set S̃ in GA, we have:
|S̃|+ k = |V |. In particular:

α(GA) + χ(G) = |V |.

To build the auxiliary graph GA, it is necessary to define an acyclic orientation
−→̄
G of Ḡ. Then GA corre-

sponds to the line-graph2 L(
−→̄
G) after the removal of all edges between pairs of arcs which are simplicial3

2The line-graph L(
−→̄
G) of

−→̄
G is defined as follows: each arc of

−→̄
G corresponds to a vertex of L(

−→̄
G) and two vertices are

linked by an edge in the L(
−→̄
G) if they correspond to two adjacent arcs in

−→̄
G .

3A pair of arcs {a, b} of
−→̄
G is called a simplicial pair if a = (u, v), b = (u,w), and (v, w) or (w, v) is an arc of

−→̄
G , for three

distinct vertices u, v, w
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v1 v2

v3 v4

v5

1. G

v1 v2

v3 v4

v5

2.
−→̄
G

v1v3

v1v2

v3v4

v2v4

v2v5

v4v5

3. L(
−→̄
G)

v1v3

v1v2

v3v4

v2v4

v2v5

v4v5
4. GA

Figure 1: Transformation from a graph G to GA

in
−→̄
G . Precisely, given a simplicial pair of arcs a = (vi, vj) and b = (vi, vk) the corresponding edge (a, b)

is removed from L(
−→̄
G).

We now illustrate the construction of GA using the example of Figure 1. The original graph consists
of 5 nodes and 4 edges (part 1 of Figure 1). Then the acyclic orientation

−→̄
G is depicted in part 2 of Figure

1 where (vi, vj) ∈
−→̄
E if (vi, vj) ∈ Ē and i < j. The next step consists of creating the line-graph L(

−→̄
G)

as depicted in part 3 of Figure 1. Finally the Auxiliary Graph GA is given in part 4 of figure 1. Only
one simplicial pair (in blue) is present in

−→̄
G , i.e., (v2, v5) and (v2, v4), and accordingly the corresponding

edge has been removed from L(
−→̄
G). From Figure 1, it is clear that any vertex belonging to a stable set in

GA allows to reduce of one unity the upper bound |V | on χ(G). In other words, if a vertex (vivj) ∈ GA

belongs to a stable set, it means that vertex vj can be colored with the same color of vi, i.e. “saving” in

this manner a color. Finally for any simplicial pair of arcs (vi, vj) and (vi, vk) in
−→̄
G , removing the arc

(vivj, vivk) in GA reflects the fact that once vk has been colored in the same way as vi then also vj can take
the same color (and vice-versa).

Any upper bound ᾱ(GA) of the stability number α(GA) gives us a valid lower bound for χ(G) denoted
χGA(G). The following holds:

χ(G) ≥ χGA(G) = |V | − dᾱ(GA)e. (5)

Many upper bounds are present in the literature for the stability number α(GA). After extensive pre-
liminary tests, we decide to exploit an upper bound based on the edge formulation for the Maximal Stable
Set problem (MSSP). The edge formulation is an ILP where α(GA) = max x over x in STAB(GA), that
is, the set of vectors of RVGA satisfying
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ω χGA
ωh χα χ∗

f χ∗
H

ω 0.00 99.25 69.40 0.00 100.00

χGA
82.84 100.00 100.00 0.75 100.00

ωh 0.00 0.00 2.24 0.00 2.99

χα 4.48 0.00 97.76 0.00 85.82

χ∗
f 88.81 35.82 100.00 100.00 100.00

χ∗
H 0.00 0.00 92.54 1.49 0.00

Table 1: Instance percentage with better
lower bound value

ω χGA
ωh χα χ∗

f χ∗
H

ω 17.16 0.75 26.12 11.19 0.00

χGA
- 0.00 0.00 63.43 0.00

ωh - - 0.00 0.00 4.48

χα - - - 0.00 12.69

χ∗
f - - - - 0.00

χ∗
H - - - - -

Table 2: Instance percentage with equal lower
bound value (ties)

ω χGA
ωh χα χ∗

f χ∗
H

ω 99.25 0.00 49.25 100.00 71.64

χGA
0.75 0.00 0.00 94.03 0.00

ωh 100.00 100.00 74.63 100.00 100.00

χα 50.00 100.00 25.37 100.00 71.64

χ∗
f 0.00 5.97 0.00 0.00 0.00

χ∗
H 28.36 100.00 0.00 28.36 100.00

Table 3: Instance percentage with faster
computing time

ω χGA
ωh χα χ∗

f χ∗
H

ω 0.00 0.00 34.33 0.00 71.64

χGA
0.75 0.00 0.00 0.75 0.00

ωh 0.00 0.00 2.24 0.00 2.99

χα 2.99 0.00 25.37 0.00 70.90

χ∗
f 0.00 0.75 0.00 0.00 0.00

χ∗
H 0.00 0.00 0.00 1.49 0.00

Table 4: Instance percentage with faster com-
puting time and better lower bound value

xu + xv ≤ 1 uv ∈ EA (6)
xv ∈ {0, 1} v ∈ VA. (7)

Inequalities (6) are called the edge inequalities and any (not necessarily integer) solution x of (6)-(7) is
called a fractional stable set. Many families of valid inequalities can be separated to improve the quality of
the continuous relaxation of the edge formulation. We decide instead to use the generic valid inequalities
generated by CPLEX (version 12.6) at the root node. In this way we obtain what we have called χGA(G).
Thanks to extensive computational experiments, we identify that the most effective families of inequalities
are the Clique Cuts, the Zero-half Cuts and the Gomory Fractional Cuts. We exploit in this manner the
strength of CPLEX in computing quickly strong bounds that can be successfully exploited to speed up the
converge of DSATUR (see Section 5 for further details).

3.3 Comparison between lower bounds
To test the lower bounds, we use the random instances introduced in San Segundo [27] with 70, 75 and
80 vertices and density (denoted d) varying from 0.1 to 0.9. Since not all the densities are present for
the instances of 80 vertices, we complete this test-bed generating the missing instances using the same
procedure used in [27]. For each density value and vertex number, we select 5 different instances, building
in this manner a test-bed of 120 instances.

Tables 1,2,3 and 4 compare each bound against each other in terms of values and computing times.
The entries in the table correspond to the percentage of instances respecting a certain criteria as follows.
For Table 1 and 2 we report the percentage of instances where the “row” lower bound value is strictly
larger (Table 1) or equal (Table 2) than the “column” lower bound value. For Table 3, we report instead

7



(a)

(b)

Figure 2: Lower bound comparison for random instances with different densities and n = 70

the percentage of intances where the “row” lower bound computing time is smaller than the “colum” lower
bound computing time. For example, in Table 3, we can see that bound χGA(G) is faster than bound χ∗f (G)
in 94.03% of the instances. In Table 4, we report the percentage of instances where the “row” lower bound
computing time is smaller than the “colum” lower bound computing time and the “row” lower bound value
is larger than the “colum” lower bound value.

The two subfigures of Figure 2 graphically compare the lower bound values and the computing time
for instances of 70 vertices and density varying from 0.1 to 0.9. Figure 2a presents the lower bound values
on the vertical axis and the density in horizontal one (5 instances with same density). Figure 2b presents
the lower bound computing times on the vertical axis and the density on the horizontal one. Each point
represents a particular instance. No bound fully dominates all the others in terms of computing time and
value. We can see in Figure 2b that the best lower bound values are provided by χGA(G) and χ∗f (G)
which are also the most time consuming ones. Among the “fast” but weaker lower bounds, ω(G) tends to
dominate χα(G) and χ∗H(G) in terms of lower bound values. The lower bound ωh(G) is the fastest but of
very poor quality.

As far as the strongest bounds are concerned, χGA(G) is equal to χ∗f (G) in around 63% of the in-
stances and, in the remaining cases, the difference between the values does not exceed 1. According to the
construction of graph GA, the more dense the graph is the faster the bound is computed, since the number
of nodes |VA| of GA is equal to the number of edges of Ḡ. While it gets faster, it preserves its quality
and, accordingly, its pruning potential once included in DSATUR. This fact makes χGA(G) the best lower
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bound for the new DSATUR algorithm. Thanks to extensive computational results, we notice that the use
of all the other lower bounds does not speed up DSATUR (see the Appendix for further details).

We finally report in Table 5 the lower bounds for a subset of DIMACS instances (ftp://dimacs.
rutgers.edu/pub/challenge/graph/) where we have been able to compute the lower bound
χGA(G) within a time limit of 3600 seconds. The results are similar to the ones obtained for random
instances. From the table, we can see that the overall quality of χα(G), χ∗H(G) and ωh(G) is very poor
while χGA(G) provides the best lower bound for many instances. For dense instances, χGA(G) dominates
χ∗f (G) in terms of computing time.

4. Reduced graph and the improved DSATUR-based Branch and
Bound

In order to make lower bounds dependent on a partial coloring C̃ obtained during the execution of
DSATUR, we introduce a new graph. The Reduced Graph GC̃ = (V C̃ , EC̃) is composed of the sub-
graph of G induced by the non-colored vertices plus k̃ vertices, one for each color. Each new vertex ṽi,
representing color i, is connected to all the uncolored neighbours of the vertices of Vi and to all the others
k̃−1 new vertices. Thus, the subgraph ofGC̃ induced by the k̃ new vertices is a clique. The reduced graph
becomes smaller increasing the number of colored vertices thus also the lower bounds become easier to
compute. An example using a partially colored graph of 6 vertices is given in Figure 3, where two colors
(1 and 2) are used and three vertices are uncolored. The Reduced Graph has 5 vertices, two representing
the classes of colors plus the three original uncolored vertices.

v5 ∈ V2
v1

v6 ∈ V1

v4 ∈ V1

v3

v2

v1

ṽ1

ṽ2

v3

v2

Figure 3: A partially colored graph G and the Reduced Graph GC̃

Recalling that we denote by χC̃(G) the chromatic number of G partially colored by C̃, the following
holds:

Lemma 1 χC̃(G) = χC̃(GC̃)

Proof.
Any feasible coloring Ĉ = {Ĉ1, . . . , Ĉk} in G containing the coloring C̃ (inducing k ≥ k̃) can be

mapped into an unique feasible coloring {Ĉ ′1, . . . , Ĉ ′k} in GC̃ using the same number of colors k. For
each color i, i = 1, . . . , k, two cases arise: if Ĉi ⊆ V \ C̃, then Ĉ ′i ← Ĉi (since the subgraphs induced
by Ĉi are equivalent in G and GC̃), otherwise it exists a unique stable set j such that C̃j ⊆ Ĉi, then
Ĉ ′i ← {ṽj}∪{Ĉi \ C̃j} with ṽj representing C̃j in GC̃ . By construction, Ĉ ′i is a stable setGC̃ . Any feasible
coloring {Ĉ ′1, . . . , Ĉ ′k} in GC̃ can be mapped into an unique feasible coloring {Ĉ1, . . . , Ĉk} containing the
coloring C̃ in G. For each color i, i = 1, . . . , k, two cases arise: if Ĉ ′i ⊆ V \ C̃, then Ĉi ← Ĉ ′i, otherwise
an unique vertex ṽj representing C̃j belongs to Ĉ ′i (let us recall that the k̃ vertices representing C̃ in GC̃
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Instance Value Time

name n d χ∗
f χGA

ω χα χ∗
H ωh χ∗

f χGA
ω χα χ∗

H ωh

queen5 5 25 0.53 5 5 5 5 4 4 0.01 0.01 0 0 0 0
queen6 6 36 0.46 7 7 6 6 5 4 0.37 0.3 0 0 0 0
queen7 7 49 0.40 7 7 7 7 5 4 0.06 0.24 0 0 0 0
queen8 8 64 0.36 9 8 8 8 6 4 3.8 1.75 0 0 0 0
queen8 12 96 0.30 12 12 12 12 8 2 0.95 3.67 0 0 0 0
queen9 9 81 0.33 9 9 9 9 7 4 12.07 7.1 0 0 0 0
queen10 10 100 0.30 10 10 10 10 8 4 21.71 28.36 0 0 0 0
queen11 11 121 0.27 11 11 11 11 9 4 22.78 41.51 0 0 0 0
queen12 12 144 0.25 12 12 12 12 10 4 30.02 241.34 0 0 0.01 0

myciel3 11 0.36 3 4 2 2 2 1 0.02 0 0 0 0 0
myciel4 23 0.28 4 4 2 2 2 1 0.44 0.11 0 0 0 0
myciel5 47 0.22 4 4 2 2 1 1 11.91 0.88 0 0 0 0
myciel6 95 0.17 4 4 2 2 2 1 248.67 18.89 0 0 0 0

miles250 128 0.05 8 8 8 2 4 3 0.06 4.89 0 0 0 0
miles500 128 0.14 20 19 20 7 5 12 0.15 5.91 0 0 0 0
miles750 128 0.26 31 31 31 10 6 11 0.24 2.62 0 0 0 0
miles1000 128 0.40 42 42 42 16 7 29 0.52 1.38 0 0 0 0.01
miles1500 128 0.64 73 71 73 25 8 51 0.71 0.46 0.01 0 0 0.01

anna 138 0.05 11 11 11 1 3 6 0.05 5.6 0 0 0 0
huck 74 0.11 11 11 11 2 1 4 0.03 0.3 0 0 0 0
jean 80 0.08 10 10 10 2 3 3 0.04 0.63 0 0 0 0
david 87 0.11 11 11 11 2 3 7 0.05 0.8 0 0 0 0
games120 120 0.09 9 9 9 5 3 1 0.08 5.64 0 0.04 0 0

mug88 1 88 0.04 4 3 3 3 2 2 3.89 2.01 0 0.01 0 0
mug88 25 88 0.04 4 3 3 3 1 1 3.35 1.78 0 0 0 0
mug100 1 100 0.03 4 3 3 3 2 1 5.56 1.88 0 10.29 0 0
mug100 25 100 0.03 4 3 3 3 2 2 6.05 1.62 0 23.3 0 0

mulsol.i.1 197 0.20 49 49 49 1 4 2 1.32 12.55 0 0 0 0
mulsol.i.2 188 0.22 31 31 31 2 2 2 0.89 8.28 0 0.01 0 0
mulsol.i.3 184 0.23 31 31 31 2 2 2 0.83 6.72 0 0 0 0
mulsol.i.4 185 0.23 31 31 31 2 2 2 0.82 6.69 0 0 0 0
mulsol.i.5 186 0.23 31 31 31 2 2 2 0.78 7.75 0 0 0 0

1-FullIns 3 30 0.23 4 3 3 2 1 3 0.14 0.09 0 0 0 0
1-FullIns 4 93 0.14 4 4 3 2 2 3 76.63 22.4 0 0 0 0
2-FullIns 3 52 0.15 5 4 4 2 1 4 0.21 0.44 0 0 0 0
3-FullIns 3 80 0.11 6 5 5 2 2 5 0.44 2.82 0 0 0 0
4-FullIns 3 114 0.08 7 6 6 2 2 6 0.58 14.23 0 0 0 0
5-FullIns 3 154 0.07 8 7 7 2 2 7 0.49 41.47 0 0 0 0

1-Insertions 4 67 0.10 3 3 2 2 2 1 49.8 4.51 0 0 0 0
2-Insertions 3 37 0.11 3 3 2 2 2 1 2.16 0.25 0 0 0 0
2-Insertions 4 149 0.05 3 3 2 2 1 1 1259.95 475.2 0 0 0 0
3-Insertions 3 56 0.07 3 3 2 2 2 1 10.03 1.98 0 0 0 0
4-Insertions 3 79 0.05 3 3 2 2 2 1 32.89 8.26 0 0 0 0

DSJC125.1 125 0.09 5 4 4 3 3 1 969.62 2302.61 0 10.88 0 0
DSJC125.9 125 0.90 43 43 34 31 16 10 266.61 0.16 9.27 0 0.01 0
DSJC250.9 250 0.90 - 71 - 50 23 7 tl 6.71 tl 0 0.01 0.03
DSJR500.1c 500 0.97 - 85 - 38 25 2 tl 2.11 tl 0.01 0.09 0.01

r125.1c 125 0.97 46 46 46 17 16 7 15.18 0.01 0 0.01 0 0
r125.1 125 0.03 5 5 5 2 3 3 0.22 3.21 0 0 0 0
r125.5 125 0.50 36 36 36 25 7 27 1.31 2.68 0 0 0 0
r250.1c 250 0.97 64 64 64 - 22 9 488.09 0.03 772.31 tl 0.01 0.01
r250.1 250 0.03 8 8 8 - 4 2 0.48 131.78 0 tl 0.48 0
r250.5 250 0.48 65 65 65 41 8 43 19.31 89 0.73 0 0.01 0.02
r1000.1c 1000 0.97 - 95 - 41 25 8 tl 325.53 tl 0.01 0.35 0.45

zeroin.i.1 211 0.19 49 49 49 1 3 11 0.95 18.12 0 0 0 0.01
zeroin.i.2 211 0.16 30 30 30 1 2 3 0.56 15.69 0 0 0 0
zeroin.i.3 206 0.17 30 30 30 1 2 3 0.58 14.35 0 0 0.01 0

Table 5: Comparison between Lower Bounds on χ(G) for DIMACS instances
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form a clique), and then Ĉi ← C̃j ∪ {Ĉ ′i \ {ṽj}}. By construction, Ĉi is a stable set in G. �

Trivially, we have: χC̃(GC̃) = χ(GC̃). Thus, from lemma 1, a lower bound denoted by LBC̃ for
χ(GC̃) is a lower bound for χC̃(G).

Improved DSATUR-based Branch and Bound. We present now the improved DSATUR-based Branch
and Bound. The new DSATUR algorithm, denoted DSATUR-χGA , is obtained by replacing in Algorithm
1 the call to Algorithm 2 by a call to the new Algorithm 3. The key element of the new algorithm is
the update of the lower bound χGA(GC̃), computed thanks to the reduced graph GC̃ at the nodes of the
branching tree.

Since updating the lower bound can be computationally expensive, we derive strategies to compute it
only in “promising” nodes of the branching tree. The term “promising” is linked to two different aspects.
Clearly pruning during the first levels of the branching tree is more likely to produce a larger reduction of
the branching nodes. Secondly, the lower bound is likely to prune when the difference between the node
lower and upper bounds is small. Accordingly, we introduce the function φ(ñ, UB − k̃) which decides if
we update or not the lower bound in function of the input parameters. The first parameter ñ corresponds to
the number of colored vertices in C̃, i.e., the depth of the node in the branching tree. The second parameter
UB − k̃ corresponds to the gap between the incumbent value and the lower bound k̃. The effectiveness of
this algorithm will be discussed in Section 5.

Algorithm 3: DSATUR(C̃)-χGA
1 if all the vertices are colored then
2 if k̃ < UB then
3 C∗ ← C̃, UB ← k̃;
4 end
5 else
6 if max{k̃, LB} < UB then
7 if φ(ñ, UB − k̃) = true then
8 if χGA(GC̃) < UB then
9 select an uncolored vertex v;

10 for every feasible color i ∈ C̃ plus a new one do
11 Ĉ ← C̃, add v in V̂i;
12 DSATUR(Ĉ);
13 end
14 end
15 end
16 end
17 end

5. Computational results
Algorithms 1, 2 and 3 are coded in C/C++, and run on a PC with an Intel(R) Core(TM) i7-4770 CPU at
3.40GHz and 16 GB RAM memory, under Linux Ubuntu 14.04 64-bit. Since χGA is efficient for high
density graphs, we extend the set of instances adding larger high density graphs, i.e., 5 instances per
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n = 85, 90, 95, 100, 110, 120, 130 and d = 0.7, 0.8, 0.9 plus 5 instances for n = 140 and d = 0.9. The
final testbed is then composed of 160 instances. The entire benchmark of instances can be downloaded at
the following address http://www.lamsade.dauphine.fr/coloring.

To reduce the impact of the quality of the initial UB on the execution of the algorithms, in all the
computational tests presented in this section we initialize UB with the best heuristic solution computed
by DSATUR in 3600 seconds. In case DSATUR is able to prove optimality within that time limit, UB
corresponds to the chromatic number χ(G) of the instance. Finally for all the tests we set a time limit of
3600 seconds and in case of time limit we report “tl”.

The goal of this computational section is twofold. First, we test the full impact of the proposed bound-
ing procedure updating the lower bound at each node of the branching scheme (Subsection 5.1). Then we
discuss possible enhancements based on the function φ in order to select a promising subset of nodes in
which we update the lower bound (Subsection 5.2).

5.1 Updating the lower bound at each node of DSATUR
In this section, we discuss the results obtained updating the lower bound χGA(G) at each node of the
branching tree, thus in Algorithm 3, the function φ always returns true. Tables 6 and 7 are divided in
three parts: in the first we present the instances’ features, in the second we present the results obtained by
DSATUR and in the third we present the results obtained by DSATUR-χGA . Each line of Table 6 reports
the average values of 5 random instances of a given size n and a given density d, while each line of Table
7 reports instead the results of the subset of DIMACS instances also discussed in Table 5. The average
values are computed considering only the subset of instances solved to proven optimality, i.e., excluding
the “tl” cases. In the following we explain the meaning of the tables’ columns:

- OPT∗ : the chromatic number or the best UB in case of time limit.

- nodes : the total number of processed nodes.

- time : the total computing time (tl means a time limit of 3600 seconds).

- timeG : the computing time to generate the reduced graph GC̃ for DSATUR-χGA(G) (only reported
for Table 7 since negligible for the random instances).

- timeB : the computing time of χGA(G) for DSATUR-χGA(G).

- max/min : the maximim/minimum total computing time (only reported for Table 6).

- #bounds : the number of times the lower bound χGA(G) is computed (potentially lower than the
total number of processed nodes in case some of the nodes are pruned by the standard bound
max{k̃, LB}).

- #cuts : the number of times that χGA(G) is able to prune.

- fail : the number of instances that can not be solved in less than 3600 seconds (only reported for
Table 6).

The values in bold highlight the best computing time or number of nodes between DSATUR and
DSATUR-χGA . First of all, we can conclude that the bound χGA(G) is effective since the number of nodes
in the branching tree of DSATUR-χGA is significantly smaller. The computing time of these bounds is
significant since it represents more than 80% of the total time. The computing time necessary to build GC̃

and GA is less than 1% of the total computing time.
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Instance DSATUR DSATUR-χGA

n d OPT∗ nodes time max min fail nodes timeB time max min #bounds #cuts fail

70 0.1 4.0 30 0.00 0.00 0.00 0 1 4.11 4.18 5.70 3.32 1 1 0
70 0.2 6.0 2648 0.00 0.00 0.00 0 288 975.10 983.43 1929.17 335.39 180 62 0
70 0.3 8.0 372720 0.91 1.17 0.74 0 - - tl tl tl - - 5
70 0.4 10.0 3510691 12.23 13.75 9.78 0 - - tl tl tl - - 5
70 0.5 12.0 7989873 36.66 65.10 12.89 0 2048 2441.24 2469.34 tl 2469.34 1584 973 4
70 0.6 14.0 9428697 55.82 126.65 23.51 0 1078 762.80 773.27 1613.80 116.67 863 511 0
70 0.7 17.6 18992632 142.48 324.19 46.69 0 812 167.29 171.56 567.48 0.57 664 396 0
70 0.8 21.8 4901009 44.01 83.15 19.19 0 1 0.14 0.14 0.17 0.09 1 1 0
70 0.9 28.6 149337 1.65 3.05 0.72 0 1 0.01 0.01 0.04 0.00 1 1 0

75 0.1 4.0 7 0.00 0.00 0.00 0 1 7.84 7.94 13.36 3.16 1 1 0
75 0.2 6.0 3395 0.00 0.01 0.00 0 174 1248.61 1255.72 tl 215.12 112 43 1
75 0.3 8.0 293236 0.77 1.49 0.28 0 - - tl tl tl - - 5
75 0.4 10.0 12605807 45.62 87.54 17.73 0 - - tl tl tl - - 5
75 0.5 12.4 28613624 149.70 227.03 44.04 0 - - tl tl tl - - 5
75 0.6 15.0 95301936 634.90 1192.44 322.49 0 1928 2184.92 2210.59 tl 1551.23 1600 1022 2
75 0.7 18.0 83548744 698.86 1037.27 341.07 0 728 256.26 261.99 776.67 27.18 614 379 0
75 0.8 22.4 28783000 291.25 619.22 125.05 0 11 2.23 2.30 10.99 0.04 10 5 0
75 0.9 31.0 6581082 79.17 199.18 20.03 0 1 0.01 0.01 0.05 0.00 1 1 0

80 0.1 4.8 5709 0.00 0.01 0.00 0 668 1752.58 1781.86 tl 13.73 392 109 1
80 0.2 7.0 301583 0.60 1.10 0.24 0 - - tl tl tl - - 5
80 0.3 9.0 16277818 49.05 72.96 22.98 0 - - tl tl tl - - 4
80 0.4 11.0 186461982 788.48 2572.13 201.71 0 - - tl tl tl - - 5
80 0.5 13.0 106724150 614.49 1757.23 184.47 0 - - tl tl tl - - 5
80 0.6 16.0 181208034 1361.59 tl 367.73 2 1540 1891.82 1915.89 tl 1915.89 1251 755 4
80 0.7 19.2 23675526 228.07 tl 17.60 1 18 10.26 10.46 tl 0.43 16 6 1
80 0.8 24.4 33677431 391.34 720.18 158.11 0 1 0.13 0.13 0.16 0.10 1 1 0
80 0.9 34.0 36839 0.53 1.26 0.05 0 1 0.01 0.01 0.01 0.00 1 1 0

85 0.7 20.2 - tl tl tl 5 - - tl tl tl - - 5
85 0.8 24.2 75694582 1011.09 tl 361.94 2 1133 238.41 148.14 593.03 0.17 914 548 0
85 0.9 33.0 9000991 146.92 412.32 3.13 0 1 0.04 0.04 0.10 0.02 1 1 0

90 0.7 21.4 - tl tl tl 5 - - tl tl tl - - 5
90 0.8 25.2 - tl tl tl 5 5067 746.60 776.27 1763.40 80.23 4262 2723 0
90 0.9 33.8 20907764 363.95 1719.21 0.20 0 1 0.03 0.03 0.06 0.01 1 1 0

95 0.7 22.2 - tl tl tl 5 - - tl tl tl - - 5
95 0.8 27.2 - tl tl tl 5 10730 2054.92 2132.24 tl 1599.88 8795 5344 3
95 0.9 35.2 25246065 501.99 tl 501.99 4 57 10.35 2.23 5.45 0.02 56 11 0

100 0.7 23.8 - tl tl tl 5 - - tl tl tl - - 5
100 0.8 27.4 - tl tl tl 5 2696 624.52 645.33 tl 193.76 2308 1424 3
100 0.9 37.0 - tl tl tl 5 613 29.02 30.73 105.85 2.36 524 246 0

105 0.7 24.6 - tl tl tl 5 - - tl tl tl - - 5
105 0.8 29.2 - tl tl tl 5 10084 2506.64 2605.62 tl 2605.62 8612 5398 4
105 0.9 38.2 - tl tl tl 5 203 4.02 4.51 7.76 0.06 169 41 0

110 0.7 25.2 - tl tl tl 5 - - tl tl tl - - 5
110 0.8 30.2 - tl tl tl 5 - - tl tl tl - - 5
110 0.9 39.2 - tl tl tl 5 970 57.10 61.00 216.56 7.62 823 410 0

120 0.7 - tl tl tl 5 - - tl tl tl - - 5
120 0.8 27.2 - tl tl tl 5 - - tl tl tl - - 5
120 0.9 33.2 - tl tl tl 5 3922 271.35 290.53 1010.43 21.32 3314 1853 0

41.6 140 0.9 4.0 - tl tl tl 5 16648 1666.87 1810.92 tl 1478.52 14047 8348 3

Table 6: DSATUR-χGA for random VCP instances
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Instance DSATUR DSATUR-χGA

name n d OPT∗ nodes time nodes timeG timeB time #bounds #cuts

queen5 5 25 0.53 5 7 0.00 1 0.00 0.00 0.00 1 1
queen6 6 36 0.46 7 432 0.00 1 0.00 0.28 0.28 1 1
queen7 7 49 0.40 7 9 0.00 1 0.00 0.22 0.22 1 1
queen8 12 96 0.36 12 14 0.00 1 0.00 3.43 3.62 1 1
queen8 8 64 0.30 9 1992673 10.17 319 2.11 563.94 568.62 235 144
queen9 9 81 0.33 10 - tl tl - - tl 816 454
queen10 10 100 0.30 11 - tl tl - - tl 220 114
queen11 11 121 0.27 13 - tl tl - - tl 287 110
queen12 12 144 0.25 14 - tl tl - - tl 19 0

myciel3 11 0.36 4 50 0.00 1 0.00 0.00 0.00 1 1
myciel4 23 0.28 5 1579 0.00 338 0.00 2.80 2.86 220 82
myciel5 47 0.22 6 1287849 1.48 tl - - tl 95327 32519
myciel6 95 0.17 7 - tl tl - - tl 16723 5710

miles250 128 0.05 8 10 0.00 1 0.00 3.22 4.29 1 1
miles500 128 0.14 20 27 0.00 27 14.65 106.57 126.83 23 0
miles750 128 0.26 31 33 0.01 1 0.00 1.93 2.58 1 1
miles1000 128 0.40 42 191 0.05 1 0.00 0.82 1.26 1 1
miles1500 128 0.64 73 75 0.24 75 7.36 22.06 33.79 73 0

anna 138 0.05 11 13 0.00 1 0.00 4.05 6.05 1 1
huck 74 0.11 11 - tl 1 0.00 0.20 0.29 1 1
jean 80 0.08 10 39335667 69.42 1 0.00 0.46 0.61 1 1
david 87 0.11 11 13 0.00 1 0.00 0.64 0.85 1 1
games120 120 0.09 9 - tl 1 0.00 4.43 5.17 1 1

mug88 1 88 0.04 4 72832198 50.35 46746 304.27 2541.35 3119.92 27745 8740
mug88 25 88 0.04 4 532869960 310.51 tl - - tl 161950 38681
mug100 1 100 0.03 4 1083098474 697.15 tl - - tl 72776 25526
mug100 25 100 0.03 4 - tl tl - - tl 65061 18697

mulsol.i.1 197 0.20 49 - tl 1 0.00 5.59 9.56 1 1
mulsol.i.2 188 0.22 31 53 0.01 1 0.00 4.39 7.90 1 1
mulsol.i.3 184 0.23 31 53 0.00 1 0.00 3.56 6.43 1 1
mulsol.i.4 185 0.23 31 53 0.01 1 0.00 3.53 6.48 1 1
mulsol.i.5 186 0.23 31 53 0.01 1 0.00 4.33 7.35 1 1

1-FullIns 3 30 0.23 4 128 0.00 9 0.00 0.50 0.51 6 1
1-FullIns 4 93 0.14 5 - tl tl - - tl 13855 4600
2-FullIns 3 52 0.15 5 376103299 347.15 16680 11.80 933.97 971.95 10329 3975
3-FullIns 3 80 0.11 6 - tl tl - - tl 34726 21256
4-FullIns 3 114 0.08 7 - tl tl - - tl 17687 11345
5-FullIns 3 154 0.07 8 - tl tl - - tl 1437 930

1-Insertions 4 67 0.10 5 - tl tl - - tl 90981 28273
2-Insertions 3 37 0.11 4 37564 0.01 7350 0.72 72.22 76.52 4216 1068
2-Insertions 4 149 0.05 5 - tl tl - - tl 12 0
3-Insertions 3 56 0.07 4 8705001 6.71 tl - - tl 173236 42915
4-Insertions 3 79 0.05 4 - tl tl - - tl 194277 49245

DSJC125.9 125 0.90 44 - tl 9747 35.75 903.06 964.47 8426 5119
DSJC250.9 250 0.90 84 - tl tl - - tl 19046 11599
DSJR500.1c 500 0.97 85 - tl 1 0.00 1.67 1.93 1 1

r125.1c 125 0.97 46 48 0.15 1 0.00 0.01 0.01 1 1
r125.1 125 0.03 5 7 0.00 1 0.00 2.11 3.14 1 1
r125.5 125 0.50 36 - tl 135 10.37 109.51 125.23 133 9
r250.1c 250 0.97 64 7820 9.75 1 0.00 0.02 0.04 1 1
r250.1 250 0.03 8 - tl 1 0.00 112.50 134.64 1 1
r250.5 250 0.48 66 - tl tl - - tl 47 0
r1000.1c 1000 0.97 101 - tl tl - - tl 12 0

zeroin.i.1 211 0.19 49 51 0.05 1 0.00 8.23 13.95 1 1
zeroin.i.2 211 0.16 30 32 0.02 1 0.00 8.92 14.87 1 1
zeroin.i.3 206 0.17 30 32 0.02 1 0.00 8.44 13.72 1 1

Table 7: DSATUR-χGA for DIMACS instances
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For high density instances (d = 0.7, 0.8, 0.9), the computing time is significantly reduced. For n =
85, d = 0.7, n = 90, d = 0.7, 0.8, n = 95, d = 0.7, 0.8 and for instances n ≥ 95, DSATUR-χGA can solve
to proven optimality some of the instances while DSATUR always fails. For very high density instances
(d = 0.9), the gap between the computing times of DSATUR and DSATUR-χGA is significant: for n =
120, DSATUR-χGA computes the optimal solution for the 5 instances in less than 300 seconds in average
while DSATUR is not able to solve any of them. However for low density instances (d = 0.2, 0.3, 0.4, 0.5),
the computing time of the lower bounds at each node of the branching tree is very high and DSATUR-χGA
is not able to solve these instances within the time limit.

The results obtained for DIMACS instances are similar: DSATUR-χGA is very efficient in solving
high density instances, solving 2 more instances (38 instead of 36) compared to DSATUR. We recall that
the missing DIMACS instances are the ones in which χGa(G) cannot be computed within 3600 seconds.
Accordingly for those instances DSATUR-χGA cannot be executed. It is worth mentioning that when the
column node is 1 it means that the the lower bound χGA(G) is able to prove the optimality of the initial UB
at the root node of the branching tree. We also investigate DSATUR-ω(G), i.e., replacing the lower bound
χGA(G) with ω(G), the results are discussed in the Appendix of the manuscript. Let us remark that only
the number of nodes can be significantly reduced while the computing time of DSATUR-ω(G) is always
greater than the computing time of DSATUR.

5.2 Updating the lower bound at promising nodes of DSATUR
In this subsection, we define φ(ñ, UB − k̃) in order to reduce the computing time of DSATUR-χGA(G).
As shown in Table 6, #cuts is significantly lower than #bounds. It means that a lot of the calculated lower
bounds are not able to prune the potential subtree at the current node.

In Figure 4a, the horizontal axis is the node depth ñ in the branching tree while in Figure 4b it is the gap
between UB and k̃. In both figures, the vertical axis is the number of times a bound has been computed
(green curve) or the number of times a bound has cut a node (red curve) on 5 instances for n = 70 and
d varying from 0.1 to 0.9. We observe in Figure 4a that χGA(G) is very efficient when it is computed at
the depth node between ñ = 18% ∗ n and ñ = 35% ∗ n (with an optimal success rate at ñ = 28% ∗ n).
In Figure 4b, we observe that χGA(G) is able to cut an important number of nodes when the gap between
UB and k̃ is equal to 1. Moreover, when the gap is greater to 10, the computation of χGA(G) is useless.
Following these observations, we define φ∗(ñ, UB − k̃) as follows:

Algorithm 4: φ∗(ñ, UB − k̃)

1 if 0.18 n ≤ ñ ≤ 0.35 n and UB − k̃ ≤ 10 then
2 return true
3 else
4 return false
5 end

With this function φ∗, the computing time for solving random VCP instances with n = 70, 75, 80 and
d = 0.7 is reduced as shown in Table 8.

6. Conclusion
In this paper we have considered a series of different lower bounding techniques for DSATUR. The prin-
cipal idea is to exploit lower bounds for the Vertex Coloring Problem in order to prune the implicit enu-
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(a)

(b)

Figure 4: Statistics on χGA during an execution of DSATUR-χGA

Instance DSATUR-χGA
with φ DSATUR-χGA

with φ∗

n d OPT∗ nodes timeB time max min #bounds #cuts fail nodes timeB time max min #bounds #cuts fail

70 0.7 17.6 812 167.29 171.56 567.48 0.57 664 396 0 3209893 74.74 102.04 325.79 0.56 262 109 0
75 0.7 18.0 728 256.26 261.99 776.67 27.18 614 379 0 3574556 148.80 182.79 521.65 18.15 313 154 0
80 0.7 19.2 3845 706.56 728.52 tl 0.43 3004 1796 1 32724255 409.34 725.43 tl 0.44 1212 470 1

Table 8: DSATUR-χGA on selected nodes
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meration scheme. In the literature, all the efforts have been made in the direction of a better selection
of the branching node. In this paper we have shown instead the potential of exploiting fast but strong
lower bounds within the branching scheme. Thanks to the new lower bound based on the 1-to-1 mapping
between VCPs and Stable Set Problems, we have successfully reduced both the computing time and the
number of nodes for high density random instances and for a subset of high density DIMACS instances.
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A. DSATUR-ω(G)

Instance DSATUR DSATUR-ω(G)

n d OPT∗ nodes time max min fail nodes timeB time max min #bounds #cuts fail

70 0.1 4.0 28 0.00 0.00 0.00 0 7 0.00 0.00 0.00 0.00 4 1 0
70 0.2 6.0 2648 0.00 0.00 0.00 0 1727 0.04 0.10 0.13 0.05 934 128 0
70 0.3 8.0 372720 0.91 1.17 0.74 0 222859 7.01 16.64 21.31 12.83 121306 19458 0
70 0.4 10.0 3510691 12.23 13.75 9.78 0 1710667 63.21 164.26 186.19 130.69 953755 191248 0
70 0.5 12.0 7989873 36.66 65.10 12.89 0 3041566 128.38 366.38 657.17 124.39 1741156 420366 0
70 0.6 14.0 9428697 55.82 126.65 23.51 0 2430588 124.00 377.05 761.72 164.71 1449691 427421 0
70 0.7 17.6 18992632 142.48 324.19 46.69 0 4364458 224.69 729.50 1797.41 195.99 2613759 762523 0
70 0.8 21.8 4901009 44.01 83.15 19.19 0 787189 50.90 162.16 320.43 76.60 483569 150377 0
70 0.9 28.6 149337 1.65 3.05 0.72 0 17202 1.65 3.82 4.88 2.25 10563 2885 0

75 0.1 4.0 7 0.00 0.00 0.00 0 1 0.00 0.00 0.00 0.00 1 1 0
75 0.2 6.0 3395 0.00 0.01 0.00 0 1921 0.06 0.14 0.22 0.03 1048 164 0
75 0.3 8.0 293236 0.77 1.49 0.28 0 162682 5.96 14.84 27.97 6.07 89330 15693 0
75 0.4 10.0 12605807 45.62 87.54 17.73 0 6620961 269.36 720.57 1407.13 264.19 3658431 681264 0
75 0.5 12.4 28613624 149.70 227.03 44.04 0 10543331 547.32 1618.04 2540.29 453.87 6053194 1489730 0
75 0.6 15.0 95301936 634.90 1192.44 322.49 0 19157017 1085.91 3402.98 tl 2614.89 11273677 3141421 4
75 0.7 18.0 83548744 698.86 1037.27 341.07 0 14083047 969.26 3038.20 tl 1996.62 8506062 2593911 3
75 0.8 22.4 28783000 291.25 619.22 125.05 0 3419914 300.48 889.08 1864.20 359.28 2122965 702682 0
75 0.9 31.0 6581082 79.17 199.18 20.03 0 1073304 91.35 271.69 649.51 79.55 645095 164999 0

80 0.1 4.8 5709 0.00 0.01 0.00 0 4398 0.12 0.23 0.38 0.00 2308 212 0
80 0.2 7.0 301583 0.60 1.10 0.24 0 202053 6.41 14.88 26.43 6.51 107713 13281 0
80 0.3 9.0 16277818 49.05 72.96 22.98 0 9357071 377.96 976.23 1437.22 456.29 5107741 849373 0
80 0.4 11.0 186461982 788.48 2572.13 201.71 0 26703290 1244.36 3500.43 tl 3102.13 14852444 2943274 4
80 0.5 13.0 106724150 614.49 1757.23 184.47 0 17468890 1041.02 3144.70 tl 2369.82 9993432 2383151 3
80 0.6 16.0 303043923 2256.96 tl 367.73 2 16872198 1081.40 3412.40 tl 3028.86 9869519 2655098 3
80 0.7 19.2 95698561 902.46 tl 17.60 1 6961383 539.52 1671.40 tl 108.03 4182121 1232137 1
80 0.8 24.4 33677431 391.34 720.18 158.11 0 3030072 417.60 1049.45 1497.34 590.31 1899559 629662 0
80 0.9 34.0 36839 0.53 1.26 0.05 0 9661 1.91 3.46 9.79 0.30 5665 998 0

Table 1: DSATUR-ω(G) for random VCP instances

In Table 1, we compare DSATUR and DSATUR-ω(G) for random VCP instances on the same bench-
mark as bound χGA

(G), using the same notations.
DSATUR-ω(G) systematically produces less nodes than DSATUR for each group of random VCP

instances, cutting on average about 50% of the nodes. The time spent computing the bounds covers only
half of the total time which is far less than bound χGA

(G) but since it does not cut as often, it does not
improve the algorithm.

In Table 2 and 3, we compare DSATUR and DSATUR-ω(G) for DIMACS instances. Since a great
number of bounds compared to χGA

(G), timeG is now relevant, taking up 50% of the total time. The
bound computing time is just under 50% of the total time. This distribution happens because the bound is
rarely effectively cutting, producing many useless bounds.
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Instance DSATUR DSATUR-ω(G)

name n d OPT∗ nodes time nodes timeG timeB time #bounds #cuts

queen5 5 25 0.50 5 7 0.00 1 0.00 0.00 0.00 1 1
queen6 6 36 0.50 7 432 0.00 146 0.00 0.00 0.00 88 19
queen7 7 49 0.40 7 9 0.00 1 0.00 0.00 0.00 1 1
queen8 12 96 0.30 12 14 0.00 1 0.00 0.00 0.00 1 1
queen8 8 64 0.40 9 1992673 10.17 633997 20.44 19.12 48.43 358992 83980
queen9 9 81 0.30 10 - tl tl - - tl 18375311 3731935
queen10 10 100 0.30 11 - tl tl - - tl 12093227 2540494
queen11 11 121 0.30 13 - tl tl - - tl 11607207 1946952
queen12 12 144 0.30 14 - tl tl - - tl 7667695 1372549
queen13 13 169 0.20 15 - tl tl - - tl 6447933 1006276
queen14 14 196 0.20 17 - tl tl - - tl 6820787 925208
queen15 15 225 0.20 18 - tl tl - - tl 4954101 839427
queen16 16 256 0.20 19 - tl tl - - tl 4045660 634146

myciel3 11 0.40 4 50 0.00 38 0.00 0.00 0.00 23 4
myciel4 23 0.30 5 1579 0.00 1252 0.00 0.00 0.00 694 109
myciel5 47 0.20 6 1287849 1.48 1049548 10.82 9.64 23.88 565256 79441

miles250 128 0.00 8 10 0.00 1 0.00 0.00 0.00 1 1
miles500 128 0.10 20 27 0.00 1 0.00 0.00 0.00 1 1
miles750 128 0.30 31 33 0.01 1 0.00 0.00 0.00 1 1
miles1000 128 0.40 42 191 0.05 1 0.00 0.00 0.00 1 1
miles1500 128 0.60 73 75 0.24 1 0.00 0.00 0.00 1 1

anna 138 0.10 11 13 0.00 1 0.00 0.00 0.00 1 1
david 87 0.10 11 13 0.00 1 0.00 0.00 0.00 1 1
homer 561 0.00 13 - tl 1 0.00 0.00 0.00 1 1
huck 74 0.10 11 - tl 1 0.00 0.00 0.00 1 1
jean 80 0.10 10 39335667 69.42 1 0.00 0.00 0.00 1 1

fpsol2.i.1 496 0.10 65 - tl 1 0.00 0.00 0.00 1 1
fpsol2.i.2 451 0.10 30 15342 0.28 1 0.00 0.00 0.00 1 1
fpsol2.i.3 425 0.10 30 15342 0.28 1 0.00 0.01 0.01 1 1

inithx.i.1 864 0.10 54 67301 5.88 1 0.00 0.01 0.01 1 1
inithx.i.2 645 0.10 31 - tl 1 0.00 0.00 0.00 1 1
inithx.i.3 621 0.10 31 - tl 1 0.00 0.01 0.01 1 1

mug88 1 88 0.00 4 72832198 50.35 27768646 312.78 221.22 590.78 16384661 5000672

mulsol.i.1 197 0.20 49 - tl 1 0.00 0.00 0.00 1 1
mulsol.i.2 188 0.20 31 53 0.01 1 0.00 0.00 0.00 1 1
mulsol.i.3 184 0.20 31 53 0.00 1 0.00 0.00 0.00 1 1
mulsol.i.4 185 0.20 31 53 0.01 1 0.00 0.00 0.00 1 1
mulsol.i.5 186 0.20 31 53 0.01 1 0.00 0.00 0.00 1 1

school1 385 0.30 14 16 0.05 1 0.00 17.66 17.66 1 1
school1 nsh 352 0.20 14 16 0.03 1 0.00 7.32 7.32 1 1

le450 15a 450 0.10 16 - tl tl - - tl 1049670 203435
le450 15b 450 0.10 16 - tl tl - - tl 1471390 258508
le450 15c 450 0.20 22 - tl tl - - tl 807532 79501
le450 15d 450 0.20 23 - tl tl - - tl 951701 107603
le450 25a 450 0.10 25 27 0.00 1 0.00 0.00 0.00 1 1
le450 25b 450 0.10 25 27 0.00 1 0.00 0.00 0.00 1 1
le450 25c 450 0.20 27 - tl tl - - tl 795654 128379
le450 25d 450 0.20 27 - tl tl - - tl 731981 133878
le450 5a 450 0.10 5 7 0.00 1 0.00 0.00 0.00 1 1
le450 5b 450 0.10 8 - tl tl - - tl 981325 67736
le450 5c 450 0.10 5 7 0.00 1 0.00 0.00 0.00 1 1
le450 5d 450 0.10 5 7 0.00 1 0.00 0.00 0.00 1 1

abb313GPIA 1557 0.00 10 - tl tl - - tl 134953 50021
ash331GPIA 662 0.00 4 34 0.00 26 0.04 0.03 0.08 15 2
ash608GPIA 1216 0.00 5 tl tl tl - - tl 1009 4
ash958GPIA 1916 0.00 4 60 0.02 48 0.98 0.55 1.57 26 2

Table 2: DSATUR-ω(G) for DIMACS instances
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Instance DSATUR DSATUR-ω(G)

name n d OPT∗ nodes time nodes timeG timeB time #bounds #cuts

1-FullIns 3 30 0.20 4 128 0.00 104 0.00 0.00 0.00 57 8
1-FullIns 5 282 0.10 6 - tl tl - - tl 9928304 937481
2-FullIns 3 52 0.20 5 376103299 347.15 375944 3.60 2.61 7.38 226555 77163
2-FullIns 4 212 0.10 6 - tl tl - - tl 37813835 12879162
2-FullIns 5 852 0.00 7 - tl tl - - tl 1910578 650516
3-FullIns 4 405 0.00 7 - tl tl - - tl 10193901 5603340
3-FullIns 5 2030 0.00 8 - tl tl - - tl 1001 0
4-FullIns 4 690 0.00 8 - tl tl - - tl 2923326 1770784
4-FullIns 5 4146 0.00 9 - tl tl - - tl 1001 0
5-FullIns 4 1085 0.00 9 - tl tl - - tl 1666 276

1-Insertions 6 607 0.00 7 - tl tl - - tl 1451788 254893
2-Insertions 3 37 0.10 4 37564 0.01 32032 0.11 0.14 0.27 16945 1844
2-Insertions 5 597 0.00 6 - tl tl - - tl 2284104 316270
3-Insertions 3 56 0.10 4 8705001 6.71 7231689 40.70 30.27 82.66 3861409 491104
3-Insertions 5 1406 0.00 6 - tl tl - - tl 208231 35187
4-Insertions 4 475 0.00 5 - tl tl - - tl 4157812 468152

DSJC125.1 125 0.10 5 19 0.00 14 0.00 0.00 0.00 9 1
DSJC125.5 125 0.50 19 - tl tl - - tl 5352841 997918
DSJC125.9 125 0.90 46 - tl tl - - tl 2016532 639100
DSJC250.1 250 0.10 9 - tl tl - - tl 3718382 248301
DSJC250.5 250 0.50 33 - tl tl - - tl 1656757 232664
DSJC500.1 500 0.10 15 - tl tl - - tl 1326586 73455
DSJC500.5 500 0.50 63 - tl tl - - tl 466539 58342
DSJR500.1 500 0.00 12 14 0.00 1 0.00 0.00 0.00 1 1
DSJC1000.1 1000 0.10 25 - tl tl - - tl 318576 13105
DSJC1000.5 1000 0.50 112 - tl tl - - tl 15 0

flat300 20 0 300 0.50 39 - tl tl - - tl 1586081 270917
flat300 26 0 300 0.50 40 - tl tl - - tl 1877375 278455
flat300 28 0 300 0.50 40 - tl tl - - tl 1785660 240087
flat1000 50 0 1000 0.50 112 - tl tl - - tl 23 0
flat1000 60 0 1000 0.50 112 - tl tl - - tl 19 0

games120 120 0.10 9 - tl 1 0.00 0.00 0.00 1 1

r125.1c 125 1.00 46 48 0.15 1 0.00 0.00 0.00 1 1
r125.1 125 0.00 5 7 0.00 1 0.00 0.00 0.00 1 1
r125.5 125 0.50 36 - tl 135 0.03 0.02 0.09 133 9
r250.1c 250 1.00 64 7820 9.75 1 0.00 656.96 656.96 1 1
r250.1 250 0.00 8 - tl 1 0.00 0.00 0.00 1 1
r250.5 250 0.50 66 - tl tl - - tl 565796 148170
r1000.1 1000 0.00 20 59 0.02 1 0.00 0.01 0.01 1 1

wap01a 2368 0.00 47 - tl tl - - tl 4655 991
wap02a 2464 0.00 46 - tl tl - - tl 1001 0
wap04a 5231 0.00 48 - tl tl - - tl 1001 0
wap05a 905 0.10 50 - tl 908 4.93 2.62 8.80 906 2
wap06a 947 0.10 47 - tl tl - - tl 214024 167258
wap07a 1809 0.10 45 - tl tl - - tl 4225 719
wap08a 1870 0.10 45 tl tl - - - tl 1397 211

zeroin.i.1 211 0.20 49 51 0.05 1 0.00 0.00 0.00 1 1
zeroin.i.2 211 0.20 30 32 0.02 1 0.00 0.00 0.00 1 1
zeroin.i.3 206 0.20 30 32 0.02 1 0.00 0.00 0.00 1 1

Table 3: DSATUR-ω(G) for DIMACS instances
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