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Abstract Optimal control problems (OCP) containing both integrality and
partial differential equation (PDE) constraints are very challenging in practice.
The most wide-spread solution approach is to first discretize the problem, it
results in huge and typically nonconvex mixed-integer optimization problems
that can be solved to proven optimality only in very small dimensions. In
this paper, we propose a novel outer approximation approach to efficiently
solve such OCPs in the case of certain semilinear elliptic PDEs with static
integer controls over arbitrary combinatorial structures, where we assume the
nonlinear part of the PDE to be non-decreasing and convex. The basic idea
is to decompose the OCP into an integer linear programming (ILP) master
problem and a subproblem for calculating linear cutting planes. These cutting
planes rely on the pointwise concavity or submodularity of the PDE solution
operator in terms of the control variables. The decomposition allows us to use
standard solution techniques for ILPs as well as for PDEs. We further benefit
from reoptimization strategies due to the iterative structure of the algorithm.
Experimental results show that the new approach is capable of solving the
combinatorial OCP of a semilinear Poisson equation with up to 180 binary
controls to global optimality within a five hour time limit. In the case of the
screened Poisson equation, which yields semi-infinite integer linear programs,
problems with even 1400 binary controls are solved.
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1 Introduction

Optimal control is the optimization of a system described by partial or ordinary
differential equations (PDEs/ODESs) over a control input. In a broad range of
applications, all or some of the control variables have to be considered discrete,
e.g. motor- or gear-switches in automotive engineering [7,27], state transitions
or feed locations in chemical engineering [2,4] or — in case of PDEs — placements
of wind turbines in a wind park [39] or switches for valves or compressors in gas
or water networks [16,18]. Consequently, the demand for efficient algorithms
to address optimal control problems with (partly) discrete controls, often re-
ferred to as mixed-integer optimal control problems (MIOCP), mixed-integer
dynamic optimization (MIDO), or hybrid optimal control problems (HOCP),
is very high. Most approaches discussed in the literature consider applications
where the discrete variables are dynamic, i.e. depend on time or space, but
the number of such variables usually remains very limited. Moreover, compli-
cating combinatorial constraints can often not be handled satisfactorily, since
the solution approaches are heuristic only (e.g. rounding strategies). In this
paper, we address a different class of applications: we assume that the discrete
controls are static but many, and subject to combinatorial constraints that
may render the problem hard even in the absence of differential equations.

The most straightforward and widely used approach to address MIOCPs
is to first-discretize-then-optimize. The basic idea is to discretize the control
and, if desired, the state of the dynamic process in time or space, in order to
approximate the MIOCP by a finite-dimensional mixed-integer nonlinear and
typically nonconvex programming problem (MINLP) and then use standard
techniques for solving the latter; see [6] for a recent survey on algorithms for
MINLP. Although specific MIOCPs have been successfully solved to optimality
by direct methods [19,38,2,3,13,31], the discretization approach often fails if
applied to more general problem classes [36].

As a consequence, various numerical methods have been developed to
quickly compute feasible, but suboptimal solutions. The most prominent heuris-
tic is the Sum-Up Rounding strategy [26,33], which can also be applied to
time-dependent controls in MIOCPs with PDE constraints [22]. It is capable
of finding a feasible mixed-integer solution constructed out of an integrality-
relaxed NLP solution, the latter being obtained by a direct method applied
to a convexified MIOCP, so that the relaxed and rounded states are arbi-
trarily close (depending on the OCP discretization). However, combinatorial
constraints may still be violated. To minimize the integrality error, the Com-
binatorial Integral Approximation (with a focus on restrictions on the number
of switches) has been proposed [34], where the relaxed control is tracked by an
integer control. It leads to a quickly solvable mixed-integer linear programming
problem (MILP) and may serve as a first upper bound for other MINLP solu-
tion methods. However, both Sum-Up Rounding and Combinatorial Integral
Approximation are designed to address time-dependent discrete controls.

The proposed convexification approach cannot handle problems with a
large or even exponential number of integer feasible solutions, which constitute
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the main challenge in combinatorial optimization. In particular, if the MIOCP
contains a combinatorial substructure on a significant number of variables,
convexification is not viable, as it is based on an explicit list of all feasible
solutions in terms of the integer variables. In the literature, MIOCPs with
static controls and PDE constraints are usually handled differently, either by
concentrating on linear PDEs only [11] or by linearization [16,18].

As pointed out above, mixed-integer optimal control with static discrete
controls and combinatorial as well as PDE constraints is an open field of
research, especially if it comes to global solvers. In this paper, we consider a
problem with integer decisions u that define a linear cost function ¢'u to be
minimized, subject to combinatorial constraints u € U. We further require the
state y of a semilinear elliptic PDE (depending on u) to reach a given reference
state Ymin. The problem can be written as

min c'u
5.t Y(@) 2 Ymin(2) a.e. in {2
Zf_l U Py in £2
0
ﬁ + b(y) = Z?:ngl Uj d)j on I'y
0

ODFD

(COCP)

and u€eU.

Herein £2 denotes a bounded domain in R%, d € N, and I'p and I'y are disjoint
parts of its boundary such that I'p U 'y = 02. Moreover, A is a linear, elliptic
operator, and d/0n4 denotes the co-normal derivative associated with A. In
addition, g and b denote Nemyzki operators associated with nonlinear func-
tions. The functions v;, i = 1,...,¢, and ¢;, j = £+ 1,...,n, are given and
will be called form functions in all what follows. Finally, &/ C Z" is a bounded
set of (discrete) admissible controls. The precise assumptions on the data and
quantities in (COCP) are formulated in Section 2, where we also give an ap-
plication example. The main assumption on which our approach is based will
be the pointwise convexity of g and b.

Generally speaking, Problem (COCP) can model applications in areas
where the optimization of a static diffusion process is desired, subject to a
given minimum state. Our algorithmic approach employs the special structure
of (COCP), in particular the state constraints y > ymin. In the context of clas-
sical optimal control problems without integrality constraints, pointwise state
constraints of this form are known to cause severe difficulties from a theoreti-
cal as well as a numerical point of view; see [9,1,23,12,29] and the references
therein. These difficulties are mainly caused by the poor regularity of the La-
grange multipliers associated with the state constraints, which are only Borel
measures in general, see [10] and [30, Section 6.2]. By contrast, in our setting
we benefit from the pointwise state constraints, as our algorithmic approach
exploits the particular problem structure induced by these constraints.

In the second part of the paper, we will also consider other types of con-
straints and objective functions within the framework of Problem (COCP).



4 Christoph Buchheim et al.

More specifically, we will deal with lower bound constraints y > yuni, as well
as general linear constraints involving both the control and the state variables.
Finally, we will address tracking-type objective functions of the form

min [|S(u) = yallLr(2)

for any p € [1, 00|, where yq € L>(£2) is a desired state.

From the discrete point of view, (COCP) is a nonlinear combinatorial op-
timization problem: the objective is to minimize a linear function over the
combinatorial variables u € U, where the lower bounds on the state vari-
ables y implicitly define an infinite number of additional nonlinear constraints
on the feasible set. Under our standing assumptions listed in Section 2, in par-
ticular the convexity of the functions g(x,.) and b(x,.) for almost all z, we are
able to show that the latter constraints define a convex set, and derive valid
linear cutting planes in the discrete controls u. Moreover, in the case that all
control variables are binary and all form functions are non-negative, we can
show that the solution operator is submodular almost everywhere, allowing us
to deal with much more general constraints and objective functions within the
framework of Problem (COCP).

1.1 Contribution

The main novelty of our approach lies in the combination of techniques from
optimal control and integer programming. The approach relies on our basic
observation that, for a large class of problems of type (COCP), the state is a
concave and submodular function in the control variables almost everywhere.

The concavity implies that the feasible region of our problem containing
lower bounds on the states becomes convex when projected onto the control
space (except for the integrality requirement), which in turn allows us to apply
the well-known outer approximation approach [14] to solve the problem to
global optimality. The resulting algorithm iteratively solves PDEs and ILPs;
standard solvers can be applied for both steps. The idea of projecting the
problem onto the control space is essential here, since we deal with semilinear
differential equations. In particular, the first-discretize-then-optimize approach
will result in an MINLP with non-convex constraints, which is very likely to
be unsolvable in practice for larger problem instances.

On the other hand, the submodularity allows us to deal with upper bounds
on the states instead of lower bounds. In this case, each nonlinear constraint
on the control variables u derived at a point x is essentially equivalent to a
finite (but exponential) number of linear constraints, where the most violated
one can be calculated efficiently, which can again be embedded into an outer
approximation algorithm. Finally, exploiting both concavity and submodular-
ity, we can address any linear constraint in both controls and states as well as
LP-tracking type objective functions for any p € [1, 00]. In all cases, we obtain
a finite algorithm solving the problem to optimality.
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1.2 Outline

In Section 2, we list the precise assumptions we need to make in order to ad-
dress Problem (COCP) by our approach. Moreover, we recall some elementary
results and discuss an application example. The main theoretical background
of our approach is presented in Section 3, where we show the pointwise con-
cavity of the solution operator and describe how to define cutting planes for
the projection of the feasible region of (COCP) onto the control space. These
cutting planes form the basis of an outer approximation algorithm for Prob-
lem (COCP) devised in Section 4. Next, we derive our submodularity results
in Section 5, and explain how to combine these with the concavity results in
order to address arbitrary linear constraints (Section 6) or tracking-type ob-
jective functions (Section 7). Due to the iterative structure of the algorithm,
we apply reoptimization strategies to efficiently resolve the PDE for updated
candidate solutions u; see Section 8. Finally, in Section 9, we present the re-
sults of a numerical study to demonstrate the benefits of our algorithm and
its dependence on the problem parameters.

2 Standing Assumptions and Known Results

We start with the precise assumptions on the data and quantities in (COCP).
Throughout the paper, 2 C R% d € N, denotes a bounded domain, i.e.
bounded, open, and connected set, with Lipschitz boundary I' = 0f2 in the
sense of [20, Def. 1.2.2.1] so that the trace on I' is well defined; see [20,
Thm. 1.5.1.3]. Furthermore, I'yv and I'p are disjoint parts of I' such that
I' = I'p U I'n. We define the space V as the linear subset of H!(§2) given by

V={veH'(2):v=0ae. onIp}

equipped with the standard H'-norm. Furthermore, V* denotes its dual space.
The operator A : V. — V* is given by the following linear elliptic differential
operator of second order

d d
0 0 b
Ay = — ”Z:: oz (au(x)aixjy(x)) + ;Bz(x)a—xly(m) + ap(x)y(x),
where a;;, Br, a0 € L™(12), for ¢,5,k = 1,...,d, are such that A is coercive

on V, i.e., we have
(Av, V)v=y > a|vl} YveV (1)

for some constant o > 0. To keep the discussion concise, we restrict ourselves
to coercive bilinear forms, satisfying (1). Depending on the particular structure
of the nonlinearities, this assumption can be weakened, see Example 1 below.
By 0/0n 4 we denote the co-normal derivative associated with A, i.e.,

Ay S Ay
9y _ g a; =2
on ”2231 " Oy
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where n : I’ — R¢ is the outward unit normal on I". The form functions
and ¢ are supposed to satisfy ¢; € L"({2) with r > d/2 for all 4+ = 1,...,¢
and ¢; € L°(I'y) with s > d—1for all j = ¢+ 1,...,n. We can therefore
allow for comparatively irregular right hand sides in the PDE in (COCP).

Concerning the nonlinear functions g : 2 xR — R and b: I'y x R — R,
we require the following conditions to hold:

(a) Both g and b satisfy the Carathéodory condition, i.e., g(.,y) is measurable
for every fixed y € R and g¢(z, .) is continuous for almost every = € {2, and
analogously for b.

(b) Both g(z,.) and b(x,.) are non-decreasing for almost every z € 2 and
almost every x € I'y, respectively.

(¢) The mappings g(z,.) and b(z,.) are differentiable for almost every = € 2
and almost every x € Iy, respectively. Their derivatives are denoted
by ¢'(z,.) and V'(z,.) and are assumed to satisfy the Carathéodory as-
sumption as well.

We point out that these assumptions on the nonlinearities g and b are stan-
dard in the context of semilinear optimal control; see e.g. [37, Chapter 4]. In
particular, the monotony assumption (b) is classical and ensures the existence
and uniqueness of solutions to the PDE in (COCP) for a given right hand side,
see Proposition 1 below.

We are now in the position to introduce the notion of weak solutions to
the PDE appearing in (COCP). For this purpose let us define the space

Y =V LX)

A function y € Y is said to be a weak solution to the PDE in (COCP) if it
satisfies

<Ay7 U>V*,V +/

g(amy)vdsc—l—/ b(x,y)vds
17}

I'n

4 n
:Z/¢ivd$ui+ Z/ pjvdru; VovelV.
=174 I'n

j=l+1

(2)

Based on our assumptions on the nonlinear functions g and b, one shows by
means of classical arguments that the PDE in (COCP) admits a unique weak
solution. Moreover, the associated solution operator is Fréchet-differentiable.
We collect these observations in the following proposition. The underlying
analysis is standard. For a detailed proof, we refer to [37, Chapter 4] and the
references cited therein.

Proposition 1

(i) For every u € R™ there exists a unique weak solution y € Y of (2). We
denote the associated solution operator by S : R™ — Y.
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(i) The operator S is continuously Fréchet differentiable from R™ toY and its
derivative n = S'(uw)h in direction h € R™ is given by the solution of the
linearized PDE

(An, vy + / d (@ y)nvde + / B (2, y)nvds
(9] I'n

14 n
:Z/wivdxhﬂr Z/ ¢jvdeh; YveV.
i=179 I'n

Jj=L+1

3)

Remark I Under mild additional assumptions on the problem data, in par-
ticular the coefficient function a;; and the domain, it can be shown that the
state is even continuous and the same holds true for the linearized state, i.e.,
the solution of (3), see [21]. However, as the continuity of the state is not
mandatory for our algorithmic approach, we do not impose these additional
assumptions. We point out that no additional regularity assumptions on the
form functions are needed for this continuity result.

From the remaining quantities in (COCP) we require the following: the
set U is assumed to be bounded and given by an integer linear description

U={ueZ": Gu<h}

with G € R™*™ and h € R™, for some m € N, while the vector ¢ in the
objective function is an arbitrary vector in R™. The reference state is supposed
to satisfy ymin € L1(£2).

For the computation of global lower bounds we additionally require

Assumption 1 There exist numbers yq, yp € [—00, 0], Yo < yp, with
S(u)(z) € [Ya,yp] a-e. in 2 Yu € conv(U),

such that the functions g(z,.): [Ya,ys] = R and b(z,.): [ya, ys] — R are convex
for almost all x € £2 and almost all x € I'y, respectively.

While the above assumptions on g and b concerning their monotonicity and
their differentiability are standard for the discussion of semilinear elliptic PDEs
in the context of optimal control, as already indicated above, Assumption 1
is fairly restrictive. Nevertheless, the following example shows that there are
application driven problems where this assumption is satisfied.

Ezxample 1 We consider the stationary heating of a metallic workpiece. If the
workpiece is assumed to be homogeneous and isotropic, the operator A is given
by

d_ g2
A= —sr=—sS 2
i=1 Oz

where £ > 0 denotes the (constant) heat conductivity of the material. If the
material is heated up to higher temperatures, radiation has to be taken into
account. To be more precise, the heat flux through the boundary equals the
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difference of emitted and absorbed radiation. On the other hand, by Fourier
law, this heat flux equals the normal derivative of y. This leads to Boltzmann
type radiation boundary conditions of the form

/iVy~n—|—U|y\dy:0yg+1, (4)

where ¢ > 0 denotes the Boltzmann radiation constant for the particular
dimension d and yy > 0 is a fixed external temperature. The boundary condi-
tion (4) models the radiation of an ideal black radiator, see [24, Section 12.3.3]
for details. Note that the coercivity assumption in (1) is not satisfied in this
example. However, this assumption is only needed to ensure existence and
uniqueness of solutions, which, in case of this example, can be shown by the
direct method of calculus of variations in combination with the generalized
Friedrich’s inequality.

If we assume that the workpiece is heated up by n € N fixed volume
sources 1, . . ., ¥n, generated for instance by induction heating, then the PDE
modeling the stationary heat conduction with radiation boundary conditions
reads, in its strong form, as follows:

—KAy = u{(ﬂi in 2
; (5)

kVy-n+olylly=0cyl™ onl.

Herein the discrete control variables v € U := {0,1}™ model the switching of
the heat sources. By setting g =0, I'p =0, I'y = I', and

b:R—R, by)=o(yly -y, (6)

this problem fits into our general setting and the results of Proposition 1 apply
so that there is a solution operator S : R” — Y associated with (5).

Assumption 1 however is not satisfied in general, since b, as defined in (6),
is not convex. Nevertheless, if we focus on pure heating processes, then we
may assume that ¥;(z) > 0 a.e. in §2 for all i = 1,...,n. Consequently, the
(weak) maximum principle gives S(u)(z) > 0 a.e. in 2 for all u € conv (U). By
the positivity of the trace operator, we obtain S(u)(z) > 0 a.e. on I'. Thus,
by setting y, = 0 and y, = oo, we find that Assumption 1 is satisfied in this
case, since b : [0,00) — R is clearly convex.

If the vector ¢ € R™ in the objective function measures the cost of each
source function 1);, e.g. in terms of energy consumption, then every solution
of (COCP) yields a most efficient way of switching on the sources in order to
pointwisely keep the temperature at a desired minimal temperature yu,;,. This
is of interest for the optimization of hardening processes of steel workpieces,
where it is essential to pointwisely reach the austenitic temperature.
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3 Pointwise concavity

In all of what follows, we denote by max(.,0) the function R 5 r — max{r,0} €
R, and the associated Nemyzkii operators in H'(£2) and L?(I"), respectively,
are denoted in the same way for the sake of convenience.

Lemma 1 For everyv € H'(§2) we have T max(v,0) = max(rv,0) a.e. on I,
where T : HY(£2) — L*(I") denotes the trace operator.

Proof Let v € H'({2) be arbitrary. Since §2 has a Lipschitz boundary, [20,
Thm. 1.4.2.1] implies the existence of a sequence {v,} in C(£2) that strongly
converges to v in H'(£2). Then the continuity of max(.,0) in H'(£2) and L*(I"),
respectively, and the one of the trace 7 : H'(£2) — L*(I") imply

7max(v,0) = 7 max (nlgrolo Uy, 0) = nhHH;O 7 max (v, 0)

= lim max(rv,,0) = max(7v,0),
n—oo

where we used the continuity of v,, up to the boundary I. a

The following result forms the basis of our approach. It implies that the
projection of the feasible set onto the control space is convex.

Theorem 2 Under our standing assumptions, in particular Assumption 1,
the mappings

conv(U) Sur— S(u)(z) ER and conv(U) > ur— (7S(u))(z) €R
are concave for almost every x € {2 and almost every x € I'y.

Proof The proof is similar to the one of the weak maximum principle. Consider
uy,ug € conv (U) and X € [0,1]. Define y; € Y, i =1,2,3, by

y1 := S(u1), yo := S(uz), yz := S(Auy + (1 — Nus).

If one subtracts the weak formulation for ys from the sum of the ones for g
and ys scaled by A and (1 — \), respectively, it follows that

(Ays, v)vev + /Q (Ag(@.yn) + (1 = Ngla, 32) — g, ya))v da
(7)
+/F (Ab(z,y1) + (1 = Ab(z,y2) — bz, y3))vds =0 Yo €V,

where y4 := Ay1 + (1 — \)y2 — y3. Next we choose v =y := max(y4,0) as test
function, which is in V' due to [25, Thm. A.1]. Let us define (up to sets of zero
measure)

Ny ={z € R:y(x) >0} and Iy :={xeln:(rys)(z)>0}.
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Then the convexity of g(x,.) by Assumption 1 implies for the second addend
on the left hand side of (7) that

/Q (Ag(z,y1) + (L= Ng(z,y2) — gz, y3))ys da
= [ Oatean) + (1 = Ng(a,) = g(o.30) s da ®
> / (90, Ays + (1= Nya) — g(2, y3))yadz > 0
Q4

where the second inequality follows from monotonicity of g(z,.) and since
Ayr + (1= Nye > y3 a.e. in 24

by definition of 2. In view of Lemma 1, we can argue completely analogously
in case of the third addend in (7) to obtain

/F (Ab(z,y1) + (1 — N)b(z,y2) — bz, ys))ys ds > 0. (9)

All in all, thanks to Vy; = xg, Vya, see [25, Thm. A.1], (7)-(9) yield
allyif 1 o) < (Auls v )v-v = (Aya, y v v <0,
and hence y§ = max(y4,0) = 0. The definition of y4 thus implies
M) + (1= Na(2) < ys(2) e in 2,

which is the desired concavity of u + S(u)(z). The result for the trace again
follows from the positivity of the trace operator. O

Completely analogously one shows that u — S(u)(z) and v — (7.5(u))(z)
are conver provided that g(z,.) and b(z,.) are concave.

Lemma 2 For every u € conv (U) and every h € R™ with u+ h € conv (U)
we have

S(u+ h)(z) < S(u)(z) + (S"(w)h)(x) a.e. in 2.

Proof The operator S is Fréchet-differentiable from R"™ to L>*(£2) — Y by
Proposition 1(ii). For arbitrary u, h € R™ we thus have

lim S(u+th)(x) — S(u)(x)

t—0 t

= (S'(u)h)(z) fa.a.xe .
Together with the pointwise concavity from Theorem 2, we obtain

S+ h)(x) — S(u)(x) < lim SCFE) =S

im : = (8'wh)(a)

for almost all x € £2. a
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Corollary 1 For allu € conv (U) and almost all x € (2, the inequality
S(@)(x) + (5"(@)(u — 0))(x) = Ymin()
is valid for all feasible solutions of (COCP).

Note that the inequalities introduced in Corollary 1 are linear in the control
variables u, for given x and w.

4 Outer Approximation Algorithm

In the following, we explain how to use the results of the previous section in
order to address (COCP) by an outer approximation approach [14]. Let

U:={uecld:Su)(z)> ymm(z) a.e in 2}

denote the feasible set of Problem (COCP), in terms of the control variables.
We thus aim at solving the problem

min ¢'u
- (COCP’)
st. uel.

The complexity of (COCP’) is now hidden in the definition of the set /.
The results of the previous section allow us to define an outer approximation
algorithm for (COCP’), as follows.

Outer Approximation Algorithm for (COCP)

1. Set Uy :=U.
T

2. Minimize ¢' u over u € Uy, let u* be the resulting optimizer.
If Uy = 0, return “problem is infeasible”.

3. Compute y* by solving

l
Ay+g(y) =D uivy  in Q2
=1

y -
anA + (y) _%: u] ¢] on N
j=t+1
y=20 onlp.

4. If y* > ymin a.e., return v* as optimal solution.

5. Choose some z* € 2 with y*(2*) < ymin(z*) at random, add
y (") + (5 (u) (u — ")) (@") > Ymin(2")

as linear inequality in u to Uy, and go to Step 2.
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This algorithm is based on Corollary 1, which yields an efficient method
to cut off any vector u € U violating some of the constraints

Y* (%) 2 Ymin(T)
by a cutting plane, i.e., by a linear constraint on ¢ that is valid for U.

Theorem 3 The above algorithm terminates in finite time. With probability
one, it returns an optimal solution to Problem (COCP).

Proof First note that in every iteration, the algorithm either cuts off a point
from U or terminates. Indeed, the left hand side of the constraint added in
Step 5 agrees with S(u)(z*) when v = w*. The number of iterations is thus
limited by ||, which is finite by the boundedness of & C Z™. The correctness
follows from the fact that all added linear inequalities are valid for U, with
probability one, which was shown in the previous section. a

Remark 2 As indicated in Remark 1, the range of S and S’(u) is contained
in C(£2) under mild assumptions on the data. The inequality in Corollary 1
then holds for every z € {2 rather than almost everywhere. In particular, our
outer approximation algorithm certainly returns an optimal solution in this
case, not only with probability one.

For Step 2 of the above algorithm, one can use any standard ILP solver.
Step 3 requires to solve a nonlinear PDE. We emphasize that the PDE associ-
ated with the inequality constraint in Step 5 is linear. Thus, to obtain S’ (u*)u
as a linear expression in the control vector u, one solves n linear PDEs of the
form (3) corresponding to the n form functions and employs the superposition
principle to obtain

£ n
S (u*)u = Zul S (u*)p; + Z u; S (u*)p; .
i=1

j=t+1

In particular, the coefficient of u; is S'(u*)¢;, ¢ = 1,...,¢, and S’ (u*)i;,
i =44+ 1,...,n, respectively. Therefore, we need to solve n linear PDEs to
produce the cutting plane in Step 5.

In practice, the main challenge is to keep the number of outer iterations
of the above algorithm as small as possible. For this, it is preferable to com-
pute more than one cutting plane per iteration, e.g., by considering several
points x € (2. The details of our implementation are discussed in Section 9.
Moreover, the iterative structure of the algorithm suggests to use reoptimiza-
tion techniques, in particular for initializing the solution algorithm for the
PDE in Step 3. This is exploited in Section 8.
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5 Pointwise submodularity

In order to extend our approach to more general problems than (COCP),
we now show that the pointwise solution operator S(u)(z) is submodular for
almost all z under additional assumptions (which are satisfied in Example 1).
A submodular function f is a function f: {0,1}" — R satisfying

fw)+ f(v) = flurv)+ fluVo)
for all w,v € {0,1}", where we define

(u Av); := min{u;,v; }
(uVw); := max{u;,v;}

for ¢ = 1,...,n. This property can be equivalently described as a diminishing
returns property. Interpreted in terms of Example 1, submodularity means that
the increase in the temperature in a given point x that is induced by switching
on a particular heat source is smaller when other heat sources are already
switched on. In combinatorial optimization, submodularity is a key property
for designing efficient algorithms; see, e.g., [17]. We will discuss below how
submodularity allows to generate valid cutting planes modeling lower bounds
on the states in (COCP).

In the following, we assume that all control variables are binary, i.e.,
that & C {0,1}"™. Moreover, we now need

Assumption 4 The form functions v; for i = 1,...,4 and ¢; for j = £ +
1,...,n are non-negative almost everywhere in 2 and almost everywhere on I'y,
respectively.

Under these assumptions, and using the convexity of the functions g and b,
we can show the submodularity of the states S(uw)(z) in the binary control
variables u € {0,1}". As a first step, we show the following auxiliary result.

Lemma 3 Let h: Ry — Ry be a convexr and monotonously increasing func-
tion. Then for all non-negative b,c € R and a > b+ ¢, we have h(0) + h(a) >
h(b) + h(c).

Proof Since b,c > 0, we have 0 < b < b + ¢, so there exists A € [0, 1] with
b= A(b+ ¢) and hence ¢ = (1 — \)(b + ¢). Using convexity, this implies

(1 —=X)h(0) +Ar(b+c) > (1 —=X)0+ A(b+c)) = h(b)

and
AR(0) + (1 = XNh(b+c¢) = h(A0+ (1 = A)(b+¢)) = h(c) .

(
Summing up, we obtain h(0) + h(b + ¢) > h(b) + h(c). By monotonicity, the
assumption a > b + ¢ implies h(a) > h(b+ ¢). This completes the proof. O

Theorem 5 Under our standing assumptions, the function
{0,1}" 3 u— S(u)(z) €R

is submodular for almost all x € 2.
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Proof Choosing u,w € {0,1}", we need to show
S(u)+ S(w) > S(uAw)+ S(uVw) ae. in 2. (10)
To this end, we set

Y10 := S(u) = S(u Aw), y11:=SwVw)—SuAw),
yor = S(w) — S(uAw), yoo:=S(uAw).

Now define 7 := y10 + yo1 — y11 € V, so that (10) is equivalent to
n(x) >0 ae. in 2. (11)
Combining the weak formulations for S(u), S(v), S(uAw), and S(uVw), and
taking into account that u + w = (u A w) + (u V w), we obtain
(An, v)v-v = / (g(yoo) +g(y11 + yoo) — 9(y10 + voo) — 9(yo1 + ’yoo))v dx
o)

+/ (b(yoo) + b(y11 + yoo) — b(y10 + Yoo) — b(yo1 + Yoo))vds
I'n

for all v € V. By [25, Thm. A.1], the function n_(x) := min{0,n(x)} belongs
to V and can thus be inserted as test function. We obtain

/Q (g(yoo) +9(y11 + voo) — 9(y10 + voo) — 9(yo1 + yoo))ﬁ— dz

= /Q (9(y00) + 9(y11 + yoo) — 9(¥10 + yoo) — 9(yor + Yoo))

(y10 + yor — y11) da,
where
2 ={re:nx)<0}={xec2:yo()+yo(r)—ynlz) <0}.

Due to Assumption 4 and the monotonicity of g and b, the weak maximum
principle applies to the PDE in (2). Thus, as v > u A w, w > u A w, and
uVw > uAw, we obtain

Y10, Yo1, Yoo > 0 a.e. in £2.

Hence we can apply Lemma 3 to the function Ry 3 s — h(s) := g(z,s +
yoo(z)) € Ry, which is convex for almost all z € 2 by Assumption 1, and
derive

9(yoo) + 9(y11 + Yoo) — 9(y10 + Yoo) — 9(Yo1 + Yoo) >0 a.e. in 2_

which in turn implies

/ (9(yoo) + 9(y11 + yoo) — 9(y10 + Yoo) — 9(Yo1 + Yoo))n— dz < 0 .
Q
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Using the positivity of the trace operator, see [25, Prop. 5.2], one can show
analogously that

/ (b(yoo) + b(y11 + yoo) — b(y10 + Yoo) — b(yo1 + Yoo))n—ds < 0,
I'n

which in summary shows (An, n_)y« v < 0. Thanks to (1), this implies
1113732y =0

so that n— = 0 almost everywhere in §2. This yields (11) and thus the desired
result. a

In Section 3, we have shown that the function v — S(u)(z) is concave under
the given assumptions, in particular the convexity of g, so that the point-wise
lower bound S(u)() > ymin(2) is a convex constraint for almost all z € 2. In
a similar way, Theorem 5 can be used to deal with upper bound constraints
on the states in the form S(u)(x) < Ymax(z). Indeed, if v — S(u)(z) is a
submodular function, then the latter constraint is equivalent to an exponential
size class of linear constraints on u which can be separated efficiently. More
precisely, the separation problem for the polyhedron

epi(S(.)(z)) = conv {(u,z) € {0,1}" xR | z > S(u)(z)}

can be solved in O(nF + nlogn) time, where F is the time needed to calcu-
late S(u)(z) for given w [15,28]; for more details, see, e.g., Theorem 1 in [5].
Embedding this separation algorithm into our ILP-based outer approximation
scheme, we again obtain an exact optimization algorithm. As every infeasible
binary point v* can be cut off by an appropriate cutting plane of this type,
the resulting algorithm is finite again.

6 Linear constraints involving the states

Using the results of the previous sections and assuming &/ C {0,1}", our outer
approximation approach presented in Section 4 can also deal with arbitrary
linear constraints of the form

a'u+ , f@)S(u)(x)dx < b, (12)

where a € R", b € R, and f € L'(£2). After the computation of u* and y* in
Steps 2 and 3, we first check whether

T % *
a'u —|—/Qf(a:)y (r)dx <b

holds. If not, we can again derive a valid but violated cutting plane as follows:
we first rewrite (12) as

a'u+ fi(u) — falu) < b
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where
A1) SR i) = /Q max{ f(z),0}5(u) (z) dz
and

iR SR, fou) ::/Qmax{—f(:c),O}S(u)(x)dx.

By Theorem 5 and thanks to the monotonicity of the Lebesgue integral, the
function f; is submodular. Using the same technique as described in Section 5,
we can now derive an inequality of the form a] u+ by < fi(u) that is valid for
all u € {0,1}™ and satisfied with equality for u*. Similarly, using Theorem 2
and Corollary 1, we can find a; € R™ and by € R with ag u + by > fo(u) for
allu € R™ and ag u*+by = fo(u*). Combining these results, we obtain a linear
inequality
aTu+aqua;u§bfb1+b2

that is valid for all u € {0,1}" and violated by the given w*. Adding this
inequality will thus exclude u* in further iterations without cutting off any
feasible binary solution.

It is easy to see that Theorem 3 still holds after these extensions, pro-
vided that the number of linear constraints of type (12) being considered is fi-
nite. More precisely, the outer approximation algorithm extended as described
above will still terminate in finite time, and the resulting solution will satisfy
all additional linear contraints with probability one.

7 Tracking-type objective functions

Still assuming & C {0, 1}", the results presented in the previous sections can be
used to address tracking type problems, provided that the distance to a given
desired state is measured in an LP-norm, p € [1, co]. While the reflexive cases,
where 1 < p < o0, can be tackled with a unified approach, the cases p = 1
and p = oo require a particular treatment.

7.1 L°-norm

Let us first focus on the L°°-norm, as this turns out to be closest to the
problem with pointwise state constraints discussed above. Given a desired
state yq € L°°(£2), we consider the problem
min  |[S(u) = YallL=(0)
st. uwe{0,1}".
Note that S : R® — Y < L*({2) so that the objective is well defined. We
equivalently rewrite the problem as
min 2z
st. —z<Su)(x) —yalx) <z ae in 2
ue {0,1}"
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and again obtain a problem with pointwise state constraints. Consequently,
we can design an ILP-based outer approximation algorithm similar to the one
proposed above: for given u* € {0,1}" and z* € R, we check whether the
convex constraint —z* < S(u*)(x) — yq(x) is violated for some z* € (2. If so,
we can separate (u*,z*) by a tangent inequality based on Theorem 2. If the
submodular constraint S(u*)(z) — yq(z) < z* is violated at some z* € 2, we
can separate (u*, 2z*) as described in Section 5.

The finite convergence of the resulting algorithm is still guaranteed, pro-
vided that we always derive a constraint yielding the tightest possible bound
on z for a given u*. Indeed, this implies that any solution of the form (u*, z*)
appearing in a later iteration of our algorithm will be feasible, so that again
the number of iterations can be bounded by |U].

7.2 L'-norm
Next, let us turn to L'-tracking type problems of the form

min /Q |S(u)(z) — ya(x)| dx
st. uwe{0,1}".

(13)

Again, we can combine Theorem 2 and Theorem 5: the latter shows that

f1:{0,1}" =2 R, fi(u):= / S(u)(x) dx

]

is a submodular function, while the former implies that
fo:R*" =R, faolu):= / min{yq(z), S(u)(z)} dz
¢

is a concave function. Now using that
[ 186@) = yata)ldo = ) = 2520) + [ yate) e

where the last term is constant, we derive that Problem (13) is equivalent to

st filu) - 2fa(u) < 2 (14)
ue{0,1}".

Now, similar to Section 6, we can underestimate the terms fq(u) and —2fa(u)
independently by affine linear functions in v and thus obtain cutting planes
that can be used in our outer approximation algorithm. For f;, we can use
submodularity exactly as before. However, the situation for fs is slightly more
complicated now, since we have to deal with non-differentiability. The following
result shows how to compute an affine linear overestimator for fs.
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Proposition 2 Let u* € R"™ and y* := S(u*). Moreover, let g € L*°(12) be an
arbitrary measurable selection of the convex subdifferential of the max-function
at yg —y*, i.e.,

g(z) € Omax(yq(z) — y*(z)) a.e. in 0. (15)

Then the inequality

folw) < folu®) - / o(x) (8 (u*)(u — u)) () da (16)

2

holds true for all u € R™.

Proof The convex functional — f; is the composition of the solution mapping S
and

Y LY2) D v /Q (max{0,ya(z) — v(z)} — ya(z)) dz € R.

The monotonicity of the integral implies that every function xy € L>®(£2) =
LY (02)* satisfying x(z) € Omax(yq(z) — v(z)) a.e. in 2, i.e.,

x €[0,1] a.e. in 2, x = —1 a.e., where yg > v, x =0 a.e., where yq < v,

forms an element of 9y (v). Since dom(¢)) = L(£2) and 9 is continuous, we are
allowed to apply the chain rule for convex subdifferentails, cf. [35], to obtain
that

R" 3 h /Qg(:c)(S'(u*)h)(:c) dz e R

where g as in (15) is an element of 9(— f2)(u*). This implies

o) > —folu®) + / o(2) (8" (") (u — w*)) (x) de

Q
and hence the result. O

Note that the right hand side in (16) is an affine linear expression in u and can
hence be combined with the underestimator of f1(u) to obtain a cutting plane
for the outer approximation approach. Finite convergence is again guaranteed
in this approach. Compared to the L°-case, the situation is even easier, since
the generated constraint automatically gives the tightest possible bound on z
for given u*.
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7.3 Reflexive norms
Finally, we address LP-tracking type problems with p € (1,0), i.e.,

min  |[S(u)(®) — ya(@)|| e (2

st. we{0,1}". (a7

Since LP(£2), 1 < p < 00, is reflexive, the unit ball in LP(§2) equals the set
{v e LP(0) : / v(@)w(@)de < |wlpeo) Ywe Lq(rz)},
2

where ¢ is the exponent conjugate to p, i.e., 1/p+1/q = 1. Restricting ourselves
to test functions in the surface of the unit ball in L?(£2), denoted by 0B,(0, 1),
Problem (17) can be reformulated as follows:

min 2z
s.t. / (S(u) — ya)wdz <z Vw € dBy(0,1)
7
ue{0,1}".

For a given w, we can use the same techniques as before in order to replace
the constraint

/ (S(u) — yg)wde < 2 (18)
2

by a linear cutting plane. It thus remains to find a test function w € 9B4(0,1)
violating (18) for given u and z — or to decide that none exists. For this, we
just need to check if y* —yq € Y and 2* € R satisty [|[y* — yallLr() < 2% If
not, then (18) is violated with

1

=— — (v* —ya)’~" sign(y* — ya)?.
(v* = ya)?~HLa(e)

w

It is easy to see that the resulting cutting plane yields the tightest possible
bound on z again, for a given u* (but over all w € 0B,(0,1)). This again
guarantees finite convergence of the outer approximation algorithm.

8 Reoptimization

Due to the iterative structure of our outer approximation algorithm presented
in the previous sections, the semilinear elliptic PDE in (COCP) has to be
solved many times for different values of u. Due to this, it is crucial to develop
fast reoptimization techniques that can exploit the information collected in
prior iterations. More precisely, when solving the PDE, we propose to speed up
the Newton method by deriving an initial solution from either Taylor approxi-
mations or interpolations of S(u) in the new control vector u. Both approaches
are evaluated experimentally in Section 9.



20 Christoph Buchheim et al.

8.1 Taylor Approximation

The first approach is to approximate S(u) for a new control vector u by using
a first order Taylor approximation in one of the vectors u considered in an
earlier iteration, assuming that

S(u)(x) = S(@)(x) + (S'(w) (v — W) (), (19)

see Proposition 1(ii). Note that in our algorithm the derivatives S’(w)h are
calculated anyway for the construction of cutting planes as devised in Corol-
lary 1, using the linearized PDE in Proposition 1; we thus obtain the Taylor
approximation for free. It can easily be shown that for linear functions g and b
equality holds in (19). More generally, this approach can be expected to work
well whenever the PDE in (COCP) is nearly linear.

8.2 Inter-/Extrapolation

The second approach uses inter- or extrapolation. It aims at predicting the
solution S(u)(z) for a new u, if enough sample points (u¥),y)), j =1,... ¢,
are available. The approach depends on the specific semilinear elliptic PDE.
We assume in the following that the inverse function g=!(z,.): R — R of g(z, .)
exists and restrict ourselves to the special case of I'y = ) for sake of simplicity.
The PDE can then be written as

L
o(o.5) = 3" i) — (Ay)(a)

By neglecting the term Ay, we assume that S(u)(z) depends on u in the form

9(x, S(u)(x)) = g1(2) "u + go(z)

for each fixed z € £2 and some g;(x) € R, go(x) € R. Within an interpolation
scheme, one first calculates the coefficients g1 (z) and go(x) by solving a least
squares problem based on the equations

g,y (2)) = g1(2) " + go(w), j=1,....t.
The initial guess for the state y in u can then be chosen as
Yinit (7) = g~ ! (gl(iﬂ)—ru + go(2)) .

Note that this interpolation has to be performed for all = € (2.
This approach can be accelerated further by simply setting g1 (z); = 15 (x)
and construct go(x) out of the previously calculated Ay, e.g.,

4
g0(x) = meanje s (9(a.yP (@) = 3wl ix))

The index set J can be chosen differently from {1,...,t}. For example, one
may consider only the solutions u¥) nearest to the new iterate w.
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9 Experimental Results

To evaluate the potential of our algorithm experimentally, we implemented it
in MATLAB R20164, using CPLEX 12.6 as ILP solver (cplexbilp). CPLEX
is run in default settings except that the parallel mode is switched off. All
computations have been performed on a 64bit Linux system with an Intel
Xeon E5-2640 CPU @ 2.5 GHz. In all experiments, we set the time limit to
five CPU hours.

9.1 Test Instances with Lower Bounds

Throughout our experiments we consider a square domain 2 = [0,1]? and
partition this domain into as many parts as we have binary optimization vari-
ables, i.e. {2 = U'P; with pairwise disjoint P;, ¢ = 1,...,n. The test problem
is defined as follows:

min ¢ u
s.t. y = 0.5x(0.1,0.9]2
1 ¢
— Ay + %yp =100) uixp, inQ (20)
i=1
y=0 on O0f2
and uwel.

In particular, we do not consider any Neumann boundary conditions in our
experiments, so that £ = n.

Unless stated differently, we choose n =25, p=2,¢;, =1fori=1,...,n,
and U = {0,1}", i.e., umax = 1. Note that the above problem satisfies the
conditions of Section 2. In particular, g(x,y) = ﬁyl’ is non-decreasing and
convex since (20) is defined so that y > 0 holds for all z € (2. The factors,
e.g. 2—11)7 and the other constants are chosen in order to avoid trivial solutions
where all switches are on (or all switches are off).

For the solution of the semilinear elliptic PDE we use a finite element
method. To be more precise, we employ a standard Galerkin scheme with con-
tinuous and piecewise linear ansatz and test functions. For the computational
mesh, we use a uniform Friedrich-Keller-triangulation with 10201 vertices. The
discrete system arising in this way is solved by Newton’s method, which ter-
minates successfully if the residual is less than 1076, The linear systems of
equations are solved by direct solvers based on sparse LU decompositions. The
computational mesh is aligned with the above mentioned partitioning defining
the sets P;, so that these sets are resolved exactly. In our experiments we use
the kmeans algorithm with as many clusters as discrete controls n. Figure 1
shows examples of the sets P; for n = 10, 50, 100.
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0
0 0.5 1 0

Fig. 1 Heat clusters for 10, 50 and 100 heat sources.

9.1.1 Choice of Reoptimization Strategy

As described in Section 8, the solution of the semilinear elliptic PDE can be
sped up by reoptimization. We compare the Taylor approximation and the
interpolation approach with two straightforward heuristics. The resulting four
strategies differ in the choice of the initial solution for the Newton method:

PDE_ZERO: Zero vector, i.e., y(x) = 0 for all z € 2.

PDE_LINEAR: Solution of a linear PDE obtained by neglecting the term g(z, y).

PDE_TAYLOR: The first order Taylor approximation of S(u), calculated in the
closest point @ to u that has been considered before; see Section 8.1.

PDE_INTERP: Interpolation of S(u), taking into account only the nearest solu-
tions u) of u (maximum five); see Section 8.2.

Whenever an initialization as described above is not applicable, e.g. in the first
iteration, we choose the zero vector.

We compare the four choices above for a fixed number of n = 25 binary
controls. As the nonlinearity of g, i.e. the exponent p in (20), has got the highest
influence on the performance of the reoptimization methods, we evaluate the
cases p € {1,2,3,4}. For each p, Problem (20) is solved, so that each iteration
of our algorithm serves as a test instance for the reoptimization heuristics.
The results (number of iterations of the Newton method and time) are shown
in Table 1.

The dependence of the Newton method on the exponent p is highly visible.
In particular, the number of iterations grows with p in a similar order for
all reoptimization strategies except PDE_INTERP. The latter method clearly
dominates all others for p = 2,3,4, needing less iterations and CPU time.
For p = 1 it is known from theory that the Taylor approximation is exact,
which leads to zero further Newton iterations.

Based on these results, we choose the interpolation strategy of Section 8.2
throughout the following experiments.

9.1.2 Choice of Cutting Planes

The inequalities of Corollary 1, which form the basis of our outer approx-
imation algorithm, are valid for almost all z € (2. This allows us to add,
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PDE_ZERO PDE_TAYLOR
D pde iter cpu time [s] pde iter cpu time [s]
1 2/2/20 0.46 / 0.47 / 0.46 1/1/1.0 0.10 / 0.13 / 0.11
2 21/23/226 7.42 / 8.04 / 7.75 9/22/16.6 2.94 / 7.62 / 5.63
3 31/35/333 10.87/12.56 / 11.82 16 /32 /254  5.54 /11.29 / 8.91
4 39 /46 /435 14.05/ 25.30 / 16.83 23 /41 /347 8.63 /1551 / 13.14
PDE_LINEAR PDE_INTERP
D pde iter cpu time [s] pde iter cpu time [s]
1 2/2/20 0.46 / 0.47 / 0.46 2/2/20 0.46 / 0.47 / 0.46
2 20/22/21.6  6.78 ) 7.64 / 7.38 6/13/9.0 1.87 / 4.36 / 2.95
3 30 /34 /323 10.64 / 12.23 / 11.49 7/13 /9.9 2.26 / 4.43 / 3.33
4 38/45/425 14.31/17.64 / 16.21 8 /15 /10.9 2.72 / 5.51 / 3.95

Table 1 Comparison of different reoptimization heuristics for the solution of the semilinear
elliptic PDE for four different exponents p. We state the minimum, maximum, and mean of
the number of Newton iterations and of the running time needed for solving a single PDE.
For the minimum and mean, the first trivial solution with zero iterations is neglected.

for any infeasible u € U, as many cutting planes as there are vertices z} of
the finite element discretization that violate y(x}) > ymin(x}). We noticed,
however, that nearby points often lead to inequalities cutting off the same
vectors from U, and thus have a negative influence on the efficiency of the
overall algorithm since the solution of the ILPs is slowed down. Therefore we
choose some minimal distance r and enumerate all points ] in descending
order according to the violation of the constraint y(z}) > ymin(z}), adding
the corresponding cutting plane if and only if no point closer than r to x;
has been used before to produce a cutting plane. In particular, we obtain a

set J C{i: y*(2f) < Ymin(zF)} such that

|o; —af||l,>r ijed i#j.

The influence of the choice of r on the performance of our algorithm is shown
in Figure 2 and Figure 3, for p = 2 and p = 3, respectively. As expected,
the difficulty of solving the ILPs decreases with growing r, as the number
of constraints becomes smaller, whereas the number of iterations (and hence
the total time needed to solve the PDEs) increases, as less vectors from U
are cut off in one iteration. When combining these two effects in terms of
the overall CPU time, it turns out in our experiments that the minimum is
attained at r = 0.04. Although it may not be the optimal choice for arbitrary
parameters, we choose r = 0.04 in the following for sake of comparability.

9.1.83 Example 1: Uniform Costs and Precedence Constraints

We first investigate the case of uniform costs and binary variables, i.e. we
keep ¢; = 1 for all i« = 1,...,n. In other words, we minimize the number
of sources we need to switch on in order to reach the pointwise minimum
temperature. In our experiments, we vary the number of controls n as well as
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Fig. 2 Comparison of different radii r for the choice of cutting planes with p = 2.
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Fig. 3 Comparison of different radii r for the choice of cutting planes with p = 3.

the exponent p, in order to illustrate the influence of both the problem size
and the nonlinearity. As already emphasized above, our approach is able to
deal with rather general combinatorial constraints on the control vector u, as
long as these can be modeled within the ILP solved in Step 2 of our algorithm.
In the following, we set the set of admissible controls to

U={ue{0,1}" |u—u; <0, (i,5) € T}

for some index set Z. In other words, certain heat sources may be switched
on only if others are switched on as well. In our experiments, the index set 7
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contains at most 0.25n pairs (i,7) with ¢ # j chosen at random. Note that
this may induce chains of type u; < u; < up < ... as well as constraints of
type u; = u;.

The results are listed in Table 2, where we report the number of major
iterations of the outer approximation algorithm, the number of added cutting
planes, the number of nodes and the CPU time required by the ILP solver,
as well as the number of iterations and the CPU time required by the PDE
solver; all figures are summed up over the major iterations. The last column
states the total running time for solving the instance to optimality.

We are able to solve the problem with up to 250 (p = 1), 120 (p = 2),
70 (p = 3) and 40 (p = 4) binary controls. For growing n (and fixed p), the
computation times of the ILP solves, the PDE solves and thus of the overall
process increase. While the computation time for solving the PDE is dominant
for small problems, the time for solving the ILPs becomes dominant for larger
problems. In fact, while the size of the discretized PDE does not depend on n,
the ILP solution time can be expected to grow exponentially in n for reasons
of complexity. Furthermore, the nonlinearity of the PDE — varied through the
exponent p — has a significant influence on the number of Newton iterations, as
already known from Section 9.1.1, but also on the number of nodes within the
ILP solves and major iterations of the outer approximation algorithm. Both
increase with the exponent p. This leads to the conclusion that the cutting
planes’ quality is reduced for stronger nonlinearities.

When investigating the solution process over the major iterations of the
outer approximation, it can be noticed that the number of nodes and com-
putation time required by the ILP solver are not equally distributed. In fact,
for most of the problems, the most difficult ILPs are those in the middle of
the process, while the ILPs in the beginning and in the end are relatively
easy to solve. This behavior is plotted in Figure 4 for p = 3, n = 60 and
p =4, n = 30. A possible explanation is the following: while in the beginning
the growing number of cutting planes makes the problem harder to solve, the
smaller number of remaining feasible solutions leads to a faster solution of the
ILPs towards the end.

0 20 40 60 80 100 12C
iteration

Fig. 4 ILP nodes needed in each major iteration for the solution of (20) with p = 3,n = 60
and p = 4,n = 30. The number of nodes is scaled by the maximum number of nodes.
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ILP solve PDE solve

p n obj iter  #cuts nodes time [s] iter  time [s] time [s]
1 10 10.00 2 394 0 0.91 3 0.47 4.37
30 30.00 2 399 0 0.58 3 0.45 6.52

50 32.00 4 406 21 0.88 7 1.30 25.71

70 33.00 7 457 781 1.77 13 2.73 67.15

90 36.00 9 457 15990 4.60 17 3.95 118.09

110 36.00 7 445 4500 3.13 13 2.98 108.37

130 39.00 8 461 10537 4.31 15 3.53 150.20

150 40.00 5 451 35808 5.99 9 1.93 101.71

170 43.00 10 484 110289 15.84 19 4.62 254.11

190 44.00 12 496 242423 34.18 23 5.16 348.91

210 48.00 19 550 3662067 485.92 37 7.93 1052.59

230 48.00 23 565 4714413 746.99 45 9.65 1495.83

250 49.00 14 580 11015773 2038.39 27 5.52 2504.50

270 - - - - - - - > 5h

2 10 10.00 9 1624 18 2.75 68 16.43 34.40
20 20.00 15 2815 92 4.01 120 30.23 83.56

30 30.00 17 3358 395 5.12 141 34.90 119.99

40 39.00 20 3587 723 8.36 158 39.29 168.74

50 41.00 28 4956 3159 29.53 235 58.62 300.25

60 42.00 29 5048 5757 40.14 253 62.17 361.85

70 46.00 38 6868 15475 138.49 322 78.77 619.80

80 52.00 46 7884 89042 393.17 376 88.81 1026.86

90 48.00 45 6748 104637 313.71 381 89.65 1001.28

100 50.00 73 9750 984609 2847.30 594 132.94 4020.34

110 46.00 61 9430 593196 2216.06 495 107.43 3264.37

120 47.00 67 10001 3500743 12183.54 553 121.23 13442.77

130 - - - - - - - > 5h

3 10 10.00 13 2563 51 4.07 117 31.30 58.59
20 20.00 27 5617 221 7.35 255 67.56 165.95

30 30.00 44 8639 2019 28.70 398 104.16 349.30

40 34.00 49 9675 5789 73.95 464 120.41 500.72

50 33.00 89 17328 107817 841.38 872 218.74 1743.96

60 30.00 114 20800 433807 2950.73 1086 250.90 4200.37

70 30.00 137 26100 1347245 14775.53 1286 290.01 16454.80

80 - - - - - - - > 5h

4 10 10.00 20 4014 94 5.73 207 55.39 96.48
20 20.00 39 7960 621 13.18 414 109.44 251.83

30 27.00 73 14554 4235 67.65 783 208.70 631.89

40 40.00 110 21108 64513 450.43 1168 299.71 1428.49

50 - - - - - - - > 5h

Table 2 Results for different numbers n of binary controls and different exponents p with
precedence constraints on the control vector u. The number of added cuts (#cuts), the
number of B&B nodes and the time for ILP solution, as well as the number of iterations
and the time for the PDE solution are summed up over the major iterations. All times are
CPU times in seconds.
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9.1.4 Example 2: Randomly Distributed Costs and Precedence Constraints

In addition to Example 1, we consider a problem with randomly distributed
costs c. Therefore, for every problem size n one vector c is selected where each
¢i, i =1,...,n,is chosen independently in the interval (0, 1) using a uniformly
distributed random number generator. The results are shown in Table 3 for
different p and increasing n, starting at the largest possible n of Table 2.

ILP solve PDE solve

p n obj iter  #cuts nodes time [s] iter  time [s] time [s]
1 250 15.92 7 492 12524 10.54 13 2.73 242.36
300 15.42 8 523 25321 12.53 15 3.47 338.29

400 16.64 9 565 340830 88.67 17 4.04 572.88

500 15.11 5 556 52982 20.31 9 1.99 325.33

600 15.30 6 589 18563 18.79 11 2.44 472.41

700 14.62 8 624 308315 112.85 15 3.27 846.90

800 13.47 9 682 1147875 461.01 17 3.72 1411.75

900 14.70 9 710 2717080 1317.79 17 3.85 2388.09

1000 14.38 9 748 5122292 2633.98 17 3.45 3814.96
1100 12.83 8 742 635094 340.30 15 3.04 1475.15
1200 12.70 7 789 11111739 5740.24 13 2.70 6810.35
1300 - - - - - - - > 5h
1400 13.06 7 838 22358640 13415.77 13 2.82 14663.01
1500 - - - - - - - > 5h

2 120 17.62 42 6011 68987 381.66 333 78.52 1195.04
130 14.14 33 4999 23254 229.55 259 61.68 907.80

140 18.88 51 7681 523347 1973.46 409 92.08 3075.82

150 21.72 57 7326 1036400 4532.09 445 99.27 5851.86

160 21.60 51 6842 611097 2298.98 419 90.34 3529.53

170 19.19 57 8405 631267 3209.97 452 98.60 4674.73

180 20.06 56 7413 1236444 5500.25 445 97.70 7036.16

190 - - - - - - - > 5h

3 70 11.47 82 14678 212073 1792.73 776 192.66 2860.89
80 12.63 89 12727 142892 1616.76 792 185.36 2848.11

90 13.24 116 16904 1334989 12125.44 1026 234.02 13860.52

100 - - - - - - - > 5h

4 40 8.55 88 14878 15121 253.94 896 229.65 1023.19
50 5.96 104 20137 61407 1085.66 1079 272.96 2138.60

60 9.10 168 26601 1001795 10341.12 1769 426.89 12235.70

70 - - - - - - - > 5h

Table 3 Results for different numbers n of binary controls and different exponents p with
randomly distributed costs c¢. The number of added cuts (#cuts), the number of B&B nodes
and the time for ILP solution, as well as the number of iterations and the time for the PDE
solution are summed up over the major iterations. All times are CPU times in seconds.
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It turns out that with randomly distributed costs problem (20) can be
solved much more efficiently than with uniform costs, resulting in less com-
putation time for the same number of binary controls n, e.g., 242.36s instead
of 2504.50s (p = 1,n = 250) or 1023.19s instead of 1428.49s (p = 4,n = 40).
On the one hand — which is the main factor here — the ILPs can be solved
more efficiently. In fact, in discrete optimization, uniform objective functions
often lead to harder problems in practice as they admit more feasible solu-
tions with similar or equal objective function values. On the other hand, the
outer approximation algorithm needs less major iterations compared to the
uniform case, e.g., 42 instead of 67 (for p = 2 and n = 120) or 88 instead of
110 (for p = 4 and n = 40). In summary, we are able to solve problems with
up to 1400 (p = 1), 180 (p = 2), 90 (p = 3) and 60 (p = 4) binary controls in
this example.

9.2 Test Instances with Tracking-Type Objective

We next consider combinatorial optimal control problems with L°°-tracking-
type objective functions; see Section 7. We use the same partial differential
equation with the same partition of heat sources as in Section 9.1. As desired
temperature we choose yq(z) = 3(z1 + 2)S(1) for x € 2, which creates a
gradient temperature distribution. In case of the L*-tracking type objective
function, we can calculate a cut for all x € 2, but as for the concave cuts
in Section 9.1.2 we filter these options with the same parameter choices to
reduce the number of cuts, making sure however that the point = yielding the
strongest bound on z is taken into account. To obtain comparable figures for
different exponents p, we scale the objective function by [|S(1)]|pe.

Table 4 presents the results for different number of heat sources n and
different exponents p. In contrast to the previous tables, we separate the time
into the ILP solve time, the state y computation time as well as the concave
and submodular cut generation time. For p = 1 and p = 2, we can solve the
problem up to n = 500 within the limit and for p = 3 and p = 4 up to n = 400.
The dominating runtime factor here is the generation of the submodular cuts,
since for every cut n nonlinear PDEs have to be solved. The reoptimization
strategies, which are even more beneficial here, cannot prevent this trend.

Nevertheless, for the nonlinear cases p € {2,3,4}, much larger instances
can be solved to optimality, compared to the previous results with only concave
cuts. This is due to a slower increase in major iterations of the outer approxi-
mation algorithm, which in turn can be explained by the fact that the cutting
planes derived from submodularity are much tighter than the tangent inequal-
ities: when produced at a point u*, the latter inequality touches the graph
of S(.)(z) only in u* in general, while the former touches the graph in n + 1
binary points by construction. Moreover, contrary to the tangent based cuts,
the strength of submodularity-based cuts does not deteriorate with increasing
exponent p.
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ILP state  concave  submod. overall

p n obj iter  #cuts time [s]  time [s] time [s] time [s] time [s]
1 100 0.53 4 1219 1.49 0.88 45.41 99.30 152.06
200 0.51 11 1264 11.28 4.78 303.79 800.47 1125.42

300 0.49 18 1408 31.14 8.96 770.72 2334.60 3151.52

400 0.47 31 1597 131.92 17.16 1810.17 6281.18 8247.64

500 0.44 27 1703 507.70 15.42 1965.14 7003.79 9499.46

600 - - - - - - - > 5h

2 100 0.56 10 1862 10.20 18.58 131.51 1069.28 1235.60
200 0.55 12 2166 32.13 23.70 323.65 2714.25 3101.05

300 0.55 21 2276 67.59 44.88 891.39 6901.66 7913.19

400 0.54 14 2286 93.87 27.22 765.99 6052.96 6948.04

500 0.54 20 2354 73.91 39.12 1413.02 11145.32 12680.29

600 - - - - - - - > 5h

3 100 0.57 9 2046 8.97 17.14 114.69 1233.40 1380.75
200 0.56 13 2618 33.29 29.22 349.35 3504.50 3924.20

300 0.55 21 2550 80.07 49.64 884.31 8503.28 9526.40

400 0.55 21 2591 114.90 46.57 1176.92 11120.18 12467.81

500 - - - - - - - > 5h

4 100 0.57 11 2666 13.34 30.92 143.36 1807.75 2003.85
200 0.56 21 3148 67.70 57.46 583.70 6775.95 7494.99

300 0.57 16 2698 98.37 41.38 652.75 7615.56 8417.17

400 0.55 25 3122 264.74 70.24 1412.66 15582.11 17341.00

500 - - - - - - - > 5h

Table 4 Results for different numbers n of binary controls and different exponents p for
L°°-tracking type objective function. The number of added cuts (#cuts), the time for ILP
solution, the PDE solution, the concave cuts and the submodular cuts are summed up over
the major iterations. All times are CPU times in seconds.

9.3 Stationary Heating of a Metallic Workpiece

We finally show some results for the application mentioned in Section 2, i.e.,
the stationary heating of a metallic workpiece. We solve the problem in two
dimensions, which requires to adapt the Boltzmann type radiation boundary
condition to

/—@Vy~n+0y3 = ayg

with o = 1.92 - 107!% and s = 16. The workpiece is given as [0,1]? and the
heat sources correspond to 0.02 by 0.02 squares arranged on a k x k-grid
regularly covering the workpiece, each one equipped with a power of 2500 W.
The surrounding temperature is chosen as 293 K.

In the first part, we consider uniform costs again, thus aiming at a minimal
number of sources switched on. In Figure 5, optimal temperature distributions
are depicted for ymin = 1000 K, for the cases k = 5 (12 sources needed, 10 iter-
ations, 217 CPU seconds) and k = 10 (11/16/1793s). Figure 6 shows optimal
solutions for k = 15 with ymin = 750K (5/10/10765s) and ymin = 1250K
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Fig. 5 Optimal states for k =5 (left) and k& = 10 (right) with ymin = 1000 K.
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Fig. 6 Optimal states for k = 10 with ymin = 750K (left) and ymin = 1250 K (right).
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Fig. 7 Optimal states for k = 4 with yg = 1000K (left) and yq = 1250K (right).

(21/19/2262s). Note that an optimal solution may be symmetric, but does
not necessarily have to be. Moreover, in the case of uniform costs, there are
many different optimal solutions in general.

In the second part, we consider an L'-tracking type objective function.
In Figure 7, optimal temperature distributions are shown for £k = 4 and
a desired temperature of yq = 1000K (8/572/27895s) and yq4 = 1250K
(12/197/111325).
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10 Conclusions and Future Directions

We have presented an outer approximation approach for solving a large class of
semilinear elliptic optimal control problems with static combinatorial controls,
yielding optimal solutions in finitely many iterations. The algorithm exploits
the pointwise concavity and submodularity of the solution operator in terms
of the control variables in order to generate valid linear cutting planes.

Some ideas of the algorithm can be extended to the case of mixed-integer
controls. Indeed, the cutting planes derived from concavity in Section 3 are
valid globally, so that lower bounds on the states can be handled as before.
However, in the presence of continuous control variables, we cannot expect
finite convergence anymore, and more care is needed in the selection of cutting
planes to ensure any kind of convergence.

In fact, also the cutting planes derived from submodularity in Section 5
remain valid for all w € [0, 1]™, this follows from submodularity and concavity
together. But, unfortunately, it is not true any more that every infeasible
control vector can be cut off by an appropriate cutting plane. Consequently, we
cannot easily extend this part of our approach to mixed-integer problems. This
reflects the fact that non-convexity is problematic for continuous variables,
while for binary variables the situation is rescued by submodularity.

As observed in our experiments, most of our algorithm’s running time is
spent for solving ILPs, particularly for larger instances. A significant speed-up
can thus be expected from a more sophisticated solution strategy for these
ILPs, exploiting the iterative structure of the algorithm again. For this, one
could use general ideas discussed for outer approximation algorithms such as
branch-and-cut-based outer approximation [32,8]. Our convexity result could
also be exploited in many other ways, e.g., we could use an iterative method for
nonlinear optimization using first-order information in order to compute a local
(and hence global) optimizer. However, this would only solve the continuous
relaxation of our problem, so that such an approach needs to be embedded
into a branch-and-bound scheme again. Moreover, submodularity cannot be
integrated easily into such an approach.

Finally, we would like to mention that we can also deal with pointwise
concave (instead of convex) functions g and b. In this case, the solution oper-
ator S is pointwise convex (instead of concave) and supermodular (instead of
submodular). Our approach can thus be applied in a symmetric way.
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