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Abstract. Given a set of departments, a number of rows and pairwise connectivities
between these departments, the multi-row facility layout problem (MRFLP) looks
for a non-overlapping arrangement of these departments in the rows such that
the weighted sum of the center-to-center distances is minimized. As even small
instances of the (MRFLP) are rather challenging, several special cases have been
considered in the literature. In this paper we present new mixed-integer linear
programming formulations for the (space-free) multi-row facility layout problem
with given assignment of the departments to the rows that combine distance and
betweenness variables. Using these formulations instances with up to 25 departments
can be solved to optimality (within at most six hours) for the first time. Furthermore
we are able to reduce the running times for instances with up to 23 departments
significantly in comparison to the literature. Later on we use these formulations in an
enumeration scheme for solving the (space-free) double-row facility layout problem. In
particular, we test all possible row assignments, where some assignments are excluded
due to our new combinatorial investigations. For the first time this approach enables
us to solve instances with up to 16 departments to optimality in reasonable time.
Keywords: Double-Row Layout Problem, Facility Layout, Integer Programming,
Combinatorial Bounds

1 Introduction

In this paper, we focus on mathematical programming approaches that can certify global
optimality of solutions for Multi-Row Facility Layout Problems (MRFLP) and variants thereof.
We start with an introduction of the problems considered in this paper and of layout problems
related to them.

The Multi-Row Facility Layout Problem. An instance of the (MRFLP) consists of n
departments {1,...,n} =: [n] with given positive lengths ¢; > 0,7 € [n], pairwise non-negative
connectivities w;; > 0,4,j € [n],i < j, and a set R := [m] of rows available for placing the
departments. For sake of simplicity we assume that

e cach department can be assigned to any of the given rows,

e inter-row distances between the departments are neglected.
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Now the task of the (MRFLP) is finding an assignment r; € R, i € [n], of departments to rows,
and feasible horizontal positions for the centers of the departments within the assigned rows, i.e.,
positions

pi € R,i € [n], satisfying %(Zl + ;) < |pi —pj| if ry =1 for a j € [n] \ {i}, (1)

such that the total weighted sum of the center-to-center distances between all pairs of departments
is minimized. Hence the (MRFLP) can be formulated as follows:

min Y wjlpi — pjl

i,j€[n]
1<j
st (ri=rj) = 36+ 4) < |pi — pjl, i,7 € [n],i < j,
reR", peR".

The (MRFLP) is of special interest in the design of flexible manufacturing systems because
the layout of the machines highly influences the throughput, the material handling time and
other performance characteristics of factories [I7]. Apart from manufacturing planning it has
several applications, see e.g., [10, 14}, 28, B31] and [24] for more detailed lists. Despite its broad
applicability the general (MRFLP) received only limited attention in the literature. Looking at
exact algorithms for the (MRFLP) we are aware of the following papers. In the 1980s, Heragu and
Kusiak [I8], 19] obtained locally optimal solutions for the Single-Row Facility Layout Problem
(SRFLP) and the Double-Row Facility Layout Problem (DRFLP) using a non-linear programming
model. The (SRFLP) is a special case of the (MRFLP) with m equal to 1. The (DRFLP) is another
special (MRFLP) with m = 2, i.e., the departments are arranged above and below a single path.
This variant is especially relevant in the planning of factory layouts. Chung and Tanchoco
[11] (see also Zhang and Murray [33]) presented a mixed integer linear programming (MILP)
formulation for the (DRFLP) in 2010. With this approach instances with up to 10 departments
could be solved to optimality. Later on Amaral [4], again concentrating on the (DRFLP), proposed
an improved MILP formulation and was able to solve instances with up to 12 departments to
optimality. Recently, Hungerldnder and Anjos [24] suggested a semidefinite programming (SDP)
approach for the general (MRFLP) that yields tight global bounds for instances with up to 12
departments.

Further Relevant Row Layout Problems. Recent surveys of applications of and global
optimization approaches to the (SRFLP) can, e.g., be found in [7} 25, 27]. Note that at least
one optimal solution of the (SRFLP) has no empty spaces between neighboring departments.
Hence the (SRFLP) consists of finding a permutation of the departments that minimizes the
total weighted sum of all center-to-center distances. The Single-Row Equidistant Facility Layout
Problem (SREFLP) is the special case of the (SRFLP) with all departments equal in shape. For
both (SRFLP) and (SREFLP) the largest instances solved to optimality consist of 42 departments
[21, 25]. Let us also mention that the Linear Arrangement Problem, where nodes of a graph
are assigned to positions on the real number line minimizing the sum of the pairwise distances
between adjacent nodes, is a special (SREFLP) where all connectivities are binary. It is already
an NP-hard problem [I3], even if the underlying graph is bipartite [12].

As the (MRFLP) (and the (DRFLP)) is a rather challenging problem and only small instances
can be solved to optimality several simplifications have been studied in the literature. In the
Multi-Row Equidistant Facility Layout Problem (MREFLP) all departments have the same length.
Recently Anjos et al. [9] proposed specially tailored ILP and SDP models for this problem.
They could prove global optimality for some instances with up to 25 departments and achieved
optimality gaps smaller than 1% for instances with up to 50 departments using a semidefinite
programming approach.

The Space-Free Multi-Row Facility Layout Problem (SF-MRFLP) is a restricted version of the
(MRFLP) in which all the rows have a common left origin and no empty space is allowed between



the departments (in the same row). If we restrict the (SF-MRFLP) to two rows we obtain the
Space-Free Double-Row Facility Layout Problem (SF-DRFLP), also denoted as Corridor Allocation
Problem [3], as a special case. An MILP formulation for the (SF-DRFLP) is presented in [3].
With this model instances with up to 13 departments can be solved to optimality. Additionally,
a semidefinite optimization approach is proposed in [23]. It provides high-quality global bounds
for (SF-DRFLP) instances with up to 15 departments and for (SF-MRFLP) instances with 3 to 5
rows and 11 departments.

Additionally fixing the row assignment in advance leads to the k-Parallel Row Ordering
Problem (kXPROP) as a simplified (SF-MRFLP) version. It asks for an optimal arrangement of
the departments along multiple rows, without space between departments in the same row, but
where the row of each department is fixed. Hence the (kPROP) asks for a permutation of the
departments within each row so that the total weighted sum of the center-to-center distances
between all pairs of departments (with a common left origin) is minimized. If the (kPROP) is
restricted to two rows we simply call it (PROP). Amaral [5] suggested an MILP formulation for
the (PROP) that allowed to solve instances with up to 23 departments to optimality. Furthermore
Hungerlénder [20] proposed an SDP approach that yields reasonable global bounds for (XPROP)
instances with up to 100 departments.

llustration. The following examples are designed to illustrate the differences between the
(SRFLP), the (kPROP), the (SF-MRFLP) and the (MRFLP). We consider the following instance
consisting of 4 departments with lengths ¢; = 4,7 =1,...,4, and pairwise connectivities wio =
w3q = 1, wyg = wog = 2. Figure[l]illustrates optimal layouts for the four different problems:

e Figure [la] shows an optimal layout for the (SRFLP) with total cost 1.5-1+6.5-14+2.5-2+
2.5-2=18.

e Figure [1b| depicts an optimal layout for the (PROP) when departments 1 and 2 are assigned
to row 1 and departments 3 and 4 are assigned to row 2, i.e. 11 =ro =1, r3 =ry = 2. The
corresponding total cost is 1.5-1+3.5-14+2.5-240.5-2 =11.

e Figure [Ic[shows an optimal layout for the (SF-DRFLP) with total cost 2.5-1+2.5-140.5-
24+05-2=T1.

e Finally, Figure depicts an optimal layout for the (DRFLP). The corresponding total
cost is 3-1+ 3 -1 = 6. This solution shows that it might be advantageous to have space
between neighboring departments in the same row and to allow different starting points
(the leftmost point of the leftmost department in a row) in different rows.

2 1
3 2 1 4
3 4
a) (SRFLP)
(@) (b) (PROP)
3 1
2 4 2 4
(c) (SF-DRFLP) (d) (DRFLP)
Figure 1: We consider an instance with ¢; =14, i =1,...,4, wio = w3y = 1, w14 = wez = 2 and

depict optimal layouts for four different row layout problems.



Contributions and QOutline. The contributions of this paper are new exact approaches for the
(DRFLP), the (SF-DRFLP) and the (kPROP) that clearly outperform all exact approaches from
the literature for these problems. For the (kPROP) we transform and extend the semidefinite
model from [20] to an MILP model that yields cheap and strong global bounds compared to other
existing models. For the (SF-DRFLP) and (DRFLP) we adapt the idea of enumerating over all
possible row assignments from the semidefinite approach in [23] to appropriate linear models. To
further improve the efficiency of the enumeration scheme we prove some combinatorial properties
of optimal (PROP) and double-row layouts.

The paper is structured as follows. First, we shortly describe our enumeration scheme. In
Section [3] we suggest a new MILP formulation for the (kPROP) that can be incorporated in an
enumerative scheme for solving the (SF-DRFLP). Section [4] contains a model for the (DRFLP) with
fixed row assignment that can also be integrated in our enumeration framework. In Section
we study the structure of optimal solutions of some of the layout problems. These results are
later exploited in the computational experiments. Detailed computational results are reported in
Section [6] Section [7] concludes the paper.

2 An Enumeration Scheme for Solving Row Layout Problems

In this section we shortly describe our enumeration scheme for solving row layout problems like
(MRFLP) and (SF-MRFLP), respectively, exactly. Given an instance of the respective row layout
problem, we consider for each possible row assignment the restricted version of the row layout
problem, in which the assignment is fixed. Hopefully, these restricted problems are easier to
solve because of less degree of freedom. We then enumerate over all possible row assignments
in a branch-and-cut approach. Clearly, we can stop a single solution step if the lower bound in
branch-and-cut exceeds the currently best solution of the general problem. Our enumeration
scheme is shown in Algorithm |1l Note that this approach works well as long as the subproblems
with fixed row assignment can be solved quickly. In the following sections we present MILP
formulations for the (SF-MRFLP) and the (MRFLP) with fixed row assignments to be applied in
this enumeration scheme.

Algorithm 1: Enumeration scheme for problem P € {(MRFLP), (SF-MRFLP) }

Input :instance of P with departments [n], rows R and connectivities w
Output: optimal value v* of P

1 v* 4 00

2 for r = (r1,...,r,) € R" // test all row assignments
do

if row assignment r can be neglected then
L continue
Compute a lower bound v, of P.
if v, > v* then
L continue
Determine optimal value v of P with fixed row assignment r.
if v <v* then
| v* )

3 return v*




1 3 1 3 1 3
2 2 2
4 4 4
(a) Type 1 (b) Type 2 (c) Type 3
Figure 2: Visualization of the three distance calculation types. We consider an instance with
4 departments and ¢; =4, 4 = 1,...,4, row assignments vy = r3 = 1,10 = 2,14 = 3,
and connectivities wis = 1,wi3 = 2 and wsy = 3. The objective value for the

displayed solution equals 1-0.54+2-24 3-0.5 = 6 for distance-calculation type 1,
1-(05+1)+2-243-(25+2)=19 for type 2, and 1-0.5+2-2+3-(25+2) =18
for type 3.

3 An MILP Model for the k-Parallel Row Ordering Problem

In the following we suggest MILP models for the (kPROP), where we consider different variants
for determining the distances of departments in different rows. We distinguish between the
following three variants, where d;; denotes the distance between departments i,j € [n],i < j,
and p; denotes the z-coordinate of the center of department i € [n]:

e Direct variant (this is the standard variant, see, e.g., [3]) — type 1: di; = |p; — pjl.

ey 1f T r
e Border variant — type 2: d;; = {TZ p}j’ othzerivi;(;
T — Pl .

i +pj, if|rp—r;| >2
e Combined variant — type 3: d;; = Pi T Pjs 7 ‘ il =2,
Ipi — pj|, otherwise.

In variant 1 only the distances in x-direction are considered. In variants 2 and 3 this still holds
true for departments in the same row. Considering type 2 we sum up the distances to the left
border for departments in different rows. This can be interpreted in the following way. The
means of transport can only move in z-direction and so, for going from one to another row, it
first has to go from one of the departments to the left border, then it goes to the other row (for
fixed row assignments this length is fixed and so it can be neglected) and then it moves to the
other department. The only difference between type 2 and type 3 is that for type 3 we allow
direct connections between neighboring rows. Figure [2| shows an illustration.

To simplify the presentation of the models we define the sets Ry, h € R, that contain the indices
of the departments assigned to row h, i.e., j € R}, <> r; = h. Further we introduce two additional
dummy departments n+ 1 and n + 2, to be placed at the left and the right boundary of each row,
respectively, with £, 11 = {12 =0 as well as w;; =01if 7,5 € [n+ 2], {i,j} N {n+1,n+ 2} # 0.
We set Ry, := R, U{n+1,n+2} for h € R.

Our MILP formulations use betweenness variables

1, if k lies between ¢ and j (in the same row),

Tikj = Tjki = )
0, otherwise,



for 1 € R,i,j,k € Ry, |{i,j, k}| = 3,7 < j, and additionally distance variables dij =dj; > 0,1,5 €
[n+1],i < j.

Using these variables we can formulate the (kPROP) as follows. For all three distance calculation
types we use the basic model

min Z wijdij

i,j€[n]
1<)

S.t. @ik + Tikg + Tk = 1, leR,i,j ke R,i<j<k, (2)
T(nt1)i(n+2) = Ly i € [n], 3)
Tim41)j = 0, leR,i,j € RyU{n+2},i<j, (4)
Ti(n+2); = 0, leR,i,j e RyU{n+1},i <], (5)
T(n41)ij = Tij(nt2) leR,i,j € Ryi#j, (6)
+ Tinj + Tink + Ting < 2, leR,i,j,k,he R, |{i,j, kY =4i<j<k, (7)
— Tinj + Tink + Tjpk > 0, l€R,i,j,k,heR,{i,j,khY=4i<j<k (8)
+ Tin; — Tink + Ting > 0, leR,i,jk,he Ry, |{i,j kb =4,i<j<k, (9
+ Tinj + Tink — Ting > 0, leR,i,j,k,he R, |{i,j,khY=4i<j<k, (10)
dij= > b+ 3(li+4), 1€Ri,jERU{n+1}i<], (11)

keR\{%,5}
zik € {0,1}, leR,i,j, ke R, |{i,j,k} =3,i <k, (12)
dij >0, i,j € [n+1],i < j. (13)

Equations and inequalities — express that the departments in each row do not overlap.
Indeed, these constraints were originally introduced by Amaral in a formulation of the (SRFLP)
[2]. If i, 5,k € [n], {4, 4, k}| = 3, lie in the same row, exactly one of them lies in the middle (see
(2)) and then certain transitivity constraints have to be fulfilled. Furthermore we ensure by
f@ that in each row all departments lie between the dummy departments n + 1 (the left
border of the layout) and n + 2 (the right border in each row). The distance of two departments
in the same row equals the sum of the lengths of all departments between them plus half the
length of both departments, see .

Remark 1. In our model the variables x(ny1)ij,%,J € [n],i # J, (0T Tijny2)) comply with
ordering variables that indicate whether a department lies right or left to a second department,
i.e.,

1, ifi lies left to j in row r; = rj,

T = s =
(n+1)ij = Tij(n+2) {0, otherwise,

see also models for various row layout problems or the linear ordering problem, e.g., [11, [15].
The constraints @) and imply that x(,q1y;j =1 — T(n41)ji, which is used in the formulations
of classical ordering problems to half the number of variables, see, e. g., [10]. Furthermore note
that the 3-cycle inequalities

0 < Z(nt1)ij T Tnt1)jk = Tnt1)ik < 1, LeR,i,j.k € Ry, [{i,j,k} =3, (14
are implied for three departments i, j,k lying in the same row by (@, and @7(@
For proving this let | € R,i,j,k € Ry, |{i,j,k}| = 3. First we show that 0 < Tji,41) +
Thj(nt1) — Lhi(nt1) 1S implied. By (@—@) we know that
—Zki(n+1) T Tjitnt1) T Tjik > 0,
“Tijnt1)  Thjmt1) T Tijk 2 0,

—Zjk(n+1) + Tik(nt1) T Tikj = 0.



Summing up and together with T;j(,41) + Tji(n+1) = Tik(n+1) T Thint1) = Tjk(n+1) T Thjtnt1) = L
which is implied by @ and , we get

= Thitn+1) T Tik(nt1) TThi(nt1) = Tijnt1) TThitn+1) = Tjk(n+1) T Tijk + Tjix + Tigj > 0
—— S——— ——
1=Tpi(ny1) 1=2ji(nt1) 1=Zp(nt1)

=1
S = 2Tki(nt1) T 2T55n11) T 2Tkj(nt1) 2 0 S Tjina1) T Trjnrl) — Thitns1) = 0.

Second, we prove that Tjiny1) + Thj(ne1) — Thi(nt1) < 1 is implied by @), and @f@)
Multiplying each of the following inequalities by —1

—Zji(nt1) T Thi(nt1) + Tjik = 0,

~Thj(n+1) T Tijnt1) T Tijk 2 0,

—ZTik(n+1) T Tik(n+1) + Tikj = 0,
then summing up and using @ we get
Tjitn+1) = Tij(n+1) —Lhitn+1) T Tik(n+1) TThi(n+1) = Tik(n+l) 1
—— —— ——
1=2ji(nt1) 1=Tpi(ny1) 1= (nt1)
S 28 ji(nt1) T 2Thj(nt1) — 2Tkitn+1) < 2 S Tjitnt1) T Thitnt1) — Thitnt1) < 1

Our model does not contain position variables for each of the departments explicitly as, e. g.,
n [11], but we can use the following result.

Remark 2. In our model for the (kPROP) the position (along a horizontal line) of each department
i € [n], i.e., p; in the problem description , is given by d;n41). Note that and by =0
imply that di, 1) equals half the length of department i € [n] plus the sum of the length of all
departments between the left border of the layout and i.

We can further improve the model with the clique constraints introduced in [6],

Z Eifjdij:% ((Z&)S— Z&S) R leR, (15)

i,jGRl i€ER; i€ER;

1<J

> bitidiy > & <(Z£i)3—2£§>, leR,SCR. (16)
i,g’<e$ i€S i€S

1<J

Depending on the measurement of the distances, the following inequalities are used for
calculating inter-row distances. For distance-calculation type 1, we use

dij > digns1) — digni1), l,o€[m],l <o,i € Ry,j€ R,, (17)
dij > dj(ni1) — dignt1), lLoe[m],l <o,i€ Ry, j€R,, (18)
dij + djk > di, i,k € [n+ 1], [{i,j, kY = 3,0 < K, (19)

for the calculation of the inter-row distances, where and model the absolute value of the
difference of the center positions of i, j € [n],i < j, and are the classical triangle inequalities.

Considering type 2, the distances between departments 4,j € [n],i # j,7; # rj, lying in
different rows are determined by summing up the distances of each of the two departments to
the left border, i.e. to n + 1. We model this via

dij = di(n+1) + dj(n—l—l)a l,oeR,l<o,i€ Ry j€ Ro, (20)
d1]+d]k2dzk7 ZER>27]7k€Rl7|{/Lv.]7k}|:37l<k (21)



For distance type 3, we combine the formulas for type 1 and type 2. Indeed, inequalities
f are slightly adapted, depending on whether two departments i,j € [n],i < j,r; # rj,
lie in rows that are neighboring or not:

dij > di(nt1) — dj(nt1)s le R\ {m},i€ R;,j € Rj41, (22)
dij > djns1) — dipns1), leR\{m},i€ Ry,je R, (23)
dij = ditnt1) + djn1)s lLoeR,I<0—2,i€ R,j €R,, (24)
dij + djk > dig, i,J.k € [n], [{i,j,k} = 3,i <k,

max{|r(ly) —r(l2)|: 1,012 € {i,j,k}} < 1. (25)

Note that we can only use the triangle inequalities for departments lying in the same row or
in two neighboring rows due to the different distance calculations involved.

It is also possible to reduce the number of the distance variables in our models by using
equations to replace distance variables for departments assigned to the same row by the
sum of betweenness variables. For distance type 2 we do not need the distance variables at all as
they can be eliminated with the help of and .

Finally let us point out that all presented models for the different (kPROP) types are formula-
tions.

Remark 3. For all three distance-calculation types the models presented above are indeed
formulations of the respective problem. Using mainly the betweenness model of [2] for each
stngle row we know that the departments in each row correspond to a feasible ordering. The
inner-row distances are calculated by and the absolute value of the difference of the center
positions of two departments lying in different rows is modeled via , (@, and (if
the connectivities are positive the distance variable d;j,1,j € [n],1 # j, equals the distance between
departments i and j in all optimal solutions). All other inter-row distances are considered via

20) and (Z3).

In Section [6] the models above are used in the enumerative scheme described in Algorithm [I] to
obtain exact approaches for the (SF-DRFLP) and the (SF-MRFLP).

4 An MILP Model for the (MRFLP) with Fixed Row Assignment

In this section we propose a model for the (MRFLP) with fixed row assignment (FR-MRFLP). In
comparison to the model presented in the last section spaces are allowed between departments
lying next to each other in the same row and the rows do not need to have a common left border
position. So we now have to ensure that neighboring departments do not overlap and that the
distances between the departments are calculated correctly.

Our MILP model for the (FR-MRFLP) uses the same variables and many constraints of the
model for (kPROP). In its basic form it is based on distance and betweenness variables, that
correspond to ordering variables, see Remark (1} Additionally we set M := Y"1 ; ¢;. Then our
model reads

min Z wijdij
i,j€[n]
1<)
IP (pr-mrrLP) S-T. *, and 7
Ci4-0; .o . .
djtnr1) — dignsr) = M(@iryy — 1) + 252, L€R,i,j€ Ri#j, (26)
dins1) = 5, i € [n], (27)

dij 2 ditny1) — dj(nt1)s i,j € [n],i # j. (28)



By the considerations from the previous section we know that the betweenness constraints
ensure a feasible ordering of the departments (that all lie between departments n 4 1 and n + 2)
in each of the rows. A minimal distance of 3(¢; + ¢;) between departments i,j € R; U {n + 1}
assigned to the same row [ € R is ensured via constraints and . Inequalities are
special triangle inequalities that bound the distances between the departments. Additionally
we can break some symmetry by setting x;;(,4+1) = 0, for some fixed pair |{i,j}| = 2 with
leR, 1,5 €R,.

Theorem 4. The model IPigp-prrrp) is a formulation for the (FR-MRFLP).

Proof. 1t is well-known that the 3-cycle inequalities on the ordering variables , implied by ,
and f according to Remark together with integrality conditions suffice to describe
feasible orderings, see, e.g., [15] [16, [30, [32]. The inequalities connect the ordering variables
(T(nt1)ij, 8,7 € [n],i # j) with continuous position variables (dj(, 1), € [n]) and ensure that all
position variables are feasible. Indeed, let a feasible ordering according to the z(,,1);;-variables

be given and assume, w.l.0.g., that departments 1,... A lie in row 1 in ascending order. Then
the distances d;j, 4,7 € [h],i < j, fulfill di; > dj(41) —di(nt1) = 6“2%' +Zf;§+1 {}, by summing up

ZjJij

djtnt1) = di-1)(n+1) = = d-1)(m+1) — AG-2)nt1) 2 s i) = dignrn) 2
% (see ) and . (Note, the value of the distance variables d;; might be larger
then the actual distance because we modeled the absolute value of the distances between the
departments, but assuming positive connectivities the distances have the correct value in all
optimal solutions.) O

i1+l o
2

Replacing the integrality constraints x;;, € {0,1} by bounds on the betweenness variables
0 < @4, < 1 gives a basic LP relaxation for the (FR-MRFLP). To improve the tightness of this
relaxation, we can add constraints and introduced above. Equations are not valid
anymore, but the position of each department i € [n], represented by the distance d;, 1), can
be bounded from below by

di(n—l—l) > Z Ekmik‘(n—l-l) + %Ei, leR,ie Ry, (29)
keRi\{:}
dj> Y by + 30, LER,i,j € Ryi<j. (30)
kERl\{Zvj}

Remark 5. The (MRFLP) model that we obtain by combining the (FR-MRFLP) model above and
Algorithm [1] can easily be extended to cover further aspects, which might be of practical relevance
depending on the application. The main reason for this is that in each step of Algorithm[1] the
assignment of the departments to the rows is fixed.

e Smith et al. [29] considered not only the weighted sum of the distances but also the size
of the smallest rectangle that contains all departments in the objective function. Given
not only the width but also the height of each department this size can easily be calculated
or bounded by additional constraints. On the one hand the mazximal height in each row
is predetermined by the row assignment and on the other hand the length of each row
(including the spaces between the departments) equals the mazimal distance of the rightmost
point of a department in this row to department n+ 1, i. e. to the left border of the layout.

e In our models the inter-row distances are neglected. However, they can easily be handled by
our enumeration scheme because they lead to fix costs in the restricted models. In particular,
the size of the aisle can be incorporated into the model.

o The model of Chung and Tanchoco [11] (see also Zhang and Murray [33]) contained
minimum clearance conditions, i. e., a minimal distance between two departments if they
lie next to each other in the same row. These clearance conditions can easily be included in



our model if they fulfill some kind of triangle inequality: the minimal distance between two
departments i,j € [nl],i # j, is not larger than the sum of the minimal distance between
i and a third department k € [n] \ {i,7}, the minimal distance between j and k and the
length £y. Assuming these triangle inequalities, the clearance conditions can be ensured by

slightly adapting @

5 Combinatorial Properties for Speeding Up our Enumeration

In the following subsection we aim to further improve the computational performance of Algo-
rithm [I] for the (SF-MRFLP) by excluding row assignments that are too unbalanced. Later on in
Section we also speed up Algorithm [I] for the (MRFLP) by reducing the big-M value M in

25).

5.1 Excluding Unbalanced Assignments for the (SF-DRFLP) and the (SF-MRFLP).

In the following we show how to speed up Algorithm [I] for the (SF-DRFLP) and the (SF-MRFLP)
by excluding some row assignments. We denote the sum of the lengths of the departments
in row ¢ € R by L; := > jcp, ¥;. Obviously we can restrict to all row assignments with
L; > Lji,j€R, i<j in Algorithm [1] But further row assignments can be neglected.

We start with the double-row case and distance-calculation type 1. Our aim is to determine
the smallest number g € R4 such that there always exists an optimal solution of the (SF-DRFLP),
independent of the objective function, where g > L; — Lo holds for the corresponding row
assignment. Note that in general we have g > a1 = max;er, ¥;, see Figure (3| for a small
instance where this value for g is attained.

Figure 3: We consider an instance with /1 =4y =1, {3 =k > 2, wia =4, w13 = w3 = 1. In
the optimal space-free double-row layout g equals k£ = max;cp, ¢;.

In the following lemma we show that /ax 1 is an upper bound to g.

Lemma 6. For distance-calculation type 1 there always exists an optimal solution (r*,p*) of the
(SF-DRFLP) with row assignment r*, where lmax,1 > L1 — Lo is fulfilled for r*.

Proof. We prove this by contradiction. Let us assume that an optimal space-free double-row
layout L* and a corresponding row assignment r* are given such that the row lengths fulfill
L7 — L5 > lrax,1- Furthermore assume that there does not exist an optimal solution L that
additionally fulfills L1 — Ly < fpax,1. Our aim is now to reorder the departments such that
afterwards the length are somehow balanced and that the objective value is not increased, a
contradiction.

We assume, w. 1. 0.g., that departments 1,...,% lie in row 1 and departments ¢t + 1,...,n lie in
row 2 in the optimal layout L* and that these departments are numbered consecutively from left
to right in row 1 and from right to left in row 2. Now we define B := {i € Ry: 23:1 ;< L5}
with |Bi| = s <t. Bj contains departments 1,...,s and the total length of these departments
does not exceed L. We refer to Figure {4 for an illustration of the departments in Bj.

By our assumption L} — L3 > fyax1 we know that the set R; \ Bj contains at least two
departments. We suggest a new layout L with row assignment 7 that has objective value less or
equal to L* fulfilling the desired property Ly — 1Ly < Cmax,1-

For constructing L we first determine u € {s+1,...,t} minimal such that Sute >y, 11t
This implies > 1, ¢; > Z;‘:_f ¢; and Z?z_ll b >y a1 b for all t > 4 > u. Now in the layout
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Figure 4: Ilustration of the partition of the departments in row 1.

L all departments in By, Ry and By := {s+1,...,u — 1} remain at their old position and
departments Bs := {u,...,t} are assigned to row 2 in reversed order compared to their order in
row 1, i.e., t is assigned right to ¢t + 1, ¢ — 1 then right to ¢ and so on. In Figure [5| we depict L*
and L. Note, it might happen that now Lo > El, then we have to change the role of row 1 and
row 2 later on. But by the choice of u we know |I:1 - ﬁg] < lmax,1 by

u—2 n

Ze Z@ = by + Y b= ) b < byt < lmax1s
i=1 i=u
—

Z U
<0
Lg—Ll—ZE —Ze =l + Z l; —Zr < Ly < lrnax,1-
t=u+1 =1
<0
By By B3 By By
Rs Ry Bs (reversed)

Figure 5: Comparison of the layouts L* on the left and L on the right.

Clearly the distances between pairs of departments from By U By U Ry are the same in L* and
L. The same is true for pairs of departments from Bs.

e The distances between any department from Bs and any department from By U Ry decrease:
On the one hand the centers of the departments from Bj are still right from the centers of
the departments in B; U Ro due to the definition of B;. On the other hand the centers
of the departments from Bjs are shifted to the left in L in comparison to L* Indeed, it
suffices to consider the position of u. The position of u is p;; = > %" E + “ in L* and

DPu = D i1 bi + %“ in L. By the choice of u we have p, < p*.

e It remains to consider the distances between arbitrary departments v € By and w € Bs.
The positions are p} = Z”_1€ + 42’ Di = Doiq € + “’ in L* with distance d}, =
pha v+1£ +€“’ +Z“ and p, = py, D, —Z? witli —|— &% 1nL If P > Py = py then the new
distance de between v and w fulfills de < dyw because w has been moved to the left. If,
otherwise, p,, < Py, then by v < u < w and the choice of u we have

dvw ZH*—ZE—* Zf 7“’—7”=722

i=w+1 i=v+1

w—1
i=1

In summary, L is also an optimal layout, but for the corresponding row assignment # the
inequality |L1 — La| < max,1 holds. This proves the statement. O

In the equidistant case, i. e. for the Space-Free Double-Row Equidistant Facility Layout Problem
(SF-DREFLP), the result from Lemma [6] further simplifies.
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By s+1 v U w t
L*: e ———— e

Ry

By s+ 1 v u—1

Ry t w U

Figure 6: Illustration of the reduction of the distances between department v € By and department
w € Bs. Note that the argument also works for the case v = u — 1 and/or w = u.

Corollary 7. For distance-calculation type 1 there always exists an optimal (SF-DREFLP) solution,
where

e half of the departments are assigned to each of the two rows if n is even and
e one row contains %“ departments and the other row contains ”Tfl departments if n is odd.

For solving the (SF-DREFLP) we can also use an approach presented in [9]. In order to handle
the spaces between departments the authors introduced dummy departments that were added to
a (DREFLP) instance. With the help of these dummy departments the (DREFLP) reduced to a
(SF-DRFLP). Hence for the (SF-DREFLP) with even n we can directly apply the approach from
[9] because then both rows have the same length and no spaces occur. For the (SF-DREFLP) with
odd n, there is a space of length 1 at the end of row 2 and thus exactly one dummy department
is needed. The condition that the dummy department has to be the last department on row 2
can easily be included in the different models from [9]. For instance one can add a constraint
guaranteeing that the dummy department does not lie between other departments.

We can also extend the results above to the multi-row case. For this, note that the proof above
does not depend on the number of rows m. Hence we can formulate the following corollary.

Corollary 8. For distance-calculation type 1 lyax1 15 the smallest g such that there always
exists an optimal solution to the (SF-MRFLP) with m > 2, where L; > Lj,i1,5 € R,1 < j, and
g > L1 — Lo holds for the corresponding row assignment r*.

Remark 9. Note that Corollary[§ does not hold for distance-calculation type 2 with m > 2 and
distance-calculation type 3 with m > 3: For these cases it might be preferable to arrange two
departments next to each other in the same row instead of putting them below of each other in two
different (for type 3 non-neighboring) rows because then the distance of the departments equals
the sum of the distances of both departments to the left border of the layout.

In the following two examples we want to show that in general the difference between the
row lengths of arbitrary rows cannot be bounded. Let us first consider an instance with m > 3
odd, m := mTH, and some k € IN, k > 2, that was originally introduced in [9]. In slight abuse
of notation, in order to improve the readability, we denote each department by a tuple (i, j)

with i € [m],j € [k]. Then each optimal solution of an equidistant instance with n = m - k
departments and

Wi g, (i,+1) = Ly i€[m],jelk—-1], (31a)
Wi j),(i+1.4) = T i€m—1],j €k, (31b)
does not use the rows L;,i € {m +1,...,m}. For an illustration of an optimal layout we refer to

Figure [7]
Secondly, we demonstrate that the differences of the row lengths L; — L;11, 1 € {2,...,m — 1},
can be arbitrarily large in optimal multi-row layouts. To do so we consider the following instance
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(L) [ (1L,2) [ (1,3) ] (1,4) | (1,5) | (1,6) | (1,7) | (1,8)

(2,1) | (2,2) | (2,3) | (2,4) | (2,5) | (2,6) | (2,7) | (2,8)

(3,11 (3,2) | (3,3) | (3:4) 1 (3,5) | (3,6) | (3,7) ] (3,8)

| I
P
[ -

Figure 7: Illustration of an optimal space-free multi-row layout for the equidistant instance given

in with m = 5 and k& = 8. The row lengths fulfill L; = ... = Ly = k and
Lig1 =...= Lp, =0 with i := 2 =3,

for fixed k € IN, where we assume, w.l. 0. g., that k is even. As above each department is denoted
by a tuple (7, 7), here with i € [m — 1], and j € [k(m — 2)] if i = 1 and j € [k(m — i)] otherwise.
We collect all tuples of the departments in the set D. The department lengths and connectivities
are chosen as follows:

bij=1+2"le, (i,j) € D, e < 1, (32a)
Wi g),(i+15) = Ly (4,9), (i +1,5) € D. (32b)

In all optimal space-free layouts L; — L;y1 >k, i € {2,...,m — 2}, holds for arbitrary k. For an
illustration of the optimal layout structure attaining objective value 0 we refer to Figure [§
Indeed, the structure of all optimal solutions is the same by the following considerations:

e First note that 0 is indeed the objective value of our proposed layout as the centers of pairs
of departments with connectivities greater than zero have the same z-coordinate.

e Departments with two arbitrary but different column indices cannot be moved to one
column without either violating the space-free property or forcing the centers of two
departments with connectivity 1 to be arranged on different z-coordinates, which results in
non-optimal layouts.

e We can change the order of the departments within a so called block B;, i € {0,1,...,m—3},
of k neighboring department, as long as we change the order of the departments in all
blocks with the same index ¢ in the same way. These blocks are visualized in Figure |8 If
we want to avoid this freedom, we can introduce further connectivities with a small enough
value ¢ for pairs of departments in neighboring columns.

e Additionally, we can interchange rows 1 and 2 as long as we do not change the order of the
departments in each of these rows.

Note that this example also shows that Corollary [§]is tight in the following sense: We cannot
bound the difference of row lengths in space-free layouts in any reasonable way except for the
two longest rows.

5.2 Reducing the Big-M value M in the Formulation of the (FR-DRFLP).

In order to improve our enumeration scheme for the (DRFLP) we will show that the big-M-value
M in IP(gg-prrrp) and more generally in any (DRFLP) model can be chosen smaller than Y ;" ¢;,
which is usually used in the literature, see, e.g., [4, [I1].

We again start with the double-row case and distance-calculation type 1. Let a feasible (DRFLP)
layout be given and let us assume, w.l.0.g., that the leftmost department i of the considered
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Each block B;, i € {0,1,...,m — 3} consists of k departments.
SRR N7 N N N N

By | Bi | B2 | B;i | Bit1|Bm-4|Bm-3
%5 By | By | Bo | B; | Biy1|Bm-4|Bm-3
~ T (N
| By By By | B; :Berl B—4
S } i
%! By ! Bi ! By ! B; |Bin|
- | | | | | J
= T T
Elmimm s
S — !
El|l B | B, | B,
o,
o
Q
1| Bo | B
By

Figure 8: Ilustration of the unique optimal space-free multi-row layout for the instance given
in . The blocks B;, i € {0,1,...,m — 3}, consist of k departments with lengths
1+ 2%, ..., 1+ 2tDk=De Row m is empty.

layout starts at position 0 with its center at p; = % and that the rightmost department j of this

layout finishes at ¢ with its center at p; =t — %. Clearly there exists an optimal layout that does
not have space on both rows at any position p with 0 < p <t. Now we want to give a bound
on t such that there always exists an optimal double-row layout just using the interval [0,¢]. A
straightforward bound for ¢ is > ;- ; ¢;. In the following lemma we deduce a tighter bound for ¢.

Lemma 10. Given an (DRFLP) instance fulfilling, w.l. o0.g., {; < lit1, © € [n —1]. Then for
distance-calculation type 1 there always exists an optimal double-row layout on the interval [0, ]
with

t <

l;. (33)
|+1

3
SENgE

=l

Proof. First we are going to suggest the basic operations of shifting and switching a block of
departments that can be applied to an optimal layout to reduce ¢ without deteriorating its
objective value. In the following we concentrate on optimal layouts that cannot be further
contracted through these operations. For these layouts we prove the suggested upper bound on ¢
that is also tight, see the example depicted in Figure

The first simple operation for reducing t is shifting a block of departments. The rightmost
point of department d is at coordinate . Now we consider the length s, of the space right of
x on the same row and the length s; of the space left of x on the other row. Additionally we
determine the distance of the closest center left or right of x on the other row and denote it by
¢n- Then we can shift all departments in [z, ¢] by min{s,, s;, ¢, } to the left without deteriorating
the objective value of the layout because all pairwise distances are reduced or remain the same.
We refer to Figure [9] for an example.

Another operation to possibly decrease the layout length without deteriorating its objective
value is switching the rows for a set of departments and afterwards shifting a block of depart-
ments. Switching all departments in the interval [x1, 2], 1 < 2, without switching any other
department is possible if there do not exist departments that start (finish) inside the interval
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Sr
6 1 4 6 1 4
5 s 9 3 Shifting 5 9 i 3
T |
e :
‘I ‘.T

Figure 9: Shifting a block of departments. In the layout above we shift all departments in the
interval [z,t] by ¢, = min{s,, s;, ¢, } to the left.

[z1, z2] and finish (start) outside the interval. See Figure (10| for an illustration of the switching
operation. If switching is possible, it clearly does not change the objective value.

3 Switching 1 2

e
—
&
N

Tl X9

v s
Figure 10: Illustration of the possibility of switching. In the upper layout switching is possible
on the interval [z1, 23], in the lower layout switching is not possible.

Now suppose department d starts at coordinate x and on the other row there is space of length
s; left and space of length s, right of x. Additionally ¢, gives the distance of the closest centers
left and right of . Then we can switch all departments in [z, ¢] and shift them min{s;, s,, ¢, } to
the left without increasing the objective value of the layout. See Figure [11] for an illustration.
Hence in the following we focus on layouts that do not allow for shifting a block of departments
even after a possible switching.

4 1 2 5 4 3 5
| E— >
7 Cn\ 3 Switching 7 1 2
+
S ‘v Sr Shifting 1 "

Figure 11: Illustration of switching plus shifting. The objective value of the layout does not
increase but value t is reduced by /.

Next we are going to bound ¢t. We will prove that there exists a sequence of at most n — VTHJ
departments that covers the interval [0,¢]. To determine such a sequence we condense our
optimal layout in one row. The leftmost department belongs to the sequence. If there are two
such departments, then we choose the longer one. Whenever we reach the coordinate x of the
rightmost point of our current department, we add another department that starts at or covers .
If there are two such departments we choose the one with the larger coordinate of its rightmost
point. If the two departments have the same rightmost point, then we choose the department
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with the smaller coordinate of its leftmost point. If also the smaller coordinates are the same,
then we choose the one with the smaller index. Clearly the departments of the constructed
sequence cover the interval [0,¢]. The sequences for the layouts in Figures [J] and [11] are (6,2, 3)
and (4,2,5) respectively.

Finally let us show that at least ["THJ departments of the layout do not belong to this sequence.
Therefore we distinguish two cases:

Case 1: We have two candidates for the i*" department of the sequence, i.e. two departments
are covering coordinate 2. Then the (i — 1) and i*" department of the sequence cover
another department not contained in the sequence: the department covering = that we do
not choose does not end after the i*" department (due to our selection rule) and does not
start before the (i — 1) department (due to our choice in the previous selection step).

Case 2: There is only one candidate department covering coordinate x that defines the rightmost
point of the (i — 1) department of the sequence. Then on one of the two rows there is
space right of . There cannot be space left of x because then we would be able to perform
a block shifting (maybe switching is needed beforehand) at x. But if there is no space left
of = on the other row, then the (i —1)'" department covers the other department ending at
x due to our selection rule.

In summary each pair of departments in the sequence totally covers one department not
contained in the sequence. This property directly yields our upper bound on t.
O

The following example shows that the bound from Lemma [10]is tight with respect to the shifting
and switching operations suggested. We are given an instance with n fulfilling mod(n,3) = 1 and

0 — 1+e, i€ [n],mod(:,3) =2,
S, i € [n],mod(i,3) # 2,
wij =1, i € [n],mod(i,3) =2,j € {i —1,i+1,i+2}.

In the optimal double-row layout, depicted in Figure [I2] the longer row of the optimal layout

has length n — VTHJ =n— ”gl and this is optimal because the length cannot be reduced by
the shifting and switching operations suggested above. The bound on the maximal length ¢

according to 1’ isn— ”T_l + ”T_l - £, so the bound is tight.

i
|
i n—1 n
[
1

\ n—2

Figure 12: We are given a (DRFLP) instance with lengths ¢; = 1 + ¢ for ¢ € [n], mod(7,3) = 2,
and ¢; = 1 for ¢ € [n], mod(i,3) # 2, and connectivities w;; = 1, i € [n], mod(7,3) = 2,
je{i—1,i+ 1,i+ 2}. For all optimal double-row layouts the bound on ¢ from
Lemma [10] is tight with respect to the shifting and switching operations suggested.

Remark 11. The upper bound t on the maximal horizontal length of the double-row layout
cannot only be used for improving our MILP model by setting M to a smaller value, but it
can also be applied to reduce the number of row assignments that have to be considered in our
enumeration scheme as we can neglect all assignments that are unbalanced, i. e., where the sum
of the lengths of the departments in one of the rows exceeds t.
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Remark 12. Note that Lemma cannot be straightforwardly generalized to the multi-row case
using m > 3 rows and hence we leave the deduction of possible even smaller values of t for larger
m for future research. Furthermore Lemma does not hold for distance-calculation type 2
because it might again be preferable to arrange two departments next to each other in the same
row instead of putting them below of each other in the two different rows and hence the switching
operations suggested do not work. If we considered inter-row distances (e. g. modelling the size of
the aisle) in our enumeration scheme then none of the combinatorial results determined in this
section would apply anymore.

Finally let us indicate that the length of each row might still be arbitrarily close to Zie[n} ;
for specially structured instances. For m = 2 we consider 5 departments with lengths ¢; = {5 =
{3 =0y = ¢, £5 = 1 and connectivities wis = wgy = 1, wis = w3zs = €. The structure of an
optimal layout for this instance is illustrated in Figure Note that both rows have the same
length L =1 4 2¢ and it holds

. L o142
lim— =1lim— =
e—0 Zle[n] 61 e—=01 =+ 4e

2

Figure 13: We consider a (DRFLP) instance with ¢ < 1, lengths {1 =¥y =43 =40y = ¢, U5 = 1,
connectivities wis = w34 = 1, wis = wss = €, and depict an optimal layout with row
length 1 + 2¢ for both rows.

This construction can easily be generalized to an arbitrary number of rows: For each additional
row we add two departments of length € and connectivity 1 with two other departments ¢ and j
of length ¢ that are not connected, i.e. w;; = 0.

6 Computational Experiments

In this section we present the computational results for several (PROP), (kPROP), (SF-DRFLP) and
(DRFLP) instances. We used the larger instances from [5] for the (PROP) and the instances from
[20] for (xPROP). Furthermore, we tested all instances used by Amaral in [3] for the (SF-DRFLP)
and [4] for the (DRFLP), respectively. Apart from these instances, we created new ones according
to the construction schemes in [4, [, 20]. All instances can be downloaded from [22]. All
experiments were performed on a QUAD-Core INTEL-Core-I7-4770 (4 x 3400 MHz) with 32 GB
RAM in single processor mode. We used CPLEX 12.6.2 [26] as an IP solver. For all different
problems we tested two versions. In Full we included all inequalities at once, and in Cuts we
only used some of the constraints at once and separated the respective variant of the triangle
inequalities (see and (1)) and inequalities (7)—(10). For the (PROP) we also considered
the effect of adding the clique constraints and , leading to Full-C and Cuts-C. Some
preliminary tests, not contained in this paper, indicated that CPLEX should be forced to use all
detected violated inequalities until the end. All running times are given in seconds and we used
a time limit of six hours for the (PROP) and the (kPROP) instances as well as of twelve hours for
the (SF-DRFLP) and (DRFLP) instances.

Considering the (PROP) instances in Table |1} we see that in comparison to [5] the running
times could be reduced significantly. This can be seen especially for instances where only few
departments are contained in the first row. These instances were extremely hard when treated
with the model of Amaral. The average running time for instances with n = 23 and only 4
departments in row 1 was 344,869 seconds in [5] on an Intel Core i3-M330 (2.13 GHz) with 4
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GB RAM using CPLEX 12.4. With the fastest variant we solved all these instances in less then
20 minutes. But also for more balanced row assignments our approach is much better, allowing
us to solve all instances with n = 25 in at most six hours with the best variant. Comparing the
results of Full and Cuts one can see that using separation often pays off if n is rather large, but
for smaller n and balanced row assignments Full is often better than Cuts. One reason for this
effect is that the number of the constraints highly depends on the assignment. For each row
i € R the number of constraints (2)) grows cubic in the size |R;| and with a power of 4 in |R;| for
constraints —. So the number of constraints is much smaller for balanced row assignments
than for unbalanced ones. Using additionally the clique constraints is advantageous for some
instances, but in general there is no clear winner comparing the four different solution variants.
Here we also want to note that in our tests the solution time was partially highly influenced by
the time and the quality of the (upper bound) solutions found by CPLEX during the solution
process. The optimal values for all instances can be found in Table

The results for the (kPROP) are presented in Tables [3] to They show that the type of
the distance calculation has a large effect on the running time. It seems that instances with
distance-calculation type 2 are rather easy. Using Cuts all instances could be solved to optimality
in less than one second. This is even much faster than the running times in [20] where one only
gets lower bounds. Using type 3, the running times are a bit higher, but we also only need at
most three minutes. Similarly as for (PROP), there is no clear winner between Full and Cuts for
distance-calculation type 1. All instances could by solved to optimality with Full, while Cuts
failed on seven instances. Full is always faster than Cuts for instances with three rows. Cuts is
often better for four and five rows for the instances with n < 23 and several times slower for
instances with n € {24,25}.

Iterating over all possible row assignments and neglecting all unbalanced assignments, we
can solve the (SF-DRFLP) and the (DRFLP). Although the number of row assignments grows
exponentially and so lots of NP-hard problems have to be solved, we could solve instances with
up to 16 departments in reasonable time, see Tables[6|and[7] Note, the previously largest instance
of the (SF-DRFLP) contained 13 departments and the largest (DRFLP) instances contained 12
departments. To allow the reader a direct comparison to the approach of Amaral we also
tested his models and included the running times as well as the gaps in percent, calculated b
(% — 1) - 100, for instances not solved within the time limit of twelve hours in Tables
and With our new approach all instances with n < 15 could be solved in less than two
hours, only the instances with n = 16 were costlier, but could be solved within the time limit.
This was not possible for five (SF-DRFLP) instances and for six (DRFLP) instances using the
approaches of Amaral [3, [4]. But note that his approaches are faster than our new ones for small
instances. Comparing Full and Cuts there is no clear winner, although separation often helps if
n is increased.

In order to show the impact of the investigations in Section [5| we also tested our enumeration
scheme for the (SF-DRFLP) without using Lemma [0] i.e., we considered all assignments with
L1 > Lo, neglecting the ones with L; = Lg and r; = 2. In our newly presented variant we
additionally restrict to assignments with ¢ax,1 > L1 — Lo. For the (DRFLP) we tested IP (gr-prrLp)
with the big-M-value M = "' ; ¢; and without excluding row assignments where the sum of the
lengths of the departments in one of the rows exceeds ¢ defined in . All results are included
in Table [6] for the (SF-DRFLP) and Table [7] for the (DRFLP). These tables show that reducing
the number of assignments that have to be considered allows to reduce the running times of
the (SF-DRFLP) significantly. For the (DRFLP) the combined effect of the improved big-M-value
and the exclusion of unbalanced row assignments is much smaller for our model, here only small
improvements are possible. One reason for this behavior might be that inequalities and
bound the distances between the departments rather well from below. Additionally we can only
exclude few row assignments based on the maximal layout length t. The effect is stronger for the
approach of Amaral. In most cases the running times or the gaps can be improved significantly
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using the better big-M-value and the exclusion of unbalanced row assignments.

7 Conclusion and Future Work

In this paper we presented a new formulation for the (kPROP). Combining this formulation and
a slightly modified model allowing spaces with an enumeration scheme over all relevant row
assignments we were able to solve (SF-DRFLP) and (DRFLP) instances with up to 16 departments
for the first time. To further speed-up the enumeration scheme we proved with the help of
combinatorial arguments that very unbalanced row assignments do not have to be considered in
the enumeration in the both cases, i.e., with and without allowing space between neighboring
departments.

It remains for future work to improve this approach. One direction could be the study of
the corresponding polyhedra deriving stronger relaxations for the (kPROP) and the (FR-MRFLP).
Furthermore, assigning most but not all of the departments to the rows, a large amount of the
total objective value is predetermined. It would be nice if one could detect situations that cannot
lead to optimal solutions beforehand, e. g., by calculating some combinatorial bounds.

In our enumeration scheme we did not use, the partially known, upper bounds on the optimal
objective value, determined by some heuristic. We only compared to the currently best solution.
So it would also be worth to study if one can find some criteria which row assignments should be
considered first. At the moment we use the same order of the row assignments for all instances.

Our approach is mainly based on the combination of a fast solution of (kPROP) and (FR-MRFLP)
instances and an enumeration scheme. In general, one could try to combine the assignment of
the departments to the rows and the inter-row distance calculation via betweenness variables
and further variables, coupled with appropriate constraints, in one model. For this note that all
MILP models for the (DRFLP) in the literature do not use betweenness variables, although these
were successfully employed for the (SRFLP).

As a next step it would also be interesting to consider facility layout problems with more
complex path structures, if, e. g., there are two paths in the shape of a T or an X.
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name source Full Cuts Full-C Cuts-C
=2 1 =3 i=4 1 =25 =2 1 =3 i =4 =25 =2 =3 i=4 =25 =2 =3 i=4 1=25

Pl6a [5] 16.69 24.50 10.22 17.41 14.99 21.33 14.75 29.80 10.16 27.84 18.31 20.02 11.41 21.96 13.99 18.95
P16b [5j 10.39 17.33 20.43 5.79 13.31 14.69 12.41 8.11 9.98 20.89 19.16 8.10 10.30 16.84 15.30 6.41
P20a [5j 560.07 339.49 736.42 156.60 810.33 303.93 223.16 84.72 665.12 418.95 486.15 154.01 930.15 247.38 220.67 125.67
P20b [5] 146.74 377.18 214.11  190.21 138.64 207.05 277.98 187.86 180.46 222.61 213.77 232.20 140.28 293.94 231.71 145.37
P2la [5] 416.29 431.36 150.10 371.08 539.52 481.73 257.60 334.30 411.16 341.37 218.42 372.96 712.43 243.08 240.82 304.66
P21b [5j 285.66 543.21 228.78 139.61 193.44 318.61 102.34 76.91 323.66 375.47 216.65 173.70 148.05 250.82 160.03 79.84
P2l1c [5] 199.49 836.53 417.31 436.67 152.44 1435.74 144.04 364.41 268.64 922.35 246.32 646.33 392.72 1353.01 200.77 433.11
P21d [5j 545.44 242.81 542.90 287.13 345.66 272.51  238.40 122.90 398.25 233.26 341.18 451.84 352.04 265.10 220.51 110.65
P2le [5] 2466.78 636.03 243.24 71.30 931.46 326.87 98.92 58.84| 1358.18 454.48 218.51 197.46| 1385.26 478.23 92.58 52.43
P22a [5] 574.54 1425.96 313.25 836.17 394.96 1211.30 377.33 564.46 806.99 615.27 482.95 1033.82 564.77 T777.05 577.98 827.25
P22b [5] 647.62 1334.10 956.02 178.62 878.32 786.60 251.57 146.11 769.92  1325.68 461.98 231.76 558.73 655.10 243.04 157.05
P22c [5] 835.26 975.46 359.15 607.63| 4496.06 880.35 392.44 212.22| 1737.41 1663.77 656.70 807.90 767.87 706.93 287.95 199.39
P22d [5] 801.84 830.01 249.89 196.68| 1261.22 805.13 95.27 72.59 803.56 863.17 328.92 332.76 636.09 786.36 112.95 69.05
P22e [5j 1033.20 3039.47 938.50 407.99| 1808.94 1347.98 420.30 176.77 634.38 1084.93 591.70 802.95 923.14 923.37 417.69 186.82
P23a [5] 1182.54 928.22 1320.54 1148.85| 2077.39 2919.68 509.13 924.31| 1448.90 2069.22 1691.74 1154.24| 1531.78 1582.90 658.29 646.76
P23b [5] 509.26  2584.86 592.71 471.48 470.24 536.95 391.99 161.01 710.65 1577.20 534.49 1677.29 444.18 757.42 581.18 126.92
P23c [5j 498.26 538.40 377.01 726.30 199.88 413.00 156.98 311.12 199.70 736.87 434.80 2260.05 642.97 479.85 159.23 286.23
P23d 5] 1509.04 996.46 1183.74 1528.57| 1034.83 1308.82 713.72 391.90| 1759.00 2353.65 1220.26 1109.01| 1649.75 672.09 634.76 891.88
P23e [5j 807.83 798.59 330.48 103.26 729.59 304.25 191.71 95.54 | 1431.42 948.25 286.76  1934.19 593.02 462.79 154.40 98.03
P24a new 4060.84 2542.48 2056.15 2164.15|10488.58 3121.71 1358.03 1148.58 | 3825.91 12310.51 1485.62 12225.13| 5350.22 2116.35 1722.79 1587.88
P24b new 1683.30 3259.37 2185.47 1070.26 | 1408.49 2747.25 2204.36 347.82| 1568.79 13563.39 5653.16 8781.06| 1100.97 3078.87 1778.20 321.02
P24c new 1934.47 5234.74 3576.10 6201.10| 6912.44 9847.60 1271.51 788.75| 2657.01 5826.02 4610.27 4469.53| 8108.55 4218.73 1576.76 T777.56
P24d new 1087.15 3618.04 2251.63 1161.50 826.05 1385.67 588.68 812.78| 1190.72 1933.80 2099.18 4070.07 490.48 938.66 588.06 552.79
P24e new 1345.51 2464.95 1988.84 280.02| 1499.19 4661.78 2016.66 79.53 | 1194.11 12191.93 2556.88 2321.69 919.62 5685.33 1523.20 79.70
P25a new 4337.45 8691.46 2860.70 3168.47 | 9067.30 5187.36 2529.52 924.81| 3035.14 9695.73 9078.21 5670.31 TL 6795.39 1991.49 1326.79
P25b new 6272.78 8708.71 5997.29 7862.11| 5097.33 21396.53 4174.19 2303.28 | 7011.16 TL 14617.46 11475.14| 4491.80 7258.51 4104.73 1617.29
P25¢ new 3595.96 9422.10 5819.61 2279.24 | 8227.48 5566.18 2176.12 715.07| 4991.11 13181.00 5044.94 4722.25| 5476.65 5330.85 1716.65 1331.58
P25d new 3357.97 4610.75 1111.77 2189.01 | 2880.91 2110.27 737.46 487.19| 4447.51 8904.91 1879.68 8153.88| 3722.41 2726.21 1237.28 505.66
P25e new 3700.78 3241.67 14184.93 4822.80| 1853.67 2813.87 2953.62 1906.79| 2633.25 6524.08 14596.36 7196.28 | 4820.50 3990.80 2114.11 1588.69
AV25_ 1 [8] TL 13870.64 6051.03 1836.68|20904.15 7878.95 2053.88 643.81 TL TL 6376.36 2460.24 | 12947.90 8824.26 1744.82 371.70
AV25_2 [Sj 15765.34 3327.52 4088.58 1269.99| 5555.20 1492.89 1366.40 1438.46 | 18680.46 2170.09 3033.33 2261.11|12133.07 1377.56 1288.24 697.73
AV25_3 [8] 8196.42 2562.48 2183.90 1690.54 TL 912.56 989.46 641.33| 4459.43 4857.43 7709.38 2780.82 TL 1025.32 1124.97 658.12
AV25_ 4 [8j TL 2203.12 3931.55 1701.42| 6818.28 2012.71 1299.00 1750.69| 3271.57 2556.46 4113.56 1729.10| 4592.42 2248.63 2702.15 1081.45
AV25_5 [8] 4891.63 2379.67 3222.64 1879.48 | 5444.14 996.72 1469.08 1050.25|13817.28 4610.18 3510.85 1011.39| 7933.29 1683.79 1196.85 1217.65

Table 1: Running times in seconds for (PROP) instances with | % | departments in row 1 (time limit TL of six hours). In Full-C

n
7

add the clique constraints and (|16) to our basic model 7.

and Cuts-C we also



name source =2 1=3 1=4 1=25

P16a 5] 7630.0  9813.0 11409.0 12279.0
P16b 5] 6239.5 9091.5  9636.5 11256.5
P20a 5] 12609.5 15874.5 18185.5 21215.5
P20b 5] 12936.0 19167.0 22801.0 23902.0
P21a 5 7006.5 9141.5 11765.5 12382.5
P21b 5] 11705.0 13887.0 18564.0 20825.0
P21c 5] 11434.0 12758.0 16888.0 19481.0
P21d 5] 12289.0 14988.0 19471.0 20685.0
P2le 5] 13112.5 15711.5 19865.5 22423.5
P22a 5] 8874.0 12238.0 15385.0 16114.0
P22b 5] 15714.0 19183.0 23534.0 25044.0
P22c¢ 5] 14693.0 19963.0 24221.0 25545.0
P22d 5] 16355.0 19981.0 25180.0 26796.0
P22e 5] 14815.5 20112.5 24515.5 27161.5
P23a 5] 10242.0 14294.0 17812.0 18619.0
P23b 5] 15802.5 21116.5 26004.5 29892.5
P23c 5] 15542.0 21511.0 26040.0 27553.0
P23d 5] 17174.0 23522.0 27922.0 30694.0
P23e 5] 16481.5 20798.5 27574.5 29810.5
P24a new | 11778.0 14730.0 18757.0 21729.0
P24b new | 17629.5 21015.5 25311.5 29881.5
P24c new | 17378.5 18630.5 23909.5 29041.5
P24d new | 19630.0 21786.0 26949.0 32132.0
P24e new | 21400.0 26998.0 33235.0 38800.0
P25a new | 12889.5 16411.5 20865.5 22990.5
P25b new | 17459.0 23635.0 27162.0 29496.0
P25¢ new | 23148.5 33228.5 40086.5 41264.5
P25d new | 22421.0 29450.0 35283.0 38373.0
P25e new | 21048.5 24664.5 32078.5 34018.5
AV25 1 18] 2349.0 3077.0 3705.0 4039.0
AV25 2 18] 19138.5 23826.5 26229.5 30193.5
AV25 3 18] 12549.0 18714.0 23081.0 23167.0
AV25 4 18] 24922.5 30647.5 33584.5 38689.5
AV25 5 18] 8011.0 10126.0 11289.0 12951.0

Table 2: Optimal values of (PROP) instances with [ %] departments in row 1.
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name m ¢ | Fulll Full2 Full3 Cuts 1 Cuts 2 Cuts 3 opt 1 opt 2 opt 3

P16a 3 3 4.42 0.02 0.41 6.81 0.00 1.42 5234.0 13936.0 7910.0
P16a 3 4 3.27 0.02 0.54 8.88 0.00 1.59 6639.0 13541.0 9615.0
Pl6a 3 5 2.76 0.07 0.89 4.42 0.01 0.93 9746.0 14843.0 12845.0
P16a 4 4 1.73 0.01 0.10 1.16 0.00 0.18 3896.0 10883.0 7191.0
P16a 4 5 2.63 0.02 0.17 1.73 0.00 0.35 6021.0  12370.0 9630.0
P16a 5 5 1.15 0.00 0.02 0.55 0.00 0.02 3181.0 9412.0 7073.0
P16b 3 3 2.02 0.01 0.26 3.04 0.00 0.92 4289.5 11375.5 6330.5
P16b 3 4 2.33 0.02 0.55 4.01 0.00 1.21 5228.5 11123.5 7583.5
P16b 3 5 2.76 0.07 0.74 3.87 0.01 0.77 9123.5 12644.5 10981.5
P16b 4 4 1.44 0.00 0.08 0.82 0.00 0.20 3401.5 9028.5 5993.5
P16b 4 5 1.97 0.01 0.20 1.37 0.00 0.40 4717.5 9834.5 7299.5
P16b 5 5 0.71 0.00 0.03 0.50 0.00 0.08 2786.5 7688.5 5934.5
P20a 3 3 90.74 0.03 3.71 951.35 0.00 4.98 8587.5 21440.5 13317.5
P20a 3 4 65.61 0.07 6.17 463.84 0.01 9.83 | 11223.5 22952.5 16161.5
P20a 3 5 91.29 0.44 14.06 522.71 0.02 16.44 | 14171.5 23096.5 18129.5
P20a 4 4 28.47 0.01 0.76 20.88 0.00 1.50 6697.5 17663.5 12064.5
P20a 4 5 24.88 0.02 0.41 17.85 0.00 0.65 7653.5 17694.5 13524.5
P20a 5 5 7.11 0.01 0.07 3.99 0.00 0.17 5210.5 14317.5 10532.5
P20b 3 3 47.70 0.03 3.45 207.55 0.01 4.21 9396.0 22750.0 14073.0
P20b 3 4 18.54 0.06 7.65 192.32 0.01 9.03 | 11441.0 23777.0 15892.0
P20b 3 5 45.54 0.32 12.38 90.97 0.03 14.56 | 15505.0 25114.0 19615.0
P20b 4 4 26.67 0.01 0.32 9.13 0.00 0.71 7092.0 18972.0 12160.0
P20b 4 5 10.42 0.03 0.37 6.81 0.00 0.98 8645.0 19081.0  15005.0
P20b 5 5 10.90 0.01 0.07 2.44 0.00 0.12 5408.0  15055.0 11038.0
P21a 3 3 42.64 0.02 4.82 198.20 0.01 8.87 4867.5  12526.5 7462.5
P21a 3 4 54.81 0.17 13.54 205.99 0.01 15.51 6344.5 13135.5 8405.5
P2la 3 5| 188.13 0.65 19.55 | 1279.80 0.03 29.21 8549.5 13969.5 10482.5
P21a 4 4 16.63 0.02 0.36 12.88 0.00 0.92 3921.5 10431.5 7729.5
P21a 4 5 17.52 0.04 0.52 15.50 0.01 0.89 4732.5  10405.5 8181.5
P21a 5 5 14.07 0.01 0.06 4.58 0.00 0.11 3032.5 8563.5 6076.5
P21b 3 3 51.11 0.03 4.49 199.80 0.01 4.94 8139.0 21966.0 12388.0
P21b 3 4 86.56 0.16 5.92 290.93 0.01 6.91 9809.0 22333.0 13575.0
P21b 3 5| 353.44 0.60 18.67 436.49 0.03 22.33 | 12928.0 22681.0 16204.0
P21b 4 4 29.54 0.02 0.29 13.53 0.01 0.67 6282.0 17987.0 11948.0
P21b 4 5 21.77 0.04 0.13 13.82 0.00 0.08 7931.0 17942.0 13682.0
P21b 5 5 5.50 0.01 0.08 2.46 0.00 0.14 5030.0 14957.0 10483.0
P21c 3 3 29.20 0.03 7.28 90.24 0.01 13.45 7846.0  20665.0 12427.0
P21c 3 4| 134.38 0.18 37.24 | 1538.44 0.01 29.71 8961.0 21437.0 13227.0
P21c 3 5 | 478.57 0.86 112.13 | 2868.55 0.06 62.27 | 11470.0 22351.0 15882.0
P21c 4 4 21.06 0.02 0.48 12.82 0.00 1.02 6804.0 17283.0 12625.0
P2lc 4 5 28.58 0.04 0.64 17.77 0.01 0.97 7141.0 17053.0 13211.0
P21c 5 5 8.17 0.01 0.07 4.43 0.00 0.06 5323.0 14221.0 10377.0
P21d 3 3 39.89 0.03 4.50 261.03 0.00 7.28 8260.0 21814.0 12886.0
P21d 3 4 52.83 0.17 19.48 452.65 0.01 13.99 | 10683.0 22677.0 14756.0
P21d 3 5| 236.98 0.73 40.83 731.73 0.04 59.80 | 15094.0 24338.0 19221.0
P21d 4 4 34.41 0.02 0.25 19.18 0.01 0.62 6940.0 18225.0 12828.0
P21d 4 5 15.33 0.04 0.46 10.06 0.01 0.45 8888.0  18817.0  14877.0
P21d 5 5 7.74 0.01 0.07 4.53 0.00 0.10 5268.0 15208.0 11024.0
P2le 3 3| 132.96 0.03 3.57 | 1372.73 0.00 9.59 9156.5 23443.5 13624.5
P2le 3 4 62.98 0.18 16.62 321.66 0.02 17.82 | 11574.5 25059.5  15808.5
P21e 3 5| 275.28 0.81  112.25 | 1737.27 0.14 70.48 | 15436.5 26552.5 19670.5
P2le 4 4 63.80 0.02 0.31 42.07 0.00 0.86 7351.5 19820.5 13372.5
P2le 4 5 13.58 0.04 0.67 12.44 0.01 1.53 8970.5 20592.5 15645.5
P2le 5 5 14.94 0.01 0.10 6.94 0.00 0.12 5541.5 16655.5  11441.5

Table 3: Running times in seconds and optimal values “opt” for (kPROP) instances from [20]
with n € {16,20,21} with [ %] departments in each of the first m — 1 rows. We apply
our basic model f for both variants Full and Cuts for the three distance types
{1,2,3}.
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name m ¢ | Fulll Full2 Full3 Cuts 1 Cuts 2 Cuts 3 opt 1 opt 2 opt 3

P22a 3 3| 138.72 0.04 7.53 1747.61 0.01 16.24 6213.0 15797.0 9829.0
P22a 3 4| 179.49 0.41 33.66 988.06 0.02 22.19 8928.0 16823.0 11308.0
P22a 3 5| 479.21 1.24 54.91 3553.97 0.09 73.22 | 11634.0 18002.0 14082.0
P22a 4 4 42.57 0.02 0.61 33.92 0.01 1.85 5476.0 13453.0 10477.0
P22a 4 5 42.78 0.07 1.42 21.61 0.02 1.11 6870.0 13629.0 11136.0
P22a 5 5 18.16 0.02 0.04 4.88 0.00 0.05 4286.0 10994.0 8438.0
P22b 3 3| 238.58 0.04 13.06 726.17 0.02 41.64 | 10398.0 26847.0 16698.0
P22b 3 4| 113.98 0.44 40.35 4519.16 0.03 50.63 | 13030.0 28196.0 18219.0
P22b 3 5 | 365.96 1.25 45.48 2639.33 0.06 27.22 | 18470.0 30211.0 23371.0
P22b 4 4 50.81 0.03 0.40 58.06 0.00 0.48 8168.0 22115.0 15805.0
P22b 4 5 43.92 0.09 1.52 46.93 0.01 1.98 | 10509.0 23566.0 18285.0
P22b 5 5 22.08 0.02 0.09 7.74 0.00 0.10 6615.0 19201.0 14224.0
P22c 3 3| 160.98 0.03 14.19 3445.79 0.00 16.52 | 10194.0 25805.0 16217.0
P22c 3 4| 169.94 0.43 36.33 712.92 0.02 28.64 | 15139.0 27997.0 19293.0
P22c 3 5 | 339.82 1.46 11.38 1431.32 0.10 10.73 | 20267.0 29877.0 24351.0
P22c 4 4 53.45 0.02 0.35 32.00 0.00 0.84 8564.0 21739.0 15642.0
P22c 4 5 33.83 0.07 1.43 27.85 0.01 0.64 | 12139.0 23237.0 18810.0
P22c 5 5 26.04 0.01 0.05 11.41 0.00 0.03 6673.0 18255.0 13325.0
P22d 3 3 93.78 0.04 8.41 406.31 0.00 9.46 | 11053.0 28052.0 17142.0
P22d 3 4| 244.92 0.36 35.28 1565.81 0.03 20.82 | 13503.0 29154.0 18148.0
P22d 3 5| 300.09 1.12 32.84 1734.83 0.06 5.77 | 18950.0 30516.0 23411.0
P22d 4 4 53.23 0.02 0.57 53.26 0.01 1.25 8308.0 23241.0 15939.0
P22d 4 5 44.18 0.07 0.93 33.67 0.01 0.19 9990.0 23305.0 17778.0
P22d 5 5 38.72 0.01 0.12 17.80 0.00 0.07 6624.0 19337.0 14165.0
P22e 3 3| 126.63 0.04 5.63 2417.27 0.02 11.59 | 10336.5 25655.5 16349.5
P22e 3 4 85.02 0.50 27.15 230.22 0.08 36.48 | 17355.5 30707.5 22528.5
P22e 3 5 | 258.95 1.71 66.28 473.69 0.37 69.81 | 21414.5 31821.5 25897.5
P22e 4 4 34.17 0.02 0.26 16.80 0.00 0.60 8801.5  22152.5 15680.5
P22e 4 5 45.46 0.08 1.33 21.64 0.01 3.06 | 12024.5 23554.5 19220.5
P22e 5 5 11.95 0.01 0.06 5.18 0.00 0.06 7004.5 18244.5 13972.5
P23a 3 3| 213.48 0.07 15.40 2842.13 0.02 17.60 7321.0 18212.0 11377.0
P23a 3 4 | 244.08 0.71 12717 4823.24 0.06 75.23 | 10654.0 19247.0 13364.0
P23a 3 5 | 636.84 2.64 174.93 2562.23 0.49 109.39 | 13675.0 20533.0 16281.0
P23a 4 4 60.44 0.03 1.77 38.78 0.01 4.17 6583.0 15593.0 12294.0
P23a 4 5 75.16 0.22 4.54 61.14 0.07 4.32 8310.0 15823.0 13054.0
P23a 5 5 32.00 0.02 0.14 13.60 0.00 0.14 5293.0 12773.0 10104.0
P23b 3 3| 119.50 0.05 12.05 1490.11 0.01 13.14 | 11493.5 27227.5 18063.5
P23b 3 4 81.81 0.69 59.26 790.86 0.04 36.08 | 16696.5 29712.5 21965.5
P23b 3 5| 292.07 2.47  159.66 1297.92 0.18 85.93 | 21930.5 31951.5  26267.5
P23b 4 4 27.63 0.03 0.40 10.04 0.00 0.73 9645.5 23236.5 17241.5
P23b 4 5 46.46 0.18 2.29 31.44 0.02 1.43 | 14308.5 24984.5 21016.5
P23b 5 5 36.85 0.02 0.11 13.94 0.00 0.14 8213.5 19185.5 15057.5
P23c 3 3| 281.27 0.05 7.36 1073.28 0.01 12.45 | 11293.0 26913.0 17061.0
P23c 3 4| 135.25 0.72 38.34 590.85 0.04 39.86 | 17701.0 29983.0 22247.0
P23c 3 5| 333.62 2.24  155.01 1469.41 0.13 77.36 | 22115.0 31484.0 26304.0
P23c 4 4 32.20 0.03 0.50 25.77 0.00 0.70 9533.0 22710.0 16584.0
P23c 4 5 54.28 0.16 3.32 36.46 0.02 3.70 | 13675.0 24735.0 20354.0
P23c 5 5 17.17 0.02 0.04 13.63 0.01 0.08 8001.0 19280.0 14882.0
P23d 3 3| 351.30 0.05 25.76 | 13668.14 0.01 19.11 | 11908.0 29764.0 18976.0
P23d 3 4| 15791 0.84 106.36 1364.31 0.06 60.45 | 19822.0 33930.0 25325.0
P23d 3 5| 749.31 2.68  220.85 1322.22 0.23  127.01 | 25008.0 35905.0 29756.0
P23d 4 4| 175.84 0.02 1.10 71.46 0.01 1.31 | 10152.0 25210.0 18232.0
P23d 4 5 | 115.46 0.21 3.18 85.98 0.02 2.92 | 14529.0 27499.0 22196.0
P23d 5 5 20.75 0.02 0.14 13.85 0.00 0.18 8267.0 21500.0 16596.0
P23e 3 3| 162.63 0.04 21.82 4516.00 0.01 18.43 | 11199.5 292225 17644.5
P23e 3 4| 320.47 0.56 76.18 2453.74 0.03 34.74 | 16011.5 30390.5 20315.5
P23e 3 5 | 750.58 1.98 148.95 1657.76 0.13 75.31 | 20218.5 32014.5  23977.5
P23e 4 4 | 145.79 0.03 1.05 59.21 0.01 1.87 9299.5 24129.5 17153.5
P23e 4 5 45.60 0.21 1.80 26.86 0.02 1.49 | 12694.5 25861.5 20616.5
P23e 5 5 44.43 0.02 0.05 23.58 0.01 0.06 7778.5  20840.5 15339.5

Table 4: Running times in seconds and optimal values “opt” for (kPROP) instances from [20]
with n € {22,23} with |%]| departments in each of the first m — 1 rows for the three
distance types. We apply our basic model — for both variants Full and Cuts for
the three distance types {1, 2, 3}.

23



name m ¢ Fulll Full2 Full3 Cuts 1 Cuts2 Cuts3 opt 1 opt 2 opt 3

P24a 3 3 166.02 0.04 13.34 3592.49 0.01 16.18 7786.0 20415.0 12529.0
P24a 3 4 230.04 0.46 77.75 2056.57 0.03 57.32 | 10206.0 21008.0  14529.0
P24a 3 5 966.70 3.54  368.70 5206.19 0.72  159.78 | 16196.0 23426.0 19037.0
P24a 4 4 172.81 0.02 0.88 162.83 0.01 1.66 6188.0 16634.0 11974.0
P24a 4 5 207.66 0.45 6.84 225.68 0.03 3.98 | 10515.0 18875.0 15578.0
P24a 5 5 84.93 0.03 0.15 21.19 0.01 0.13 6828.0 15278.0 12441.0
P24b 3 3 229.25 0.05 15.32 2624.55 0.01 12.32 | 12181.5 30661.5 19127.5
P24b 3 4 531.99 0.42 39.21 4417.06 0.03 53.20 | 15535.5 32002.5 22680.5
P24b 3 5 | 1350.67 3.94 199.87 | 16499.98 0.65 135.34 | 23361.5 35162.5 28885.5
P24b 4 4 739.70 0.02 1.69 894.95 0.00 2.79 9775.5  24864.5  18587.5
P24b 4 5 84.25 0.39 6.11 129.93 0.03 4.05 | 15551.5 28839.5  24020.5
P24b 5 5 69.87 0.02 0.38 54.87 0.00 0.54 | 10142.5 22914.5 18711.5
P24c 3 3 511.20 0.04 49.21 6652.70 0.01 36.18 | 11724.5 29736.5 18531.5
P24c 3 4 587.42 0.44 53.99 TL 0.04 36.33 | 12823.5 29341.5 19445.5
P24c 3 5 | 1144.53 4.25 112.74 TL 0.50 130.71 | 20319.5 32661.5 25373.5
P24c 4 4 130.96 0.02 3.11 72.94 0.01 3.97 9014.5 23968.5 17645.5
P24c 4 5 107.84 0.39 4.45 58.98 0.04 2.37 | 12304.5 25963.5 20728.5
P24c 5 5 73.90 0.03 0.39 30.37 0.01 0.96 8335.5 21249.5 17221.5
P24d 3 3 131.16 0.04 8.15 1076.54 0.01 9.42 | 13153.0 34340.0 20817.0
P24d 3 4 184.94 0.37 30.81 3726.89 0.03 21.21 | 16013.0 34898.0  24223.0
P24d 3 5 | 1063.32 2.85 148.76 | 15317.29 0.26 50.64 | 23580.0 37270.0 29879.0
P24d 4 4 66.74 0.02 1.75 90.68 0.01 2.86 | 10643.0 28053.0 20682.0
P24d 4 5 90.00 0.38 2.77 82.94 0.03 5.28 | 15915.0 30837.0 25182.0
P24d 5 5 36.30 0.03 0.26 21.31 0.00 0.40 | 10210.0 25017.0 20133.0
P24e 3 3| 1732.46 0.05 13.06 TL 0.01 14.17 | 14847.0 37580.0 22442.0
P24e 3 4 180.62 0.34 28.49 5634.37 0.02 18.52 | 18347.0 37504.0 26053.0
P24e 3 5 887.69 3.64  347.53 5469.19 0.66  147.56 | 30005.0 44191.0 35715.0
P24e 4 4 197.11 0.02 1.21 444.91 0.00 2.02 | 11586.0 29778.0 21738.0
P24e 4 5 75.17 0.33 4.49 96.22 0.02 241 | 18411.0 34610.0 28030.0
P24e 5 5 71.69 0.03 0.14 25.27 0.00 0.05 | 11108.0 27583.0 21450.0
P25a 3 3 603.24 0.07 15.23 8323.14 0.02 22.30 8780.5 22323.5 13974.5
P25a 3 4 420.82 0.81  154.96 5620.59 0.06 91.31 | 11537.5 23033.5 16080.5
P25a 3 5 | 1219.63 2.15  163.96 6005.02 0.09 123.32 | 14441.5 24268.5 17641.5
P25a 4 4 306.61 0.03 1.34 346.63 0.01 2.88 6796.5 18182.5 13266.5
P25a 4 5 186.59 0.12 12.25 448.98 0.02 11.84 9548.5 20384.5 16460.5
P25a 5 5 176.88 0.02 0.38 192.88 0.00 0.20 5768.5  15860.5 11994.5
P25b 3 3 | 4424.82 0.08 17.68 TL 0.02 15.24 | 12129.0 30894.0 18268.0
P25b 3 4| 1179.09 0.78 106.84 | 20284.50 0.12 60.78 | 16150.0 31616.0 22842.0
P25b 3 5 767.46 2.51  246.82 6691.79 0.35 146.58 | 20351.0 33785.0 25577.0
P25b 4 4 404.04 0.03 1.23 664.19 0.01 2.11 9249.0 24873.0 18005.0
P25b 4 5 | 1262.72 0.08 3.53 562.24 0.02 4.10 | 11535.0 26776.0 19962.0
P25b 5 5 648.06 0.02 0.24 436.94 0.01 0.87 7729.0 21576.0 15786.0
P25c 3 3| 1150.17 0.07 38.65 TL 0.02 31.29 | 16183.5 41087.5 25683.5
P25¢ 3 4 487.02 0.86  239.47 4153.91 0.11 84.33 | 21955.5  42947.5 29963.5
P25c 3 5 575.21 2.69  200.58 2878.46 0.30 137.00 | 28287.5 45689.5  34432.5
P25¢ 4 4 282.22 0.03 2.65 796.48 0.01 4.51 | 12655.5 32883.5 24086.5
P25c 4 5 687.32 0.07 2.53 191.77 0.02 4.69 | 17132.5 35907.5 27800.5
P25¢c 5 5 460.03 0.02 0.22 178.27 0.00 0.22 9801.5 28173.5 20661.5
P25d 3 3 | 3553.53 0.06 29.21 TL 0.01 26.25 | 15379.0 39071.0 23844.0
P25d 3 4 510.21 0.69 69.76 TL 0.03 57.12 | 19769.0 39277.0 27603.0
P25d 3 5 | 2672.71 2.35 176.94 7546.81 0.26  136.24 | 24073.0 42118.0 30638.0
P25d 4 4| 1599.85 0.03 1.64 787.12 0.01 2.93 | 12059.0 31212.0 22699.0
P25d 4 5 | 1137.70 0.07 3.15 791.77 0.01 2.86 | 14899.0 33490.0 25399.0
P25d 5 5 233.12 0.02 0.21 290.53 0.00 0.06 9761.0 27381.0 19716.0
P25e 3 3 626.11 0.07 24.74 1903.20 0.01 25.71 | 14361.5 36781.5  22521.5
P25e 3 4 936.13 0.73  133.28 706.61 0.10 65.64 | 16990.5 37058.5 24521.5
P25e 3 5 | 2683.72 2.20 200.21 815.58 0.19 179.66 | 20420.5 38502.5 26683.5
P25e 4 4 182.13 0.03 2.72 481.51 0.00 3.78 | 11278.5 30009.5 21618.5
P25e 4 5 399.39 0.08 3.38 173.03 0.02 543 | 13310.5 31756.5 23752.5
P25e 5 5 140.15 0.02 0.32 103.87 0.00 0.92 9329.5 26121.5 19098.5

Table 5: Running times in seconds and optimal values “opt” for new (kPROP) instances (con-
structed according to the rules in [20]) with n € {24,25} with |% | departments in each
of the first m — 1 rows for the three distance types (time limit TL of six hours). We
apply our basic model f for both variants Full and Cuts for the three distance

types {1,2,3}.
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standard Lemma @ Amaral [3]

name source | Full Cuts Full Cuts | time (gap) || optimal
HA5 [23] 0.04 0.02 0.02 0.01 0.02 52.5
HAG6 [23] 0.17 0.16 0.09 0.13 0.06 190.5
HAT [23] 0.39 0.36 0.25 0.29 0.08 166.0
HAS 23] 1.65 1.51 1.00 1.06 0.57||  205.0
HA9 [23] 6.13 6.76 3.79 4.95 4.34 492.5
HA10 [23] 18.04 19.86 11.00 14.57 22.85 838.0
HA11 [23] 30.97 22.88 16.06 16.59 33.89 796.0
HA12 [23] 173.73 164.76 115.03 133.52 331.32 || 1028.0
HA13 [23] 335.08  227.52 175.57 164.40 832.24 || 1530.5
HA14 [23] 1868.29 1418.52 | 1131.58 1043.26 13315.28 || 1841.0
HA15 [23] 7907.46  7010.24 || 5449.31 5685.67 || TL (2.50) || 2643.5
s9 [3, 4] 4.16 3.35 1.47 1.97 9.03 || 1181.5
s9h [31, 4] 18.43 28.28 10.99 18.64 95.96 | 2294.5
s10 [3, 4] 11.78 8.63 4.37 4.39 25.23 | 13745
s11 [3, 4] 48.04 42.65 22.25 24.36 152.59 | 3439.5
Am1l2a [3, 4] 177.61 146.16 110.23 116.41 356.88 || 1529.0
Aml12b [3, 4] 116.68 84.20 56.44 56.79 421.01| 1609.5
Aml3a 3] 446.76 341.49 292.51 282.80 2033.46 || 2467.5
Am13b 13 402.71 267.21 239.40  203.14 1580.31 || 2870.0

Aml4 1 new | 2150.47 1645.00 | 1482.12 1429.62 10058.04 || 2756.5
Aml5_1 [1] 3892.73 1693.54 || 2077.85 1241.81 TL (5.39) | 3195.0

HK15 [19] 3291.68 1132.41| 1576.67  764.08 L (8.73) || 16640.0
P16_a [B] |41468.10 37276.28 || 29152.76 29800.27 (53 48) || 7370.0
P16 b [B] |15619.68 8688.04| 8636.34 6466.20 % (45.08) || 5884.5

Table 6: Running times in seconds and optimal values “optimal” for the (SF-DRFLP) obtained
by applying our MILP models for both variants Full and Cuts for each relevant row
assignment in the standard variant (L; > L9) and according to Lemma @ Additionally,
the table shows the running times and the gaps in percent after a time limit TL of
twelve hours in brackets using the model of Amaral [3]. The symbol “x” indicates that
the computer ran out of memory.

25



n n
M=> ¢ M = S04
= i= "5 |+
name source | Full Cuts Amaral Full Cuts Amaral optimal
HA5 [23] 0.04 0.03 0.01 0.03 0.02 0.01 52.5
HAG6 [23] 0.14 0.15 0.04 0.12 0.13 0.05 190.5
HA7 [23] 0.33 0.46 0.08 0.31 0.44 0.08 159.0
HAS [23] 1.17 1.30 1.55 1.01 1.15 0.86 189.5
HA9 [23] 4.37 5.94 6.53 3.85 5.66 3.98 486.5
HA10 [23] 15.93 22.04 30.44 15.12 23.13 24.71 821.0
HA11 [23] 29.59 29.10 35.74 27.08 28.15 35.06 773.5
HA12 [23] 164.31 214.54 961.93 157.55 211.65 785.04 | 1021.0
HA13 [23] 342.74  367.42 2585.63 320.37  358.94 2251.47| 1520.5
HA14 [23] 1816.84 1819.97 38358.91 || 1749.95 1798.38 41622.08 | 1833.5
HA15 [23] 6711.04 6436.54 L (18.76) | 6568.02 6357.56 | TL (14.38)| 2624.5
s9 [3, 4] 3.93 4.82 7.79 3.62 4.85 5.15| 1179.0
s9h [3, 4] 18.52 42.64 142.82 15.01 35.70 139.31 | 2293.0
s10 [3, 4] 9.92 11.41 36.66 9.17 11.09 29.74 1 1351.0
s11 [3, 4] 38.16 46.26 317.60 36.16 45.92 374.51| 3424.5
Aml2a [3, 4] 122.78 110.48 615.05 114.91 110.67 516.66 1493
Aml12b  [3,/4] 107.69  106.62 670.45 100.82  107.72 684.36 | 1606.5
Aml3a 3] 442.96 472.60 8417.00 427.59 462.51 4991.75 | 2456.5
Am13b 13] 378.97  412.76 4089.15 360.27  404.04 3439.71| 2864.0
Aml4 1 new 1828.83 1493.73 TL (3.53) || 1765.89 1493.21 TL (4.24) || 2738.5
Aml5 1 [I] 4285.01 2899.47 (34 24) | 4174.01 2818.79 (15 89) || 3195.0
HK15 [19] 3423.49 2147.26 L (5.04) | 3268.04 2145.75 L (7.34) || 16570.0
P16_a [5] | 37370.53 37417.40 (214 80) || 36765.17 36572.42 (206 00) | 7365.5
P16_b [B] |16732.72 11398.87 L (189.16) || 15846.97 11218.22 | TL (159.55) || 5870.5

Table 7: Running times in seconds and optimal values “optimal” for the (DRFLP) obtained by
applying our MILP models for both variants Full and Cuts for each relevant row
assignment with big-M-value as given. Additionally, the table shows the running times
and the gaps in percent after a time limit TL of twelve hours in brackets using the
model of Amaral [4]. The symbol “x” indicates that the computer ran out of memory.
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