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Abstract. Let f(X) = (XC + D )M(XC + D)∗ − G be a given nonlinear Hermitian matrix-valued function
with M = M∗ and G = G∗, and assume that the variable matrix X satisfies the consistent linear matrix
equation XA = B. This paper shows how to characterize the semi-definiteness of f(X) subject to all so-
lutions of XA = B. As applications, a standard method is obtained for finding analytical solutions X0 of
X0A = B such that the matrix inequality f(X) < f(X0) or f(X) 4 f(X0) holds for all solutions of XA = B.
The whole work provides direct access, as a standard example, to a very simple algebraic treatment of the
constrained Hermitian matrix-valued function and the corresponding semi-definiteness and optimization problems.
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1 Introduction

Throughout this paper, Cm×n stands for the collection of all m×n complex matrices, and Cm
H stands for

the set of all m×m complex Hermitian matrices. The symbols A∗, r(A) and R(A) stand for the conjugate
transpose, the rank and the range (column space) of a matrix A ∈ Cm×n, respectively. Im denotes the
identity matrix of order m. The Moore–Penrose generalized inverse of A, denoted by A†, is defined to
be the unique solution X satisfying the four matrix equations AGA = A, GAG = G, (AG)∗ = AG,
and (GA)∗ = GA. Further, let EA and FA stand for EA = Im − AA† and FA = In − A†A, which
satisfy EA = FA∗ and FA = EA∗ . The two symbols i+(A) and i−(A) for A ∈ Cm

H , called the positive
and negative inertias of A, stand for the number of the positive and negative eigenvalues of A counted
with multiplicities, respectively, both which satisfy r(A) = i+(A) + i−(A). For brief, we use i±(A) to
denote the both numbers. Two A, B ∈ Cm

H are said to satisfy the inequalities A � B, A < B, A ≺ B,
and A 4 B in the Löwner partial ordering if A − B is positive definite, positive semi-definite, negative
definite, and negative semi-definite respectively. It is well known that the Löwner partial ordering is a
surprisingly strong and useful property on Hermitian matrices. For more issues about connections between
the inertias and the Löwner partial ordering of Hermitian matrices, as well as specific applications of the
matrix inertias and Löwner partial ordering in statistics; see, e.g., [13, 15].

The optimal rank and inertia problems of Hermitian matrix-valued functions are the problems of
finding the largest and smallest ranks and inertias of the Hermitian matrix-valued functions over some
feasible matrix sets. A matrix-valued function is a map between the two matrix spaces Cm×n and Cp×q,
which can generally be written as

Y = f(X) for Y ∈ Cm×n and X ∈ Cp×q, (1.1)

or briefly, f : Cp×q → Cm×n. Mappings between matrix spaces can be constructed arbitrarily from
ordinary operations of given matrices and variable matrices, but linear and nonlinear Hermitian matrix-
valued function with a single variable matrix were widely used and extensively studied from theoretical
and applied points of view. One of the simplest forms of the nonlinear Hermitian matrix-valued function
f(X) in (1.1) is given by

f(X) = (XC +D )M(XC +D)
∗ −G

= XCMC∗X∗ +XCMD∗ +DMC∗X∗ +DMD∗ −G, (1.2)

where C ∈ Cp×m, D ∈ Cn×m, G ∈ Cn
H, and M ∈ Cm

H are given, X ∈ Cn×p is a variable matrix. If n = 1,
then (1.2) becomes a scalar function for the row vector X. Further, we assume that the variable matrix
X ∈ Cn×p is the solution of a consistent linear matrix equation

XA = B, (1.3)

where A ∈ Cp×q and B ∈ Cn×q are given. Eq. (1.2) subject to (1.3) becomes a constrained symmetric
quadratic matrix-valued function if all matrices in (1.2) and (1.3) are replaced by real matrices. Nonlinear
Hermitian matrix-valued functions with the form of f(X) in (1.2) occur widely in matrix theory and
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applications, while many problems in matrix theory and applications can reduce to certain cases of (1.2)
subject to (1.3) and their optimization problems. For example, the minimization of (1.2) subject to
(1.3) in the Löwner partial ordering for the real matrix case and its applications in parametric quadratic
programming and statistical analysis were approached in [3, 14]. Formulas for calculating the rank and
inertia of a special case of f1(X) = XMX∗−G subject to (1.3) and their applications were given in [17].
It should be pointed out that the reduced form f1(X) and (1.2) are not necessarily equivalent, because we
can choose CMC∗ = 0 and CMD∗ 6= 0. In this case, (1.2) is linear for both X and X∗, but f1(X) with
M 6= 0 is always nonlinear for both X and X∗. Some recent work on the applications of minimization of
(1.2) subject to (1.3) for the real matrix case in deriving best linear unbiased predictors/estimiators of
all unknown parameters under linear random-effects models was given in [21, 22].

In order to establish a unified optimization theory of (1.2) subject to (1.3), this paper aims at solving
the following three fundamental problems:

(I) Derive analytical formulas for calculating the maximum and minimum ranks and inertias of f(X)
in (1.2) when X runs over Cn×p.

(II) Establish necessary and sufficient conditions for

f(X) < 0 or f(X) 4 0 subject to XA = B (1.4)

to hold in the Löwner partial ordering, respectively;

(III) Give analytical solution X0 of XA = B such that

f(X) < f(X0) or f(X) 4 f(X0) subject to XA = B (1.5)

to hold in the Löwner partial ordering, respectively.

To appreciate the importance of this research, it is helpful to consider a covariance problem in statistic
inference. Let y be a random vector with expectation and covariance matrix as follows

E(y) = µ, Cov(y) = Σ,

and let S be certain set consisting of linear estimators generated from y as follows

S = {Ly + b}

where b is a given random or non-random vector, L is an arbitrary matrix satisfying certain restriction,
say, E(Ly + b) = 0. A fundamental optimization problem on the given set S is to find L0y + b ∈ S
that minimizes the objective covariance matrix of Ly+ b ∈ S in the Löwner partial ordering, i.e., to find
L0y + b ∈ S such that

Cov(L0y + b) 4 Cov(Ly + b ) holds for all Ly + b ∈ S.

The Cov(Ly + b ) is equivalent to a symmetric quadratic matrix-valued function for L of the form in
(1.2). Analytical solutions to optimization problems in the Löwner sense have been the most desirable
objects of study in both mathematics and applications. In particular, once analytical solution to (1.5) is
obtained, we can use the solution as an effective tool in the derivation of exact algebraic expressions of
the well-known best linear unbiased predictors/estimators of unknown parameters under linear regression
models.

It should be pointed out that the best-known Lagrangian method is not available for solving (1.2)
and (1.5), because the optimal criteria in (1.5) are defined from the Löwner partial ordering instead of
scalar functions of matrices like traces or norms of matrices. In this instance, we can use matrix rank and
inertia formulas instead of the Lagrangian method, and establish a standard algebraic process to solve
(1.2) and (1.5).

We next present some known results on the solution of linear matrix equation, and matrix rank/inertia
formulas.

Lemma 1.1 ([12]). The linear matrix equation AX = B is consistent if and only if r[A, B ] = r(A), or
equivalently, AA†B = B. In this case, the general solution of AX = B can be written in the following
parametric form X = A†B + ( I −A†A )U, where U is an arbitrary matrix.

Lemma 1.2. Let A, B ∈ Cm×n, or A, B ∈ Cm
H . Then, the following assertions hold.

(a) A = B if and only if r(A−B) = 0.

(b) A � B (A ≺ B) if and only if i+(A−B) = m (i−(A−B) = m).
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(c) A < B (A 4 B) if and only if i−(A−B) = 0 (i+(A−B) = 0).

(d) For two given Hermitian matrix sets S and T , A < B (A 4 B) holds for all A ∈ S and B ∈ T if
and only if maxA∈S, B∈T i−(A−B) = 0 (maxA∈S, B∈T i+(A−B) = 0 ).

The assertions in Lemma 1.2 directly follow from the definitions of rank/inertia, definiteness, and
semi-definiteness of (Hermitian) matrices. These assertions show that if certain expansion formulas for
calculating ranks/inertias of differences of (Hermitian) matrices are established, we can use them to
characterize the corresponding matrix equalities and inequalities. This fact reflects without doubt the
most exciting values of ranks/inertias in matrix analysis and applications, and thus it is really necessary
to produce numerous matrix rank/inertia formulas from the theoretical and applied points of view.

Lemma 1.3 ([11]). Let A ∈ Cm×n, B ∈ Cm×k, and C ∈ Cl×n. Then,

r[A, B ] = r(A) + r(EAB) = r(B) + r(EBA), (1.6)

r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC), (1.7)

r

[
A B
C 0

]
= r(B) + r(C) + r(EBAFC). (1.8)

Lemma 1.4 ([15]). Let A ∈ Cm
H , B ∈ Cn

H, Q ∈ Cm×n, and assume that P ∈ Cm×m is nonsingular. Then,

i±(PAP ∗) = i±(A) (Sylvester’s law of inertia), (1.9)

i±(A†) = i±(A), i±(−A) = i∓(A), (1.10)

i±

[
A 0
0 B

]
= i±(A) + i±(B), (1.11)

i+

[
0 Q
Q∗ 0

]
= i−

[
0 Q
Q∗ 0

]
= r(Q). (1.12)

Lemma 1.5 ([15]). Let A ∈ Cm
H and B ∈ Cm×n, and C ∈ Cn

H. Then,

i±

[
A B
B∗ 0

]
= r(B) + i±(EBAEB), (1.13)

i±

[
A B
B∗ C

]
= i±(A) + i±

[
0 EAB

B∗EA C −B∗A†B

]
. (1.14)

In particular,

A < 0⇒ i+

[
A B
B∗ 0

]
= r[A, B ] and i−

[
A B
B∗ 0

]
= r(B), (1.15)

and [
A B
B∗ C

]
< 0⇔ R(B) ⊆ R(A), A < 0, and C −B∗A†B < 0. (1.16)

Lemma 1.6 ([18]). Let A ∈ Cm
H , B ∈ Cm×n, and C ∈ Cn

H be given, and X ∈ Cn×m be a variable matrix.
Then, the maximum partial inertias of XAX∗ +XB +B∗X∗ + C are given by

max
X∈Cn×m

i± (XAX∗ +XB +B∗X∗ + C) = min

{
n, i±

[
A B
B∗ C

]}
. (1.17)

Hence,

XAX∗ +XB +B∗X∗ + C < 0 for all X ∈ Cn×m ⇔
[
A B
B∗ C

]
< 0,

XAX∗ +XB +B∗X∗ + C 4 0 for all X ∈ Cn×m ⇔
[
A B
B∗ C

]
4 0.

There do exist matrices X ∈ Cn×m satisfying the two formulas in (1.17), while the constructions of
the matrices were described or formulated in [18].
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2 Semi-definiteness of Hermitian matrix-valued functions

We first establish two formulas for calculating the maximum partial inertias of f(X) in (1.2).

Lemma 2.1. Let f(X) be as given in (1.2), and let J =

[
DMD∗ −G DMC∗

CMD∗ CMC∗

]
. Then,

max
X∈Cn×p

i± [f(X)] = min {n, i±(J)} . (2.1)

Hence, the following results hold.

(a) f(X) < 0 holds for all X ∈ Cn×p if and only if J < 0.

(b) f(X) 4 0 holds for all X ∈ Cn×p if and only if J 4 0.

(c) f(X) = 0 holds for all X ∈ Cn×p if and only if J = 0.

Proof. Expanding the f(X) in (1.2) gives

f(X) = (XC +D)M(XC +D)
∗ −G

= XCMC∗X∗ +XCMD∗ +DMC∗X∗ +DMD∗ −G. (2.2)

Applying (1.17) to (2.2) yields (2.1). Note from Lemma 1.2(d) that f(X) < 0 for all X ∈ Cn×p is
equivalent to maxX∈Cn×p i− [f(X)] = i−(J) = 0, i.e., J < 0 by Lemma 1.2(c), thus proving (a). Result
(b) can be shown similarly. Combining (a) and (b) leads to (c).

From Lemma 2.1, we further obtain the following results on the maximum partial inertias and semi-
definiteness of f(X) in (1.2) subject to (1.3).

Theorem 2.2. Let f(X) be as given in (1.2), and assume that XA = B is consistent. Also, let

J =

DMD∗ −G DMC∗ B
CMD∗ CMC∗ −A
B∗ −A∗ 0

.
Then,

max
XA=B

i±[f(X)] = min {n, i±(J)− r(A)} . (2.3)

Hence, the following results hold.

(a) f(X) < 0 holds for all solutions of XA = B if and only if i−(J) = r(A).

(b) f(X) 4 0 holds for all solutions of XA = B if and only if i+(J) = r(A).

(c) f(X) = 0 holds for all solutions of XA = B if and only if r(J) = 2r(A).

Proof. From Lemma 1.1, XA = B is consistent if and only if BA†A = B. In this case, the general solution
is X = BA† + UEA, where U ∈ Cn×p is arbitrary. Substituting it into f(X) in (1.2) gives

f(X) =
(
UEAC +BA†C +D

)
M
(
UEAC +BA†C +D

)∗ −G,
which is a new Hermitian matrix-valued function with respect to U . Thus, we obtain from (1.17) that

max
XA=B

i±[f(X)] = max
U∈Cn×p

i±
[
(UEAC +H)M(UEAC +H)

∗ −G
]

= min

{
n, i±

[
HMH∗ −G HMC∗EA

EACMH∗ EACMC∗EA

]}
, (2.4)

where H = BA†C +D. Applying (1.13) and simplifying by Lemma 1.4 to the block matrix in (2.4), we
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further obtain

i±

[
HMH∗ −G HMC∗EA

EACMH∗ EACMC∗EA

]
= i±

[
(BA†C +D)M(BA†C +D)∗ −G (BA†C +D)MC∗EA

EACM(BA†C +D)∗ EACMC∗EA

]

= i±

 (BA†C +D)M(BA†C +D)∗ −G BA†CMC∗ +DMC∗ 0
CMC∗(BA†)∗ + CMD∗ CMC∗ A

0 A∗ 0

− r(A)

= i±

DMD∗ −G DMC∗ −B
CMD∗ CMC∗ A
−B∗ A∗ 0

− r(A)

= i±

DMD∗ −G DMC∗ B
CMD∗ CMC∗ −A
B∗ −A∗ 0

− r(A) = i±(J)− r(A). (2.5)

Substituting (2.5) into (2.4) gives (2.3). Setting the right-hand side of (2.3) equal to zero, we obtain the
results in (a) and (b) by Lemma 1.2(d). Combining (a) and (b) and applying i±(J) > r(A), we obtain
(c).

The previous results can also be applied to compare two Hermitian matrix-valued functions of the
same size in the Löwner sense.

Corollary 2.3. Let

f1(X) = (XC1 +D1 )M1(XC1 +D1)
∗ −G1,

f2(X) = (XC2 +D2)M2(XC2 +D2)
∗ −G2,

where C1 ∈ Cp×m1 , C2 ∈ Cp×m2 , D1 ∈ Cn×m1 , D2 ∈ Cn×m2 , G1, G2 ∈ Cn
H, M1 ∈ Cm1

H and M2 ∈ Cm2

H

are given. Also, let

J =

[
D1M1D

∗
1 −D2M2D

∗
2 −G1 +G2 D1M1C

∗
1 −D2M2C

∗
2

C1M1D
∗
1 − C2M2D

∗
2 C1M1C

∗
1 − C2M2C

∗
2

]
.

Then, the following results hold.

(a) f1(X) < f2(X) holds for all X ∈ Cn×p if and only if J < 0.

(b) f1(X) 4 f2(X) holds for all X ∈ Cn×p if and only if J 4 0.

(c) f1(X) = f2(X) holds for all X ∈ Cn×p if and only if J = 0.

Proof. It is easy to see that the difference

f1(X)− f2(X)

= (XC1 +D1)M1(XC1 +D1)
∗ − (XC2 +D2)M2(XC2 +D2)

∗ − (G1 −G2)

= [XC1 +D1, XC2 +D2]

[
M1 0
0 −M2

][
(XC1 +D1)∗

(XC2 +D2)∗

]
− (G1 −G2)

= (X[C1, C2 ] + [D1, D2 ])

[
M1 0
0 −M2

]
(X[C1, C2 ] + [D1, D2 ])

∗ − (G1 −G2)

is a special form of f(X) in (1.2) again. So that (a) and (b) follow from Lemma 2.1. Combining (a) and
(b) leads to (c).

Corollary 2.4. Let

f1(X1) = (X1C1 +D1)M1(X1C1 +D1)
∗ −G1,

f2(X2) = (X2C2 +D2)M2(X2C2 +D2)
∗ −G2,

where C1 ∈ Cp1×m1 , C2 ∈ Cp2×m2 , D1 ∈ Cn×m1 , D2 ∈ Cn×m2 , G1, G2 ∈ Cn
H, M1 ∈ Cm1

H , and M2 ∈ Cm2

H

are given, and X1 ∈ Cn×p1 and X2 ∈ Cn×p2 are variable matrices. Also let

J =

D1M1D
∗
1 −D2M2D

∗
2 −G1 +G2 D1M1C

∗
1 −D2M2C

∗
2

C1M1D
∗
1 C1M1C

∗
1 0

−C2M2D
∗
2 0 −C2M2C

∗
2

.
Then, the following results hold.
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(a) f1(X1) < f2(X2) holds for all X1 ∈ Cn×p1 and X2 ∈ Cn×p2 if and only if J < 0.

(b) f1(X1) 4 f2(X2) holds for all X1 ∈ Cn×p1 and X2 ∈ Cn×p2 if and only if J 4 0.

(c) f1(X1) = f2(X2) holds for all X1 ∈ Cn×p1 and X2 ∈ Cn×p2 if and only if J = 0.

Proof. Note that

f1(X1)− f2(X2)

= X1C1M1C
∗
1X
∗
1 +X1C1M1D

∗
1 +D1M1C

∗
1X
∗
1 +D1M1D

∗
1 −G1

− X2C2M2C
∗
2X
∗
2 −X2C2M2D

∗
2 −D2M2C

∗
2X
∗
2 −D2M2D

∗
2 +G2

= [X1, X2 ]

[
C1M1C

∗
1 0

0 −C2M2C
∗
2

][
X∗1
X∗2

]
+ [X1, X2 ]

[
C1M1D

∗
1

−C2M2D
∗
2

]
+ [D1M1C

∗
1 , −D2M2C

∗
2 ]

[
X∗1
X∗2

]
+D1M1D

∗
1 −D2M2D

∗
2 −G1 +G2.

Applying Lemma 2.1 to this matrix-valued function yields (a) and (b). Combining (a) and (b) leads to
(c).

Corollary 2.5. Let f1(X) and f2(X) be as given in Corollary 2.3, and assume that XA = B is consistent,
where A ∈ Cp×q and B ∈ Cn×q are given. Also, let

J =

D1M1D
∗
1 −D2M2D

∗
2 −G1 +G2 D1M1C

∗
1 −D2M2C

∗
2 B

C1M1D
∗
1 − C2M2D

∗
2 C1M1C

∗
1 − C2M2C

∗
2 −A

B∗ −A∗ 0

.
Then, the following results hold.

(a) f1(X) < f2(X) holds for all solutions of XA = B if and only if i−(J) = r(A).

(b) f1(X) 4 f2(X) holds for all solutions of XA = B if and only if i+(J) = r(A).

(c) f1(X) = f2(X) holds for all solutions of XA = B if and only if r(J) = 2r(A).

Corollary 2.6. Let

f1(X1) = (X1C1 +D1 )M1(X1C1 +D1)
∗ −G1 s.t. X1A1 = B1,

f2(X2) = (X2C2 +D2 )M2(X2C2 +D2)
∗ −G2 s.t. X2A2 = B2,

and assume that both X1A1 = B1 and X2A2 = B2 are consistent, respectively, where A1 ∈ Cp1×q1 ,
A2 ∈ Cp2×q2 , B1 ∈ Cn×q1 , B2 ∈ Cn×q2 , C1 ∈ Cp1×m1 , C2 ∈ Cp2×m2 , D1 ∈ Cn×m1 , D2 ∈ Cn×m2 ,
G1, G2 ∈ Cn

H, M1 ∈ Cm1

H , and M2 ∈ Cm2

H are given, and X1 ∈ Cn×p1 and X2 ∈ Cn×p2 are variable
matrices. Also, let

J =


D1M1D

∗
1 −D2M2D

∗
2 −G1 +G2 D1M1C

∗
1 −D2M2C

∗
2 B1 B2

C1M1D
∗
1 C1M1C

∗
1 0 −A1 0

−C2M2D
∗
2 0 −C2M2C

∗
2 0 −A2

B∗1 −A∗1 0 0 0
B∗2 0 −A∗2 0 0

.
Then, the following results hold.

(a) f1(X1) < f2(X2) holds for all solutions of X1A1 = B1 and X2A2 = B2 if and only if i−(J) =
r(A1) + r(A2).

(b) f1(X1) 4 f2(X2) holds for all all solutions of X1A1 = B1 and X2A2 = B2 if and only if i+(J) =
r(A1) + r(A2).

(c) f1(X1) = f2(X2) holds for all all solutions of X1A1 = B1 and X2A2 = B2 if and only if r(J) =
2r(A1) + 2r(A2).

The previous results can be applied to the perturbation analysis of f(X) in (1.2). For instance, let

f1(X) = (XC +D)M(XC +D)
∗ −G,

f2(X) = [X(C + δC) + (D + δD)](M + δM)[X(C + δC) + (D + δD)]
∗

− (G+ δG),
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or

f1(X) = (XC1 +D1)M1(XC1 +D1)
∗ −G1,

f2(X) = (X[C1, C2 ] + [D1, D2 ])

[
M1 N
N∗ M2

]
(X[C1, C2 ] + [D1, D2 ])

∗ −G2.

Then, equalities and inequalities between f1(X) and f2(X) can be established from Corollary 2.3(a)–(c).

3 Solutions of some optimization problems

In light of the results in Section 2, we are able to derive exact algebraic solutions to (1.5).

Theorem 3.1. Let f(X) be as given in (1.2). Then, the following results hold.

(a) There exists an X0 ∈ Cn×p such that

f(X) < f(X0) (3.1)

holds for all X ∈ Cn×p if and only if

CMC∗ < 0 and R(CMD∗) ⊆ R(CMC∗). (3.2)

In this case, f(X) can be decomposed as

f(X) = (XCMC∗ +DMC∗)(CMC∗)†(XCMC∗ +DMC∗)∗

+ DMD∗ −DMC∗(CMC∗)†CMD∗ −G. (3.3)

The matrix X0 satisfying (3.1) is determined by the following consistent matrix equation

X0CMC∗ +DMC∗ = 0, (3.4)

and the general expression of X0 and the corresponding minimum f(X0) are given by

X0 = argmin
X∈Cn×p

f(X) = −DMC∗(CMC∗)† + V [Ip − (CMC∗)(CMC∗)†], (3.5)

f(X0) = min
X∈Cn×p

f(X) = DMD∗ −DMC∗(CMC∗)†CMD∗ −G, (3.6)

where V ∈ Cn×p is arbitrary. In particular, X0 satisfying (3.1) is unique if and only if r(CMC∗) =
p. In this case,

f(X) = (XCMC∗ +DMC∗)(CMC∗)−1(XCMC∗ +DMC∗)∗

+ DMD∗ −DMC∗(CMC∗)−1CMD∗ −G, (3.7)

and

argmin
X∈Cn×p

f(X) = −DMC∗(CMC∗)−1, (3.8)

min
X∈Cn×p

f(X) = DMD∗ −DMC∗(CMC∗)−1CMD∗ −G. (3.9)

(b) There exists an X0 ∈ Cn×p such that

f(X) 4 f(X0) (3.10)

holds for all X ∈ Cn×p if and only if

CMC∗ 4 0 and R(CMD∗) ⊆ R(CMC∗). (3.11)

In this case, f(X) can be decomposed as

f(X) = (XCMC∗ +DMC∗)(CMC∗)†(XCMC∗ +DMC∗)∗

+ DMD∗ −DMC∗(CMC∗)†CMD∗ −G. (3.12)

The matrix X0 satisfying (3.10) is determined by the following consistent matrix equation

X0CMC∗ +DMC∗ = 0, (3.13)
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and the general expression of X0 and the corresponding f(X0) are given by

X0 = argmax
X∈Cn×p

f(X) = −DMC∗(CMC∗)† + V
[
Ip − (CMC∗)(CMC∗)†

]
, (3.14)

f(X0) = max
X∈Cn×p

f(X) = DMD∗ −DMC∗(CMC∗)†CMD∗ −G, (3.15)

where V ∈ Cn×p is arbitrary. In particular, X0 satisfying (3.10) is unique if and only if r(CMC∗) =
p. In this case,

f(X) = (XCMC∗ +DMC∗)(CMC∗)−1(XCMC∗ +DMC∗)∗

+ DMD∗ −DMC∗(CMC∗)−1CMD∗ −G, (3.16)

and

argmax
X∈Cn×p

f(X) = −DMC∗(CMC∗)−1, (3.17)

max
X∈Cn×p

f(X) = DMD∗ −DMC∗(CMC∗)−1CMD∗ −G. (3.18)

Proof. For any X, X0 ∈ Cn×p, the difference f(X)− f(X0) is

f(X)− f(X0) = (XC +D )M(XC +D)
∗ − (X0C +D)M(X0C +D)

∗
. (3.19)

Applying (2.1) to (3.19) yields

max
X∈Cn×p

i− [f(X)− f(X0)]

= min

{
n, i−

[
DMD∗ − (X0C +D)M(X0C +D)

∗
DMC∗

CMD∗ CMC∗

]}
. (3.20)

Setting the right-hand side of (3.20) equal to zero, we see from Lemma 1.2(d) that (3.1) holds if and only
if

i−

[
DMD∗ − (X0C +D)M(X0C +D)

∗
DMC∗

CMD∗ CMC∗

]
= 0,

that is, [
DMD∗ − (X0C +D)M(X0C +D)

∗
DMC∗

CMD∗ CMC∗

]
< 0,

which, by (1.16), is equivalent to

CMC∗ < 0, R(CMD∗) ⊆ R(CMC∗), (3.21)

DMD∗ − (X0C +D)M(X0C +D)
∗ −DMC∗(CMC∗)†CMD∗ < 0. (3.22)

We obtain from (3.21) that (CMC∗)† < 0, (CMC∗)(CMC∗)†CMD∗ = CMD∗, and
DMC∗(CMC∗)†(CMC∗) = DMC∗. So that it is easy to verify

(XCMC∗ +DMC∗)(CMC∗)†(XCMC∗ +DMC∗)∗

= XCMC∗X∗ +XCMD∗ +DMC∗X∗ +DMC∗(CMC∗)†CMD∗

= (XC +D)M(XC +D)
∗ −DMD∗ +DMC∗(CMC∗)†CMD∗.

Substituting this formula into (1.2) leads to (3.3). Since

(XCMC∗ +DMC∗)(CMC∗)†(XCMC∗ +DMC∗)∗ < 0

under (3.2), we see from (3.3) that

f(X) < DMD∗ −DMC∗(CMC∗)†CMD∗ −G (3.23)

for all X ∈ Cn×p. Setting the first term in (3.3) equal to null yields

(X0CMC∗ +DMC∗)(CMC∗)†(X0CMC∗ +DMC∗)∗ = 0. (3.24)

Applying a trivial fact PQQ∗P ∗ = 0 ⇔ PQQ∗ = 0 ⇔ PQ = 0 and (CMC∗)† < 0 to (3.24) yields
(X0CMC∗ +DMC∗)(CMC∗)† = 0. Further, post-multiplying CMC∗ to both sides of the equality and
simplifying by the second condition in (3.21) leads to (3.4). Eq.(3.5) follows from Lemma 1.1, while (3.6)
follows from (3.23). Result (b) can be shown by a similar approach.
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Theorem 3.2. Let f(X) be as given in (1.2), and assume that XA = B is consistent. Also, let K =[
CMC∗ A
A∗ 0

]
and H = BA†C +D. Then, the following results hold.

(a) There exists a solution X0 of XA = B such that

f(X) < f(X0) (3.25)

holds for all solutions of XA = B if and only if

EACMC∗EA < 0 and R(EACMH∗) ⊆ R(EACMC∗EA), (3.26)

or equivalently,

i−(K) = r(A) and R

[
CMD∗

−B∗
]
⊆ R(K). (3.27)

In this instance, f(X) can be decomposed as

f(X)

= (XCMC∗EA +DMC∗EA) (EACMC∗EA)† (XCMC∗EA +DMC∗EA)
∗

+ HMH∗ −HMC∗(EACMC∗EA)†CMH∗ −G. (3.28)

The matrix X0 satisfying (3.25) is determined by the following consistent matrix equation

X0[A, CMC∗EA ] = [B, −DMC∗EA ]. (3.29)

In this case,

argmin
XA=B

f(X) = [B, −DMC∗EA ][A, CMC∗EA ]†

+ V [ Ip − [A, CMC∗EA ][A, CMC∗EA ]† ], (3.30)

min
XA=B

f(X) = HMH∗ −HMC∗(EACMC∗EA)†CMH∗ −G, (3.31)

where V ∈ Cn×p is arbitrary.

(b) There exists a solution X0 of XA = B such that

f(X) 4 f(X0) (3.32)

holds for all solutions of XA = B if and only if

EACMC∗EA 4 0 and R(EACMH∗) ⊆ R(EACMC∗EA), (3.33)

or equivalently,

i+(K) = r(A) and R

[
CMD∗

−B∗
]
⊆ R(K). (3.34)

In this case, f(X) can be decomposed as

f(X)

= (XCMC∗EA +DMC∗EA)(EACMC∗EA)†(XCMC∗EA +DMC∗EA)∗

+ HMH∗ −HMC∗(EACMC∗EA)†CMH∗ −G. (3.35)

The matrix X0 satisfying (3.32) is determined by the following consistent matrix equation

X0[A, CMC∗EA ] = [B, −DMC∗EA ]. (3.36)

In this case,

argmax
XA=B

f(X) = [B, −DMC∗EA ][A, CMC∗EA ]†

+ V
[
Ip − [A, CMC∗EA ][A, CMC∗EA]†

]
, (3.37)

max
XA=B

f(X) = HMH∗ −HMC∗(EACMC∗EA)†CMH∗ −G, (3.38)

where V ∈ Cn×p is arbitrary.
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Proof. Substituting the solution X = BA† + UEA of XA = B into f(X) in (1.2), we obtain

f(X) = (UEAC +H)M(UEAC +H)
∗ −G. (3.39)

From Theorem 3.1, there exists a U0 ∈ Cn×p such that f(X) < f(X0) holds for all U ∈ Cn×p in (3.39) if
and only if (3.26) holds. Note from (1.13) that

i±(EACMC∗EA) = i±

[
CMC∗ A
A∗ 0

]
− r(A) = i±(K)− r(A).

Hence, the first inequality in (3.26) is equivalent to the first inertia equality in (3.27). Applying (1.6)–(1.8)
and simplifying, we obtain

r[EACMH∗, EACMC∗EA ] = r

[
CM(BA†C +D)∗ CMC∗ A

0 A∗ 0

]
− 2r(A)

= r

[
CMD∗ CMC∗ A
−B∗ A∗ 0

]
− 2r(A),

r(EACMC∗EA) = r

[
CMC∗ A
A∗ 0

]
− 2r(A) = r(K)− 2r(A).

Hence, the second range inclusion in (3.27) is equivalent to

r

[
CMD∗ CMC∗ A
−B∗ A∗ 0

]
= r

[
CMC∗ A
A∗ 0

]
,

that is, R

[
CMD∗

−B∗
]
⊆ R(K), establishing the second range inclusion in (3.27). Under (3.26), (3.39) can

be decomposed as

f(X)

= (UEACMC∗EA +HMC∗EA) (EACMC∗EA)† (UEACMC∗EA +HMC∗EA)
∗

+ HMH∗ −HMC∗(EACMC∗EA)†CMH∗ −G.

Substituting UEA = X−BA† into the above function and simplifying yield (3.28). Setting the first term
in (3.28) equal to zero leads to the linear matrix equation XCMC∗EA +DMC∗EA = 0. Combining this
matrix equation with XA = B yields (3.29). Result (b) can be shown similarly.

One of the useful consequences of Theorem 3.2 is given below.

Corollary 3.3. Let f(X) be as given in (1.2) with M < 0, and assume that XA = B is consistent. Then,

X0A = B and f(X0) = min⇔ X0[A, CMC∗EA ] = [B, −DMC∗EA ],

where the matrix equation on the right-hand side is consistent as well. In this case, the general expression
of X0 and the corresponding f(X0) are given by

X0 = argmin
XA=B

f(X)

= [B, −DMC∗EA ][A, CMC∗EA ]† + V
(
Ip − [A, CMC∗ ][A, CMC∗ ]†

)
,

f(X0) = min
XA=B

f(X)

=
(
BA†C +D

)[
M −MC∗(EACMC∗EA)†CM

](
BA†C +D

)∗ −G,
where V ∈ Cn×p is arbitrary.

4 Conclusions

We studied a group of fundamental problems on ranks/inertias, equalities/inequalities, and maximiza-
tion/miminization in the Löwner partial ordering of a Hermitian matrix-valued function subject to linear
matrix equation by using pure algebraic operations of the given matrices in the function and restriction.
These problems are clearly formulated in common matrix operations, and their solutions are presented in
exact algebraic expressions, so that the results in the previous sections can be utilized as standard tools
in solving many problems on Hermitian matrix-valued functions subject to linear matrix equation restric-
tions where the Lagrangian method is not available. It should be pointed out that all the conclusions in
the previous sections are valid when replacing complex matrices with real matrices.
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Linear and nonlinear complex Hermitian matrix-valued functions with single or more variable matrices
can be formulated arbitrarily, and each of them is worth to investigate from theoretical and applied points
of view. For instance, two extended forms of (1.2) with a single variable matrix X are given by

f(X) = (AXB + C)M(AXB + C)
∗

+D,

f(X) = DXAX∗D∗ +DXB +B∗X∗D∗ + C.

It is easy to figure out that any linear and nonlinear Hermitian matrix-valued functions have maxi-
mum/minimum possible ranks/inertias due to the finite nonnegative integer property of rank/inertia.
Formulas for calculating the maximum/minimum ranks/inertias of the above two Hermitian matrix-
valued functions and their applications in solving the semi-definiteness and optimization problems of the
two matrix-valued functions can be established without much effort; see, e.g., [18, 23], while the corre-
sponding results also have essential applications in statistical data analysis and inference, as well as other
disciplines.

Rank/inertia of complex Hermitian (real symmetric) matrix are conceptual foundation in elementary
linear algebra, and are the most significant finite nonnegative integers in reflecting intrinsic properties
of matrices. There were many classic approaches on rank/inertia theory of complex Hermitian (real
symmetric) matrices and their applications in the mathematical literature; see, e.g.,[1, 2, 4, 5, 6, 7, 8, 9].
Motivated by many requirements of establishing matrix equalities and inequalities, the present author
reconsidered matrix rank/inertia and established in [10, 15, 16, 17, 18, 19, 23, 24] a variety of funda-
mental formulas for calculating maximum/minimum ranks/inertias of linear and nonlinear Hermitian
matrix-valued functions. These formulas can be used to characterize various features and performances of
Hermitian matrix-valued functions from many new aspects. Particularly, they can be used to derive exact
algebraic solutions to the corresponding Hermitian matrix-valued function optimization problems in the
Löwner partial ordering. In addition, the present author’s work on matrix rank/inertia formulas also
attracted much attention in the field of matrix analysis, and many results on combinations and extensions
of the previous work on minmaxity of ranks/inertias of matrix-valued functions by other authors can
be found in the literature. Generally speaking, we are now able to use matrix rank/inertia formulas to
reveal many deep and fundamental properties of matrices and their operations, such as, establishing and
simplifying various complicated matrix expressions, deriving matrix equalities/inequalities that involve
generalized inverses of matrices, characterizing definiteness/semi-definiteness of Hermitian matrix-valued
functions, and solving matrix-valued function optimization problems.
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