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Abstract

The authors in a previous paper devised certain subcones of the semidefinite plus nonnegative
cone and showed that satisfaction of the requirements for membership of those subcones can be
detected by solving linear optimization problems (LPs) with O(n) variables and O(n2) constraints.
They also devised LP-based algorithms for testing copositivity using the subcones. In this paper,
they investigate the properties of the subcones in more detail and explore larger subcones of the
positive semidefinite plus nonnegative cone whose satisfaction of the requirements for membership
can be detected by solving LPs. They introduce a semidefinite basis (SD basis) that is a basis of the
space of n× n symmetric matrices consisting of n(n+ 1)/2 symmetric semidefinite matrices. Using
the SD basis, they devise two new subcones for which detection can be done by solving LPs with
O(n2) variables and O(n2) constraints. The new subcones are larger than the ones in the previous
paper and inherit their nice properties. The authors also examine the efficiency of those subcones
in numerical experiments. The results show that the subcones are promising for testing copositivity
as a useful application.

Key words. Semidefinite plus nonnegative cone, Doubly nonnegative cone, Copositive cone, Matrix de-
composition, Linear programming, Semidefinite basis, Maximum clique problem, Quadratic optimization
problem

1 Introduction

Let Sn be the set of n× n symmetric matrices, and define their inner product as

⟨A,B⟩ = Tr (BTA) =

n∑
i.j=1

aijbij . (1)
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Bomze et al. [7] coined the term “copositive programming” in relation to the following problem in 2000,
on which many studies have since been conducted:

Minimize ⟨C,X⟩
subject to ⟨Ai, X⟩ = bi, (i = 1, 2, . . . ,m)

X ∈ COPn.

where COPn is the set of n×n copositive matrices, i.e., matrices whose quadratic form takes nonnegative
values on the n-dimensional nonnegative orthant Rn

+:

COPn := {X ∈ Sn | dTXd ≥ 0 for all d ∈ Rn
+}.

We call the set COPn the copositive cone. A number of studies have focused on the close relationship be-
tween copositive programming and quadratic or combinatorial optimization (see, e.g., [7][8][15][33][34][13][14][20]).
Interested readers may refer to [21] and [9] for background on and the history of copositive programming.

The following cones are attracting attention in the context of the relationship between combinatorial
optimization and copositive optimization (see, e.g., [21][9]). Here, conv (S) denotes the convex hull of
the set S.

- The nonnegative cone Nn := {X ∈ Sn | xij ≥ 0 for all i, j ∈ {1, 2, . . . , n}}.

- The semidefinite cone S+n := {X ∈ Sn | dTXd ≥ 0 for all d ∈ Rn} = conv
({

xxT | x ∈ Rn
})

.

- The copositive cone COPn :=
{
X ∈ Sn | dTXd ≥ 0 for all d ∈ Rn

+

}
.

- The semidefinite plus nonnegative cone S+n +Nn, which is the Minkowski sum of S+n and Nn.

- The union S+n ∪Nn of S+n and Nn.

- The doubly nonnegative cone S+n ∩ Nn, i.e., the set of positive semidefinite and componentwise non-
negative matrices.

- The completely positive cone CPn := conv
({

xxT | x ∈ Rn
+

})
.

Except the set S+n ∪Nn, all of the above cones are proper (see Section 1.6 of [5], where a proper cone is
called a full cone), and we can easily see from the definitions that the following inclusions hold:

COPn ⊇ S+n +Nn ⊇ S+n ∪Nn ⊇ S+n ⊇ S+n ∩Nn ⊇ CPn. (2)

While copositive programming has the potential of being a useful optimization technique, it still faces
challenges. One of these challenges is to develop efficient algorithms for determining whether a given
matrix is copositive. It has been shown that the above problem is co-NP-complete [31][19][20] and
many algorithms have been proposed to solve it (see, e.g., [6][12][30][29][39][36][10][16][22][37][11]) Here,
we are interested in numerical algorithms which (a) apply to general symmetric matrices without any
structural assumptions or dimensional restrictions and (b) are not merely recursive, i.e., do not rely
on information taken from all principal submatrices, but rather focus on generating subproblems in
a somehow data-driven way, as described in [10]. There are few such algorithms, but they often use
tractable subcones Mn of the semidefinite plus nonnegative cone S+n + Nn for detecting copositivity
(see, e.g., [12][36][10][37]). As described in Section 5, these algorithms require one to check whether
A ∈ Mn or A ̸∈ Mn repeatedly over simplicial partitions. The desirable properties of the subcones
Mn ⊆ S+n +Nn used by these algorithms can be summarized as follows:
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P1 For any given n× n symmetric matrix A ∈ Sn, we can check whether A ∈Mn within a reasonable
computation time, and

P2 Mn is a subset of the semidefinite plus nonnegative cone S+n +Nn that at least includes the n× n
nonnegative cone Nn and contains as many elements S+n +Nn as possible.

The authors, in [37], devised certain subcones of the semidefinite plus nonnegative cone S+n + Nn and
showed that satisfaction of the requirements for membership of those cones can be detected by solving
linear optimization problems (LPs) with O(n) variables and O(n2) constraints. They also created an
LP-based algorithm that uses these subcones for testing copositivity as an application of those cones.

The aim of this paper is twofold. First, we investigate the properties of the subcones in more detail, espe-
cially in terms of their convex hulls. Second, we search for subcones of the semidefinite plus nonnegative
cone S+n +Nn that have properties P1 and P2. To address the second aim, we introduce a semidefinite
basis (SD basis) that is a basis of the space Sn consisting of n(n+1)/2 symmetric semidefinite matrices.
Using the SD basis, we devise two new types of subcones for which detection can be done by solving
LPs with O(n2) variables and O(n2) constraints. As we will show in Corollary 3.4, these subcones are
larger than the ones proposed in [37] and inherit their nice properties. We also examine the efficiency
of those subcones in numerical experiments.

This paper is organized as follows: In Section 2, we show several tractable subcones of S+n + Nn that
are receiving much attention in the field of copositive programming and investigate their properties, the
results of which are summarized in Figures 1 and 2. In Section 3, we propose new subcones of S+n +Nn

having properties P1 and P2. We define SD bases using Definitions 3.2 and 3.3 and construct new
LPs for detecting whether a given matrix belongs to the subcones. In Section 4, we perform numerical
experiments in which the new subcones are used for identifying the given matrices A ∈ S+n + Nn. As
a useful application of the new subcones, Section 5 describes experiments for testing copositivity of
matrices arising from the maximum clique problem and standard quadratic optimization problems. The
results of these experiments show that the new subcones are promising not only for identification of
A ∈ S+n +Nn but also for testing copositivity. We give concluding remarks in Section 6.

2 Some tractable subcones of S+n +Nn and related work

In this section, we show several tractable subcones of the semidefinite plus nonnegative cone S+n +Nn.
Since the set S+n +Nn is the dual cone of the doubly nonnegative cone S+n ∩Nn, we see that

S+n +Nn = {A ∈ Sn | ⟨A,X⟩ ≥ 0 for any X ∈ S+n ∩Nn}
= {A ∈ Sn | ⟨A,X⟩ ≥ 0 for any X ∈ S+n ∩Nn such that Tr (X) = 1}

and that the weak membership problem for S+n +Nn can be solved (to an accuracy of ϵ) by solving the
following doubly nonnegative program (which can be expressed as a semidefinite program of size O(n2)).

Minimize ⟨A,X⟩
subject to ⟨In, X⟩ = 1, X ∈ S+n ∩Nn

(3)

where In denotes the n×n identity matrix. Thus, the set S+n +Nn is a rather large and tractable convex
subcone of COPn. However, solving the problem takes a lot of time [36], [38] and does not make for
a practical implementation in general. To overcome this drawback, more easily tractable subcones of
S+n +Nn have been proposed.
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We define the matrix functions N,S : Sn → Sn such that, for A ∈ Sn, we have

N(A)ij :=

{
Aij (Aij > 0 and i ̸= j)
0 (otherwise)

and S(A) := A−N(A). (4)

In [36], the authors defined the following set:

Hn := {A ∈ Sn | S(A) ∈ S+n }. (5)

Here, we should note that A = S(A) + N(A) ∈ S+n + Nn if A ∈ Hn. Also, for any A ∈ Nn, S(A) is
a nonnegative diagonal matrix, and hence, Nn ⊆ Hn. The determination of A ∈ Hn is easy and can
be done by extracting the positive elements Aij > 0 (i ̸= j) as N(A)ij and by performing a Cholesky
factorization of S(A) (cf. Algorithm 4.2.4 in [26]). Thus, from the inclusion relation (2), we see that
the set Hn has the desirable P1 property. However, S(A) is not necessarily positive semidefinite even if
A ∈ S+n +Nn or A ∈ S+n . The following theorem summarizes the properties of the set Hn.

Theorem 2.1 ([25] and Theorem 4.2 of [36]). Hn is a convex cone and Nn ⊆ Hn ⊆ S+n +Nn. If n ≥ 3,
these inclusions are strict and S+n ̸⊆ Hn. For n = 2, we have Hn = S+n ∪Nn = S+n +Nn = COPn.

The construction of the subcone Hn is based on the idea of “checking nonnegativity first and checking
positive semidefiniteness second.” In [37], another subcone is provided that is based on the idea of
“checking positive semidefiniteness first and checking nonnegativity second.” Let On be the set of n×n
orthogonal matrices and Dn be the set of n×n diagonal matrices. For a given symmetric matrix A ∈ Sn,
suppose that P = [p1, p2, · · · , pn] ∈ On and Λ = Diag (λ1, λ2, . . . , λn) ∈ Dn satisfy

A = PΛPT =
n∑

i=1

λipip
T
i . (6)

By introducing another diagonal matrix Ω = Diag (ω1, ω2, . . . , ωn) ∈ Dn, we can make the following
decomposition:

A = P (Λ− Ω)PT + PΩPT (7)

If Λ − Ω ∈ Nn, i.e., if λi ≥ ωi (i = 1, 2, . . . , n), then the matrix P (Λ − Ω)PT is positive semidefinite.
Thus, if we can find a suitable diagonal matrix Ω ∈ Dn satisfying

λi ≥ ωi (i = 1, 2, . . . , n), [PΩPT ]ij ≥ 0 (1 ≤ i ≤ j ≤ n) (8)

then (7) and (2) imply
A = P (Λ− Ω)PT + PΩPT ∈ S+n +Nn ⊆ COPn. (9)

We can determine whether such a matrix exists or not by solving the following linear optimization
problem with variables ωi (i = 1, 2, . . . , n) and α:

(LP)P,Λ

∣∣∣∣∣∣∣∣∣
Maximize α
subject to ωi ≤ λi (i = 1, 2, . . . , n)

[PΩPT ]ij =

[
n∑

k=1

ωkpkp
T
k

]
ij

≥ α (1 ≤ i ≤ j ≤ n)
(10)

Here, for a given matrix A, [A]ij denotes the (i, j)th element of A.

Problem (LP)P,Λ has a feasible solution at which ωi = λi (i = 1, 2, . . . , n) and

α = min
{[

PΛPT
]
ij
| 1 ≤ i ≤ j ≤ n

}
= min

{
n∑

k=1

λk[pk]i[pk]j | 1 ≤ i ≤ j ≤ n

}
.
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For each i = 1, 2, . . . , n, the constraints

[PΩPT ]ii =

[
n∑

k=1

ωkpkp
T
k

]
ii

=

n∑
k=1

ωk[pk]
2
i ≥ α

and ωk ≤ λk (k = 1, 2, . . . , n) imply the bound α ≤ min
{∑n

k=1 λk[pk]
2
i | 1 ≤ i ≤ n

}
. Thus, (LP)P,Λ has

an optimal solution with optimal value α∗(P,Λ). If α∗(P,Λ) ≥ 0, there exists a matrix Ω for which the
decomposition (8) holds. The following set Gn is based on the above observations and was proposed in
[37] as the set, Gn

Gn := {A ∈ Sn | PLGn(A) ̸= ∅} (11)

where
PLGn(A) := {(P,Λ) ∈ On ×Dn | P and Λ satisfy (6) and α∗(P,Λ) ≥ 0} (12)

for a given A ∈ Sn. As stated above, if α∗(P,Λ) ≥ 0 for a given decomposition A = PΛPT , we
can determine A ∈ Gn. In this case, we just need to compute a matrix decomposition and solve a
linear optimization problem with n+ 1 variables and O(n2) constraints, which implies that it is rather
practical to use the set Gn as an alternative to using S+n + Nn. Suppose that A ∈ Sn has n different
eigenvalues. Then the possible orthogonal matrices P = [p1, p2, · · · , pn] ∈ On are identifiable, except for
the permutation and sign inversion of {p1, p2, · · · , pn}, and by representing (6) as

A =
n∑

i=1

λipip
T
i ,

we can see that the problem (LP)P,Λ is unique for any possible P ∈ On. In this case, α∗(P,Λ) < 0 with
a specific P ∈ On implies A ̸∈ Gn. However, if this is not the case (i.e., an eigenspace of A has at least
dimension 2), α∗(P,Λ) < 0 with a specific P ∈ On does not necessarily guarantee that A ̸∈ Gn.

The above discussion can be extended to any matrix P ∈ Rm×n; i.e., it does not necessarily have to
be orthogonal or even square. The reason why the orthogonal matrices P ∈ On are dealt with here is
that some decomposition methods for (6) have been established for such orthogonal P s. The property
Gn = com(Sn,Nn) in Theorem 2.3 also follows when P is orthogonal.

In [37], the authors described another set Ĝn that is closely related to Gn.

Ĝn := {A ∈ Sn | PLĜn
(A) ̸= ∅} (13)

where for A ∈ Sn, the set PLĜn
(A) is given by replacing On in (12) by the space Rn×n of n×n arbitrary

matrices, i.e.,

PLĜn
(A) := {(P,Λ) ∈ Rn×n ×Dn | P and Λ satisfy (6) and α∗(P,Λ) ≥ 0}. (14)

If the set PLGn(A) in (12) is nonempty, then the set PLĜn
(A) is also nonempty, which implies the

following inclusions:
Gn ⊆ Ĝn ⊆ S+n +Nn. (15)

Before describing the properties of the sets Gn and Ĝn, we will prove a preliminary lemma.

Lemma 2.2. Let K1 and K2 be two convex cones containing the origin. Then conv (K1∪K2) = K1+K2.

Proof. Since K1 and K2 are convex cones, we can easily see that the inclusion K1+K2 ⊆ conv (K1 ∪K2)
holds. The converse inclusion also follows from the fact that K1 and K2 are convex cones. Since K1 and
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K2 contain the origin, we see that the inclusion K1 ∪ K2 ⊆ K1 +K2 holds. From this inclusion and the
convexity of the sets K1 and K2, we can conclude that

conv (K1 ∪ K2) ⊆ conv (K1 +K2) = K1 +K2.

The following theorem shows some of the properties of Gn and Ĝn. Assertions (i) and (ii) were proved
in Theorem 3.2 of [37]. Assertion (iii) comes from the fact that S+n and Nn are convex cones and from
Lemma 2.2. Assertions (iv)-(vi) follow from (i)-(iii), the inclusion (15) and Theorem 2.1.

Theorem 2.3. (i) S+n ∪Nn ⊆ Gn

(ii) Gn = com (S+n ,Nn), where the set com (S+n ,Nn) is defined by

com (S+n ,Nn) := {S +N | S ∈ S+n , N ∈ Nn, S and N commute}.

(iii) conv (S+n ∪Nn) = S+n +Nn.

(iv) S+n ∪Nn ⊆ Gn = com(S+n ,Nn) ⊆ Ĝn ⊆ S+n +Nn.

(v) If n = 2, then S+n ∪Nn = Gn = com (S+n ,Nn) = Ĝn = S+n +Nn

(vi) conv (S+n ∪Nn) = conv (Gn) = conv (com (S+n ,Nn)) = conv (Ĝn) = S+n +Nn.

A number of examples provided in [37] illustrate the differences between Hn, Gn. Moreover, the following
two matrices have three different eigenvalues, respectively, and we can identify 2 2 2

2 2 −3
2 −3 6

 ∈ H3 \ G3,

 1 5 −2
5 1 −2
−2 −2 4

 ∈ (S+3 +N3) \ (H3 ∪ G3) (16)

by solving the associated LPs. Figure 1 draws those examples and (ii) of Theorem 2.3. Figure 2 follows
from (vii) of Theorem 2.3 and the convexity of the sets Nn, S+n and Hn (see Theorem 2.1).

At present, it is not clear whether the set Gn = com (S+n ,Nn) is convex or not. As we will mention on
page 18, our numerical results suggest that the set might be not convex.

Before closing this discussion, we should point out another interesting subset of S+n +Nn proposed by
Bomze and Eichfelder [10]. Suppose that a given matrix A ∈ Sn can be decomposed as (6), and define
the diagonal matrix Λ+ by [Λ+]ii = max{0, λi}. Let A+ := PΛ+P

T and A− := A+ − A. Then, we can
easily see that A+ and A− are positive semidefinite. Using this decomposition A = A+ − A−, Bomze
and Eichfelder derived the following LP-based sufficient condition for A ∈ S+n +Nn in [10].

Theorem 2.4 (Theorem 2.6 of [10]). Let x ∈ R+
n be such that A+x has only positive coordinates. If

(xTA+x)(A−)ii ≤ [(A+x)i]
2 (i = 1, 2, . . . , n)

then A ∈ COPn.

Consider the following LP with O(n) variables and O(n) constraints,

inf{fTx | A+x ≥ e, x ∈ R+
n } (17)
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Figure 1: Examples of inclusion relations among the subcones of S+n +Nn I

where f is an arbitrary vector and e denotes the vector of all ones. Define the set,

Ln := {A ∈ Sn | (xTA+x)(A−)ii ≤ [(A+x)i]
2 (i = 1, 2, . . . , n) for some feasible solution x of (17)}.

Then Theorem 2.4 ensures that Ln ⊆ COPn. The following proposition gives a characterization when
the feasible set of the LP of (17) is empty.

Proposition 2.5 (Proposition 2.7 of [10]). The condition kerA+∩{x ∈ R+
n | eTx = 1} ̸= ∅ is equivalent

to {x ∈ R+
n | A+x ≥ e} = ∅.

Consider the matrix,

A =

[
1 −1
−1 1

]
∈ S+2 .

Thus, A+ = A, and the set kerA+ ∩ {x ∈ R+
n | eTx = 1} ̸= ∅. Proposition 2.5 ensures that A ̸∈ L2, and

hence, S+n ̸⊆ Ln for n ≥ 2, similarly to the set Hn for n ≥ 3 (see Theorem 2.1).

3 Semidefinite bases

In this section, we improve the subcone Gn in terms of P2. For a given matrix A of (6), the linear
optimization problem (LP)P,Λ in (10) can be solved in order to find a nonnegative matrix that is a linear
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Figure 2: Examples of inclusion relations among the subcones of S+n +Nn II

combination
n∑

i=1

ωipip
T
i

of n linearly independent positive semidefinite matrices pip
T
i ∈ S+n (i = 1, 2, . . . , n). This is done by

decomposing A ∈ Sn into two parts:

A =
n∑

i=1

(λi − ωi)pip
T
i +

n∑
i=1

ωipip
T
i (18)

such that the first part
n∑

i=1

(λi − ωi)pip
T
i

is positive semidefinite. Since pip
T
i ∈ S+n (i = 1, 2, . . . , n) are only n linearly independent matrices in

n(n + 1)/2 dimensional space Sn, the intersection of the set of linear combinations of pip
T
i and the

nonnegative cone Nn may not have a nonzero volume even if it is nonempty. On the other hand, if we
have a set of positive semidefinite matrices pip

T
i ∈ S+n (i = 1, 2, . . . , n(n + 1)/2) that gives a basis of

Sn, then the corresponding intersection becomes the nonnegative cone Nn itself, and we may expect
a greater chance of finding a nonnegative matrix by enlarging the feasible region of (LP)P,Λ. In fact,
we can easily find a basis of Sn consisting of n(n + 1)/2 semidefinite matrices from n given orthogonal
vectors pi ∈ Rn (i = 1, 2, . . . , n) based on the following result from [18].

Proposition 3.1 (Lemma 6.2 of [18]). Let vi ∈ Rn(i = 1, 2, . . . , n) be n-dimensional linear independent
vectors. Then the set V := {(vi + vj)(vi + vj)

T | 1 ≤ i ≤ j ≤ n} is a set of n(n + 1)/2 linearly
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independent positive semidefinite matrices. Therefore, the set V gives a basis of the set Sn of n × n
symmetric matrices.

The above proposition ensures that the following set B+(p1, p2, . . . , pn) is a basis of n × n symmetric
matrices.

Definition 3.2 (Semidefinite basis type I). For a given set of n-dimensional orthogonal vectors pi ∈
Rn(i = 1, 2, . . . , n), define the map Π+ : Rn × Rn → S+n by

Π+(pi, pj) :=
1

4
(pi + pj)(pi + pj)

T . (19)

We call the set
B+(p1, p2, . . . , pn) := {Π+(pi, pj) | 1 ≤ i ≤ j ≤ n} (20)

a semidefinite basis type I induced by pi ∈ Rn(i = 1, 2, . . . , n).

A variant of the semidefinite basis type I is as follows. Noting that the equivalence

Π+(pi, pj) =
1

2
pip

T
i +

1

2
pjp

T
j −Π−(pi, pj)

holds for any i ̸= j, we see that B−(p1, p2, . . . , pn) is also a basis of n× n symmetric matrices.

Definition 3.3 (Semidefinite basis type II). For a given set of n-dimensional orthogonal vectors pi ∈
Rn(i = 1, 2, . . . , n), define the map Π+ : Rn × Rn → S+n by

Π−(pi, pj) :=
1

4
(pi − pj)(pi − pj)

T . (21)

We call the set

B−(p1, p2, · · · , pn) := {Π+(pi, pi) | 1 ≤ i ≤ n} ∪ {Π−(pi, pj) | 1 ≤ i < j ≤ n} (22)

a semidefinite basis type II induced by pi ∈ Rn(i = 1, 2, . . . , n).

Using the map Π+ in (19), the linear optimization problem (LP)P,Λ in (10) can be equivalently written
as

(LP)P,Λ

∣∣∣∣∣∣∣∣∣
Maximize α
subject to ω+

ii ≤ λi (i = 1, 2, . . . , n)[
n∑

k=1

ω+
kkΠ+(pk, pk)

]
ij

≥ α (1 ≤ i ≤ j ≤ n).

The problem (LP)P,Λ is based on the decomposition (18). Starting with (18), the matrix A can be
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decomposed using Π+(pi, pj) in (19) and Π−(pi, pj) in (21) as

A =
n∑

i=1

(λi − ω+
ii )Π+(pi, pi) +

n∑
i=1

ω+
iiΠ+(pi, pi)

=
n∑

i=1

(λi − ω+
ii )Π+(pi, pi) +

n∑
i=1

ω+
iiΠ+(pi, pi)

+
∑

1≤i<j≤n

(−ω+
ij)Π+(pi, pj) +

∑
1≤i<j≤n

ω+
ijΠ+(pi, pj) (23)

=
n∑

i=1

(λi − ω+
ii )Π+(pi, pi) +

n∑
i=1

ω+
iiΠ+(pi, pi)

+
∑

1≤i<j≤n

(−ω+
ij)Π+(pi, pj) +

∑
1≤i<j≤n

ω+
ijΠ+(pi, pj)

+
∑

1≤i<j≤n

(−ω−
ij)Π−(pi, pj) +

∑
1≤i<j≤n

ω−
ijΠ−(pi, pj). (24)

On the basis of the decomposition (23) and (24), we devise the following two linear optimization problems
as extensions of (LP)P,Λ:

(LP)
+
P,Λ

∣∣∣∣∣∣∣∣∣∣∣∣

Maximize α
subject to ω+

ii ≤ λi (i = 1, 2, . . . , n)
ω+
ij ≤ 0 (1 ≤ i < j ≤ n) ∑
1≤k≤l≤n

ω+
klΠ+(pk, pl)


ij

≥ α (1 ≤ i ≤ j ≤ n)

(25)

(LP)
±
P,Λ

∣∣∣∣∣∣∣∣∣∣∣∣

Maximize α
subject to ω+

ii ≤ λi (i = 1, 2, . . . , n)
ω+
ij ≤ 0, ω−

ij ≤ 0 (1 ≤ i < j ≤ n) ∑
1≤k≤l≤n

ω+
klΠ+(pk, pl) +

∑
1≤k<l≤n

ω−
klΠ−(pk, pl)


ij

≥ α (1 ≤ i ≤ j ≤ n)

(26)

Problem (LP)
+
P,Λ has n(n + 1)/2 + 1 variables and n(n + 1) constraints, and problem (LP)

±
P,Λ has

n2 + 1 variables and n(3n + 1)/2 constraints (see Table 1). Since [PΩPT ]ij in (10) is given by

[
∑n

k=1 ωkkΠ+(pk, pk)]ij , we can prove that both linear optimization problems (LP)
+
P,Λ and (LP)

±
P,Λ

are feasible and bounded by making arguments similar to the one for (LP)P,Λ on page 5. Thus, (LP)
+
P,Λ

and (LP)
±
P,Λ have optimal solutions with corresponding optimal values α+

∗ (P,Λ) and α±
∗ (P,Λ).

If the optimal value α+
∗ (P,Λ) of (LP)

+
P,Λ is nonnegative, then, by rearranging (23), the optimal solution

ω+∗
ij (1 ≤ i ≤ j ≤ n) can be made to give the following decomposition:

A =

 n∑
i=1

(λi − ω+∗
ii )Π+(pi, pi) +

∑
1≤i<j≤n

(−ω+∗
ij )Π+(pi, pj)

+

 ∑
1≤i≤j≤n

ω+∗
ij Π+(pi, pj)

 ∈ S+n +Nn.
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In the same way, if the optimal value α±
∗ (P,Λ) of (LP)

±
P,Λ is nonnegative, then, by rearranging (24),

the optimal solution ω+∗
ij (1 ≤ i ≤ j ≤ n), ω−∗

ij (1 ≤ i < j ≤ n) can be made to give the following
decomposition:

A =

 n∑
i=1

(λi − ω+∗
ii )Π+(pi, pi) +

∑
1≤i<j≤n

(−ω+∗
ij )Π+(pi, pj) +

∑
1≤i<j≤n

(−ω−∗
ij )Π−(pi, pj)


+

 ∑
1≤i≤j≤n

ω+∗
ij Π+(pi, pj) +

∑
1≤i<j≤n

ω−∗
ij Π−(pi, pj)

 ∈ S+n +Nn.

On the basis of the above observations, we can define new subcones of S+n +Nn in a similar manner as
(11) and (13).

For a given A ∈ Sn, define the following four sets of pairs of matrices

PLF+
n
(A) := {(P,Λ) ∈ On ×Dn | P and Λ satisfy (6) and α+

∗ (P,Λ) ≥ 0}
PLF±

n
(A) := {(P,Λ) ∈ On ×Dn | P and Λ satisfy (6) and α±

∗ (P,Λ) ≥ 0}
PL

F̂+
n

(A) := {(P,Λ) ∈ Rn×n ×Dn | P and Λ satisfy (6) and α+
∗ (P,Λ) ≥ 0}

PL
F̂±

n

(A) := {(P,Λ) ∈ Rn×n ×Dn | P and Λ satisfy (6) and α±
∗ (P,Λ) ≥ 0}

(27)

where α+
∗ (P,Λ) and α±

∗ (P,Λ) are optimal values of (LP)
+
P,Λ and (LP)

±
P,Λ, respectively. Using the above

sets, we define new subcones of Snn +Nn as follows:

F+
n := {A ∈ Sn | PLF+

n
(A) ̸= ∅},

F±
n := {A ∈ Sn | PLF±

n
(A) ̸= ∅},

F̂+
n := {A ∈ Sn | PLF̂+

n

(A) ̸= ∅},

F̂±
n := {A ∈ Sn | PLF̂±

n

(A) ̸= ∅}.

(28)

From the construction of problems (LP)P,Λ, (LP)
+
P,Λ and (LP)

±
P,Λ, and the definitions (27) and (28), we

can easily see that

Gn ⊆ F+
n ⊆ F±

n , Ĝn ⊆ F̂+
n ⊆ F̂±

n , F+
n ⊆ F̂+

n , F±
n ⊆ F̂±

n

hold. The corollary below follows from (iv)-(vi) of Theorem 2.3 and the above inclusions.

Corollary 3.4. (i)

S+n ∪Nn ⊆ Gn = com(S+n +Nn) ⊆ Ĝn ⊆ S+n +Nn

⊆ ⊆

S+n ∪Nn ⊆ F+
n ⊆ F̂+

n ⊆ S+n +Nn

⊆ ⊆

S+n ∪Nn ⊆ F±
n ⊆ F̂±

n ⊆ S+n +Nn

(ii) If n = 2, then each of the sets F+
n , F̂+

n , F±
n , and F̂±

n coincides with S+n +Nn.

(iii) The convex hull of each of the sets F+
n , F̂+

n , F±
n , and F̂±

n is S+n +Nn.

The following table summarizes the sizes of LPs (10), (25), and (26) that we have to solve in order
to identify, respectively, (P,Λ) ∈ PLGn(A) (or (P,Λ) ∈ PLĜn

(A)), (P,Λ) ∈ PLF+
n
(A) (or (P,Λ) ∈

PL
F̂+

n

(A)), and (P,Λ) ∈ PLF±
n

(or (P,Λ) ∈ PL
F̂±

n

(A)).

11



Table 1: Sizes of LPs for identification

Identification (P,Λ) ∈ PLGn(A) (P,Λ) ∈ PLF+
n
(A) (P,Λ) ∈ PLF±

n

(or (P,Λ) ∈ PLĜn
(A)) (or (P,Λ) ∈ PL

F̂+
n

(A)) (or (P,Λ) ∈ PL
F̂±

n

(A))

# of variables n+ 1 n(n+ 1)/2 + 1 n2 + 1

# of constraints n(n+ 3)/2 n(n+ 1) n(3n+ 1)/2

4 Identification of A ∈ S+n +Nn

In this section, we investigate the effect of using the sets Gn, F+
n and F±

n for identification of the fact
A ∈ S+n +Nn.

We generated random instances of A ∈ S+n +Nn by using the method described in Section 2 of [10]. For
an n×n matrix B with entries independently drawn from a standard normal distribution, we obtained a
random positive semidefinite matrix S = BBT . An n×n random nonnegative matrix N was constructed
using N = C − cminIn with C = F + FT for a random matrix F with entries uniformly distributed in
[0, 1] and cmin being the minimal diagonal entry of C. We set A = S +N ∈ S+n +Nn. The construction
was designed so as to maintain the nonnegativity of N while increasing the chance that S+N would be
indefinite and thereby avoid instances that are too easy.

For each instance A ∈ S+n + Nn, we used the MATLAB command “[P,Λ] = eig(A)” and obtained
(P,Λ) ∈ On ×Dn. We checked whether (P, λ) ∈ PLGn ((P,L) ∈ PLF+

n
and (P,L) ∈ PLF±

n
) by solving

(LP)P,Λ in (10) ( (LP)+P,Λ in (25) and (LP)±P,Λ in (26)) and if it held, we identified that A ∈ Gn (A ∈ F+
n

and A ∈ F±
n ).

Table 2 shows the number of matrices (denoted by “#A”) that were identified as A ∈ Hn (A ∈ G+n ,
A ∈ F+

n , A ∈ F±
n and A ∈ S+n + Nn) and the average CPU time (denoted by “A.t.(s)”), where 1000

matrices were generated for each n. We used a 3.07GHz Core i7 machine with 12 GB of RAM and
Gurobi 6.5 for solving LPs. Note that we performed the last identification A ∈ S+n +Nn as a reference,
while we used SeDuMi 1.3 with MATLAB R2015a for solving the semidefinite program (3). The table
yields the following observations:

• All of the matrices were identified as A ∈ S+n + Nn by checking (P,L) ∈ PLF±
n
. The result is

comparable to the one in Section 2 of [10]. The average CPU time for checking (P,L) ∈ PLF±
n

is
faster than the one for solving the semidefinite program (3) when n ≥ 20.

• For any n, the number of identified matrices increases in the order of the set inclusion relation:
Gn ⊆ F+

n ⊆ F±
n , while the result for Hn ̸⊆ Gn is better than the one for Gn when n = 10.

• For the sets Hn, Gn and F+
n , the number of identified matrices decreases as the size of n increases.

5 LP-based algorithms for testing A ∈ COPn

In this section, we investigate the effect of using the sets F+
n , F̂+

n , F±
n and F̂±

n for testing whether a
given matrix A is copositive by using Sponsel, Bundfuss, and Dür’s algorithm [36].

12



Table 2: Results of identification of A ∈ S+n +Nn: 1000 matrices were generated for each n.

Hn Gn F+
n F±

n S+n +Nn

n #A A.t.(s) #A A.t.(s) #A A.t.(s) #A A.t.(s) #A A.t.(s)

10 791 0.001 247 0.005 856 0.008 1000 0.011 1000 0.824
20 16 0.001 20 0.013 719 0.121 1000 0.222 1000 9.282
50 0 0.003 0 2.374 440 22.346 1000 50.092 1000 1285.981

5.1 Outline of the algorithms

By defining the standard simplex ∆S by ∆S = {x ∈ Rn
+ | eTx = 1}, we can see that a given n × n

symmetric matrix A is copositive if and only if

xTAx ≥ 0 for all x ∈ ∆S

(see Lemma 1 of [12]). For an arbitrary simplex ∆, a family of simplices P = {∆1, . . . ,∆m} is called a
simplicial partition of ∆ if it satisfies

∆ =

m∪
i=1

∆i and int(∆i) ∩ int(∆j) = ∅ for all i ̸= j.

Such a partition can be generated by successively bisecting simplices in the partition. For a given simplex
∆ = conv{v1, . . . , vn}, consider the midpoint vn+1 = 1

2 (vi+vj) of the edge [vi, vj ]. Then the subdivision
∆1 = {v1, . . . , vi−1, vn+1, vi+1, . . . , vn} and ∆2 = {v1, . . . , vj−1, vn+1, vj+1, . . . , vn} of ∆ satisfies the
above conditions for simplicial partitions. See [27] for a detailed description of simplicial partitions.

Denote the set of vertices of partition P by

V (P) = {v | v is a vertex of some ∆ ∈ P}.

Each simplex ∆ is determined by its vertices and can be represented by a matrix V∆ whose columns are
these vertices. Note that V∆ is nonsingular and unique up to a permutation of its columns, which does
not affect the argument [36]. Define the set of all matrices corresponding to simplices in partition P as

M(P) = {V∆ : ∆ ∈ P}.

The “fineness” of a partition P is quantified by the maximum diameter of a simplex in P, denoted by

δ(P) = max
∆∈P

max
u,v∈∆

||u− v||. (29)

The above notation was used to show the following necessary and sufficient conditions for copositivity
in [36]. The first theorem gives a sufficient condition for copositivity.

Theorem 5.1 (Theorem 2.1 of [36]). If A ∈ Sn satisfies

V TAV ∈ COPn for all V ∈M(P)

then A is copositive. Hence, for anyMn ⊆ COPn, if A ∈ Sn satisfies

V TAV ∈Mn for all V ∈M(P),

then A is also copositive.

13



The above theorem implies that by choosingMn = Nn (see (2)), A is copositive if V T
∆AV∆ ∈ Nn holds

for any ∆ ∈ P.

Theorem 5.2 (Theorem 2.2 of [36]). Let A ∈ Sn be strictly copositive, i.e., A ∈ int (COPn). Then
there exists ε > 0 such that for all partitions P of ∆S with δ(P) < ε, we have

V TAV ∈ Nn for all V ∈M(P).

The above theorem ensures that if A is strictly copositive (i.e., A ∈ int (COPn)), the copositivity of A
(i.e., A ∈ COPn) can be detected in finitely many iterations of an algorithm employing a subdivision
rule with δ(P)→ 0. A similar result can be obtained for the case A ̸∈ COPn, as follows.

Lemma 5.3 (Lemma 2.3 of [36]). The following two statements are equivalent.

1. A /∈ COPn

2. There is an ε > 0 such that for any partition P with δ(P) < ε, there exists a vertex v ∈ V (P) such
that vTAv < 0.

The following algorithm, from [36], is based on the above three results.

Algorithm 1 Sponsel, Bundfuss, and Dür’s algorithm to test copositivity

Input: A ∈ Sn,Mn ⊆ COPn

Output: “A is copositive” or “A is not copositive”
1: P ← {∆S};
2: while P ̸= ∅ do
3: Choose ∆ ∈ P;
4: if vTAv < 0 for some v ∈ V ({∆}): then
5: return “A is not copositive”;
6: end if
7: if we identify V T

∆AV∆ ∈Mn then
8: P ← P \ {∆};
9: else

10: Partition ∆ into ∆ = ∆1 ∪∆2;
11: P ← P \ {∆} ∪ {∆1,∆2};
12: end if
13: end while
14: Return “A is copositive”;

As we have already observed, Theorem 5.2 and Lemma 5.3 imply the following corollary.

Corollary 5.4. 1. If A is strictly copositive, i.e., A ∈ int (COPn), then Algorithm 1 terminates
finitely, returning “A is copositive.”

2. If A is not copositive, i.e., A ̸∈ COPn, then Algorithm 1 terminates finitely, returning “A is not
copositive.”

In this section, we investigate the effect of using the sets Hn from (5), Gn from (11), and F+
n and F±

n

from (28) as the setMn in the above algorithm.

At Line 7, we can check whether V T
∆AV∆ ∈ Mn directly in the case where Mn = Hn. In other cases,

we diagonalize V T
∆AV∆ as V T

∆AV∆ = PΛPT and check whether (P,Λ) ∈ PLMn(V
T
∆AV∆) according

14



to definitions (12) or (27). If the associated LP has the nonnegative optimal value, then we identify
A ∈Mn.

At Line 8, Algorithm 1 removes the simplex that was determined at Line 7 to be in no further need of
exploration by Theorem 5.1. The accuracy and speed of the determination influence the total computa-
tional time and depend on the choice of the setMn ⊆ COPn.

Here, if we choose Mn = Gn (respectively, Mn = F+
n , Mn = F±

n ), we can improve Algorithm 1 by

incorporating the set M̂n = Ĝn (respectively, M̂n = F̂+
n , M̂n = F̂±

n ), as proposed in [37].

Algorithm 2 Improved version of Algorithm 1

Input: A ∈ Sn,Mn ⊆ M̂n ⊆ COPn

Output: “A is copositive” or “A is not copositive”
1: P ← {∆S};
2: while P ̸= ∅ do
3: Choose ∆ ∈ P;
4: if vTAv < 0 for some v ∈ V ({∆}): then
5: Return “A is not copositive”;
6: end if
7: Let P and Λ be matrices satisfying A = PΛPT ;
8: if we identify V T

∆AV∆ ∈ M̂n by checking whether (V T
∆ P,Λ) ∈ PLM̂n

then

9: P ← P \ {∆};
10: else
11: Let P and Λ be matrices satisfying V T

∆AV∆ = PΛPT ;
12: if we identify V T

∆AV∆ ∈Mn by checking whether (P,Λ) ∈ PLMn then
13: P ← P \ {∆};
14: else
15: Partition ∆ into ∆ = ∆1 ∪∆2, and set ∆̂← {∆1,∆2};
16: for p = 1, 2 do
17: Let Ω∗ := Diag (ω∗) where ω∗ is an LP optimal solution obtained at Line 12;

18: if we identify V T
∆pAV∆p ∈ M̂n by checking whether V T

∆pPΩ∗PTV∆p ∈ Nn then

19: ∆̂← ∆̂ \ {∆p};
20: end if
21: end for
22: P ← P \ {∆} ∪ ∆̂;
23: end if
24: end if
25: end while
26: return “A is copositive”;

The details of the added steps are as follows. Suppose that we have a diagonalization of the form (6).

At Line 8, we need to solve an additional LP but do not need to diagonalize V T
∆AV∆. Let P and Λ be

matrices satisfying (6). Then the matrix V T
∆ P can be used to diagonalize V T

∆AV∆, i.e.,

V T
∆AV∆ = V T

∆ (PΛPT )V∆ = (V T
∆ P )Λ(V T

∆ P )T

while V T
∆ P ∈ Rn×n is not necessarily orthogonal. Thus, we can test whether (V T

∆ P,Λ) ∈ PLM̂n
by

solving the corresponding LP according to the definitions (14) or (27). If (V T
∆ P,Λ) ∈ PLM̂n

holds, then

we can identify V T
∆AV∆ ∈ M̂n
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If (V T
∆ P,Λ) ̸∈ PLM̂n

at Line 8, we proceed to the original step to identify whether V T
∆AV∆ ∈ Mn

at Line 12. Similarly to Line 7 of Algorithm 1, we diagonalize V T
∆AV∆ as V T

∆AV∆ = PΛPT with an
orthogonal matrix P and a diagonal matrix Λ. Then we check whether (P,Λ) ∈ PLMn by solving the
corresponding LP, and if (P,Λ) ∈ PLMn , we can identify V T

∆AV∆ ∈Mn.

At Line 18, we don’t need to diagonalize V T
∆pAV∆p or solve any more LPs. Let ω∗ ∈ Rn be an optimal

solution of the corresponding LP obtained at Line 8 and let Ω∗ := Diag (ω∗). Then the feasibility of ω∗

implies the positive semidefiniteness of the matrix V T
∆pP (Λ−Ω∗)PTV∆p . Thus, if V T

∆pPΩ∗PTV∆p ∈ Nn,
we see that

V T
∆pAV∆p = V T

∆pP (Λ− Ω∗)PTV∆p + V T
∆pPΩ∗PTV∆p ∈ S+n +Nn

and that V T
∆pAV∆p ∈ M̂n.

5.2 Numerical results

This subsection describes experiments for testing copositivity using Nn,Hn, Gn, F+
n , F̂+

n , F±
n or F̂±

n as
the setMn in Algorithms 1 and 2. We implemented the following seven algorithms in MATLAB R2015a
on a 3.07GHz Core i7 machine with 12 GB of RAM, using Gurobi 6.5 for solving LPs:

Algorithm 1.1: Algorithm 1 withMn = Nn.

Algorithm 1.2: Algorithm 1 withMn = Hn.

Algorithm 2.1: Algorithm 2 withMn = Gn and M̂n = Ĝn.

Algorithm 1.3: Algorithm 1 withMn = F+
n .

Algorithm 2.2: Algorithm 2 withMn = F+
n and M̂n = F̂+

n .

Algorithm 2.3: Algorithm 2 withMn = F±
n and M̂n = F̂±

n .

Algorithm 1.4: Algorithm 1 withMn = S+n +Nn.

As test instances, we used the two kinds of matrices arising from the maximum clique problem (Section
5.2.1) and from standard quadratic optimization problems (Section 5.2.2).

5.2.1 Results for the matrix arising from the maximum clique problem

In this subsection, we consider the matrix

Bγ := γ(E −AG)− E (30)

where E ∈ Sn is the matrix whose elements are all ones and the matrix AG ∈ Sn is the adjacency matrix
of a given undirected graph G with n nodes. The matrix Bγ comes from the maximum clique problem.
The maximum clique problem is to find a clique (complete subgraph) of maximum cardinality in G. It
has been shown (in [15]) that the maximum cardinality, the so-called clique number ω(G), is equal to
the optimal value of

ω(G) = min{γ ∈ N | Bγ ∈ COPn}.

Thus, the clique number can be found by checking the copositivity of Bγ for at most γ = n, n− 1, . . . , 1.
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Figure 3: Graphs G8 with ω(G8) = 3 (left) and G12 with ω(G12) = 4 (right).

Figure 3 shows the instances of G that were used in [36]. We know the clique numbers of G8 and G12

are ω(G8) = 3 and ω(G12) = 4, respectively.

The aim of the implementation is to explore the differences in behavior when using Hn, Gn, F+
n , F̂+

n ,

F±
n or F̂±

n as the setMn rather than to compute the clique number efficiently. Hence, the experiment
examined Bγ for various values of γ at intervals of 0.1 around the value ω(G) (see Tables 3 and 4 on
page 23).

As already mentioned, α∗(P,Λ) < 0 (α+
∗ (P,Λ) < 0 and α±

∗ (P,Λ) < 0) with a specific P does not

necessarily guarantee that A ̸∈ Gn or A ̸∈ Ĝn (A ̸∈ F+
n or A ̸∈ F̂+

n , A ̸∈ F±
n or A ̸∈ F̂±

n ). Thus, it not
strictly accurate to say that we can use those sets for Mn, and the algorithms may miss some of the
∆’s that could otherwise have been removed. However, although this may have some effect on speed, it
does not affect the termination of the algorithm, as it is guaranteed by the subdivision rule satisfying
δ(P)→ 0, where δ(P) is defined by (29).

Tables 3 and 4 show the numerical results for G8 and G12, respectively. Both tables compare the results
of the following seven algorithms in terms of the number of iterations (the column “Iter.”) and the total
computational time (the column “Time (s)” ):

The symbol “−” means that the algorithm did not terminate within 6 hours. The reason for the long
computation time may come from the fact that for each graph G, the matrix Bγ lies on the boundary of
the copositive cone COPn when γ = ω(G) (ω(G8) = 3 and ω(G12) = 4). See also Figure 6, which shows
a graph of the results of Algorithms 1.2, 2.1, 2.3, and 1.4 for the graph G12 in Table 4.

We can draw the following implications from the results in Table 4 on page 24 for the larger graph G12

(similar implications can be drawn from Table 3):

• At any γ ≥ 5.2, Algorithms 2.1, 1,3, 2.2, 2.3, and 1.4 terminate in one iteration, and the
execution times ofAlgorithms 2.1, 1.3, 2.2, and 2.3 are much shorter than those ofAlgorithms
1.1, 1.2, or 1.4.

• The lower bound of γ for which the algorithm terminates in one iteration and the one for which the
algorithm terminates in 6 hours decrease in going from Algorithm 1.3 to Algorithm 3.1. The
reason may be that, as shown in Corollary 3.4, the set inclusion relation Gn ⊆ F+

n ⊆ F±
n ⊆ S+n +Nn

holds.

• Table 1 on page 12 summarizes the sizes of the LPs for identification. The results here imply
that the computational times for solving an LP have the following magnitude relationship for any
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n ≥ 3:
Algorithm 2.1 < Algorithm 1.3 < Algorithm 2.2 < Algorithm 2.3.

On the other hand, the set inclusion relation Gn ⊆ F+
n ⊆ F±

n and the construction of Algorithms
1 and 2 imply that the detection abilities of the algorithms also follow the relationship described
above and that the number of iterations has the reverse relationship for any γs in Table 4:

Algorithm 2.1 > Algorithm 1.3 > Algorithm 2.2 > Algorithm 2.3.

It seems that the order of the number of iterations has a stronger influence on the total computa-
tional time than the order of the computational times for solving an LP.

• At each γ ∈ [4.1, 4.9], the number of iterations of Algorithm 2.3 is much larger than one hundred
times those of Algorithm 1.4. This means that the total computational time of Algorithm
2.3 is longer than that of Algorithm 1.3 at each γ ∈ [4.1, 4.9], while Algorithm 1.4 solves a
semidefinite program of size O(n2) at each iteration.

• At each γ < 4, the algorithms show no significant differences in terms of the number of iterations.
The reason may be that they all work to find a v ∈ V ({∆}) such that vT (γ(E − AG)− E)v < 0,
while their computational time depends on the choice of simplex refinement strategy.

In view of the above observations, we conclude that Algorithm 2.3 with the choices Mn = F±
n and

M̂n = F̂±
n might be a way to check the copositivity of a given matrix A when A is strictly copositive.

The above results are in contrast with those of Bomze and Eichfelder in [10], where the authors show the
number of iterations required by their algorithm for testing copositivity of matrices of the form (30). On
the contrary to the first observation described above, their algorithm terminates with few iterations when
γ < ω(G), i.e., the corresponding matrix is not copositive, and it requires a huge number of iterations
otherwise.

It should be noted that Table 3 shows an interesting result concerning the non-convexity of the set Gn,
while we know that conv (Gn) = S+n + Nn (see Theorem 2.3). Let us look at the result at γ = 4.0 of
Algorithm 2.1. The multiple iterations at γ = 4.0 imply that we could not find B4.0 ∈ Gn at the first
iteration for a certain orthogonal matrix P satisfying (6). Recall that the matrix Bγ is given by (30). It
follows from E −AG ∈ Nn ⊆ Gn and from the result at γ = 3.5 in Table 3 that

0.5(E −AG) ∈ Gn and B3,5 = 3.5(E −AG)− E ∈ Gn.

Thus, the fact that we could not determine whether the matrix

B4.0 = 4.0(E −AG)− E = 0.5(E −AG) +B3.5

lies in the set Gn suggests that the set Gn = com(S+n ,Nn) is not convex.

5.2.2 Results for the matrix arising from standard quadratic optimization problems

In this subsection, we consider the matrix

Cγ := Q− γE (31)

where E ∈ Sn is the matrix whose elements are all ones and Q ∈ Sn is an arbitrary symmetric matrix, not
necessarily positive semidefinite. The matrix Cγ comes from standard quadratic optimization problems
of the form,

Minimize xTQx
subject to x ∈ ∆S := {x ∈ Rn

+ | eTx = 1}. (32)
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In [7], it is shown that the optimal value of the problem

p∗(Q) = max{γ ∈ R | Cγ ∈ COPn}.

is equal to the optimal value of (32).

The instances of the form (32) were generated using the procedure random qp in [32] with two quartets
of parameters (n, s, k, d) = (10, 5, 5.0.5) and (n, s, k, d) = (20, 10, 10.0.5), where the parameter n implies
the size of Q, i.e., Q is an n× n matrix. It has been shown in [32] that random qp generates problems,
for which we know the optimal value and a global minimizer a priori for each. We set the optimal value
as −10 for each quartet of parameters.

Tables 5 and 6 show the numerical results for (n, s, k, d) = (10, 5, 5, 0.5) and (n, s, k, d) = (20, 10, 10, 0.5).
We generated 2 instances for each quartet of parameters and performed the seven algorithms on page
16 for these instances. Both tables compare the average values of the seven algorithms in terms of the
number of iterations (the column “Iter.”) and the total computational time (the column “Time (s)” ):
the symbol “−” means that the algorithm did not terminate within 30 minutes. In each table, we made
the interval between the values γ smaller as γ got closer to the optimal value, to observe the behavior
around the optimal value more precisely.

From the results in Tables 5 and 6 on page 25, we can draw implications that are very similar to those
for the maximum clique problem, listed on page 17 (we hence, omitted discussing them here). A major
difference from the implications for the maximum clique problem is that Algorithm 1.2 using the set
Hn is efficient for solving a small (n = 10) standard quadratic problem, while it cannot solve the problem
within 30 minutes when n = 20 and γ ≥ −10.3125.

6 Concluding remarks

In this paper, we investigated the properties of several tractable subcones of S+n +Nn and summarized the
results (as Figures 1 and 2). We also devised new subcones of S+n +Nn by introducing the semidefinite
basis (SD basis) defined as in Definitions 3.2 and 3.3. We conducted numerical experiments using
those subcones for identification of given matrices A ∈ S+n + Nn and for testing the copositivity of
matrices arising from the maximum clique problem and from standard quadratic optimization problems.
We have to solve LPs with O(n2) variables and O(n2) constraints in order to detect whether a given
matrix belongs to those cones, and the computational cost is substantial. However, the numerical results
shown in Tables 2, 3, 4 and 6 show that the new subcones are promising not only for identification of
A ∈ S+n +Nn but also for testing copositivity.

Recently, Ahmadi, Dash and Hall [1] developed algorithms for inner approximating the cone of positive
semidefinite matrices, wherein they focused on the set Dn ⊆ S+n of n × n diagonal dominant matrices.
Let Un,k be the set of vectors in Rn that have at most k nonzero components, each equal to ±1, and
define

Un,k := {uuT | u ∈ Un,k}.

Then, as the authors indicate, the following theorem has already been proven.

Theorem 6.1 (Theorem 3.1 of [1], Barker and Carlson [3]).

Dn = cone(Un,k) :=


|Un,k|∑
i=1

αiUi | Ui ∈ Un,k, αi ≥ 0 (i = 1, . . . , |Un,k|)
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From the above theorem, we can see that for the SDP bases B+(p1, p2, · · · , pn) in (20), B−(p1, p2, · · · , pn)
in (22) and n-dimensional unit vectors e1, e2, · · · , en, the following set inclusion relation holds:

B+(e1, e2, · · · , en) ∪ B−(e1, e2, · · · , en) ⊆ Dn = cone(Un,k).

These sets should be investigated in the future.
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