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Abstract We consider a two player random bimatrix game where each player
is interested in the payoffs which can be obtained with certain confidence. The
players’ payoff functions in such game theoretic problems are defined using
chance constraints. We consider the case where the entries of each player’s
random payoff matrix jointly follow a multivariate elliptically symmetric dis-
tribution. We show an equivalence between a Nash equilibrium problem and
a global maximization of a certain mathematical program. The case where
the entries of the payoff matrices are independent normal/Cauchy random
variables are also considered. The case of independent normally distributed
random payoffs can be viewed as a special case of a multivariate elliptically
symmetric distributed random payoffs. For the Cauchy distribution case, we
show that a Nash equilibrium problem is equivalent to a global maximization
of a certain quadratic program. Our theoretical results are illustrated by con-
sidering a random bimatrix game between two manufacturing firms acting on
the same market.
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1 Introduction

It is well known that there exists a mixed strategy saddle point equilibrium for
a two player zero-sum matrix game (see [24]). Nash [17] showed the existence
of a mixed strategy equilibrium for a finite strategic game. Such equilibrium
is called a Nash equilibrium. For a two-player case, the game can be described
using two payoff matrices (one for each player), and it is called a bimatrix
game. Mangasarian and Stone [15] showed a one-to-one correspondence be-
tween a Nash equilibrium of a bimatrix game and a global maximum point of
a certain quadratic program.

In [17, 24], the players’ payoffs are known real values. However, in some
cases the players’ payoffs may be within certain ranges. Such games have
been studied using fuzzy theory [7, 10, 12, 14]. In many practical situations
the players’ payoffs are better modeled using random variables due to the
presence of various uncertain parameters. The wholesale electricity markets
are the good examples [8, 16, 25, 26]. One way to handle such games is by
taking the expectation of the random payoffs [25, 26]. Some recent papers
on the games with random payoffs using expected payoff criterion include
[9, 13, 19, 27].

The expected payoff criterion is not suitable when the random payoff has
large variance. In this case, players will be more interested in payoffs which can
be obtained with certain confidence. Such situations are better modeled using
chance constraints. The payoff criterion based on chance constraint program-
ming [4, 18] has received some attention in electricity market [8, 16]. These
games are called chance-constrained games (CCGs). In [16], the randomness in
payoffs is due to the installation of wind generators in the electricity market.
They considered the case where the amount of wind through different wind
generators are independent normal random variables. In [8], the payoffs are
random due to consumers’ random demand which is assumed to be normally
distributed. Recently, Singh et al. [21, 22] proposed some contributions to de-
velop the theory of CCGs. In [21], the authors showed the existence of a mixed
strategy Nash equilibrium of a CCG when each player’s payoff vector follows
certain probability distributions, namely normal, Cauchy and elliptically sym-
metric distribution. In [22], they considered a CCG where the distribution of
the payoff vector of each player is not completely known and belongs to a
certain distributional uncertainty set. There is a scarce literature on zero sum
CCGs available [2, 3, 5, 6, 23].

In this paper, we develop new techniques to compute the Nash equilibria
of a two player CCG corresponding to different probability distributions. We
consider the case where the entries of the payoff matrix of each player follow
a multivariate elliptically symmetric distribution as well as the case where
the entries are independent normal/Cauchy random variables. For each case
we show an equivalence between a Nash equilibrium of a CCG and a global
maximum of a certain mathematical program. Further, we show that a uni-
formly distributed strategy pair is a Nash equilibrium if the entries of the
payoff matrices are independent and identically distributed normal random
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variables. When the entries of the payoff matrices are independent and iden-
tically Cauchy distributed random variables, all the strategy pairs are Nash
equilibrium. To illustrate our theoretical results, we consider an example of
a random bimatrix game between two manufacturing firms competing on the
same market. Both firms compete for the customers by using different mar-
keting strategies. A similar example in fuzzy setting has been studied in [12].

The rest of the paper is organized as follows. Section 2 contains the defini-
tion of a CCG. Section 3 presents a mathematical programming formulation
for a CCG. Section 4 shows the numerical results for various instances of ran-
dom bimatrix game between two manufacturing firms. We conclude the paper
in Section 5.

2 The Model

We consider a two player bimatrix game where the payoff matrix of each
player is random. Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n} be the sets of
actions of player 1 and player 2 respectively. Let A = [aij ] and B = [bij ]
be the m × n random payoff matrices of player 1 and player 2 respectively.
If player 1 chooses an action i and player 2 chooses an action j simultane-
ously, the payoff of player 1 is given by a random variable aij , and the payoff
of player 2 is given by a random variable bij . Let (Ω,F , P ) be a probabil-
ity space. Then, for each i ∈ I, j ∈ J , aij : Ω → R and bij : Ω → R.
The sets I and J are also called the sets of pure strategies of player 1
and player 2 respectively. Let X = {x ∈ Rm|

∑
i∈I xi = 1, xi ≥ 0, ∀ i ∈ I} and

Y = {y ∈ Rn|
∑
j∈J yj = 1, yj ≥ 0, ∀ j ∈ J} be the sets of mixed strategies of

player 1 and player 2 respectively. Then, for each (x, y) ∈ X × Y the payoff
of player 1

(
resp. player 2

)
given by xTAy

(
resp. xTBy

)
is also a random

variable; T denotes a transposition. We consider the case where each player is
interested in payoffs which can be obtained with at least a given level of con-
fidence. The confidence level of each player is given a priori. We assume that
the confidence level of one player is known to another player. Let α1 ∈ [0, 1]
and α2 ∈ [0, 1] be the confidence levels of player 1 and player 2 respectively;
α1 and α2 also represent the risk levels. Let α = (α1, α2) be a confidence (risk)
level vector. For a strategy pair (x, y) and a given α, the payoff of player 1 is
given by

uα1
1 (x, y) = sup

{
γ1 | P (xTAy ≥ γ1) ≥ α1

}
, (1)

and the payoff of player 2 is given by

uα2
2 (x, y) = sup

{
γ2 | P (xTBy ≥ γ2) ≥ α2

}
. (2)

We assume that the probability distribution of the payoff matrix of one player
is known to another player. Then, for a given α ∈ [0, 1]2 the payoffs of one
player defined above are known to another player. Therefore, a CCG is a non-
cooperative game with complete information. For a given α, the set of best
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response strategies of player 1 against a fixed strategy y of player 2 is given
by

BRα1(y) = {x̄ ∈ X | uα1
1 (x̄, y) ≥ uα1

1 (x, y), ∀ x ∈ X} ,

and the set of best response strategies of player 2 against a fixed strategy x of
player 1 is given by

BRα2(x) = {ȳ ∈ Y | uα2
2 (x, ȳ) ≥ uα2

2 (x, y), ∀ y ∈ Y } .

Definition 1 (Nash equilibrium) For a given α ∈ [0, 1]2, a strategy pair
(x∗, y∗) is said to be a Nash equilibrium of a CCG if the following inequalities
hold:

uα1
1 (x∗, y∗) ≥ uα1

1 (x, y∗), ∀ x ∈ X,
uα2
2 (x∗, y∗) ≥ uα2

2 (x∗, y), ∀ y ∈ Y.

Notice that a strategy pair (x∗, y∗) is a Nash equilibrium if and only if
x∗ ∈ BRα1(y∗) and y∗ ∈ BRα2(x∗).

3 Mathematical programming formulation

We consider the case where the entries of the payoff matrix A
(
resp. B

)
jointly

follow a multivariate elliptically symmetric distribution. The distributions be-
longing to the class of multivariate elliptically symmetric distributions gen-
eralize the multivariate normal distribution [11]. Some famous multivariate
distributions like normal, Cauchy, t, Laplace, and logistic distributions belong
to the family of elliptically symmetric distributions. In this case, we show the
equivalence between the Nash equilibrium problem of a chance-constrained
game and the global maximization of a certain mathematical program. We
also consider the case where the entries of the payoff matrices A and B are
independent normal/Cauchy random variables. For the case of Cauchy distri-
bution, we show that the Nash equilibrium problem of a CCG is equivalent to
a global maximization of a certain quadratic program.

3.1 Payoffs following multivariate elliptical distribution

We represent the entries of payoff matrix A (resp. B) by an mn×1 vector a =
(a1, a2, . . . , am)T (resp. b = (b1, b2, . . . , bm)T ), where ai = (ai1, ai2, . . . , ain)
(resp. bi = (bi1, bi2, . . . , bin)) for all i ∈ I. We assume that the vector a (resp. b)
follows a multivariate elliptically symmetric distribution with location vector
µ1 (resp. µ2) and scale matrix Σ1 (resp. Σ2) which is a positive definite matrix.
Denote, µ1 = (µ1,1, µ1,2, . . . , µ1,m)T , where µ1,i = (µ1,i1, µ1,i2, . . . , µ1,in) for all
i ∈ I. The vector µ2 is defined similarly. For a strategy pair (x, y), define a vec-
tor η(x, y) = (η1, η2, . . . , ηm)T , where ηi = (ηi1, ηi2, . . . , ηin), i ∈ I, such that
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ηij = xiyj for all i ∈ I, j ∈ J . Using these notations, we can write the random

payoff xTAy (resp. xTBy) as
(
η(x, y)

)T
a
(
resp.

(
η(x, y)

)T
b
)
. A linear combina-

tion of the components of a multivariate elliptically symmetric random vector
follows a univariate elliptically symmetric distribution. Therefore, for a strat-
egy pair (x, y), xTAy (resp. xTBy) follows a univariate elliptically symmetric
distribution with location parameter µT1 η(x, y)

(
resp. µT2 η(x, y)

)
and scale pa-

rameter
(
η(x, y)

)T
Σ1η(x, y)

(
resp.

(
η(x, y)

)T
Σ2η(x, y)

)
. Since Σ1 and Σ2 are

positive definite matrices, we can write

√(
η(x, y)

)T
Σ1η(x, y) = ||Σ1/2

1 η(x, y)||

and

√(
η(x, y)

)T
Σ2η(x, y) = ||Σ1/2

2 η(x, y)||, where || · || is the Euclidean norm.

The matrices Σ
1/2
1 and Σ

1/2
2 are the unique positive definite square roots

of the matrices Σ1 and Σ2 respectively. Then, ZS1 =
xTAy−µT

1 η(x,y)

||Σ1/2
1 η(x,y)||

and

ZS2 =
xTBy−µT

2 η(x,y)

||Σ1/2
2 η(x,y)||

follow a univariate spherically symmetric distribution.

Let F−1
ZS

1
(·) and F−1

ZS
2

(·) be the quantile functions of a univariate spherically

symmetric distribution. From (1), for a strategy pair (x, y) and a confidence
level α1, the payoff of player 1 is given by

uα1
1 (x, y) = sup{γ1 | P (xTAy ≥ γ1) ≥ α1}

= sup

{
γ1

∣∣∣ P(xTAy − µT1 η(x, y)

||Σ1/2
1 η(x, y)||

≤ γ1 − µT1 η(x, y)

||Σ1/2
1 η(x, y)||

)
≤ 1− α1

}
= sup

{
γ1 | γ1 ≤ µT1 η(x, y) + ||Σ1/2

1 η(x, y)||F−1
ZS

1
(1− α1)

}
.

Then,

uα1
1 (x, y) = µT1 η(x, y) + ||Σ1/2

1 η(x, y)||F−1
ZS

1
(1− α1). (3)

Similarly, from (2), for a strategy pair (x, y) and a confidence level α2, the
payoff of player 2 is given by

uα2
2 (x, y) = µT2 η(x, y) + ||Σ1/2

2 η(x, y)||F−1
ZS

2
(1− α2). (4)

Singh et al. [21] showed that there exists a mixed strategy Nash equilibrium
for all α ∈ (0.5, 1]2. If the random payoff matrices have strictly positive density
function, a mixed strategy Nash equilibrium exists for all α ∈ [0.5, 1]2. At α =
(1, 1), F−1

ZS
1

(1− α1) = F−1
ZS

2
(1− α2) = −∞. Then, uα1

1 (x, y) = uα2
2 (x, y) = −∞

for all (x, y) ∈ X × Y . In this case, each strategy pair (x, y) would be a Nash
equilibrium because there is no incentive for any player to deviate unilaterally.
Therefore, we consider the case where α ∈ (0.5, 1)2 so that the payoff functions
defined by (3) and (4) have finite values.

Lemma 1 For every y ∈ X, uα1
1 (·, y) defined by (3) is a concave function of

x for all α1 ∈ (0.5, 1), and for every x ∈ X, uα2
2 (x, ·) defined by (4) is a

concave function of y for all α2 ∈ (0.5, 1).
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Proof The proof follows from Lemma 3.5 of [21].

Remark 1 Lemma 1 holds for all α1 ∈ [0.5, 1) and α2 ∈ [0.5, 1) if the payoff
matrices (A,B) have strictly positive density functions [21].

3.1.1 Best response convex programs

From Lemma 1, for a fixed strategy y of player 2 and α1 ∈ (0.5, 1), a best
response strategy of player 1 can be obtained by solving the following convex
quadratic program:

[P1] min
x

−µT1 η(x, y)− ||Σ1/2
1 η(x, y)||F−1

ZS
1

(1− α1)

s.t.∑
i∈I

xi = 1,

xi ≥ 0, i ∈ I.

Let X+ =
{
x ∈ Rm | xi ≥ 0,∀ i ∈ I

}
. Then, the Lagrangian dual problem of

[P1] is

max
λ1∈R

min
x∈X+

[
− µT1 η(x, y)− ||Σ1/2

1 η(x, y)||F−1
ZS

1
(1− α1) + λ1

(
1−

∑
i∈I

xi

)]
.

For a fixed λ1 ∈ R, we have

min
x∈X+

[
−µT1 η(x, y)− ||Σ1/2

1 η(x, y)||F−1
ZS

1
(1− α1) + λ1

(
1−

∑
i∈I

xi

)]

= min
x∈X+

max
v1∈Rmn×1

||v1||≤1

[∑
i∈I

xi

(
−
∑
j∈J

µ1,ijyj −
∑
j∈J

yj
(
Σ

1/2
1 v1

)
ij
F−1
ZS

1
(1− α1)− λ1

)
+ λ1

]

= max
v1∈Rmn×1

||v1||≤1

min
x∈X+

[∑
i∈I

xi

(
−
∑
j∈J

µ1,ijyj −
∑
j∈J

yj
(
Σ

1/2
1 v1

)
ij
F−1
ZS

1
(1− α1)− λ1

)
+ λ1

]
,

where
(
Σ

1/2
1 v1

)
ij

is an (ij)th element of the vector Σ
1/2
1 v1. The first equality

is obtained by using Cauchy-Schwartz inequality. The second equality follows
from Corollary 37.3.2 of [20]. The minimum in the second equality is un-
bounded unless

λ1 ≤ −
∑
j∈J

µ1,ijyj −
∑
j∈J

yj
(
Σ

1/2
1 v1

)
ij
F−1
ZS

1
(1− α1), ∀ i ∈ I.

Hence, the Lagrangian dual problem of [P1] is
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[D1] max
λ1,v1

λ1

s.t.

λ1 ≤ −
∑
j∈J

µ1,ijyj −
∑
j∈J

yj
(
Σ

1/2
1 v1

)
ij
F−1
ZS

1
(1− α1), ∀ i ∈ I,

||v1|| ≤ 1.

Similarly, for a fixed x ∈ X and α2 ∈ (0.5, 1), a best response strategy of
player 2 can be obtained by solving the following convex quadratic program:

[P2] min
y

−µT2 η(x, y)− ||Σ1/2
2 η(x, y)|| F−1

ZS
2

(1− α2)

s.t.∑
j∈J

yj = 1,

yj ≥ 0, j ∈ J.

From the similar arguments used above, the dual of [P2] is

[D2] max
λ2,v2

λ2

s.t.

λ2 ≤ −
∑
i∈I

µ2,ijxi −
∑
i∈I

xi
(
Σ

1/2
2 v2

)
ij
F−1
ZS

2
(1− α2), ∀ j ∈ J,

||v2|| ≤ 1.

3.1.2 Mathematical program

We denote the decision variables and the objective function of the mathemat-
ical program [MP] by ζ = (λ1, λ2, v1, v2, x, y) and ψ(·) respectively. By using
the best response convex programs [P1], [D1], [P2], [D2] we have the following
characterization.

Theorem 1 Consider a random bimatrix game (A,B), where all the entries
of matrix A (resp. B) jointly follow a multivariate elliptically symmetric dis-
tribution with location vector µ1 (resp. µ2) and scale matrix Σ1 (resp. Σ2).
Let Σ1 and Σ2 be positive definite matrices. Then, for an α ∈ (0.5, 1)2

1. If (x∗, y∗) is a Nash equilibrium of a CCG, there exists a vector ζ∗ =
(λ∗1, λ

∗
2, v
∗
1 , v
∗
2 , x
∗, y∗) such that it is a global maximum of the following

mathematical program [MP]
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[MP] max
ζ

[(
λ1 + µT1 η(x, y) + ||Σ1/2

1 η(x, y)||F−1
ZS

1
(1− α1)

)
+
(
λ2 + µT2 η(x, y) + ||Σ1/2

2 η(x, y)||F−1
ZS

2
(1− α2)

)]
s.t.

λ1 ≤ −
∑
j∈J

µ1,ijyj −
∑
j∈J

yj
(
Σ

1/2
1 v1

)
ij
F−1
ZS

1
(1− α1), ∀ i ∈ I, (5)

λ2 ≤ −
∑
i∈I

µ2,ijxi −
∑
i∈I

xi
(
Σ

1/2
2 v2

)
ij
F−1
ZS

2
(1− α2), ∀ j ∈ J, (6)

||v1|| ≤ 1, (7)

||v2|| ≤ 1, (8)∑
i∈I

xi = 1, (9)∑
j∈J

yj = 1, (10)

xi ≥ 0, ∀ i ∈ I, (11)

yj ≥ 0, ∀ j ∈ J, (12)

with objective function value ψ(ζ∗) = 0.
2. If ζ∗ = (λ∗1, λ

∗
2, v
∗
1 , v
∗
2 , x
∗, y∗) is a global maximum of the mathematical

program [MP], (x∗, y∗) is a Nash equilibrium of a CCG.

Proof Let (x∗, y∗) be a Nash equilibrium of a CCG. The constraints (9)-(12) of
[MP] are satisfied by (x∗, y∗) because x∗ and y∗ are the mixed strategies. From
the definition of a Nash equilibrium, x∗ is an optimal solution of [P1] for fixed
y∗, and y∗ is an optimal solution of [P2] for fixed x∗. The convex quadratic
program [P1]

(
resp. [P2]

)
satisfies all the conditions of strong duality Theorem

6.2.4 of [1]. Hence, there exists an optimal solution (v∗1 , λ
∗
1)
(
resp. (v∗2 , λ

∗
2)
)

of

the dual program [D1]
(
resp. [D2]

)
such that the objective function values

of [P1] and [D1]
(
resp. [P2] and [D2]

)
are the same. That is, the constraints

(5) and (7)
(
resp. (6) and (8)

)
of [MP] are satisfied at (v∗1 , λ

∗
1, y
∗) (resp.

(v∗2 , λ
∗
2, x
∗)), and

λ∗1 = −µT1 η(x∗, y∗)− ||Σ1/2
1 η(x∗, y∗)|| F−1

ZS
1

(1− α1),

λ∗2 = −µT2 η(x∗, y∗)− ||Σ1/2
2 η(x∗, y∗)|| F−1

ZS
2

(1− α2).

Therefore, ζ∗ is a feasible point of [MP] such that ψ(ζ∗) = 0. Next, we show
that ζ∗ is a global maximum of [MP]. Let ζ be a feasible point of [MP]. Multiply
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constraint (5) by xi for each i ∈ I, and sum over all i ∈ I. Then, by using
Cauchy-Schwartz inequality and constraints (7), (9), (11), we have

λ1 ≤ −µT1 η(x, y)− ||Σ1/2
1 η(x, y)|| F−1

ZS
1

(1− α1). (13)

Similarly,

λ2 ≤ −µT2 η(x, y)− ||Σ1/2
2 η(x, y)|| F−1

ZS
2

(1− α2). (14)

From (13) and (14), ψ(ζ) ≤ 0 for all feasible points ζ of [MP]. Therefore, ζ∗

is a global maximum of [MP].
Let ζ∗ be a global maximum of [MP]. It follows from the first part of the

theorem that the objective function value at a global maximum point is zero.
Then, ψ(ζ∗) = 0. Since, ζ∗ is a feasible point of [MP], ζ∗ will satisfy (13) and
(14). Hence, each term of the objective function is non-positive at ζ∗. This
implies that (13) and (14) are equalities at ζ∗. For a given ζ∗ multiply the
constraint (5) by xi for each i ∈ I, and sum over all i ∈ I. Then, by using
Cauchy-Schwartz inequality, we have

λ∗1 ≤ −µT1 η(x, y∗)− ||Σ1/2
1 η(x, y∗)|| F−1

ZS
1

(1− α1), ∀ x ∈ X.

Using the fact that (13) is an equality at ζ∗, we have

uα1
1 (x∗, y∗) ≥ uα1

1 (x, y∗), ∀ x ∈ X. (15)

Similarly,
uα2
2 (x∗, y∗) ≥ uα2

2 (x∗, y), ∀ y ∈ Y. (16)

From (15) and (16), (x∗, y∗) is a Nash equilibrium of a CCG. ut

Remark 2 Theorem 1 holds for all α1 ∈ [0.5, 1) and α2 ∈ [0.5, 1), if the payoff
matrices (A,B) have strictly positive density functions [21].

3.1.3 Special case

We consider the case where the entries of the payoff matrices A and B are
independent normal random variables. For each i ∈ I, j ∈ J , let aij

(
resp.

bij
)

follows a normal distribution with mean µ1,ij

(
resp. µ2,ij

)
and variance

σ2
1,ij

(
resp. σ2

2,ij

)
. It is well known that if a multivariate normal random vec-

tor is uncorrelated, i.e., the covariance matrix is a diagonal matrix, then, its
components are independent normal random variables. A multivariate nor-
mal distribution belongs to the family of elliptically symmetric distributions.
Therefore, the equivalent mathematical program for the case of independent
normal random payoffs can be obtained from [MP] where the mean vector
and covariance matrix of player 1 (resp. Player 2) are µ1 (resp. µ2) and
Σ1 = diag(σ2

1,11, σ
2
1,12, . . . , σ

2
1,mn)

(
resp. Σ2 = diag(σ2

2,11, σ
2
2,12, . . . , σ

2
2,mn)

)
respectively; diag(·) denotes a diagonal matrix. Further if the entries of A
(resp. B) are also identically distributed with mean µ (resp. µ̄) and variance
σ2 (resp. σ̄2), we show that a uniformly distributed strategy pair is a Nash
equilibrium. The result is summarized in Theorem 2.
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Theorem 2 Consider a random bimatrix game (A,B), where all the entries
of matrix A are independent and identically distributed (i.i.d.) normal random
variables with mean µ and variance σ2, and all the entries of matrix B are
i.i.d. normal random variables with mean µ̄ and variance σ̄2. The strategy pair
(x∗, y∗), where

x∗i =
1

m
, ∀ i ∈ I, y∗j =

1

n
,∀ j ∈ J, (17)

is a Nash equilibrium of a CCG for all α ∈ [0.5, 1)2.

Proof The proof is given in Appendix A. ut

3.2 Payoffs following Cauchy distribution

In general, the components of an uncorrelated random vector do not need
to be independent. It holds only for the case of a multivariate normal distri-
bution. Therefore, we discuss the case of independent Cauchy random pay-
offs separately. We assume that all the entries of the payoff matrix A

(
resp.

B
)

are independent Cauchy random variables. For each i ∈ I, j ∈ J , let

aij
(
resp. bij

)
follows a Cauchy distribution with location and scale pa-

rameters µ1,ij

(
resp. µ2,ij

)
and σ1,ij

(
resp. σ2,ij

)
respectively. Therefore,

for a strategy pair (x, y), xTAy
(
resp. xTBy

)
follows a Cauchy distribu-

tion with location parameter µ1(x, y) =
∑
i∈I,j∈J xiyjµ1,ij

(
resp. µ2(x, y) =∑

i∈I,j∈J xiyjµ2,ij

)
and scale parameter σ1(x, y) =

∑
i∈I,j∈J xiyjσ1,ij(

resp. σ2(x, y) =
∑
i∈I,j∈J xiyjσ2,ij

)
. Then, ZC1 = xTAy−µ1(x,y)

σ1(x,y)
and ZC2 =

xTBy−µ2(x,y)
σ2(x,y)

follow a standard Cauchy distribution. Let F−1
ZC

1
(·) and F−1

ZC
2

(·)
be the quantile functions of a standard Cauchy distribution. Similar to the
previous case, for a strategy pair (x, y) and a confidence level α1, the payoff
of player 1 is given by

uα1
1 (x, y) = sup{γ1 | P (xTAy ≥ γ1) ≥ α1}

= sup

{
γ1

∣∣∣∣∣ P
(
xTAy − µ1(x, y)

σ1(x, y)
≤ γ1 − µ1(x, y)

σ1(x, y)

)
≤ 1− α1

}
= sup

{
γ1 | γ1 ≤ µ1(x, y) + σ1(x, y)F−1

ZC
1

(1− α1)
}
.

Then,

uα1
1 (x, y) =

∑
i∈I,j∈J

xiyj

(
µ1,ij + σ1,ijF

−1
ZC

1
(1− α1)

)
. (18)

Similarly, for a strategy pair (x, y) and a confidence level α2, the payoff of
player 2 is given by

uα2
2 (x, y) =

∑
i∈I,j∈J

xiyj

(
µ2,ij + σ2,ijF

−1
ZC

2
(1− α2)

)
. (19)
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The quantile function of a standard Cauchy distribution is not finite at 0 and 1.
Therefore, we consider the case of α ∈ (0, 1)2 so that the payoff functions
defined by (18) and (19) have finite values.

3.2.1 Equivalent bimatrix game

Define a matrix Ã(α1) =
[
ãij(α1)

]
, where

ãij(α1) = µ1,ij + σ1,ijF
−1
ZC

1
(1− α1),

and a matrix B̃(α2) =
[
b̃ij(α2)

]
, where

b̃ij(α2) = µ2,ij + σ2,ijF
−1
ZC

2
(1− α2).

Then, we can write (18) and (19) as

uα1
1 (x, y) = xT Ã(α1)y,

uα2
2 (x, y) = xT B̃(α2)y.

Therefore, for a given α ∈ (0, 1)2, a CCG is equivalent to a deterministic
bimatrix game

(
Ã(α1), B̃(α2)

)
. Hence, the existence of a Nash equilibrium in

this case follows from [17].

Remark 3 For the case of i.i.d. Cauchy random variables each strategy pair
(x, y) is a Nash equilibrium because the players’ payoff functions (18) and (19)
are constant.

3.2.2 Quadratic program

We have the following characterization for a CCG corresponding to Cauchy
distribution which follows from [15].

Theorem 3 Consider a random bimatrix game (A,B), where all the entries
of A are independent Cauchy random variables, and all the entries of B are
also independent Cauchy random variables. For all i ∈ I, j ∈ J , the location
and scale parameters of aij

(
resp. bij

)
are µ1,ij

(
resp. µ2,ij

)
and σ1,ij

(
resp.

σ2,ij
)

respectively. Then, for an α ∈ (0, 1)2

1. If (x∗, y∗) is a Nash equilibrium of a CCG, there exists a vector ζ∗ =
(λ∗1, λ

∗
2, x
∗, y∗) such that it is a global maximum of the following quadratic

program

[QP] max
ζ

[(
xT Ã(α1)y − λ1

)
+
(
xT B̃(α2)y − λ2

)]
s.t.

Ã(α1)y ≤ λ11m,
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B̃T (α2)x ≤ λ21n,∑
i∈I

xi = 1,∑
j∈J

yj = 1,

xi ≥ 0, ∀ i ∈ I,
yj ≥ 0, ∀ j ∈ J,

with objective function value ψ(ζ∗) = 0.
2. If ζ∗ = (λ∗1, λ

∗
2, x
∗, y∗) is a global maximum of the quadratic program [QP],

(x∗, y∗) is a Nash equilibrium of a CCG.

Proof For a given α ∈ (0, 1)2, a CCG corresponding to Cauchy distribution

is equivalent to the bimatrix game
(
Ã(α1), B̃(α2)

)
defined in Section 3.2.1.

Then, the proof follows from [15]. ut

4 Competition between two manufacturing firms

We consider two manufacturing firms which produce similar products and
compete on the same market. They plan to release a new product with sim-
ilar features. To attract more customers, each firm uses different marketing
strategies, e.g., TV and web advertisements, paid media advertisements, gift
coupons, cash back, special offers, etc. We assume that each firm has finite
number of marketing strategies. In this case, a mixed strategy represents the
percentage allocation of the total marketing budget among different market-
ing strategies. The profit of each firm increases with the number of customers.
The customers’ demand can be random which also depends upon the market-
ing strategies of the firms. Therefore, the payoff of each firm corresponding to
different pair of marketing strategies of both the firms is better modeled by
a random variable. Hence, the competition between the firms can be modeled
as a random bimatrix game. We assume that both the firms are interested in
the payoffs that can be obtained with at least a given probability level. We
study this game theoretic situation using CCG framework developed in this
paper. We consider a general case where there is a correlation among different
marketing strategies. We assume that the entries of the payoff matrix jointly
follow a multivariate normal distribution. For illustration purpose, we consider
the example given below.

Example 1 We consider the case where each firm has three marketing strate-
gies, i.e., I = {1, 2, 3} and J = {1, 2, 3}. We assume that the entries of the
random payoff matrix A

(
resp. B

)
jointly follow a multivariate normal distri-

bution. The mean vector µ1

(
resp. µ2

)
and the covariance matrix Σ1

(
resp.

Σ2

)
for the payoff matrix A

(
resp. B

)
are given below:

µ1 = (10, 9, 11, 8, 12, 10, 7, 8, 13), µ2 = (9, 7, 8, 9, 10, 10, 10, 9, 8).



A characterization of Nash equilibrium for the games with random payoffs 13

Σ1 =



6 4 3 3 2 3 4 2 4
4 6 3 4 3 3 3 2 3
3 3 8 4 2 3 3 2 4
3 4 4 6 2 3 3 3 2
2 3 2 2 6 2 4 3 3
3 3 3 3 2 6 3 3 4
4 3 3 3 4 3 8 4 3
2 2 2 3 3 3 4 6 4
4 3 4 2 3 4 3 4 8


, Σ2 =



6 3 3 3 3 2 4 3 2
3 6 3 3 2 2 3 3 4
3 3 6 3 3 3 4 3 4
3 3 3 6 3 2 2 3 3
3 2 3 3 6 4 2 2 3
2 2 3 2 4 6 3 3 4
4 3 4 2 2 3 6 3 2
3 3 3 3 2 3 3 6 3
2 4 4 3 3 4 2 3 6


.

We compute the Nash equilibria of the CCG by solving the math-
ematical program [MP]. Our numerical experiments were carried out
on an Intel(R) 32-bit core(TM) i3-3110M CPU @ 2.40GHz×4 and 3.8
GiB of RAM machine. We solve the equivalent minimization prob-
lem of mathematical program [MP] using fmincon in MATLAB op-
timization toolbox. We run the numerical experiments with an initial
point ζ0 =

(
−1,−2, 0, 12 ,

1
2 , 2, 0, 3, 0, 0, 0, 0, 1, 3,

1
2 ,

1
4 , 0, 0, 0, 0,

1
2 ,

1
4 ,

1
4 ,

1
3 ,

1
3 ,

1
3

)
.

Table 1 summarizes the Nash equilibria for various values of α. The exitflag

Table 1: Nash equilibria for various values of α

α Nash Equilibrium
ψ(ζ∗) exitflag

α1 α2 x∗ y∗

0.55 0.55
(

2046
10000

, 6164
10000

, 1790
10000

) (
2143
10000

, 3055
10000

, 4802
10000

)
0 1

0.6 0.6
(

2078
10000

, 6340
10000

, 1582
10000

) (
2121
10000

, 3071
10000

, 4808
10000

)
0 1

0.7 0.7 (1, 0, 0) (1, 0, 0) 0 1

0.8 0.8 (1, 0, 0)
(

9804
10000

, 0, 196
10000

)
0 1

value 1 indicates that the point ζ∗ is a local maximum. The objective function
value ψ(ζ∗) = 0 shows that ζ∗ is a global maximum of the mathematical pro-
gram [MP]. Therefore, from Theorem 1, the strategy part (x∗, y∗) of ζ∗ given
in column 3 and column 4 of Table 1 is a Nash equilibrium of the CCG.

To test our theoretical results for large game instances, we per-
form numerical experiments by considering different sizes of randomly
generated instances. For each i, i = 1, 2, we take the mean vector
µi = randi ([m+ n,m+ n+ 2],mn, 1). It generates mn × 1 integer vector
within interval [m+ n,m+ n+ 2]. For each i, i = 1, 2, we take the covariance
matrix Σi = B + BT + θ · Imn×mn, where B = randi(2,mn) is an mn×mn
integer random matrix with entries not more than 2, and θ is sufficiently large
so that Σi is a positive definite matrix, and Imn×mn is an mn × mn iden-
tity matrix. In our experiments, we take θ = m + n. For these games, the
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mathematical program [MP] has 2 + 2mn+m+ n variables and 4+2m + 2n
constraints. We take α1 = α2 = 0.6. We run the numerical experiments with a
randomly generated initial point ζ0 = rand(1, 2 + 2mn+m+n), where rand
is a random number generator. Table 2 summarizes the numerical results for
different sizes of the considered games. The columns 1-3 represent the size

Table 2: Average time for computing Nash equilibrium

Number of
instances

Number of
actions

Average order
of magnitude k
of ψ(ζ∗)

Average
time (s)

Average
ψ(ζ∗)

exitflag (all
instances)

m n k = −2 k ≤ −3

10 5 5 20% 80% 3.55 −1.4 × 10−3 1

10 10 10 10% 90% 21.44 −5.1 × 10−3 1

10 15 15 20% 80% 56.15 −4.6 × 10−3 1

10 20 20 10% 90% 387.91 −2.6 × 10−3 1

of the game problem. The order of magnitude for ψ(ζ∗) is k if its value is
a constant multiple of 10k. In 10%-20% of the instances ψ(ζ∗) is a constant
multiple of 10−2 as given in column 4. In 80%-90% of the instances ψ(ζ∗) is
a constant multiple of 10−k, k ≤ −3, as given in column 5. The average time
to solve the mathematical program [MP] is given in column 6. The average
value of ψ(ζ∗) is given in columns 7. The exitflag value 1 given in column 8
shows that every time we get a local maximum. In most of the time ψ(ζ∗) is
zero or close to zero. This implies that we obtain a global maximum of the
mathematical program [MP] or very close to it in most of the cases. Based
on our computational experience, we can see that solving the mathematical
program [MP] is not time consuming. Therefore, we can solve large instances
in reasonable time.

5 Conclusions

We formulate a two player random bimatrix game as a CCG. We consider
multivariate elliptically symmetric as well as independent normal/Cauchy dis-
tributed payoffs. For each case we show that a Nash equilibrium of a CCG
can be obtained by computing a global maximum of a certain optimization
problem. To illustrate our theoretical results, we consider a random bimatrix
game between two manufacturing firms producing similar products. Both firms
compete for the customers by using different marketing strategies. We take dif-
ferent sizes of random instances of the game. We use MATLAB to perform nu-



A characterization of Nash equilibrium for the games with random payoffs 15

merical experiments. Our approaches can be used for solving large instances as
shown by the low computational effort in the considered numerical examples.

Appendix A Proof of Theorem 2

Proof Fix α ∈ [0.5, 1)2. To show (x∗, y∗) defined by (17) is a Nash equilibrium,
it is sufficient to show that there exists a vector (λ∗1, λ

∗
2, v
∗
1 , v
∗
2) which together

with (x∗, y∗) is a feasible point of [MP] with objective function value zero

(see Theorem 1). By using i.i.d. property, we have Σ
1/2
1 = σImn×mn, Σ

1/2
2 =

σ̄Imn×mn. Take,

λ∗1 = −µ−
σ F−1

ZS
1

(1− α1)
√
mn

,

λ∗2 = −µ̄−
σ̄ F−1

ZS
2

(1− α2)
√
mn

,

v∗1 =
1√
mn

1mn,

v∗2 =
1√
mn

1mn,


where 1k denotes a k × 1 vector of ones. It is easy to check that ζ∗ =
(λ∗1, λ

∗
2, v
∗
1 , v
∗
2 , x
∗, y∗) is a feasible point of [MP] and ψ(ζ∗) = 0. Hence, (x∗, y∗)

defined by (17) is a Nash equilibrium of a CCG.
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