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Abstract

We consider a class of augmented Lagrangian methods for solving
convex programming problems with inequality constraints. This class
involves a family of penalty functions and specific values of parameters
p, q, ỹ ∈ R and c > 0. The penalty family includes the classical mod-
ified barrier and the exponential function. The associated proximal
method for solving the dual problem is also considered. Convergence
results are shown, specifically we prove that any limit point of the pri-
mal and the dual sequence generated by the algorithms are optimal
solutions of the primal and dual problem respectively.

Key words: Multiplier methods, proximal point methods, convex
programming.

1 Introduction

Consider the convex programming problem given by

(P ) f∗ = inf{f(x) : gi(x) ≤ 0 i = 1, . . . ,m}
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980. Curitiba, PR, Brazil. E-mail: romulo.castillo@ufsc.br, matioli@ufpr.br.
¶Department of Mathematics, Universidad Centro Occidental Lisandro Alvarado. E-

mail: clcarlone@gmail.com.

1



A multiplier method with a class of penalty functions 2

where f, gi : IRn → IR for i = 1, . . . ,m are closed proper convex functions.
Let ` : IRn× IRm → IR∪{+∞} be the usual Lagrangian function defined by

`(x, µ) = f(x) +

m∑
i=1

µigi(x). (1)

The dual convex problem associated with (P) is defined as

(D) d∗ = inf{−d(µ) : µ ≥ 0}

where d(µ) = inf{`(x, µ) : x ∈ IRn}.
We suppose that the following conditions are satisfied:

(A1) The set of optimal solutions of problem (P ) is nonempty and compact.
(A2) There exists x̂ ∈ dom f such that gi(x̂) < 0 for i = 1, ...,m (Slater’s
condition).

Remark 1: Note that (A2) implies that the set of optimal solutions of
problem (D) is nonempty and compact and f∗ = d∗. Furthermore, for each
β > d∗, the level set

{µ ∈ Rm+ : −d(µ) ≤ β}
is compact.

2 Primal method

In this section, we present a class of multiplier methods for solving the
primal problem. The approach used in the augmented Lagrangian method
coincides to that one considered in [1], but in this case with the convergence
results for a particular class of penalty functions.

We consider the family F of penalty functions θ : IR→ IR∪ {+∞} with
dom θ = (−∞, b) and 0 < b ≤ +∞, that satisfy the following properties:
(θ1) θ is a proper twice differentiable strictly increasing convex function.
(θ2) lim

t→b−
θ′(t) = +∞.

(θ3) lim
t→−∞

θ′(t) = 0.

(θ4) There exists M > 0 such that θ′′(t) ≥ 1

M
for all t ∈ [0, b].

Consider θ ∈ F , p, q ∈ IR. The penalty function with shift P̂ (p,q) :
IRm × IRm

++ × IR++ × IR++ → IR ∪ {+∞} is defined by

P̂ (p,q)(y, µ, r, c) =
m∑
i=1

P (p,q)(yi, µi, r, c), (2)
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where P (p,q) : IR× IR++ × IR++ × IR++ → IR ∪ {+∞} is given by

P (p,q)(yi, µi, r, c) = r
µp−qi

c

[
θ

(
yi

µp−1
i r

+ ỹi

)
− θ(ỹi)

]
(3)

with ỹi satisfying θ′(ỹi) = c µqi , for all i = 1, . . . ,m and 0 < r < r < r̄.
By [9, Corollary 23.5.1],

θ′(ỹi) = c µqi ⇔ ỹi = (θ∗)′(c µqi ), (4)

where θ∗ is the conjugate function of θ.
In almost all cases known we take q = 1 but the generalization allows us to
introduce some variants in the approach.

Note that, for all i = 1, . . . ,m, we have P (p,q)(0, µi, r, c) = 0 and

(P (p,q))′1(yi, µi, r, c) =
µ1−q
i

c
θ′

(
yi

µp−1
i r

+ ỹi

)
,

where (P (p,q))′1 =
∂P (p,q)

∂yi
.

So, using the definition of ỹi, we obtain, for all i = 1, . . . ,m,

(P (p,q))′1(0, µi, r, c) =
µ1−q
i

c
θ′(ỹi) = µi. (5)

As was pointed out in [1], the shift given in (3) is a translation that allows
us to write (5).

We define the augmented Lagrangian function L(p,q) : IRn×IRm
++×IR++×

IR++ → IR ∪ {+∞} by

L(p,q)(x, µ, r, c) = f(x) +
m∑
i=1

P (p,q)(gi(x), µi, r, c),

with P (p,q) defined in (3). Next we state the algorithm that define the
multiplier method for solving the problem (P ).

Algorithm 1.

Data: p, q ∈ IR, c > 0, 0 < r < r̄, r0 ∈ (r, r̄), µ0 ∈ IRm
++.

Let ỹi
0 ∈ IR such that θ′(ỹi

0) = c (µ0
i )
q, for i = 1, . . . ,m.

k = 0
repeat
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Compute xk+1 ∈ argminx∈IRn

{
L(p,q)(x, µk, rk, c)

}
.

µk+1
i =

(µki )
1−q

c
θ′
(
gi(x

k+1)

(µki )
p−1rk

+ ỹi
k

)
, for i = 1, . . . ,m.

ỹk+1
i = (θ∗)′

(
c(µk+1

i )q
)
, for i = 1, . . . ,m.

Choose rk+1 ∈ (r, r̄).
k = k + 1.

Observe that, for all p, q ∈ IR, c > 0 and k ≥ 0,

0 ∈ ∂xL(p,q)(xk+1, µk, rk, c)⇔ 0 ∈ ∂x`(xk+1, µk+1) (6)

where ` is the Lagrangian function defined in (1).

2.1 Examples

In this section we discuss the above approach by considering some particular
penalty functions in the family F .

Example 2.1.

Consider θ1(t) = − log(a− t), with a > 0. Substituting in (3), we have

P (p,q)(yi, µi, r, c) =
rµp−qi

c
log

 a− ỹi
a− ỹi − yi

µp−1
i r

 .

From (4), θ′1(ỹi) = 1
a−ỹi = c µqi . So, a− ỹi = 1

cµqi
and

P (p,q)(yi, µi, r, c) =
rµp−qi

c
log

 1
cµqi

µp−1
i r−cµqi yi
cµqiµ

p−1
i r


=

rµp−qi

c
log

(
r

r − cµq−p+1
i yi

)

= −
rµp−qi

c
log

(
1− c yi

rµp−q−1
i

)
. (7)

The penalty function (7) represents a family of modified log-barrier penalty
functions which yields to different multiplier methods.
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Note that if we choose p = 2, q = c = 1, we get

P (2,1)(yi, µi, r, 1) = −rµi log
(

1− yi
r

)
,

which is the modified log-barrier penalty function considered by Polyak, [7].
If we choose p = q = c = 1 we get

P (1,1)(yi, µi, r, 1) = r log
(

1− µiyi
r

)
,

which corresponds to the M2BF penalty function considered in [6]. They
did’t show convergence results for the primal sequence generated by the
multiplier method. A remarkable fact is that our convergence result include
it.

Choosing p = p, q = 0, c = 1 we get

P (p,0)(yi, µi, r, 1) = −r µpi log

(
1− yi

µp−1
i r

)
,

considered in [2] for p ≥ 2.
Note that from proposition 4.4, convergence results for new particular

cases can be gotten considering p + q ≥ 2. For example, with p = 2.5, q =
2, c = 1 we get

P (2.5,2)(yi, µi, r, 1) = −r√µi log
(

1−
√
µiyi

r

)
Example 2.2.

Similarly, if we consider θ2(t) = 1
a−t − a, a ≥ 0 with θ′2(ỹi) = 1

(a−ỹi)2 =

c µqi we get

P (p,q)(yi, µi, r, c) =
rµp−qi

c

 1

a− yi
µp−1
i r
− ỹi

− 1

a− ỹi


= rµi

(
(yi/r)

1−
√
cµ

q
2
−p+1

i (yi/r)

)

If c = p = 1 and q = 0 we get P (1,0)(yi, µi, r, 1) = rµi

(
(yi/r)

1−(yi/r)

)
, the

modified inverse barrier multiplier method considered by Polyak [7]. In
the same way, if we consider any translation of the inverse barrier function
θ(t) = 1

1−t − 1 ∈ F given by θ2, our approach yields to the modified inverse
barrier penalty function.
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Example 2.3.

Consider θ3(t) = et + a, a ≥ 0 with θ′3(ỹi) = eỹi = c µqi we get

P (p,q)(yi, µi, r, c) =
rµp−qi

c

(
e

yi

µ
p−1
i

r
+ỹi
− eỹi

)
=

rµp−qi

c

(
eỹi(e

yi

µ
p−1
i

r − 1)

)
= rµpi

(
e

yi

µ
p−1
i

r − 1

)

If p = 1 we get P (1,q)(yi, µi, r, c) = rµi

(
e
yi
r − 1

)
the classical exponential

multipier method.

3 Dual method

In this section we consider the proximal method associated with the mul-
tiplier one. The distance-like function to be used was introduced in [1], in
this case, involving the conjugate functions of members in the family F

The conjugate function of θ, namely ϕ = θ∗, satisfies the properties given
in next proposition:

Proposition 3.1. Consider θ ∈ F . Then the function ϕ = θ∗, which is the
conjugate function of θ, verifies the following properties:
(ϕ1) ϕ is a strictly convex and differentiable function on domϕ = (0,+∞).
(ϕ2) ϕ(κ) = 0, κ > 0.
(ϕ3) ϕ′(κ) = 0.
(ϕ4) lims→0+ϕ

′(s) = −∞.
(ϕ5) lims→+∞ϕ

′(s) = b.
(ϕ6) There exists M > 0 such that ϕ′′(s) ≤M for s ≥ κ.

Proof: We show (ϕ4), (ϕ5) and (ϕ6), for the rest see [8], Proposition
3.1.
From (θ2)

lims→+∞ϕ
′(s) = lims→+∞(θ′)−1(s) = b,

and so (ϕ5) holds.
By other hand

ϕ′′(s) = [(θ′)−1]′(s) =
1

θ′′[(θ′)−1(s)]
=

1

θ′′[ϕ′(s)]
. (8)



A multiplier method with a class of penalty functions 7

From (ϕ1), (ϕ2) and (ϕ3), ϕ′(s) ≥ 0 for s ≥ κ, and by (ϕ5) and continuity
of ϕ′ we can consider ϕ′(s) satisfying

s ≥ κ⇒ 0 ≤ ϕ′(s) ≤ +∞. (9)

Finally, from (8), (9) and (θ6), we have ϕ′′(s) ≤ 1

M
for s ≥ κ. �

Remark 2: From (ϕ1), (ϕ2) and (ϕ3) it follows ϕ is decreasing on (0, κ)
and increasing on (κ,+∞).
We call Φ to the class of functions that verify the properties in Proposition
3.1.

3.0.1 The distance-like function

We use the distance-like function introduced in [1] involving the function
ϕ ∈ Φ.

Given p, q ∈ IR, the distance-like function d̂
(p,q)
ϕ : IRm

+ × IRm
++ −→ {+∞} is

defined by

d̂(p,q)
ϕ (s, µ) =

m∑
i=1

d(p,q)
ϕ (si, µi) (10)

where for i = 1, . . . ,m

d(p,q)ϕ (si, µi) =
µp−q
i

c
ϕ

(
csi

µ1−q
i

)
− µp−q

i

c
ϕ(c µq

i )− µp−1
i (ϕ)′(c µq

i )(si − µi). (11)

Note(
d(p,q)
ϕ

)′
1

(si, µi) =
∂d(si, µi)

∂si
= µp−1

i

[
(ϕ)′

(
csi

µ1−q
i

)
− (ϕ)′(c µqi )

]
. (12)

It was proved in [1] that 10 is a divergence measure [5, Def. 2.1] for a general
class of functions that includes the functions in our families. So we consider
(10) with ϕ ∈ Φ.

3.0.2 The proximal point method

The proximal point method for solving the dual problem (D) using the
distance-like function (10) generates a sequence {µk} such that µ0 ∈ IRm

++

and
µk+1 = argmin{−d(µ) + rkd̂(p,q)

ϕ (µ, µk)}, (13)
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where 0 < r < rk < r̄ and ϕ ∈ Φ.
Remark 3:
Note from (6) that, xk+1 minimize L(p,q)(x, µk, rk, c) se e somente se xk+1

minimize l(x, µk, rk, c).

On the other side, we have

d(µ) = inf{l(x, µ) : x ∈ IRn}

= inf{f(x) +
m∑
i=1

µigi(x)}

≤ f(xk+1) +

m∑
i=1

µigi(x
k+1)

= f(xk+1) +
m∑
i=1

µigi(x
k+1) +

m∑
i=1

µk+1
i gi(x

k+1)−
m∑
i=1

µk+1
i gi(x

k+1)

= f(xk+1) +
m∑
i=1

µk+1
i gi(x

k+1) +
m∑
i=1

(µi − µk+1
i )gi(x

k+1)

= d(µk+1
i ) +

m∑
i=1

(µi − µk+1
i )gi(x

k+1)

= d(µk+1
i ) + (f1(xk+1), . . . , fm(xk+1))t(µ− µk+1).

Therefore
(f1(xk+1), . . . , fm(xk+1))T ∈ ∂d(µk+1). (14)

By updating formulae of the multiplier, for i = 1, . . . ,m

µk+1
i =

(µki )
1−q

c
θ′
(
gi(x

k+1)

(µki )
p−1rk

+ ỹki

)
and using (θ′)−1 = (ϕ)′ we have, for i = 1, . . . ,m

cµk+1
i

(µki )
1−q = θ′

(
gi(x

k+1)

(µki )
p−1rk

+ ỹki

)
,

(θ′)−1

(
cµk+1

i

(µki )
1−q

)
=

gi(x
k+1)

(µki )
p−1rk

+ ỹki ,

(θ′)−1

(
cµk+1

i

(µki )
1−q

)
=

gi(x
k+1)

(µki )
p−1rk

+ (ϕ)′(c(µk)q).
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Then, for i = 1, . . . ,m,

gi(x
k+1) = (µki )

p−1rk

[
(θ′)−1

(
cµk+1

i

(µki )
1−q

)
− (ϕ)′(c(µk)q)

]
(15)

and so from (14) and (15),

(µki )
p−1rk

[
(θ′)−1

(
cµk+1

i

(µki )
1−q

)
− (ϕ)′(c(µk)q)

]
∈ ∂d(µk+1)

which is the optimality condition for (13).
So next proposition ensures that the sequence (µk) generated by the Algo-
rithm 1 coincides with the sequence given in (13).

Proposition 3.2. Let {µ̂k} be the sequence generated by (13) for solving the
dual problem (D) and let {xk} and {µk} be the sequences generated by the
Algorithm 1 for solving the primal problem (P ). If µ0 = µ̂0, then µk = µ̂k

for all k ≥ 0.

Proof. Follows from Thm 7.1 in [4]. �

4 Convergence results

This section is inspired by the convergence results presented in [10] and [8].
We show a convergence study of the sequences generated by (13) and by the
Algorithm 1.

Proposition 4.1. The sequence {−d(µk)} is non-increasing and bounded,
so it converges.

Proof: : From (13), since d̂
(p,q)
ϕ (µ, µ) ≥ 0 and rk > 0, we have, for all

µ ∈ Rm++olho

−d(µk+1) ≤ −d(µk+1) + rkd̂(p,q)
ϕ (µk+1, µk) ≤ −d(µk) + rkd̂pϕ(µk, µk),

but d̂
(p,q)
ϕ (µk, µk) = 0 and so −d(µk+1) ≤ −d(µk), then {−d(µk)} is non-

increasing. Furthermore, by weak duality, −d(µk) ≥ −f∗, and consequently
{−d(µk)} is convergent. �

Proposition 4.2. The sequence {µk} is bounded.
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Proof: : By (A2), the set of optimal Lagrange multipliers is nonempty
and compact, so one level set of −d is compact. Since −d is a closed proper
convex function then all its level sets are compact, in particular Λ = {µ ∈
Rm+ : −d(µ) ≤ −d(µ0)}. But by proposition 4.1, µk ∈ Λ for all k, so {µk} is
bounded. �

Lemma 4.1. Let θ be a strictly convex function, t, q ∈ R, c > 0 and ỹ as

defined in (4) such that t+ ỹ ∈ domθ, then t
θ′(t+ ỹ)

c
≥ tµq.

Proof: If t > 0 then t+ ỹ > ỹ, since θ is an strictly convex function θ
′

is an increasing function, θ′(t+ ỹ) > θ′(ỹ) = cµq, then

θ′(t+ ỹ)

c
> µq and finally t

θ′(t+ ỹ)

c
> tµq.

In a similar way for t < 0. �

Proposition 4.3. Let v, w be positive numbers.

1) We have v > w if and only if
(
d

(p,q)
ϕ

)′
1

(v, w) > 0.

2) If v > w, then

d(p,q)
ϕ (v, w) ≥

[(
d

(p,q)
ϕ

)′
1

(v, w)

]2

2cMwp+q−2
.

Proof: 1) Since ϕ is an increasing function, we have

v > w ⇔ cv

w1−q > cwq

⇔ (ϕ)
′
( cv

w1−q

)
> (ϕ)

′
(cwq)

⇔ (ϕ)
′
( cv

w1−q

)
− (ϕ)

′
(cwq) > 0

⇔ wp−1
(

(ϕ)
′
( cv

w1−q

)
− (ϕ)

′
(cwq)

)
> 0

⇔
(
d(p,q)
ϕ

)′
1

(v, w) > 0.

2) Consider the quadratic function

q(t) = q(v) + (t− v)
(
d(p,q)
ϕ

)′
1

(v, w) +
1

2
(t− v)2cMwp+q−2,

so

q′(t) =
(
d(p,q)
ϕ

)′
1

(v, w) + (t− v)cMwp+q−2
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and

q′(t) = 0⇔
(
d(p,q)
ϕ

)′
1

(v, w) + (t− v)cMwp+q−2 = 0

then

t∗ =
−
(
d

(p,q)
ϕ

)′
1

(v, w)

cMwp+q−2
+ v (16)

is a minimizar of q(·).
By item 1) since v > w > 0 we have

(
d

(p,q)
ϕ

)′
1

(v, w) > 0 and so from (16)

we have t∗ < v, using the fact that d
(p,q)
ϕ (w,w) = 0 and the mean value

theorem, there exists ŵ ∈ [w, v] such that(
d(p,q)
ϕ

)′
1

(v, w) =
(
d(p,q)
ϕ

)′
1

(v, w)−
(
d(p,q)
ϕ

)′
1

(w,w)

= (v − w)
(
d(p,q)
ϕ

)′′
1

(ŵ, w)

= (v − w)wp+q−2(ϕ)′′
(

cŵ

w1−q

)
c

≤ (v − w)wp+q−2cM.

Hence

(
d
(p,q)
ϕ

)′
1
(v,w)

cMyp+q−2 ≤ v − w and w ≤ v −
(
d
(p,q)
ϕ

)′
1
(v,w)

cMyp+q−2 = t∗, so w ≤ t∗ < v.

Using again the mean value theorem, for all t ∈ [w, v], there exists t̂ ∈ (t, v)
such that(

d(p,q)
ϕ

)′
1

(v, w)−
(
d(p,q)
ϕ

)′
1

(t, w) = (v − t)
(
d(p,q)
ϕ

)′′
1

(t̂, w)

= (v − t)wp+q−2(ϕ)′′

(
ct̂

w1−q

)
c

≤ (v − w)wp+q−2cM,

So, for t ∈ [w, v](
d(p,q)
ϕ

)′
1

(v, w) ≤
(
d(p,q)
ϕ

)′
1

(t, w) + (v − t)wp+q−2cM and so(
d(p,q)
ϕ

)′
1

(t, w) ≥
(
d(p,q)
ϕ

)′
1

(v, w) + (t− v)wp+q−2cM = q′(t),

then (
d(p,q)
ϕ

)′
1

(t, w) ≥ q′(t) for all w ≤ t ≤ v.
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Since w ≤ t∗ < v, integrating from t∗ to v we have

d(p,q)
ϕ (v, w)− d(p,q)

ϕ (t∗, w) ≥ q(v)− q(t∗).

So d
(p,q)
ϕ (v, w) ≥ q(v)− q(t∗) + d

(p,q)
ϕ (t∗, w) ≥ q(v)− q(t∗) and

d(p,q)
ϕ (v, w) ≥ q(v)− q(v)− (t∗ − v)

(
d(p,q)
ϕ

)′
1

(v, w)− 1

2
(t∗ − v)2cMwp+q−2.

(17)
From (16) and (17) we have

d(p,q)
ϕ (v, w) ≥

[(
d

(p,q)
ϕ

)′
1

(v, w)

]2

2cMwp+q−2
.

�

Proposition 4.4. Consider p + q − 2 ≥ 0 and the sequences {xk}, {µk}
generated by the algoritm 1 , then
1) {[gi(xk)]+} → 0 for i = 1, ...,m.
2) µki gi(x

k)→ 0 for i = 1, · · · ,m.
3) f(xk) → f∗. Moreover, the sequences {xk} and {µk} are bounded and
each of their limit points are optimal solutions of problems P and D respec-
tively.

Proof: 1) Suppose by contradiction that there exists an infinite set of
indices {kj} and ε > 0 such that [fl(x

kj )]+ > ε for some l ∈ {1, ...,m}.
From (15) and (12) we have

fl(x
kj+1) = rkj

(
d

(p,q)
ϕ

)′
1

(µ
kj+1
l , µ

kj
l ) for l ∈ {1, ...m},

since 0 < r < rk < r̄ for all k, we have 1
rk
> 1

r̄ , so

(
d(p,q)
ϕ

)′
1

(µ
kj+1
l , µ

kj
l )] =

fl(x
kj+1)

rkj
>
ε

r̄
> 0. (18)

By lemma 4.3 item 1) we have µl
kj+1 > µl

kj .

Since µk+1 = argmin{−d(µ) + d̂
(p,q)
ϕ (µ, µk)}, we have

−d(µkj+1) + d̂(p,q)
ϕ (µkj+1, µkj ) ≤ −d(µkj ) + d̂(p,q)

ϕ (µkj , µkj ) = −d(µkj ),

then d(µkj+1)−d(µkj ) ≥ d̂(p,q)
ϕ (µkj+1, µkj ) =

m∑
i=1

d(p,q)
ϕ (µ

kj+1
i , µ

kj
i ) ≥ d(p,q)

ϕ (µ
kj+1
l , µ

kj
l ).
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By proprosition 4.2 {µk} is bounded, that is, there exists N > 0 such
that

µkl ≤ ||µk|| ≤ N for all k, and so
1

µkl
≥ 1

N
. (19)

By item 2) of lemma 4.3 and using 18, we have

d(µkj+1)− d(µkj ) ≥ 1

2cM

[(
d

(p,q)
ϕ

)′
1

(µ
kj+1
l , µ

kj
l )

]2

(µ
kj
l )p+q−2

≥ ε2

2cMNp+q−2
= δ > 0.

So d(µkj+1) ≥ d(µkj ) + δ which is a contradiction because d is bounded
above.
We now proof 2).
Suppose by contradiction that there exist l ∈ {1, ...,m}, ε > 0 and an infinite
set of indices {kj} sucht that

|µkj+1
l gl(x

kj+1)| ≥ ε, so using (19) we have |gl(xkj+1)| ≥ ε

N
. (20)

But {[gi(xk)]+} converges to 0 for all i = 1, ...,m, hence gl(x
kj+1) ≥ ε

N
is true only for a finite set of index kj , so we can consider without lost of
generality

gl(x
kj+1) ≤ − ε

N
for all j. (21)

Since (g1(xk+1), ..., gm(xk+1))t ∈ ∂d(µk+1), and d is a concave function, then

m∑
i=1

gi(x
kj+1)(µ

kj+1
i − µkji ) ≤ d(µkj+1)− d(µkj ). (22)

Since µk+1
i =

(µki )1−q

c θ′
(
gi(x

k+1)

(µki )p−1rk
+ ỹk

)
for i = 1, ...,m we have

gi(x
kj+1)(µ

kj+1
i − µkji ) = µ

kj
i gi(x

kj+1)

(
µ
kj+1
i

µ
kj
i

− 1

)

= µ
kj
i gi(x

kj+1)

(
1

c(µki )
q
θ′

(
gi(x

kj+1)

(µ
kj
i )p−1rkj

+ ỹkj

)
− 1

)
(23)

=
gi(x

kj+1)

c(µ
kj
i )q−1

θ′

(
gi(x

kj+1)

(µ
kj
i )p−1rkj

+ ỹkj

)
− µkji gi(x

kj+1). (24)
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Since θ is a strictly convex function, θ′ is increasing, using (24) and lemma
4.1 we have

gi(x
kj+1)(µ

kj+1
i − µkj

i ) =
rkj (µ

kj

i )p−q

c

[
gi(x

kj+1)

(µ
kj

i )p−1rkj

θ′

(
gi(x

kj+1)

(µ
kj

i )p−1rkj

+ ỹkj

)]
− µkj

i gi(x
kj+1)

≥ µ
kj

i gi(x
kj+1)− µkj

i gi(x
kj+1)

= 0,

hence, by (22)

0 ≤
m∑
i=1

gi(x
kj+1)(µ

kj+1
i − µkji ) ≤ d(µkj+1)− d(µkj ),

by proposition 4.1 {d(µk)} is convergent, so lim
j→+∞

[d(µkj+1)− d(µkj )] = 0.

Then

lim
j→+∞

m∑
i=1

gi(x
kj+1)(µ

kj+1
i − µkji ) = 0.

Since gi(x
kj+1)(µ

kj+1
i − µkji ) ≥ 0 for all i = 1, ...,m

we have lim
j→+∞

gi(x
kj+1)(µ

kj+1
i − µkji ) = 0 for all i = 1, ...,m.

Then from (23),

lim
j→+∞

µ
kj
i gi(x

kj+1)

[
1

c(µ
kj
i )q

θ′

(
gi(x

kj+1)

(µ
kj
i )p−1rkj

+ ỹkj

)
− 1

]
= 0 for all i = 1, ...,m.

(25)

By other hand, using (21)

fl(x
kj+1)

rkj (µ
kj
l )p−1

+ ỹkj ≤ −ε
rkj (µ

kj
l )p−1N

+ ỹkj < ỹkj ,

since θ′ is increasing

θ′

 fl(x
kj+1)

rkj (µ
kj
l )

p−1 + ỹkj

 < θ′(ỹkj ) = c(µ
kj
l )q,

so

1

c(µ
kj
l )q

θ′

 fl(x
kj+1)

rkj (µ
kj
l )

p−1 + ỹkj

 < 1. (26)

From (25) and (26)

lim
j→+∞

µ
kj
l gl(x

kj+1) = 0.
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Since
lim

j→+∞
gi(x

kj+1)(µ
kj+1
i − µkji ) = 0

in particular for the indice l, lim
j→+∞

µ
kj+1
l gl(x

kj+1) = 0, which is a contra-

diction.
Consequently

µki gi(x
k)→ 0

para todo i = 1, ...,m.
3) By 1) {xk} is asymptotically feasible, so that given ε > 0 and k suffi-
ciently large.

f(xk) ≥ f∗ − ε (27)

Note by Remark 1

f∗ = d∗ ≥ d(µk) = inf
x
{l(x, µk)} = l(xk, µk) = f(xk) +

m∑
i=1

µki gi(x
k). (28)

Using item 2), (27) and (28) we have that for all ε > 0

f∗ − ε ≤ f(xk) ≤ f∗ −
m∑
i=1

µki gi(x
k) < f∗ + ε

for k sufficiently large.
Therefore

lim
k→+∞

f(xk) = f∗. (29)

From items 1) and 3), given ε > 0, for i = 1, . . . ,m and k sufficiently large

f(xk) < f∗ + ε, and gi(x
k) < ε. (30)

From (A1), for any α, β, the set

{x ∈ Rn : gi(x) < α, f(x) < β for i = 1, . . . ,m}

is compact, see Corollary 20 in [3].
Taking α = ε and β = f∗ + ε we have that the set

Γ = {x ∈ Rn : gi(x) < ε, f(x) < f∗ + ε, for i = 1, . . . ,m}

is compact and so bounded. Using (30), xk ∈ Γ for k sufficiently large ,
therefore the sequence {xk} is bounded.
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Note that by proposition 4.2 the sequence {µk} is bounded.
Let x∗ and µ∗ be limit points of the sequences {(xk} and {µk)} respectively.
From item 1) and (29) we have x∗ is an optimal solution of problem (P ).
This joint with item 2) and (28), we get d(µ∗) = f∗0 = d∗. Then µ∗ is an
optimal solution of problem (D).
�
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