
CONSTRAINED OPTIMIZATION WITH LOW-RANK TENSORS
AND APPLICATIONS TO PARAMETRIC PROBLEMS WITH PDEs

SEBASTIAN GARREIS∗ AND MICHAEL ULBRICH�

Abstract. Low-rank tensor methods provide efficient representations and computations for
high-dimensional problems and are able to break the curse of dimensionality when dealing with
systems involving multiple parameters. We present algorithms for constrained nonlinear optimization
problems that use low-rank tensors and apply them to optimal control of PDEs with uncertain
parameters and to parametrized variational inequalities. These methods are tailored to the usage
of low-rank tensor arithmetics and allow to solve huge scale optimization problems. In particular,
we consider a semismooth Newton method for an optimal control problem with pointwise control
constraints and an interior point algorithm for an obstacle problem, both with uncertainties in the
coefficients.
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1. Introduction. In this paper we develop low-rank tensor methods for solv-
ing problems that arise from discretizations of inequality-constrained optimization
problems that involve PDEs with uncertain parameters. Especially, we consider op-
timal control of a PDE under uncertainty, which results in robust optimal solutions.
Further, we address the computation of the whole parametric solution of variational
inequalities (VIs) of obstacle type involving uncertainties. This provides a basis for
uncertainty quantification (UQ) of solutions to these VIs.

In many application areas, for example when dealing with systems with many
parameters like in uncertainty quantification or with many free variables like in quan-
tum mechanics, tensors can be used to describe the state of these systems. In the
finite-dimensional case a tensor is a multidimensional array, which, e.g., can represent
a multivariate function by its values on a structured grid. If there are d dimensions
and n degrees of freedom per dimension, then the resulting tensor is of order d and
has nd elements. Storage and computational time thus scale like O(nd). The curse
of dimensionality caused by the exponential dependence on the order d of the ten-
sor renders working with full tensors intractable already for moderate orders. Thus,
more efficient tensor representations are required, and for instance in quantum physics
such approaches are in use for quite some time already, see, e.g., [34, 24] for refer-
ences. In the last years, significant progress has been made in the development of
a mathematically rigorous theory and algorithms for such low-rank tensor formats;
see the book [17] and the surveys [16, 27] for an overview. Classical tensor decom-
positions either lack important theoretical properties – such as the well-posedness
of the low-rank approximation problem, which is violated for the canonical polyadic
(CP) decomposition – or have complexity issues – such as, e.g., the Tucker decom-
position. Current investigations therefore deal with the approximation of tensors in
new low-rank formats that combine low complexity with good theoretical and com-
putational properties. In particular, the tensor train (TT) format [39, 40] and the
hierarchical Tucker decomposition (HTD) [19, 32] meet the requirements of scaling
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well in the order and the dimensions of the tensor. They also are attractive from a
theoretical and algorithmic perspective. Currently, TT and HTD approximations of
tensors are intensively investigated, using different techniques such as generalizations
of the singular value decomposition [6, 15], pointwise evaluations [37, 2], and min-
imization of least squares functionals. The latter requires optimization algorithms
for unconstrained problems with tensors of fixed or adaptive low rank, for example
block coordinate descent methods like (M)ALS [23], DMRG [38], and AMEn [9], or
Riemannian optimization approaches that work on low-rank tensor manifolds [5, 29].
Another field of research deals with the solution of large linear systems by iterative
methods such as preconditioned conjugate gradient (PCG) algorithms for tensors in
HTD [31], which is also closely related to the minimization of quadratic functionals.
All these algorithms benefit from the good complexity of low-rank tensors.

In contrast to the mentioned methods for unconstrained optimization, we propose
algorithms for inequality constrained optimization in this paper and apply them to op-
timal control problems with PDEs under uncertainty and to variational inequalities of
obstacle type with uncertain coefficients. Exploiting the good complexity of low-rank
tensors, the proposed algorithms are able to solve systems with multiple parameters.
Compared to other methods that were recently applied in uncertainty quantification
or for dealing with uncertainties in general, they enjoy attractive complexity prop-
erties, which is especially important for problems in high dimensions. Sparse grids
can also reduce the computational complexity drastically, but in general still scale
exponentially in the number of parameters [14] whereas low-rank tensors feature lin-
ear scaling. Sparse grid techniques can be further improved by constructing adaptive
algorithms as in [28]. Monte Carlo (MC) type methods are known for their quite
slow, but dimension-independent approximation properties. Accelerations of MC are
possible, e.g., by Quasi-Monte Carlo [35, 33] or multi-level approaches [3].

We consider two types of constrained optimization problems, both involving an
elliptic operator with uncertain coefficients. We formulate them in an appropriate
tensor Hilbert space and discretize them by finite elements (FE) for the space variable
and polynomial chaos for the random parameters.

In the first problem class, the PDE under uncertainty arises as the state equation
in an optimal control problem with control constraints. The discretized state is repre-
sented by a tensor and the state equation results in a linear operator equation in tensor
space. We reduce the optimal control problem to the control and apply the adjoint
approach to compute the gradient of the reduced objective function. The state and
adjoint equations are solved using AMEn [9], a block iterative method that operates
on the core tensors of the TT representation. Based on this, the reduced objective
function and its gradient can be evaluated. A semismooth Newton method is applied
to the optimality conditions of the reduced problem. For solving the semismooth
Newton system, a block elimination and CG are used.

As a second problem class, we consider a variational inequality of obstacle type
with uncertain coefficients. After discretization, this is a quadratic optimization prob-
lem in a finite-dimensional tensor space with element-wise constraints on the whole
tensor, for which we develop a primal interior point method. The first and second
derivative of the log-barrier term require computing element-wise reciprocals of ten-
sors. For this we use a Newton-Schulz iteration or, alternatively, AMEn. The solution
of the barrier-Newton system is done by either AMEn or by a low-rank tensor PCG
method [31]. Feasible step lengths are determined by the computation of the max-
imum element of a tensor, for which we use global optimization on the represented
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continuous function.
This paper is organized as follows: We start with an introduction to tensors

and low-rank formats in the next section. Then, our setting will be motivated by
two example applications (section 3): the mentioned optimal control problem with
uncertain coefficients in the state equation and the multi-parametric obstacle problem
and their discretization using tensors. We discuss our algorithms for the solution of
the presented problems in section 4. The numerical tests in section 5 show their
efficiency and accuracy. Conclusions and an outlook are given in section 6.

2. Tensors and low-rank formats.

2.1. Basics and notation. In this paper, we denote by a tensor x ∈ Rn1×...×nd

a d-dimensional array of real numbers (cf. [32, sec. 1], where C is used as underlying
field). These numbers could be values of a function on a d-dimensional rectilinear grid.
The array dimension d is called the order of the tensor and the modes are numbered by
1, . . . , d. We denote the dimension of the i-th mode by ni and write x(k1, . . . , kd) for
the (k1, . . . , kd)-component of x, where ki ∈ [ni], i ∈ [d], writing [m] ∶= {1, . . . ,m} here
and throughout. The index notation in parentheses is better readable than subscripts
like xk1,...,kd . The tensors of all ones will be denoted by 1 if the dimensions are clear.
Reshaping a tensor as a vector in a certain order (e.g., reverse lexicographically as in
[32]) will be written as vec(x) ∈ Rn1⋯nd . Matricization, i.e., reshaping as a matrix

is denoted by x(t) ∈ R(∏i∈t ni)×(∏j∉t nj), where t ⊂ [d] denotes the set of modes that
become the rows of the resulting matrix. Analogously we write ten(x) for reshaping
a vector or a matrix x back into a tensor when the dimensions are clear. For the
extraction of parts of a tensor we also allow indexing with sets and write “⋅” for the
full index range of a dimension: x(⋅,4,{1,5},⋅, . . . ,⋅) ∈ Rn1×2×n4×...×nd is obtained from
x by fixing the second index at 4 and taking the first and fifth components of the third
mode and all components of the remaining modes. Note that modes that are indexed
by a single index are cut out in the result, while modes indexed by a set remain.

As tensors form a vector space, all vector space operations are defined for tensors.
Additionally, element-wise operations are useful: x ⊙ y denotes multiplication, x./y
division and x.λ exponentiation. The element-wise application of a function f ∶ R→ R
is written as f(x).

Definition 2.1 (i-mode matrix product). Let x ∈ Rn1×...×nd be a tensor,
i ∈ [d] a mode, and A ∶ Rni → Rm a linear operator (or a matrix). Then the i-mode
matrix product A ○i x ∈ Rn1×...×ni−1×m×ni+1×...×nd is defined by (A ○i x) (k1, . . . , kd) ∶=
(Ax(k1, . . . , ki−1,⋅, ki+1, . . . , kd)) (ki) for all (k1, . . . , kd) ∈ [n1] × . . . × [ni−1] × [m] ×
[ni+1] × . . . × [nd]. In short notation: A ○i x = ten (Ax({i})) (cf. [32, sec. 4.1]).

This definition means that we take all vectors that result from fixing all indices of
the tensor x except the i-th one, apply A, and use the resulting vectors to form A○ix.
We view tensors of order 1 as column vectors and order-2 tensors as matrices where
the first index is for the rows. The contraction of two tensors is a further important
operation. It generalizes inner and outer products as well as matrix multiplication.

Definition 2.2 (tensor contraction). Let x ∈ Rn1×...×nd and z ∈ Rñ1×...×ñd̃ be
tensors and s = (s1, . . . , sp), t = (t1, . . . , tp) with si ∈ [d], ti ∈ [d̃] be ordered lists of

modes that shall be contracted. Further, let s̄i, 1 ≤ i ≤ d − p, and t̄i, 1 ≤ i ≤ d̃ − p, be
the remaining, untouched modes in ascending order. Then the contraction ⟨x,z⟩s,t ∈
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Rs̄1×...×s̄d−p×t̄1×...×t̄d̃−p of x and z along the modes s and t is defined as

⟨x,z⟩s,t(ks̄1 , . . . , ks̄d−p , `t̄1 , . . . , `t̄d̃−p) =
ns1 ,...,nsp

∑
ks1 ,...,ksp=1

x(k1, . . . , kd)z(`1, . . . , `d̃)∣`ti=ksi∀i∈[p]

element-wise for all indices ks̄i ∈ [ns̄i] (i ∈ [d − p]) and `t̄j ∈ [ñt̄j ] (j ∈ [d̃ − p]). When
t or s are sets rather than ordered lists, then they stand for the lists of elements in
ascending order.

Here, similar to a matrix product, a component of the resulting tensor is obtained
by fixing indices in the untouched modes and computing an inner product of the
resulting tensors of the same size. Tensor contraction can be nicely visualized by
tensor network diagrams [32, sec. 5.1]. We sometimes need the following special cases
of tensor contraction:

Definition 2.3 (special cases of tensor contraction). Let x,y ∈ Rn1×...×nd and
z ∈ Rñ1×...×ñd̃ be tensors.

● The outer product1 x⊗z ∶= ⟨x,z⟩∅,∅ ∈ Rn1×...×nd×ñ1×...×ñd̃ of the tensors x and
z is obtained as

(x⊗ z) (k1, . . . , kd, `1, . . . , `d̃) = x(k1, . . . , kd)z(`1, . . . , `d̃).

● An elementary tensor (or rank-1-tensor) ⊗d
i=1 u

i ∈ Rn1×...×nd is an outer prod-
uct of vectors:

(
d

⊗
i=1

ui)(k1, . . . , kd) =
d

∏
i=1

uiki ,

where uiki is the ki-th component of the vector ui ∈ Rni .
● The inner product ⟨x,y⟩ ∶= ⟨x,y⟩[d],[d] ∈ R of two tensors of the same size is

⟨x,y⟩ =
n1

∑
k1=1

. . .
nd

∑
kd=1

x(k1, . . . , kd)y(k1, . . . , kd).

● The Frobenius norm of a tensor x is ∥x∥F ∶=
√

⟨x,x⟩.
The i-mode matrix product is a matrix-tensor contraction: A ○i x = ⟨A,x⟩{2},{i}.

2.2. Low-rank tensor formats. As the amount of data of a full tensor is in
general very high (of order O(ndmax) with nmax ∶= maxi∈[d] ni), it is important to find
a representation or approximation of it that requires substantially less memory. For
instance, a tensor can be approximated by a rank-R-tensor, which is the sum of R
elementary tensors:

x ≈
R

∑
j=1

d

⊗
i=1

ui,j with ui,j ∈ Rni for i ∈ [d], j ∈ [R].

This is also known as canonic polyadic (CP) decomposition (cf. [17, ch. 7]) and
requires storage of order O(Rnmaxd). We note that this seems to be linear in d
instead of exponential in the case of storing the full tensor. But one should take
into account that R usually depends on the approximation accuracy, which again can

1Note that the vectorization/matricization of the outer product of two tensors coincides with the
standard Kronecker product (also denoted by ”⊗”) of vectorizations/matricizations of them.
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depend on d. Furthermore, this format has certain drawbacks such as the possible
ill-posedness of the best approximation of a given tensor by a tensor of rank at most
R [7].

A widely used approach for the matrix case d = 2 is a low-rank approximation
by a truncated singular value decomposition (SVD). The quadratic error (squared
Frobenius norm) made by this approximation is bounded by the sum of the truncated,
squared singular values [17, Lemma 2.30] and can thus be estimated easily. The SVD
approximation is optimal w.r.t. this error in the set of matrices of a fixed maximum
rank. A generalization of this approximation technique to d-dimensional tensors is
therefore desirable, but cannot be available in the CP format due to the ill-posedness
of the approximation problem. Thus, a different approach works with subspaces of
the Rni , as done in the Tucker format (or tensor subspace representation [17, ch. 8]).
Here, for representing a tensor x ∈ ⊗d

i=1 Rni , bases of ri-dimensional subspaces of the
Rni are selected, stored as matrices Ui ∈ Rni×ri and a basis ⊗d

i=1Ui of the tensor
product of subspaces is formed. One can combine the basis elements linearly with
coefficients stored in the so-called core tensor c ∈ Rr1×...×rd to obtain an approximation
of x. For this format the HOSVD (higher order SVD, which uses the standard SVD
in substeps) is available for truncating a tensor to lower Tucker rank giving a quasi-
optimal result2 and offering error control similar to the one in standard SVD [6].
Unfortunately, defining rmax ∶= maxi∈[d] ri, the required storage for the Tucker format

is O(nmaxrmaxd + rmax
d) and grows exponentially in d.

A generalization and improvement of this idea is the hierarchical Tucker decom-
position (HTD) [19] used in the htucker Matlab toolbox [32]. It uses a binary tree
T and stores a coefficient vector at the root, coefficient matrices at interior nodes, and
basis matrices at the leaves. The nodes of the tree are denoted by nonempty subsets
of [d]; the root node is [d] while the d leaf nodes are (from left to right) {1}, . . ., {d}.
For the remaining nodes there holds that, when the non-leaf node t has left and right
children l, r ⊂ [d], then l ≠ ∅ ≠ r and t = l ⊍ r. As a convention, we require i < j for all
i ∈ l and all j ∈ r. In HTD the tensor x is recursively decomposed. In a first step, it
is written as

vec(x) = (Ua ⊗Ub)B[d],

where a and b are the left and right children of the root [d], with suitably chosen
subspace bases Ua ∈ Rna×ra and Ub ∈ Rnb×rb , where nt ∶= ∏i∈t ni is defined for all nodes
t. The vector B[d] ∈ Rrarb stores the coefficents. This is just a low-rank decomposition

of the matricization x(a). The crucial point is that only B[d] is stored, but not the
matrices Ua and Ub. The latter are again factored in a similar way as the root tensor:

Inductively, consider an interior node t with a subspace basis Ut ∈ Rnt×rt (such
as the two root children a,b from above). Denote by l and r the children of t. Now
Ut is decomposed as

Ut = (Ul ⊗Ur)Bt

with suitably chosen subspace bases Ul ∈ Rnl×rl and Ur ⊂ Rnr×rr and the coefficient
matrix Bt ∈ Rrlrr×nt . Again, only the matrix Bt is stored at node t, but not the basis
Ut. This procedure is continued. At non-leaf nodes, basis matrices are decomposed

2Best approximation up to a factor that depends on the order d of the tensor (
√
d for the Tucker

format, see, e.g., [16]).
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as described, while at every leaf node {i} the basis matrix Ui = U{i} ∈ Rni×ri is stored,
where ni = n{i} and ri = r{i}.

Thus, the tensor is represented by the vector B[d] ∈ Rrarb , the matrices Bt ∈
Rrlrr×rt at the d − 2 interior nodes (the Bt at non-leaf nodes are also called transfer
matrices), and the basis matrices Ui ∈ Rni×ri at the d leaf nodes. The storage require-
ment is O(nmaxrmaxd + rmax

3d), hence linear in d, where nmax and rmax are upper
bounds for the ni and rt. The vector of numbers rt, t ∈ T , is called hierarchical Tucker
(HT) rank. Given this representation, the full tensor can be recovered by constructing
the basis matrices Ut in a leaves-to-root sweep, noting that vec(x) = U[d]. One can

show that any tensor satisfying rank x(t) ≤ rt for all t ∈ T can be represented exactly
in this format with at most this HT rank.

The htucker toolbox [32] implements tensors in this format and efficient versions
of the most important operations, e.g., extraction of parts of the tensor, application
of linear operators to the i-th mode, contraction, tensor orthogonalization and trun-
cation to a lower rank by HOSVD for HTD [15] with error control and quasi-optimal
approximation up to the factor

√
2d − 3. This truncation is crucial because when

using the standard implementations for summing or multiplying two tensors element-
wise, the ranks sum or multiply, respectively. Therefore, special truncated versions
of these operations are available. All these operations can be performed with a rea-
sonable time complexity (linearly in nmax and d and polynomially in rmax, at most
O(nmaxdrmax

2 + drmax
4), but often less).

Closely related is the tensor train (TT) format [39], also known as matrix product
states (MPS) in the quantum physics community. It has a similarly nice structure as
HTD and its complexity as well as the available operations are comparable to HTD.
The TT-Toolbox [40] provides implementations in Matlab and in Python. The TT
rank of a tensor x ∈ Rn1×...×nd is a vector r ∶= (r0, r1, . . . , rd) with r0 = rd = 1 and
ri ∈ [ni] for i ∈ {2, . . . , d−1}. In the TT format, x = TT (u) is represented by a d-tuple
u ∶= (u1, . . . ,ud) ∈ ⨉di=1 Rri−1×ni×ri of order-3-tensors as follows:

x(k1, . . . , kd) = u1(⋅, k1,⋅)u2(⋅, k2,⋅)⋯un(⋅, kn,⋅) ∈ R ∀ki ∈ [ni], i ∈ [d].

Note that this is a simple product of matrices, resulting in a scalar value because the
first and the last matrix of the chain are a row and column vector, respectively. As
the HTD is somewhat more general, we started working with that format. During
our work it turned out that some methods, which are only available for TT tensors,
yielded better results. Thus we finally worked with HT tensors with linear (instead of
usually balanced) dimension trees. This allowed for quite simple conversions between
the two formats where necessary (cf. [17, sec. 12.2.2]).

3. Applications: problem formulation and discretization. We will use
the good complexity of low-rank tensors to solve optimal control problems with PDEs
as well as variational inequalities, both with uncertain parameters. To describe the
setting, let D ⊂ Rn be an open, bounded domain with Lipschitz boundary ∂D and
consider the following elliptic PDE with a parameter-dependent coefficient κα which
depends continuously on the parameter vector α ∈ Rm:

−div (κα∇yα) = b (in D), yα = 0 (on ∂D). (1)

Here, for fixed α, the state yα lives in Y ∶= H1
0(D). In the optimal control problem

considered in section 3.1, this parametric PDE will describe a state equation under
uncertainty and the right hand side b ∈ Y ∗ will depend on a control u ∈ Uad ⊂ U ∶=
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L2(D). The application in section 3.2 will consider a variational inequality of obstacle
type under uncertainty, where the underlying parametric differential operator is of the
same form as in (1). This then additionally involves pointwise inequality constraints
on yα.

The parameters α ∈ Rm, on which κα depends, are considered to be uncertain;
the random variables αi are assumed to be independently distributed with values in
Γi ⊂ R and with induced probability measures Pαi on Γi. We set Γ = ⨉mi=1 Γi ⊂ Rm
and denote by Pα the product measure. For uniform well-posedness, we assume the
coefficient to be uniformly positive and bounded: 0 < κmin ≤ κα(x) ≤ κmax < ∞ for
almost all x ∈D and all α ∈ Γ.

Given the right hand side b ∈ Y ∗ and a realization α ∈ Rm of the uncertain
parameters, the corresponding state yα ∈ Y = H1

0(D) is defined as the weak solution
of (1), which, in variational form, reads:

(κα∇yα,∇v)L2(D)n = ⟨b, v⟩H−1(D),H1
0 (D) ∀ v ∈H1

0(D). (2)

In cases where the coefficient is a more general random field κ(x,ω) one can (under
suitable conditions) use the Karhunen-Loève expansion to get an approximation κα,
which depends on finitely many, uncorrelated random variables (see, e.g., [13]) and
can be treated as done here if these random variables are in fact independent.

Introducing the operator

A(α) ∈ L(Y,Y ∗), ⟨A(α)y, v⟩Y ∗,Y ∶= (κα∇y,∇v)L2(D)n ∀ y, v ∈ Y, (3)

we can write (2) as a parametric linear operator equation

A(α)yα = b. (4)

One could also take the right hand side b of the equation or the domain D to be
parameter-dependent, but to focus the presentation we keep them fixed. In order to
solve this parametrized equation one could insert any realization of α and solve (4) by
a suitable method (e.g., standard finite element discretization). The more parameter
values are inserted, the more equations have to be solved and the computational effort
grows.

A different perspective is to express the dependence on α by writing y(x,α) =
yα(x) with y ∈ Y ∶= H1

0(D) ⊗ L2(Γ1,Pα1) ⊗ . . . ⊗ L2(Γm,Pαm) = H1
0(D) ⊗ L2(Γ,Pα)

(cf. [17, sec. 4.2.3]), meaning that y is a H1
0 -function w.r.t. the space variable x and

has finite variance w.r.t. the random variables α. In the following, we identify the
dual space of L2(Γi,Pαi) with L2(Γi,Pαi). The Hilbert space Y is the closure of the
algebraic tensor product space H1

0(D)⊗aL2(Γ1,Pα1)⊗a . . .⊗aL2(Γm,Pαm) ∶= span(y⊗
υ1⊗. . .⊗υm, y ∈H1

0(D), υi ∈ L2(Γi,Pαi), i ∈ [m]) (with the outer product of real valued
functions (y ⊗ υ1 ⊗ . . .⊗ υm)(x,α1, . . . , αm) ∶= y(x)υ1(α1)⋯υm(αm)) with respect to

an appropriate norm, here ∥y∥Y ∶= (∫Γ ∫D y(x,α)2 + ∥∇xy(x,α)∥2
2 dxdPα)

1/2
. It is

isomorphic to the Bochner space L2
Pα (Γ;H1

0(D)) of H1
0(D)-valued mappings on Γ

with finite variance w.r.t. Pα and its dual space Y∗ can be identified with H−1(D) ⊗
L2(Γ1,Pα1) ⊗ . . .⊗L2(Γm,Pαm). More detailed explanations can be found in [12] as
well as in [17, ch. 3 and 4].

Now we write (4) as an equation in the tensor space, in a weak sense also w.r.t.
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the parameters:

Ay = b, A ∶Y→Y∗, ⟨Ay,v⟩Y∗,Y = ∫
Γ
(κα∇xy(⋅, α),∇xv(⋅, α))L2(D)n dPα,

b ∈Y∗, ⟨b,v⟩Y∗,Y = ∫
Γ
⟨b,v(⋅, α)⟩Y ∗,Y dPα ∀ v ∈Y.

(5)

Due to the Lax-Milgram theorem this equation has also a unique solution in Y, where
it would be sufficient to take κ ∈ L∞(D ×Γ, λ⊗Pα) (with the Lebesgue measure λ on
D) and to be uniformly positive and bounded from above almost everywhere on D×Γ
(cf. [13]). Note that above we assumed the boundedness of κ indeed for all α ∈ Γ
and assumed continuous dependence to be able to insert any value of α into (4) and
to apply quadrature formulae or sampling methods later. Furthermore, the unique
solution of (5) can then be constructed by solving (4) for any value of α, which yields
the equivalence of the two formulations.

Example 3.1. To be more concrete, let us divide the domain D into open
subsets Di ⊂D (i ∈ [m]), which are pairwise disjoint (Di ∩Dj = ∅ for i ≠ j) and cover

the whole domain in the sense that D = ⋃mi=1Di. On each subset the coefficient will
be disturbed independently. We model this by an average coefficient function κ0(x)
and by functions νi(x) (i ∈ [m]) that describe the influence of the parameter αi over
the domain D. We set κα(x) ∶= κ0(x) (1 +∑mi=1 αiνi(x)). To be more specific, let
us take κ0 to be constant on each subdomain (κ0Di ≡ σi, σ ∈ Rm>0) and the random
variables α to be uniformly distributed on the open interval (−1,1). The functions
νi are supported on Di and have the form νi(x) ∶= ϑi ⋅ 1Di(x) with ϑ ∈ [0,1)m. Then
the assumptions from above are fulfilled and we get an elliptic operator A. We will
use this example in our numerical tests later. In this case, the operator A has the
following useful structure:

Lemma 3.2. The operator A given in (5) with κα(x) ∶= κ0(x) (1 +∑mi=1 αiνi(x))
as in Example 3.1 can be written as

A = A0 ⊗ (
m

⊗
j=1

Id) +
m

∑
i=1

Ai ⊗ (
m

⊗
j=1

Sij), (6)

with A0,Ai ∈ L(Y,Y ∗) and Sij ∈ L(L2(Γj ,Pαj), L2(Γj ,Pαj)) defined by

⟨A0y, v⟩Y ∗,Y ∶= (κ0∇y,∇v)L2(D)n , ⟨Aiy, v⟩Y ∗,Y ∶= (νi κ0∇y,∇v)L2(D)n ,

Sij = Id for i, j ∈ [m], i ≠ j, (Sjjυj)(αj) ∶= αj ⋅ υj(αj) for j ∈ [m].

Here, the Kronecker product of linear operators is defined on the algebraic tensor space
by their action on elementary tensors [17, sec. 3.3]. In the current case we have for
example

(Ai ⊗ Si1 ⊗ . . .⊗ Sim)(y ⊗ υ1 ⊗ . . .⊗ υm) ∶= (Aiy) ⊗ (Si1υ1) ⊗ . . .⊗ (Simυm).

Proof. Using the structure of A(α) and of κα, we obtain:

⟨A(α)y, v⟩Y ∗,Y = (κ0∇y,∇v)L2(D)n +
m

∑
i=1

(κ0αiνi∇y,∇v)L2(D)n

= ⟨(A0 +
m

∑
i=1

αiAi)y, v⟩
Y ∗,Y

.
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We next consider elementary tensors y,v ∈ Y, i.e., y(x,α) = y(x) ⋅ ∏m
j=1 υj(αj) (or

y = y ⊗ υ1 ⊗ . . . ⊗ υm), v(x,α) = v(x) ⋅ ∏m
j=1 ξj(αj) (or v = v ⊗ ξ1 ⊗ . . . ⊗ ξm), and

compute with the identification L2(Γj ,Pαj)∗ = L2(Γj ,Pαj):

⟨Ay,v⟩Y∗,Y = ∫
Γ
⟨(A0 +

m

∑
i=1

αiAi)y, v⟩
Y ∗,Y

(
m

∏
j=1

υj(αj)ξj(αj))dPα

= ⟨A0y, v⟩Y ∗,Y ⋅
m

∏
j=1
∫

Γj
υj(αj)ξj(αj)dPαj

+
m

∑
i=1

⟨Aiy, v⟩Y ∗,Y ⋅ ∫
Γi
αiυi(αi)ξi(αi)dPαi ⋅∏

j≠i
∫

Γj
υj(αj)ξj(αj)dPαj

= ⟨(A0 ⊗ (
m

⊗
j=1

Id) +
m

∑
i=1

Ai ⊗ (
m

⊗
j=1

Sij))y,v⟩
Y∗,Y

.

(7)

The operator (A0 ⊗(⊗m
j=1 Id) +∑mi=1Ai ⊗(⊗m

j=1 Sij)) can be written as y↦ A0 ○1 y+
∑mi=1Ai ○1 Sii ○i+1 y. It is bounded since the operators Ai and Sij are bounded. This
follows from κ0, νi ∈ L∞(D) and the boundedness of the sets Γi. Since A is linear and
the space spanned by all elementary tensors is dense in Y, we can conclude that (6)
holds.

This structure of the operator A makes it easily applicable to tensors in low-rank
formats that allow applications of a linear operator to a mode and summation of
tensors.

The next example shows that also more complicated operators that incorporate
additional domain parametrizations can be handled:

Example 3.3. Consider a domain D containing m
2

open subdomains Di(αi) ⊂
D, i ∈ {1, . . . , m

2
}, with m even, the sizes and shapes of which depend on the pa-

rameters αi, respectively. One can think of circular disks with fixed midpoint and
varying radius. The subsets shall be disjoint for all values αi ∈ Γi. The average

coefficient on every Di(αi) is constant and given by σi, where σ ∈ Rm/2
>0 , while the

coefficient on the rest D̃(α) ∶= D ∖ (⋃m/2
i=1 Di(αi)) of the domain is σ0 > 0. Besides

the parameter-dependent subdomain sizes, the coefficient on the subdomains depend
again on parameters, now denoted by αi, i ∈ {m

2
+ 1, . . . ,m}. Again, we assume them

to be independent and uniformly distributed on (−1,1). The coefficients on the sub-
domains Di(αi) are (1+αi+m/2ϑi)σi, where ϑ ∈ [0,1)m/2 describes the allowed relative
variation. This yields the parametric coefficient function

κα(x) = { σ0 if x ∈ D̃(α)
(1 + αi+m/2ϑi)σi if x ∈Di(αi) for a i ∈ [m

2
] }

= σ0 +
m/2

∑
i=1

(σi − σ0 + αi+m/2ϑiσi) ⋅ 1Di(αi)(x).

Defining κ0(x) ∶= σ0, νi,αi(x) ∶= 1Di(αi)(x), and τi (αi+m/2) ∶= σi −σ0 +ϑiσiαi+m/2, we
get

κα(x) = κ0(x) +
m/2

∑
i=1

τi(αi+m/2)νi,αi(x)
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and thus a quite similar, but a bit more complicated structure as in Example 3.1:

Lemma 3.4. Having κα(x) ∶= κ0(x)+∑m/2
i=1 τi(αi+m/2)νi,αi(x) as in Example 3.3,

the operator A given in (5) can be written as

(Ay)(⋅, α1, . . . , αm/2, ⋅, . . . , ⋅)

= (A0 ○1 y +
m/2

∑
i=1

Ai(αi) ○1 Sii ○i+m/2+1 y)(⋅, α1, . . . , αm/2, ⋅, . . . , ⋅)

with A0,Ai(αi) ∈ L(Y,Y ∗) and Sii ∈ L(L2(Γi+m/2,Pαi+m/2), L2(Γi+m/2,Pαi+m/2)) de-
fined by

⟨A0y, v⟩Y ∗,Y ∶= (κ0∇y,∇v)L2(D)n , ⟨Ai(αi)y, v⟩Y ∗,Y ∶= (νi,αi ∇y,∇v)L2(D)n ,

(Siiυi+m/2)(αi+m/2) = τi(αi+m/2) ⋅ υi+m/2(αi+m/2).

Proof. In a similar manner as in the proof of Lemma 3.2 we get A(α) = A0 +
∑m/2
i=1 τi(αi+m/2)Ai(αi). Exactly the same way as in equation (7) we can apply it to

an elementary tensor and end up with the result from the lemma. Again, it holds
for arbitrary tensors by linearity and continuity. Note that the maps τi belong to
L∞ (Γi,Pαi).

The operator in the previous lemma is a sum of operators that cannot be written
by i-mode operator multiplications. Rather the modes of αi and x are coupled through
the operation v(x,αi) ↦ (Ai(αi)v(⋅, αi))(x), which maps a tensor of order 2 to a
tensor of order 2. We propose a possibility for the application to low-rank tensors in
the discrete case in the next section (Example 3.6).

3.1. Optimal control under uncertainty. We now consider an optimal con-
trol problem where the parametric PDE (4) constitutes the state equation and the
right hand side b depends on the control u ∈ L2(D). We can write (4) as

Eα(yα, u) ∶= A(α)yα − b(u) = 0 (8)

with Eα ∶ Y × U → Y ∗. For concreteness, let ⟨b(u), v⟩Y ∗,Y ∶= ∫D u(x)v(x)dx and
consider a cost function of tracking type:

J(yα, u) ∶= 1
2
∥yα − ŷ∥2

L2(D) +
γ
2
∥u∥2

L2(D), (9)

with γ ∈ R>0, and an admissible control set Uad ∶= {u ∈ U ∶ ul ≤ u ≤ uu a.e. in D},
where ul ≤ uu, ul, uu ∈ U . The control u and the admissible set Uad do not depend on
the parameter α.

If we fix a particular realization of α (e.g., the expected value), we obtain a
deterministic, parametrized optimal control problem:

min
(yα,u)∈Y ×U

J(yα, u) s. t. Eα(yα, u) = 0, u ∈ Uad. (10)

Solving this problem for a certain parameter selection α yields a control that is optimal
for exactly this realization. But, in fact, we do not know an exact value for α but only
its distribution. Often, rather than considering fixed realizations of α it is much more
desirable to obtain robustified controls that take into account all possible realizations
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of the parameter α. Hence, we need to consider the tensor y of solutions for all
parameters as state and the state equation becomes (cf. equation (5))

E(y, u) ∶=Ay −Bu = 0 (11)

with E ∶ Y × U → Y∗ and ⟨Bu,v⟩Y∗,Y ∶= ∫Γ (u,v(⋅, α))L2(D) dPα. Now we have to
incorporate a suitable risk measure into the objective function to treat the stochastic
dependencies.3 We choose to minimize the mean squared deviation between the actual
and the desired state (cf. [28]) and take the objective function

J(y, u) ∶= 1
2
Eα (∥y − ŷ ⊗ 1∥2

L2(D)) +
γ
2
∥u∥2

L2(D). (12)

Note that there holds Eα(∥y − ŷ ⊗ 1∥2
L2(D)) = ∥y − ŷ ⊗ 1∥2

L2(D)⊗L2(Γ,Pα). The optimal
control problem under uncertainty is then given by:

min
(y,u)∈Y×U

J(y, u) s. t. E(y, u) = 0, u ∈ Uad. (13)

The existence of a unique solution to this problem can be shown exactly as for the
deterministic one (10) since the operator A has a bounded inverse by the Lax-Milgram
lemma (cf. [22, Theorem 1.43]).

3.1.1. Space discretization: finite elements. In order to solve the optimal
control problems (10) and (13) numerically, we have to discretize them. In the case of
problem (10) we insert a fixed realization α and use a standard finite element spatial
discretization. The domain D is approximated by a domain Dh that is partitioned
into a finite element mesh. We choose continuous, piecewise polynomial ansatz spaces
(piecewise linear in our numerical experiments, but this is not essential). Denote by

{ψ`}Ñ`=1 the finite element basis for the discrete control space Uh ⊂ L2(Dh) and by

{φk0}N0

k0=1 the basis of the discrete state space Y h ⊂ H1
0(Dh). For a given realization

of α, the sparse system matrix Ah(α) ∈ RN0×N0 is given by:

(Ah(α))k0l0 ∶= (κα∇φl0 ,∇φk0)L2(Dh)n .

Example 3.5. Using the particular form of the operators given in Lemmas 3.2
and 3.4, we can derive additional structure of the system matrix Ah(α). For Example
3.1 we get

(Ah(α))
k0l0

= (κ0∇φl0 ,∇φk0)L2(Dh)n +
m

∑
i=1

αi(κ0νi∇φl0 ,∇φk0)L2(Dh)n

=∶ (Ah
0)k0l0 +

m

∑
i=1

αi(Ah
i )k0l0 .

(14)

The matrices Ah
0 ,A

h
1 , . . . ,A

h
m ∈ RN0×N0 are again sparse, and if the functions νi are

indicators for subsets of D as in our example, one can restrict the assembly of Ah
i to

those elements where νi is not identically zero. In a similar way the operator from
Example 3.3 can be written as

Ah(α) = Ah
0 +

m/2

∑
i=1

τi (αi+m/2)Ah
i (αi)

3Another approach is to make an optimal selection for the worst case.
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with slightly different definitions of the occurring matrices.

Defining the matrix Bh ∈ RN0×Ñ as

(Bh)k0l ∶= (ψl, φk0)L2(Dh)

we can state a discrete version of equation (8) as

Ehα(yh,uh) ∶= Ah(α)yh −Bhuh = 0, (15)

where yh ∈ RN0 contains the coefficients of the discrete state w.r.t. the basis {φk0}N0

k0=1

and uh ∈ RÑ are the coefficients for the discrete control.
The objective function (9) in the discrete space reads

Jh(yh,uh) ∶= 1
2
(yh − ŷh)TMh(yh − ŷh) + γ

2
uh

T
M̃huh,

where ŷh ∈ RN0 is the discrete desired state, Mh ∈ RN0×N0 is the mass matrix w.r.t.

the basis {φk0}N0

k0=1 i.e., (Mh)
kl
∶= (φl, φk)L2(Dh). Further, M̃h ∈ RÑ×Ñ is the limped

(and thus diagonal) mass matrix w.r.t. the basis {ψ`}Ñ`=1.
If an appropriate basis is used, the control constraints can be discretized as uhl ≤

uh ≤ uhu (element-wise) with discrete versions uhl ,u
h
u ∈ RÑ of the pointwise bounds.

We obtain the following discretized version of problem (10)

min
yh∈RN0 ,uh∈RÑ

Jh(yh,uh) s. t. Ehα(yh,uh) = 0, uhl ≤ uh ≤ uhu. (16)

3.1.2. Polynomial chaos. We proceed with the discretization of (13). Here
we have additionally the dependence on the random variables α. The expectation
w.r.t. these variables in the objective function will be approximated by a full, multi-
dimensional quadrature formula. This formula is derived from the respective one-
dimensional quadrature rules for each variable αi. Let Ni ∈ N be the number of differ-
ent quadrature nodes {aiki}

Ni
ki=1 ⊂ Γi used for the parameter αi. In order to obtain high

exactness we use Gaussian quadrature. The nodes are then the roots of the polynomial
with degree Ni from a set of orthogonal polynomials w.r.t. Pαi with increasing degree.
We consider Lagrange polynomials {θiki}

Ni
ki=1 of degree Ni −1 w.r.t. the nodes, implic-

itly defined by θiki(a
i
li
) = δkili . The one-dimensional quadrature weights are then given

by wiki ∶= ∫Γi θ
i
ki

(αi) dPαi and a one-dimensional integral of a continuous, integrable

function zi ∶ Γi → R can be approximated by ∫Γi zi(αi)dPαi ≈ ∑
Ni
ki=1w

i
ki
zi (aiki).

To discretize the space L2(Γi,Pαi) we use polynomials of degree Ni − 1 and the
weighted Lagrange polynomials {βiki}

Ni
ki=1, βiki(αi) = ω

i
ki
θiki(αi) with a vector ωi ∈ RNi>0

of positive weights, as basis. Note that these polynomials are always orthogonal which
follows from the fact that Gaussian quadrature is exact for polynomials up to degree
2Ni−1 in this case. If we choose ωiki = (wiki)

−1/2, they are even orthonormal (cf. [13]).

We construct a subspace basis of L2(Γ,Pα) = ⊗m
i=1L

2(Γi,Pαi) by forming the full ten-
sor product {⊗m

i=1 β
i
ki
, ki ∈ [Ni], i ∈ [m]} = {βββ ∶ βββ(α) = ∏m

i=1 β
i
ki
(αi), ki ∈ [Ni], i ∈ [m]}

of the one-dimensional bases. Every element zh of its span is represented by a tensor
of coefficients zh ∈ RN1×...×Nm :

zh(α1, . . . , αm) =
N1

∑
k1=1

. . .
Nm

∑
km=1

zh(k1, . . . , km)β1
k1

(α1) . . . βmkm(αm). (17)
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These coefficients are then given by suitably weighted values of the multivariate poly-
nomial at the points of the multi-dimensional grid ⨉mi=1 {aiki}

Ni
ki=1: zh(k1, . . . , km) =

zh(a1
k1
, . . . , amkm) ⋅ ∏m

i=1 ω
i
ki

−1
. The integral of a multivariate function zzz ∶ Γ → R can

then be approximated by

Eα(z) = ∫
Γ
z(α)dPα ≈

N1

∑
k1=1

. . .
Nm

∑
km=1

w1
k1
⋯wmkmz(a

1
k1
, . . . , amkm) =∶ ⟨zh,wh ⊙ωωωh⟩

with the elementary weight tensors wh ∶= ⊗m
i=1w

i ∈ RN1×...×Nm and ωωωh ∶= ⊗m
i=1 ω

i ∈
RN1×...×Nm . Applying this quadrature rule to an integrand thus can be written as the
inner product of an elementary weight tensor wh⊙ωωωh and the tensor zh of coefficients
that represents the discrete interpolant of z on the grid. Functions z = zh of the
form (17) are integrated exactly with the above quadrature rule. The L2(Γ,P)-inner
product of two functions zh, z̃h represented by the coefficients zh, z̃h is ∫Γ zhz̃h dPα =
⟨zh ⊙wh ⊙ ωωωh.2, z̃h⟩ =∶ ⟨z̃zzh, z̃h⟩wh⊙ωωωh.2 due to the exactness of Gaussian quadrature
and orthogonality of the polynomials. The operator zh ↦ (wh ⊙ωωωh.2) ⊙ zh induces
the inner product.

For the discrete state space Yh ⊂ H1
0(Dh) ⊗ L2(Γ1,Pα1) ⊗ . . .⊗ L2(Γm,Pαm) we

choose the tensor product {φk0⊗β1
k1
⊗. . .⊗βmkm , ki ∈ [Ni], i ∈ {0, . . . ,m}} of the FE basis

and the basis of multivariate polynomials as a basis4. The coefficients are then written
as a tensor yh ∈ RN0×...×Nm ; if a nodal FE basis is used, they are weighted function
values of the represented function yh ∈ Yh. As in (17), the value of a multivariate
function yh represented by the coefficients yh is given by:

yh(x,α) =
N0

∑
k0=1

N1

∑
k1=1

. . .
Nm

∑
km=1

yh(k0, . . . , km)φk0(x)β1
k1

(α1) . . . βmkm(αm). (18)

Now we can formulate a discrete analogue to equation (11) by inserting state functions
yh and test functions vh represented by the discrete tensors yh,vh ∈ RN0×...×Nm as in

(18), respectively. This is a stochastic Galerkin ansatz. We obtain with uh = ∑Ñ`=1 uh`ψ`

∫
Γ
(uh,vh(⋅, α))L2(Dh) dPα

=
N0

∑
k0=1

N1

∑
k1=1

. . .
Nm

∑
km=1

vh(k0, . . . , km)(uh, φk0)L2(Dh) ∫
Γ
β1
k1

(α1) . . . βmkm(αm)dPα

= ⟨(Bhuh) ⊗ (wh ⊙ωωωh),vh⟩ =∶ ⟨Bhuh,vh⟩1⊗(wh⊙ωωωh.2)

with Bhuh ∶= (Bhuh) ⊗ωωωh.−1 and

∫
Γ
(κα∇xyh(⋅, α),∇xvh(⋅, α))L2(Dh)n dPα

=
N0,...,Nm

∑
k0,...,km=1

N0,...,Nm

∑
l0,...,lm=1

yh(l0, . . . , lm)vh(k0, . . . , km)∫
Γ
(Ah(α))k0l0

m

∏
i=1

βili(αi)β
i
ki(αi)dPα

= ⟨⟨ah,yh⟩{m+2,...,2m+2},[m+1],v
h⟩1⊗(wh⊙ωωωh.2) =∶ ⟨Ahyh,vh⟩1⊗(wh⊙ωωωh.2)

with the tensor ah ∈ RN0×N1×...×Nm×N0×N1×...×Nm defined by

ah(k, l) ∶= 1

∏m
i=1w

i
ki
(ωiki)2

(∫
Γ
(Ah(α))k0l0

m

∏
i=1

βili(αi)β
i
ki(αi)dPα) . (19)

4This is a basis of the tensor product of subspaces by [17, Lemma 3.11].
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Here and in the following, we abbreviate k = (k0, . . . , km), l = (l0, . . . , lm), (k, l) =
(k0, . . . , km, l0, . . . , lm), etc.

The discrete counterpart to the state equation (11) is

Eh(yh,uh) ∶= Ahyh −Bhuh = 0.

For tractable computations involving the operator Ah or the tensor ah, respectively,
it is essential to work with low-rank representations of the involved tensors yh, etc.,
and that Ah can be efficiently applied to such low-rank tensors. The latter holds,
e.g., if ah can be represented in a low-rank format as well or if Ah is given as a sum
of Kronecker products of matrices, as it is the case for the operators Ah from our
previous examples.

Example 3.6. Motivated by equation (7) we use the additional structure in
the operator A from Example 3.1 to state its discrete version Ah. Recall that by
Lemma 3.2 we had Ay = A0 ○1 y +∑mi=1Ai ○1 Sii ○i+1 y with Sii ∶ yi(αi) ↦ αi ⋅ yi(αi).
For brevity, we write βiliβ

i
ki

instead of βili(αi)β
i
ki
(αi). We use (14) and the exactness

of Gaussian quadrature to obtain:

∫
Γ
(Ah(α))k0l0

m

∏
j=1

βjlj(αj)β
j
kj
(αj)dPα

= (Ah
0)k0l0

m

∏
j=1
∫

Γj
βjljβ

j
kj
dPαj +

m

∑
i=1

(Ah
i )k0l0 ∫

Γi
αiβ

i
liβ

i
ki dPαi∏

j≠i
∫

Γj
βjljβ

j
kj
dPαj

= (Ah
0)k0l0

m

∏
j=1

wjlj(ω
j
lj
)2δljkj +

m

∑
i=1

(Ah
i )k0l0a

i
liw

i
li(ω

i
li)

2δliki∏
j≠i
wjlj(ω

j
lj
)2δljkj

= (
m

∏
j=1

wjlj(ω
j
lj
)2)((Ah

0)k0l0 +
m

∑
i=1

(Ah
i )k0l0a

i
li)(

m

∏
j=1

δljkj).

(20)

The first factor cancels in the definition (19) of ah. A short calculation yields:

Ahyh = ⟨ah,yh⟩{m+2,...,2m+2},[m+1] = Ah
0 ○1 yh +

m

∑
i=1

Ah
i ○1 Shi ○i+1 yh

with Shi = diag(ai), where ai ∈ RNi is the vector of grid points ai1, . . . , a
i
Ni

. The product
of Kronecker deltas yields that we get in fact a completely decoupled system, one
N0 ×N0 system of linear equations for each combination (a1

k1
, . . . , amkm) of parameter

realizations:

(Ahyh)(⋅, k1, . . . , km) = (Ah
0 +

m

∑
i=1

aikiA
h
i )yh(⋅, k1, . . . , km)

= Ah(aiki)y
h(⋅, k1, . . . , km) = (

m

∏
i=1

(ωiki)
−1)(Bhuh).

This relates the approach to stochastic collocation (cf. [13]), where one would have
ωi = 1 for all i and then get the same weight 1 for all equations obtained by inserting
the collocation points into equation (15). Taking orthonormal polynomials as basis,
these equations are weighted differently.

For the operator of Example 3.3 we additionally have to think about how to
apply the parametrized matrices Ah

i (αi). Performing a computation similar to (20),
the integral

∫
Γi

(Ah
i (αi))k0l0β

i
li(αi)β

i
ki(αi)dPαi ≈ (Ah

i (aili))k0l0w
i
li(ω

i
li)

2δliki ,
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appears and is approximated by Gaussian quadrature. Therefore, we have to assemble

the ∑m/2
i=1 Ni matrices Ah

i (aiki) for all i ∈ [m/2] and ki ∈ [Ni]. Since the functions τi
from example 3.3 are affine, the remaining integrals can again be computed exactly
with Gaussian quadrature. With k = (k0, . . . , km) and l = (l0, . . . , lm) we obtain:

ah(k, l) = ((Ah
0)k0l0 +

m/2

∑
i=1

(Ah
i (aili))k0l0τi(a

i+m/2
li+m/2

))
m

∏
j=1

δljkj ,

(Ahyh)(k) =
N0,...,Nm

∑
l0,...,lm=1

((Ah
0)k0l0 +

m/2

∑
i=1

(Ah
i (aili))k0l0τi(a

i+m/2
li+m/2

))(
m

∏
j=1

δljkj)yh(l)

=
N0

∑
l0=1

(Ah
0)k0l0y

h(l0, k) +
N0

∑
l0=1

m/2

∑
i=1

(Ah
i (aiki))k0l0τi(a

i+m/2
ki+m/2

)yh(l0, k)

× (Ah
0 ○1 yh +

m/2

∑
i=1

Ni

∑
ki=1

Ah
i (aiki) ○1 diag (eiki) ○i+1 diag (τi(ai+m/2)) ○i+1+m/2 yh)(k).

Here, eiki ∈ R
Ni is the ki-th unit vector. As all operations (i-mode matrix multiplica-

tion and summing) are performable in low-rank tensor formats, we can also efficiently
treat the operator with domain parametrization by low-rank tensor techniques. Each
i-mode matrix product can be performed with a cost of O(Nmaxrmax) since the ap-
plied matrices are sparse; the more costly part is the truncated sum of m tensors,
which can be performed in O(dNmaxm

2rmax
2 + dm2rmax

4 + dm3rmax
3) for H-Tucker

tensors, where the m2-terms dominate typically [32, sec. 6.3]. The truncation is im-
portant to avoid infeasible rank growth, but causes on the other hand errors which
make the application of Ah inexact. The objective function is approximated as
follows: the squared L2-difference w.r.t. the first mode of the tensor (the space di-
mension) is induced by the mass matrix and the expectation w.r.t. the parameters
can be calculated by a weighted inner product of tensors as seen above. Note that the
constant function 1(α) = 1 is represented by the tensor ωωωh.−1 in the discrete space.

Jh(yh,uh) ∶= 1
2
⟨yh − ŷh,Mh ○1 (yh − ŷh)⟩1⊗(wh⊙ωωωh.2) + γ

2
uh

T
M̃huh =

= 1
2
⟨yh − ŷh,Mh(yh − ŷh)⟩ + γ

2
uh

T
M̃huh.

(21)

where Mhzh ∶= [Mh,diag (w1 ⊙ (ω1).2) , . . . ,diag (wm ⊙ (ωm).2)] ○1,...,m+1 zh induces

the inner product discretizing that on L2(Dh) ⊗L2(Γ,Pα) and ŷh ∶= ŷh ⊗ωωωh.−1.
As already discussed, we have two natural choices for the selection of the weight

vectors ωi: ωi = (wi).−1/2 gives orthonormal polynomials, while ωi = 1 relates the
approach to stochastic collocation and weights all deterministic equations equally. As
we wanted to compare the solution tensor to solutions obtained from collocation, we
chose the latter. This has the consequence that the coefficients in the state tensor yh

are all of the same order of magnitude and are equally affected by tensor truncation.
We now can state the discrete version of the optimal control problem (13):

min
(yh,uh)∈RN0×...×Nm×RÑ

Jh(yh,uh) s. t. Eh(yh,uh) = 0, uhl ≤ uh ≤ uhu. (22)

The state yh is a discrete tensor and we will use low-rank tensor techniques for solving
the state equation efficiently, which will be addressed in section 4.
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3.2. A parametrized obstacle problem. In the discussed optimal control
problem the state was a tensor and had to fulfill the state equation but no further
constraints were posed on it. Now, we consider an obstacle problem with uncertain
parameters. This results in an optimization problem where the unknown is a tensor
that is subject to pointwise (or, after discretization, element-wise) inequality con-
straints. Assuming a parameter dependence of the same form as in the PDE (2), we
consider now an obstacle problem

ȳα ∈ Yad, ⟨A(α)ȳα − b, v − ȳα⟩Y ∗,Y ≥ 0 ∀ v ∈ Yad. (23)

with state space Y ∶=H1
0(D), differential operator A(α) as defined in (3), force density

b ∈ Y ∗, obstacle function5 g ∈ H2(D) with g ≤ 0 on ∂D (cf. [26]), and feasible set
Yad ∶= {y ∈H1

0(D) ∶ y ≥ g a.e. in D}.
The parametric VI (23) is a necessary and sufficient optimality condition of, and

thus equivalent to, the following parametric quadratic optimization problem:

min
y∈Y

Fα(yα) ∶= 1
2
⟨A(α)yα, yα⟩Y ∗,Y − ⟨b, yα⟩Y ∗,Y s. t. y ∈ Yad. (24)

Since the feasible set Yad is nonempty, closed and convex and the functional Fα is
uniformly convex, this problem has a unique solution ȳα ∈ Yad.

Typical uncertainty quantification (UQ) tasks for analyzing solutions of (23) re-
quire to evaluate statistical quantities that depend on the random vector α and the
solution ȳα, which is a random field. Given the distribution Pα, this requires to, e.g.,
compute moments, such as the expectation EαQ = ∫ΓQ(α, ȳα)dPα of a quantity of
interest Q(α, ȳα). One possibility is Monte-Carlo sampling, but accurate results then
require a possibly very large amount of solves to (23) for different realizations of α.
As an alternative, we propose to use low-rank tensor methods for computing good ap-
proximations of the whole parametric solution ȳ(x,α) = ȳα(x) at once. In the same
way as in (5), we can aggregate all instances of (24) to obtain

min
y∈Y

F(y) ∶= 1
2
⟨Ay,y⟩Y∗,Y − ⟨b,y⟩Y∗,Y s. t. y ≥ g a.e. in D × Γ (25)

with g = g ⊗ 1, 1 ∶ Γ → R,1(α) = 1, i.e., g(x,α) = g(x) for all α, and A and b defined
as in (5). The corresponding equivalent VI reads

ȳ ∈Y, ȳ ≥ g a.e. in D × Γ, ⟨Aȳ − b,v − ȳ⟩Y∗,Y ≥ 0 ∀ v ∈Y, v ≥ g a.e. in D × Γ.

The discretization of the problem is done in the same way as for the state equation
in section 3.1: The discrete deterministic state space Y h ⊂H1

0(Dh) is spanned by the
FE basis {φk0}N0

k0=1 and we write yh ∈ RN0 for the coefficient vector of the state FE

function yh ∈ Y h. The parametrized stiffness matrix Ah(α) and mass matrix Mh are

as before. The vector bh ∈ RN0 discretizes the functional b in the sense that bh
T

vh

is the discrete version of ⟨b, vh⟩Y ∗,Y . Further, the obstacle g is discretized by the
coefficient vector gh ∈ RN0 . The problem (24) then becomes

min
yhα∈RN0

Fhα(yhα) ∶= 1
2
yhα

T
Ah(α)yhα − bh

T
yh s. t. yhα ≥ gh. (26)

This is a quadratic optimization problem with a uniformly convex objective function
and pointwise bounds; it has a unique solution ȳhα.

5Again, we also could take this obstacle to be parameter-dependent.



Constrained Optimization with Low-Rank Tensors 17

As before, we discretize problem (25) by a multivariate weighted Lagrangian basis
in the parameters:

min
yh∈RN0×...×Nm

1
2
⟨Ahyh,yh⟩1⊗(wh⊙ωωωh.2) − ⟨bh,yh⟩1⊗(wh⊙ωωωh.2)

s. t. yh ≥ gh = gh ⊗ ωωωh.−1
(27)

with bh = bh⊗ωωωh.−1. From a collocation perspective, we can view the cost function in
(27) as a sum of the cost functions Fhα(yhα) in (26) over all parameter grid points α =
(a1
k1
, . . . , amkm)T , weighted by the corresponding entries in wh⊙ωωωh.2. The constraints

are all collected and weighted by the entries of ωωωh.−1. If the target is, e.g., to calculate
the expectation EαQ of some quantity Q(α, yα), this weighting seems appropriate.

If all the solutions of (26) for all realization of α are equally important, it is more
natural to use the same weight for all cost functions and for all states, respectively.
This corresponds to choosing ωωωh = 1 and replacing wh in the weighted inner product
by 1 (or a positive multiple of it). This yields:

min
yh∈RN0×...×Nm

Fh(yh) ∶= 1
2
⟨yh,Ahyh⟩ − ⟨bh ⊗ 1,yh⟩ s. t. yh ≥ gh = gh ⊗ 1. (28)

The next section will discuss how problem (28) (or (27)) can be solved by low-rank
tensor methods. The inequality constraints on the tensor pose a particular challenge.

4. Constrained optimization in tensor space. We now develop efficient
methods for solving constrained optimization problems with tensors that use low-
rank formats. In our approach, we operate on the full tensor space Rn1×...×nd and
use low-rank tensors for making all operations efficient. To this end, we adapt non-
linear optimization techniques to low-rank tensor arithmetics and we interlace the
required operations with truncations to suitably maintain moderate ranks. This leads
to inexact optimization algorithms that will be presented in this section.

An alternative approach would be to work directly with the parametrization of
the representing low-rank tensor format. In the case of tensors in HTD, the basis
matrices at the leaves and the transfer matrices at the remaining nodes then would
be the optimization variables, and for TT tensors these would be the representing
tensors ui, i ∈ [m], see section 2.2. A short discussion of possible methods for this
latter approach is given at the end of this paper. Currently, we use methods that
operate directly with the low rank format only as subproblem solvers, e.g., AMEn for
linear systems.

4.1. Algorithms for solving the discrete optimal control problem. We
next propose a method that can be used to solve the problem (22). To this end, we
consider optimal control problems of the following form:

min
(yh,uh)∈RN0×...×Nm×RÑ

Jh(yh,uh) s. t. Ahyh = (Bhuh) ⊗ωωωh.−1, uhl ≤ uh ≤ uhu (29)

with Jh(yh,uh) ∶= 1
2
⟨yh − ŷh,Mh(yh − ŷh)⟩ + γ

2
uh

T
M̃huh, where ŷh ∶= ŷh ⊗ωωωh.−1.

We need some prerequisites for the applicability of our method:
Assumption 4.1.
● The linear operators Mh and Ah are symmetric, positive definite and easily

(at least approximately) applicable to the used low-rank tensors.

● A suitable, symmetric and positive definite preconditioner Th for the operator
Ah is available. It is efficiently applicable to the used type of low-rank tensors.
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Example 4.2. The operators Mh (see equation (21)) and Ah from our examples
above fulfill this assumption. The operators Ah can be applied approximately to
tensors in HTD by i-mode matrix products and truncated sums. They can also be
implemented in the {d,R}-format for operators acting on TT tensors as introduced in
the tamen package [8] since they are sums of Kronecker products of sparse matrices,
which is exactly one possible form for {d,R}. The inverse of the nominal operator, i.e.,

Thyh ∶= Ah (Eαα)
−1○1y

h, that is the inverse of the system matrix for the mean value of
the parameters α applied to the first mode of the tensor, can be used as preconditioner
for Ah. The application of it can be done efficiently using a precomputed sparse
Cholesky factorization of the matrix Ah (Eαα).

As the state equation of (29) has a unique solution yh(uh) = Ah−1((Bhuh)⊗ωωωh.−1),
we can work with the reduced problem

min
uh∈RÑ

Ĵh(uh) ∶= 1
2
⟨yh(uh) − ŷh,Mh(yh(uh) − ŷh)⟩ + γ

2
uh

T
M̃huh

s. t. uhl ≤ uh ≤ uhu.

(30)

Since already for moderate parameter dimension m it is intractable to represent the
state by a full tensor when doing computations, we use an HTD approximation in-
stead. Thus, we have to formulate the optimization algorithm in a way that all tensor
operations stay within the set of HTD-representable tensors of manageable rank. For
solving the state equation, mainly two approaches were considered: Application of a
version of the preconditioned CG method that uses HTD tensors and involves trunca-
tion (i.e., rounding) as proposed in [31]. This requires the efficient application of the
operator Ah to an HTD tensor, which is possible as already described. The remaining
required operations are inner products, vector space operations, and truncation, which
are all available in HTD. The inverse nominal operator preconditioner Th is cheap to
apply and works well in practice. This approach is viable, but in our experiments we
found that the block iterative method AMEn [9] yields better computing times, lower
tensor ranks and even slightly smaller errors than the HTD PCG method. AMEn can
be applied when the right hand side, in our case (Bhuh) ⊗ωωωh.−1, is given in the TT
format and the operator Ah in the {d,R}-format, in our case simply all operators as
sparse matrices that act on the modes of the tensor. AMEn computes an approximate
solution in TT format by a block iteration over the TT cores u and adapts the TT
ranks dynamically. It can be viewed as an improved, rank adaptive version of ALS
with smaller subproblems than in the MALS approach [23].

For computing the reduced gradient ∇Ĵh(uh) ∈ RÑ we use the adjoint approach.

On RÑ and RN0×...×Nm , respectively, we use the L2-type inner products induced by
the operators M̃h

L and Mh, respectively, and represent gradients and dual quantities

w.r.t. these inner products. The lumped mass matrix M̃h
L, (M̃h

L)kk = ∑Ñl=1 M̃h
kl, is

used in the discrete control space to get equivalence to the element-wise projection
in L2(D). All this makes the approach compatible with the function space setting.
The discrete adjoint state ph (uh) ∈ RN0×...×Nm is then defined as the solution of the
following adjoint equation:

Ahph = −Mh (yh(uh) − ŷh). (31)

It can be solved again by PCG or AMEn exactly as the state equation. The right
hand side is already known from evaluating the objective function in (30). The discrete
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gradient w.r.t. the L2-inner product induced by M̃h
L is now given by

∇Ĵh(uh) = −(M̃h
L)−1Bh

T ⟨ωωωh.−1,ph (uh)⟩[m],1+[m] + γuh, (32)

and requires a tensor contraction and matrix-vector operations only. By representing
the state and adjoint state as low-rank tensors and applying a low-rank tensor solver,
we can therefore get good approximations of the function value and gradient. This
allows to apply derivative-based optimization methods.

Due to their proven efficiency for solving control constrained optimal control
problems with PDEs [21, 22, 45], we focus on semismooth Newton methods [21, 44,
41, 45] here. To this end, we write the necessary and by convexity also sufficient
optimality conditions of (30) as a nonsmooth equation:

Rh(ūh) ∶= ūh −Ph(ūh − τ∇Ĵh(ūh)) = 0. (33)

where τ > 0 is arbitrary. In the following, we will choose τ = 1/γ, thus achieving

that the argument of Ph then only depends on ph. Here, Ph ∶ RÑ → RÑ denotes the

projection onto the set {uh ∈ RÑ ∶ uhl ≤ uh ≤ uhu element-wise}, where we use the norm

induced by the lumped mass matrix M̃h
L. We have

(Ph(uh))j = min{max{(uhl )j , (uh)j}, (uu)j}.

As an element of its generalized Jacobian we can choose

DPh(uh) ∈ RÑ×Ñdiagonal, (DPh(uh))jj =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if (uh)j < (uhl )j
1, if (uhl )j ≤ (uh)j ≤ (uhu)j ,
0 if (uhu)j < (uh)j .

Note that for active bounds we could choose any (DPh(uh))jj ∈ [0,1] instead of 1.
It is well known that the function Rh in (33) is semismooth. For τ = 1/γ this

also holds true in the function space setting since there the projection onto Uad is
semismooth from Lq(D) to L2(D) for any q > 2 and it is not difficult to see that the
map inside of the projection, p↦ B∗p is bounded from Y to Y =H1

0(D) (not just to
U). The discrete semismooth Newton system is given by

sh −DPh(uh − τ∇Ĵh(uh))(sh − τ∇2Ĵh(uh)sh) = −uh +Ph(uh − τ∇Ĵh(uh)) (34)

for the direction sh ∈ RÑ . There holds

∇2Ĵh(uh)sh = (M̃h
L)−1Bh

T ⟨ωωωh.−1,Ah−1
MhAh−1((Bhsh) ⊗ωωωh.−1)⟩[m],1+[m] + γsh.

Defining Dτ(uh) ∶= τDPh(uh − τ∇Ĵh(uh)) and choosing τ = 1/γ yields

Dγ−1(uh) = γ−1DPh(γ−1(M̃h
L)−1Bh

T ⟨ωωωh.−1,ph(uh)⟩[m],1+[m]).

The semismooth Newton equation (34) becomes

sh +Dγ−1(uh)(M̃h
L)−1Bh

T ⟨ωωωh.−1,Ah−1
MhAh−1((Bhsh) ⊗ωωωh.−1)⟩[m],1+[m] = −Rh(uh).

To avoid relatively costly state and adjoint solves in Hessian-vector products we re-

place Ah−1
by Th. Further, we multiply by M̃h

L from the left and obtain the following
Newton-type system:

M̃h
Lsh+Dγ−1(uh)BhT ⟨ωωωh.−1,ThMhTh((Bhsh)⊗ωωωh.−1)⟩[m],1+[m] = −M̃h

LRh(uh). (35)
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As the left hand side operator is not necessarily symmetric, we either can solve this
system by a GMRES method or we can symmetrize the system by a suitable block
elimination and then apply CG. This reduction is done by distinguishing the index
sets I(uh) ∶= {j ∈ [Ñ] ∶ (Dγ−1(uh))jj = 0} and A(uh) ∶= [Ñ] ∖ I(uh). From (35) we
then obtain shI(uh) = −Rh(uh)I(uh), and inserting this into (35) yields the following

smaller, symmetric positive definite system:

(M̃h
L +Wh)A(uh),A(uh)s

h
A(uh) = (−M̃h

LRh(uh))A(uh) +Wh
A(uh)I(uh)R

h(uh)I(uh) (36)

with Whsh ∶= γ−1Bh
T ⟨ωωωh.−1,ThMhTh((Bhsh) ⊗ωωωh.−1)⟩[m],1+[m]. Note that the ma-

trix Wh is not explicitly computed. Instead, we extend A(uh)-subvectors to RÑ by
filling the I(uh)-block with zeros, applying the full operator and then selecting the
A(uh)-subblock of the result. It is difficult to devise a preconditioner, but the system
is reasonably well conditioned since the operator is the discrete approximation of a
compact perturbation of the identity. The system is thus solved approximately by
CG. The proposed semismooth Newton-type method is summarized in Algorithm 1.

Algorithm 1: Semismooth Newton method for the opt. control problem (29)

Input: Operators Ah, Th, Mh, matrices Bh, M̃h, vectors uhl , uhu, initial
iterate uh0 .

Parameters: Stopping tolerance ε > 0.
Output: Computed optimal control ūh.

1 for k ∶= 0,1,2, . . . do
2 Obtain approx. solution yh(uhk) of state eq. in (29) with uh = uhk by AMEn.

3 Compute ph(uhk) by solving (31) approx. with yh(uh) = yh(uhk) by AMEn.

4 Evaluate ∇Ĵh(uhk) by (32) and Rh(uhk) by (33).

5 if Rh(uhk)T M̃h
LRh(uhk) < ε2, then return ūh ∶= uhk .

6 Compute shk approximately from (36) using a PCG method.

7 Set uhk+1 ∶= uhk + shk .

As an initial point uh0 , the solution ūhEαα of the average deterministic problem (16)
can be used, as we expect the deterministic solution not to differ too much from the
solution under uncertainty. It can be computed again by semismooth Newton, but
with significantly less effort since the state equation then is a deterministic PDE.

As already discussed, instead of low-rank tensor methods, other approaches could
be used to solve the underlying PDE with uncertainties. In particular, sparse grids
could be used as this is done in, e.g., [28]. Except for sparse grids adjusted to the
energy norm, the complexity of sparse grid methods is exponential in m [14], which
makes our low-rank tensor approach attractive, which is polynomial in m unless the
required ranks would be exponential in m, which is not the case in our experiments.
As we will see later in our numerical results, the storage and operation complexities
for low-rank tensors scale very well w.r.t. their order and dimensions.

4.2. Algorithms for solving the discrete parametrized obstacle prob-
lem. The parametric obstacle problem (28) from section 3.2 poses the numerical
challenge that now the optimization variable yh is a tensor which is subject to point-
wise inequality constraints. For dealing with these constraints in a way that is viable
with low-rank tensors, we propose a primal interior point algorithm.
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Following the idea of barrier methods, we approximate problem (28) by an un-
constrained problem that incorporates the element-wise constraints by a log-barrier
function (cf. [36, sec. 19.6]) weighted with the barrier parameter µ > 0 and the spatial
lumped mass matrix Mh

L ∈ RN0×N0 , i.e., (Mh
L)kk = ∑

N0

l=1 Mh
kl):

min
yh∈RN0×...×Nm

Fh(yh) − µ⟨1,Mh
L ○1 ln(yh − gh)⟩

with Fh(yh) = 1
2
⟨yh,Ahyh⟩ − ⟨bh ⊗ 1,yh⟩. This will be solved by Newton’s method

for a decreasing sequence (µk)k ⊂ R>0 converging to 0. For a fixed parameter µk > 0
and an iterate yhk the Newton equation for the direction shk ∈ RN0×...×Nm is given by

Ahshk + µk(Mh
L ○1 (yhk − gh).−2) ⊙ shk = −Ahyhk + bh ⊗ 1 + µkMh

L ○1 (yhk − gh) .−1. (37)

Since Mh
L is diagonal, the operator Mh

L○1 can be written as an element-wise multi-
plication and thus the operator acting on shk is symmetric and positive definite if yh

is strictly feasible. Hence, the Newton system can be solved by the PCG method
with truncation. A good precondiitoner for the first summand is given by the “aver-
age inverse” Th but as µ gets smaller the second summand becomes significant on a
subset of tensor components related to the active set. Tailoring a preconditioner to
this situation is more difficult in a low-rank tensor setting than for the standard vec-
tor case. Alternatively, and this is the approach we take, one can solve the systems
by AMEn again. For this purpose we extended the AMEn code and the {d,R}-
format of the tamen package [8] such that it can handle element-wise multiplication
operators. In order to build the equation, one still has to compute the pointwise
inverse zh.−1 ∶= (yh − gh) .−1, which can not be done directly with low-rank tensors.
Instead, one can apply a truncated Newton-Schulz method as proposed in [32] and
already stated for structured matrices in [18, sec. 4.1]. The idea behind it is to apply
Newton’s method to an appropriate pointwise function with root zh.−1, in this case
f(xh) ∶= xh.−1−zh; the resulting iteration is xhk+1 ∶= xhk⊙(2⋅1−zh⊙xhk). A suitable ini-
tial iterate is xh0 = 1

⟨zh,zh⟩z
h (for general zh) or xh0 = 1

∥zh∥F 1 (if zh > 0). It is important

that all computations for the Newton step are performable within the tensor format.
This can involve rank-increasing operations, thus making rank control by truncation
necessary to keep computations efficient. Suitable bounds on the truncation error to
ensure convergence of the iterative method can be found in [18, sec. 2.2]. The error
can be measured by ∥1−zh⊙xhk∥F . In a similar way, other component-wise functions
can be approximated, such as the inverse square root or the sign function. Based on
this, further function, such as the absolute value, can be approximated. The latter
operations are not required here, but can be used for other types of methods, such
as penalty or projection-based algorithms. We found that the Newton-Schulz method
works fast and reliable if the components of zh are not too close to zero, but gives
less accurate results when the interior point algorithm proceeds and the tensor yhk
approaches the bounds gh. Hence, when the Newton-Schulz error becomes too large,
we resort to computing the element-wise reciprocal by applying AMEn to the sym-
metric, positive definite system zh ⊙ xh = 1. This yields smaller errors while using
tensors of the same ranks, but is more time-consuming.

The remaining required tensor operations consist of application of matrices to a
mode, application of the linear operator Ah, element-wise multiplication and summa-
tion of tensors. They all can be performed within the HT and TT format. Having
computed the Newton direction, we select a step size σk > 0 and set yhk+1 ∶= yhk +σkshk .
It is crucial that the iterates stay strictly feasible, i.e., yhk + σkshk > gh is required.
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Since we always maintain yhk > gh (element-wise) this always holds true if shk ≥ 0. If
shk has negative elements, then the value τk of the (signed) maximum element of the
tensor −shk⊙(yhk −gh).−1 is positive and the above condition is equivalent to σk < 1/τk.

We examined several ways to reliably approximate the maximal component of a
tensor zh, including variants of a vector iteration for computing the maximum eigen-
value of xh ↦ zh ⊙ xh [11] and also by computing the p-norm for large p. Vector
iteration starting with the tensor 1 as well as p-norm computation for p = 2k can both
be done by repeated element-wise squaring combined with normalization, starting
with xh = zh. It turns out that both approaches are not sufficiently robust since re-
peated element-wise squaring soon results in tensors that often cannot be represented
sufficiently accurately by tensors of moderate ranks. We made the best experience
by using global optimization to find the maximum tensor element. To this end, we
use that in our case the tensor yh contains the components of the multivariate func-
tion yh(x,α) for the tensor product basis {φj0(x)β1

j1
(α1)⋯βmjm(αm)}(j0,...,jm). Since

ŷh(α) ∶= maxx∈Dh y
h(x,α) can be evaluated efficiently, see below, it turns out to be

faster to numerically maximize ŷh(α) w.r.t. α rather than yh(x,α) w.r.t. (x,α).
Function values can be computed using contraction: Since we work with a nodal FE-
basis, the vector of nodal values of the FE-function x ↦ yh(x,α), with α fixed, is

given by ⟨yh,⊗m
i=1 (βi1(αi), . . . , βiNi(αi))

T ⟩1+[m],[m] ∈ RN0 and ŷh(α) is the maximum
over this vector’s entries. We use the multilevel coordinate search method MCS [25],
a (non-rigorous) global optimization method for box-constrained problems that only
requires function values and is available as a Matlab implementation.

Algorithm 2: Interior point algorithm for solving problems of type (28)

Input: Operator Ah, preconditioner Th, vector bh, tensor gh in low-rank
format, initial low-rank tensor yh0 > gh, initial parameter µ0 > 0

Parameters: µfac ∈ (0,1), damping parameter η ∈ (0,1), stopping criterion
Output: A solution ȳh in a low-rank format

1 for k ∶= 0,1,2, . . . do
2 Compute zhk ∶= yhk − gh.

3 Approximate the reciprocal xhk ∶≈ (zhk) .−1 by the Newton-Schulz method.

4 if ∥xhk ⊙ zhk − 1∥F is too large, then
5 Approximate xhk by solving xhk ⊙ zh = 1 by AMEn.

6 Compute the approximate gradient rhk ∶= Ahyhk − bh ⊗ 1 − µkMh
L ○1 xhk .

7 Approximately compute (xhk) .2 by truncated element-wise multiplication.

8 Compute shk by AMEn (or by PCG with precond. Th) as approximate

solution of (37) with right hand side −rhk . In the operator, use truncated
multiplication with (xhk) .2 when evaluating (Mh

L ○1 (yhk − gh).−2) ⊙ shk .

9 Compute τk ∶≈ max(−shk ⊙ (yhk − gh).−1) by a method that approximates
the maximum tensor element, and set the stepsize σk ∶= min(1, ησk,max)
with σk,max = 1

τk
if τk > 0 and σk,max = ∞ otherwise.

10 if ”stopping criterion” holds, then return ȳh ∶= yhk .

11 Set yhk+1 ∶= yhk + σk ⋅ shk and µk+1 ∶= µfac ⋅ µk.

We now have developed all necessary ingredients for the interior point algorithm.
It is summarized in Algorithm 2. Note that we always perform a Newton step, which
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is damped for retaining strict feasibility by a step length σk depending on the maxi-
mum possible steplength and a damping factor η ∈ (0,1) if the iterate yhk approaches
the bound gh. In the formulation of Algorithm 2 we consider an abstract stopping
criterion. Later, in our numerical tests, this will be based on the performance of the
Newton direction computation and the computed stepsize and could also be placed
at another position in the algorithm.

We note that, for several reasons we just explained, solving the problem class (28)
is challenging. To tackle the huge problem size we use low-rank tensors as one of the
most promising developments for breaking the curse of dimensionality. Computing
element-wise reciprocals, stepsizes to the boundary of the feasible set, and solving
linear systems is not possible by direct methods and thus needs careful consideration.
These computations become increasingly challenging as the state approaches the ob-
stacle. Due to the operator shk ↦ µk(Mh

L ○1 (yhk − gh).−2) ⊙ shk , the linear system (37)
is harder to solve than, e.g., the state equation in (29). In the building blocks of
the algorithm, truncations – and thus inexact computations – occur at many places.
We are working on rigorous convergence theory and the corresponding error control
mechanisms, but due to space limitations this is out of the scope of this paper.

5. Numerical results. Next, we test the proposed methods for the presented
uncertain control problem and the parametrized obstacle problem numerically for
various numbers of parameters and settings. All computations are done on a Linux
machine with 128 GB RAM and two Intel Xeon 64bit processors with 2.40 GHz and
8 cores. Our implementations use Matlab R2015a and the htucker toolbox 1.2 [32]
and the TT-Toolbox 2.2 [40] for all low-rank tensor computations. These toolboxes
are serial implementations which do not explicitly use parallelism. In htucker we
choose a linear, TT-like dimension tree and we wrote functions to convert between
htensor (from htucker) and tt tensor (from TT-Toolbox) objects.

Most of the linear systems are solved by AMEn from the tamen package presented
in [8], which we modified to also allow for operators given as the element-wise multi-
plication by TT tensors. For global optimization we use a Matlab implementation of
MCS [25]. In all cases the space discretization is done by a conforming triangulation of
the domain D ⊂ R2, using standard linear finite element nodal bases for L2(Dh) (con-
trol) and H1

0(Dh) (state). Hence, the FE space dimensions Ñ and N0, respectively,
coincide with the numbers of nodes and interior nodes of the triangulation, respec-
tively. The parameters α are independently uniformly distributed on (−1,1) =∶ Γi for
all i ∈ [m]. Each parameter space L2 (Γi,Pαi) is discretized by polynomials of the
same order N̂−1 with the Lagrange polynomials on (−1,1) w.r.t. the Ni ∶= N̂ Gaussian
quadrature points as the basis (i.e., ωωωh = 1 always). As explained, the corresponding
Gaussian quadrature weights are used to compute stochastic integrals.

5.1. Results for the optimal control problem with parametrized sub-
domains. The optimal control problem (13) is solved for the case of a parametrized
state equation operator with uncertain radii and uncertain coefficients as in Example
3.3. In fact, we also tested the setting of Example 3.1 with very good results, but
for brevity only results for the more challenging problem class of Example 3.3 are
presented here. The spatial domain is D = (−1,1) × (−1,1) ⊂ R2. To be able to easily
change the number m of parameters, we choose the subdomains Di (αi) to be disks
with their midpoints placed on a circle with radius ζcirc = 0.7 around zero and with
their radii varying such that they stay within D and do not intersect with each other
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Figure 1. The disks and their size ranges for the used numbers of parameters.

for any selection of the parameters. Concretely, we choose

Di(αi) ∶= {x ∈ R2 ∶ (x1 − ζcirc ⋅ cos( 4π(i−1)
m

))2 + (x1 − ζcirc ⋅ sin( 4π(i−1)
m

))2 < ζ(αi)2},

with ζ(αi) ∶= ((1 + αi)ζmaxfac + (1 − αi)ζminfac)/2 ⋅min(ζcirc ⋅ sin(2π/m),1 − ζcirc) and
radius factors ζminfac = 0.4 < 0.8 = ζmaxfac. This means that the radii vary between
ζminfac ∈ (0,1) and ζmaxfac ∈ (ζminfac,1) times the maximum possible radius min(ζcirc ⋅
sin(2π/m),1 − ζcirc). The subdomains for the average parameter selection and their
minimum and maximum sizes can be seen for the used numbers of parameters in
Figure 1. The coefficients on the disks are σi = 5.0 and on the rest of the domain
σ0 = 1.5, while the influence coefficients ϑi were all taken to be 25%. Radii ranging
between 0.4 and 0.8 times a given maximum radius results in a deviation of more
than 33%, which is quite a lot thinking about technical applications. We use the
desired state ŷ(x) ∶= 1

10
sin(πx1) ⋅ sin(πx2) ⋅ exp(x1 + 1), the control bounds −2 and 2,

respectively, and the regularization parameter γ = 0.005. The discretization uses N̂ = 9
nodes per parameter and Ñ = 10201 finite element nodes on a uniform grid, N0 = 9801
of them interior nodes. The assembly of the matrices Ah

i (aiki) is done by a smooth
approximation of the indicator function, where the jump between 1 and 0 is smoothed
by a polynomial of degree 9 within a range of half the diameter of the elements, and
a quadrature rule of high order. But this procedure is not central here. The operator
Ah is passed to AMEn in the {d,R}-format with sparse matrices. Then we apply the
semismooth Newton method (Algorithm 1) with the stopping tolerance ε = 3.0 ⋅ 10−5.
As the KKT residual (33) is only computable up to a certain accuracy due to the error
in the adjoint state, we also would stop the algorithm when observing its stagnation,
but this does not occur in the runs we report here. In a preprocessing step we compute
the optimal solution uh0 for the deterministic problem (16) (inserting α = Eαα), also
by a semismooth Newton method with ε = 10−10, starting with initial control 0.
We use it as initial point for the semismooth Newton method for the problem with
uncertainties. The state and adjoint equations are solved by AMEn, starting with the
“reference solution”, i.e., the state or adjoint state of the deterministic problem for a
mean parameter selection copied into the whole tensor, and with a maximum number
of 20 sweeps in iteration k = 0 of Algorithm 1 and maximum obtained TT rank 105
for all problem sizes for comparability reasons. In all subsequent iterations k ≥ 1 we
choose the (adjoint) state from the previous iteration truncated to rank 80 as initial
guess for the AMEn solution of the (adjoint) state equation and perform 5 sweeps.
We have to mention that the rank here had to be chosen quite high compared to other
low-rank tensor applications. But we believe that it is important to show that also
quite hard problems can be handled by low-rank tensor methods. The small AMEn
subproblems were solved directly, while the problems with 1000 unknowns or more
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Number of parameters m: 10 14 18 22

Dimension ∏mi=0Ni of the state: 3.42 ⋅ 1013 2.24 ⋅ 1017 1.47 ⋅ 1021 9.65 ⋅ 1024

Preprocess (deterministic problem):
Number of iterations: 6 6 6 7

Obtained optimality measure: 0.97 ⋅ 10−11 4.51 ⋅ 10−11 1.38 ⋅ 10−11 0.61 ⋅ 10−11

Total Newton matrix-vector products: 25 21 24 26
Computing time (s): 2.18 1.85 1.97 2.27

Main process (problem with uncertainties):
Number of iterations: 2 2 2 2

Optimality measure at initial point: 1.67 ⋅ 10−2 1.85 ⋅ 10−2 1.23 ⋅ 10−2 1.07 ⋅ 10−2

Obtained optimality measure: 0.70 ⋅ 10−5 0.58 ⋅ 10−5 0.81 ⋅ 10−5 2.59 ⋅ 10−5

Average reached rel. residual for states: 0.63 ⋅ 10−3 2.57 ⋅ 10−3 3.23 ⋅ 10−3 3.87 ⋅ 10−3

Total Newton matrix-vector products: 6 7 5 7
Average time for computing states (min): 13.8 24.1 34.7 47.9

Total computing time (h): 1.4 2.4 3.5 4.8

Relative L2-difference
∥uh0 −ūh∥

M̃h

∥uh
0
∥
M̃h

: 0.94 ⋅ 10−2 1.03 ⋅ 10−2 0.67 ⋅ 10−2 0.57 ⋅ 10−2

Table 1
Problem dimension and results of Algorithm 1 for the different numbers of parameters

were solved iteratively by CG. We selected the tolerances such that a good balance
between accuracy and computing times was achieved (Table 1).

The uncertain problem was solved for 5, 7, 9 and 11 disks, i.e., m ∈ {10,14,18,22}
parameters. The results are summarized in Table 1. Dividing the total number of
Newton matrix times vector products by the number of Newton iterations, we see
that in the semismooth Newton methods (deterministic and uncertain problems) the
relative stopping tolerance 10−2 in the CG method for solving the semismooth Newton
equation was reached in about 3 or 4 steps always. Comparable but increasing relative
residuals in the discrete H−1(D)⊗L2(Γ;Pα)-norm (row ”Average reached rel. residual
for states”) are obtained by AMEn for all problem sizes while keeping the tensor rank
bounded by 105 always. Table 1 confirms that a semismooth Newton method is a very
good choice for the deterministic as well as the uncertain problem. The deterministic
problem can be solved in 6 or 7 steps to high accuracy and provides a good initial
iterate for solving the problem under uncertainty. The measure of optimality (discrete
L2(Dh)-norm of the residual Rh(uhk), see (33)) is reduced by a factor of around
103 within 2 steps, enough to reach the desired tolerance of 3.0 ⋅ 10−5 in all cases.
The scaling of the method w.r.t. the number of parameters m can be seen in the
computing times (average time for the solution of the state and adjoint equations and
the total computing time). They increase approximately linearly with the number
of parameters6, which reflects the good complexity of low-rank tensor arithmetics.
The main cost of the algorithms is the solution of the tensor equations (one state
equation and one adjoint equation per iteration) while the rest of the computations
is negligible: The overall computing time is about 6 times the average time for one
tensor equation solve (2 solves in each of the 2 iterations and 2 more for the final
residual that is accepted for termination).

Figure 2 shows two plots of the deterministic and the uncertain control for 10
parameters. One recognizes the disks where the coefficient is higher and especially that
the uncertain control is smoother on the boundaries of the disks than the deterministic
one due to the uncertain radii. The upper and lower bound (±2) on the control are

6In theory they scale linearly with the number of parameters [9], but there are several effects like
extra iterations for difficult subproblems, which influence the result in practice.
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Figure 2. The computed deterministic and uncertain controls for 10 parameters.

Number of parameters m: 10 14 18 22

Errors in the state:
Average relative L2(Dh)-error: 0.09 ⋅ 10−3 0.34 ⋅ 10−3 0.43 ⋅ 10−3 0.43 ⋅ 10−3

Maximum relative L2(Dh)-error: 0.34 ⋅ 10−3 1.08 ⋅ 10−3 1.34 ⋅ 10−3 1.51 ⋅ 10−3

Average relative H1(Dh)-error: 0.43 ⋅ 10−3 1.85 ⋅ 10−3 2.29 ⋅ 10−3 2.87 ⋅ 10−3

Maximum relative H1(Dh)-error: 0.96 ⋅ 10−3 3.64 ⋅ 10−3 4.60 ⋅ 10−3 5.39 ⋅ 10−3

Average relative L∞(Dh)-error: 0.20 ⋅ 10−3 0.78 ⋅ 10−3 0.98 ⋅ 10−3 1.29 ⋅ 10−3

Maximum relative L∞(Dh)-error: 0.69 ⋅ 10−3 2.10 ⋅ 10−3 2.90 ⋅ 10−3 3.87 ⋅ 10−3

Errors in the adjoint state:

Average relative L2(Dh)-error: 0.09 ⋅ 10−3 0.27 ⋅ 10−3 0.31 ⋅ 10−3 0.46 ⋅ 10−3

Maximum relative L2(Dh)-error: 0.72 ⋅ 10−3 2.84 ⋅ 10−3 1.89 ⋅ 10−3 1.96 ⋅ 10−3

Average relative H1(Dh)-error: 0.26 ⋅ 10−3 1.30 ⋅ 10−3 1.55 ⋅ 10−3 2.60 ⋅ 10−3

Maximum relative H1(Dh)-error: 1.98 ⋅ 10−3 5.68 ⋅ 10−3 5.84 ⋅ 10−3 8.48 ⋅ 10−3

Average relative L∞(Dh)-error: 0.24 ⋅ 10−3 0.92 ⋅ 10−3 1.08 ⋅ 10−3 1.57 ⋅ 10−3

Maximum relative L∞(Dh)-error: 1.11 ⋅ 10−3 4.44 ⋅ 10−3 4.52 ⋅ 10−3 5.73 ⋅ 10−3

Table 2
Estimated errors in the computed state and adjoint state for the different numbers of parameters

both active on parts of the domain.
Clearly, the reliability of our results is of interest also. Therefore, to analyze

the accuracy of the computed optimal state and the corresponding adjoint state, we
proceed as follows: We randomly choose 5000 collocation points, i.e., realizations of
the parameter vector α consisting of Gaussian nodes, and solve the deterministic state
and adjoint equation for these parameter realizations to high accuracy (cf. [2, sec. 6]).
Then we extract the corresponding solutions from the low-rank tensors and compare
the results, as seen in Table 2. It is important to see that the errors are of comparable
size for all numbers of parameters and only slightly increasing.

5.2. Results for the obstacle problem with fixed subdomains. As the
obstacle problem (28) is in general more difficult to solve due to the pointwise con-
straints on the tensor, we consider it on fixed subdomains with uncertain coefficients
on each subdomain. We follow Example 3.1 and use the unit disk D ∶= {x ∈ R2 ∶
∥x∥2 < 1} as the spatial domain with the m ∈ {5,6,7,8} subdomains chosen as
shown in Figure 3. The average coefficients σi are all taken to be 8.0 while a de-
viation of ϑi = 15% is allowed on each subdomain. The functional b is given by
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Figure 3. Subdomains for the different numbers of parameters in the obstacle problem.

Figure 4. Solutions of the obstacle problem with 5 parameters for maximum, mean and mini-
mum coefficients (side view). These solutions were extracted from the resulting low-rank tensor.

⟨b, y⟩Y ∗,Y = ∫D (4x2
1 + 5x2

2 − 6)y(x)dx and the obstacle is taken constant on the whole
domain: g ≡ −0.1. We apply Algorithm 2 with parameters µ0 = 0.1, µfac = 0.65 and
η = 0.8. We observed that when the iterates get too close to the bound, the accuracy
of the low-rank tensor approximation of the pointwise inverse is reduced, and, while
the interior point algorithm proceeds in reducing µ, at some point this can lead to
relatively poor results in the AMEn computation of the Newton step. Thus, we stop
the whole algorithm when the obtained relative residual in the Frobenius norm (the
AMEn default) is above 0.2. An alternative quality measure for the search direction
is the obtained maximum step length. If it is below 0.01, our algorithm would also
stop without performing this last step, but in all presented tests always the Newton
system residual termination criterion became active.

Again we use linear finite elements for the space discretization with N0 = 8065
interior nodes. In all configurations the discretization is the same for comparability
reasons and chosen such that each element lies in exactly one of the approximate
subdomains. For each parameter, Ni = 17 grid points are used. In a preprocessing step
we obtain a solution ȳh of the deterministic problem (26) for the parameters set to the
average value by a semismooth Newton method and use yh0 = 0.8 ⋅ ȳh⊗1 as the strictly
interior initial tensor for the interior point method. The results are summarized in
Table 3. In the algorithm, the iterates are truncated to rank 80 in each step. But we
allow higher ranks ≤ 120 during the Newton-Schulz iteration, ≤ 100 for the element-
wise reciprocal and ≤ 120 for the squared reciprocal as well as when applying AMEn.
In AMEn we perform at most 15 sweeps first and solve the subproblems iteratively.
Up to 5 more sweeps are performed with direct subproblem solver and maximum rank
82 if no satisfactory results were achieved before. We compute the maximum allowed
stepsize to the bounds using the global optimization algorithm MCS [25]. Since only a
quite low accuracy is required (a damping by η = 0.8 is done afterwards), the default
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Number of parameters m: 5 6 7 8

Dimension ∏mi=0Ni of discrete solution yh: 1.15 ⋅ 1010 1.95 ⋅ 1011 3.31 ⋅ 1012 5.63 ⋅ 1013

Results of the algorithm:
Number of iterations: 14 13 13 14

Average comp. time for elem. reciprocal (s): 469.4 503.1 646.5 1113.9
Average comp. time for Newton direction (s): 134.5 158.1 184.3 355.3

Average computing time for step length (s): 136.0 95.8 189.5 226.9
Overall computing time (h): 3.1 3.0 4.0 7.2

Errors in the computed solution:

Average relative L2(Dh)-error: 3.25 ⋅ 10−3 4.69 ⋅ 10−3 4.69 ⋅ 10−3 3.49 ⋅ 10−3

Maximum relative L2(Dh)-error: 3.44 ⋅ 10−3 4.85 ⋅ 10−3 4.89 ⋅ 10−3 3.74 ⋅ 10−3

Average relative H1(Dh)-error: 6.08 ⋅ 10−3 8.42 ⋅ 10−3 8.42 ⋅ 10−3 6.47 ⋅ 10−3

Maximum relative H1(Dh)-error: 6.55 ⋅ 10−3 8.92 ⋅ 10−3 8.94 ⋅ 10−3 6.99 ⋅ 10−3

Average relative L∞(Dh)-error: 3.82 ⋅ 10−3 5.39 ⋅ 10−3 5.37 ⋅ 10−3 4.13 ⋅ 10−3

Maximum relative L∞(Dh)-error: 4.36 ⋅ 10−3 6.03 ⋅ 10−3 6.03 ⋅ 10−3 5.15 ⋅ 10−3

Relative differences between the solutions for the highest and the lowest parameter selection:

L2-difference: 10.36 ⋅ 10−2 H1-difference: 16.72 ⋅ 10−2 L∞-difference: 10.17 ⋅ 10−2

Range of the number of active nodes: [521,1139]
Table 3

Problem dimensions and results of the interior point method

settings of MCS, which target at high precision, were modified: We increased the
stopping tolerance for the local search and decreased the number of steps for the local
search, the number of levels and the number of sweeps. We observed good results
of the method (when applying it for 5 parameters and evaluating the full tensor for
comparison), but choose the relatively small damping parameter η = 0.8 as a safety
margin. The steplength σk = 1 is accepted in the majority of cases. It only becomes
smaller in the last one or two iterations due to the increasing errors in the computed
search direction.

Table 3 shows that 13 to 14 interior point iterations are performed and that in all
cases we achieve comparable accuracies. The computing times for the subproblems
and hence the overall computing time grow with the number of iterations and the
problem dimension. Only the computing time for the tensor maximum by MCS cannot
be related to the problem dimension. Especially in the last iterations of the interior
point algorithm AMEn is not able to reach the desired residual tolerance and has to
perform the maximum number of sweeps and the additional 5 sweeps with the more
expensive direct solves of linear equations. This influences the overall computing time,
which can be kept below 8 hours in all cases. In the case of 8 parameters this results
in an increased runtime: The stepsize computation in the final (14th) iteration and
the computation of the reciprocal and Newton direction, which causes stopping the
algorithm afterwards, take 2.4 hours in total. Performing the last iteration improves
the maximum relative L2-error of the solution from 4.90 ⋅ 10−3 to 3.74 ⋅ 10−3.

The errors are again evaluated on 5000 randomly selected collocation points. In
all cases they are about 0.5% depending on the used norm. The maximum error in
space and the average error do not differ much, which means that we get a uniform
quality of the solutions for all parameter selections. Since tensor extraction can be
performed quickly, this kind of error evaluation can, if desired, already be performed
during the algorithm to get an online error prediction. It also enables quick access
to solutions of problem (24) for any parameter selection α. Therefore, the low-rank
tensor solution can be used for evaluating a wide range of UQ-relevant quantities
efficiently. The graphs of some extracted solutions are displayed in Figure 4. The
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lower bound is fulfilled and the weaker displacement for larger coefficients can be
recognized, especially the varying size of the active sets. Below Table 3 the differences
of the solutions for largest and smallest coefficients are listed. The range of the number
of active nodes given in the last row also depicts the difference between the solutions.

6. Conclusions and outlook. Tensor representations and computations are
well-suited for the treatment of problems with multiple parameters. Until now, mainly
representation schemes, approximation algorithms, methods for solving linear sys-
tems, and algorithms for unconstrained optimization, especially linear least-squares
problems, have been developed for low-rank tensors. In this paper, we considered
inequality constrained optimization problems in tensor space and applied them to op-
timal control problems with uncertain coefficients and control constraints and to a
parametrized obstacle problem. A suitable discretization was proposed that resulted
in finite-dimensional problems, which respect the infinite-dimensional structure and
involve tensors of high order. We developed inexact optimization methods for solving
these huge-scale problems on the full tensor space that use efficient low-rank tensor
arithmetics und truncation. Two classes of methods were discussed: Semismooth
Newton methods for constrained optimal control under uncertainty and interior point
methods for optimization problems with element-wise inequality constraints on the
whole tensor. The methods work with the HTD and TT low-rank tensor formats and
use AMEn for solving linear tensor equations and either the Newton-Schulz iteration
or AMEn for computing element-wise reciprocals, which arise in the interior point
method. Numerical tests showed the efficiency of the algorithms and especially their
ability to make problems involving many parameters tractable.

We are currently developing a rigorous convergence theory for the discussed in-
exact algorithms. It builds on general convergence analyses of inexact optimization
methods, see, e.g., [4, 10, 20, 28, 47] and combines it with error estimates for (tensor)
discretizations, adaptive tensor rank selection, and truncation as well as error control
for state equation and other system solves.

Another possible approach for optimization with low-rank tensors is to insert
low-rank tensor formats directly into the problem formulation and to choose the rep-
resenting coefficients as optimization variables. In the case of TT, the representation
of a tensor then would be given by yh = TT (zh), where {zhi } are TT cores of given
ranks. This approach is, on the one hand, appealing since it incorporates the low-rank
structure directly into the problem and thus reduces the dimension. At the same time,
however, it makes the problem highly nonlinear and nonconvex and usually these ten-
sor representations are not unique in general. One can use orthonormalization and
other techniques to obtain a unique representation via the quotient manifold [42, 46].
This can be used as a basis for Riemannian optimization techniques [1], which are
currently investigated for unconstrained optimization problems with low-rank tensors
(especially approximation problems) in, e.g., [5, 30, 43]. We plan to study extensions
of these manifold optimization approaches to more general, inequality constrained
tensor optimization problems, such as those considered in this paper, in the near
future.
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