
Parallel Scenario Decomposition of
Risk Averse 0-1 Stochastic Programs

Yan Deng∗ Shabbir Ahmed† Siqian Shen‡

January 29, 2016

Abstract

In this paper, we extend a recently proposed scenario decomposition algorithm (Ahmed (2013))
for risk-neutral 0-1 stochastic programs to the risk-averse setting. Specifically, we consider
risk-averse 0-1 stochastic programs with objective functions based on coherent risk measures.
Using a dual representation of a coherent risk measure, we first derive an equivalent mini-
max reformulation of the considered problem. We then develop three variants of the scenario
decomposition algorithm for this minimax formulation based on different relaxations of the
nonanticipaticity constraints. The algorithms proceed by solving scenario subproblems to ob-
tain candidate solutions and bounds, and subsequently cutting off the candidate solutions from
the search space to achieve convergence to an optimal solution. We design three paralleliza-
tion schemes for implementing the algorithms with different tradeoffs between communica-
tion time and computation time. Our computational results with risk-averse extensions of two
standard stochastic 0-1 programming test instances demonstrate the scalability of the proposed
decomposition and parallelization framework.

Keywords: risk-averse 0-1 stochastic programs; conditional value-at-risk (CVaR); minimax opti-
mization; dual decomposition; distributed algorithms; parallel computing

1 Introduction

Stochastic programming is valuable framework for decision-making under uncertainty in many
application areas. In the two-stage setting, typically the uncertainty is modeled as a set of sce-
narios and the decisions are in two stages - some that are made here-and-now, and others that
can be determined after observing realizations of the uncertain scenarios, i.e., wait-and-see deci-
sions (see, e.g., Birge and Louveaux, 2011). In many applications, the here-and-now variables are
∗Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA 48109; email:

yandeng@umich.edu
†School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA 30332; email:

sahmed@isye.gatech.edu
‡Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA 48109; email:

siqian@umich.edu

1

often binary, representing “yes” or “no” decisions, e.g., in facility location analysis, production
planning, and project selection. The computation of 0-1 stochastic programs is challenging, due
to the discrete nature of variables and dimension of the realizations of uncertainty. Among many
decomposition-based algorithms for solving stochastic programs, one approach constructs a refor-
mulation of the considered problem, which makes copies of the here-and-now decision variables,
one copy for each scenario, and formulates “nonanticipativity constraints” to require these copies
to take the same solution values. A Lagrangian relaxation can then be attained by relaxing the
nonanticipativity constraints, whose computation is decomposable by scenario subproblems and
solvable in a distributed framework.

The above technique is known as scenario decomposition or dual decomposition, and was
first introduced by Rockafellar and Wets (1976). We refer to Shapiro et al. (2009) for other gen-
eral results on dual decomposition of stochastic programs. Carøe and Schultz (1999) apply dual
decomposition to obtain strong relaxations of two-stage stochastic integer programs, and gener-
ate bounds within a branch-and-bound framework. Dentcheva and Römisch (2004) analyze the
Lagrangian relaxation of multistage stochastic programs with nonconvex constraints arising from
logical and integrality conditions, and demonstrate the efficacy of scenario decomposition as com-
pared to other decomposition algorithms. Heuristic approaches, including variants of the “pro-
gressive hedging” algorithm (see Watson and Woodruff, 2011), are designed based on creating
subproblems that can be decomposed by scenario and penalizing violations of nonanticipativity
constraints via updating the Lagrangian dual to achieve consensus among all the subproblems
to seek feasible primal solutions. Watson et al. (2010) generalize the approach to solving chance-
constrained programs, where they relax both the nonanticipativity constraints and the knapsack
constraint for reformulating a chance constraint as an extended mixed-integer linear program. For
0-1 stochastic problems, due to the absence of strong duality, these Lagrangian-based scenario de-
composition heuristics do not have theoretical convergence guarantees. However, they have been
demonstrated to have good empirical performance for solving stochastic programs in a variety of
applications (see, e.g., Crainic et al., 2014, 2011).

Recently, Ahmed (2013) proposes a scenario decomposition variant for solving 0-1 stochastic
programs with expectation-based objective functions. The key idea of the algorithm is to identify
an optimal solution by iteratively bounding the optimal objective value and cutting-off candi-
date solutions obtained from scenario subproblems. The author describes serial and synchronous
distributed implementations of the algorithm, and demonstrates the efficacy of the approach by
solving instances from the SIPLIB test library (see Ahmed et al., 2015a). Ryan et al. (2015) extend
the work of Ahmed (2013) by developing an asynchronous parallel implementation of the algo-
rithm, which has better performance on the same set of test instances. Ahmed et al. (2015b) gen-
eralize the scenario decomposition approach for chance-constrained binary programs and derive
the Lagrangian dual problems based on relaxing nonanticipativity constraints. In particular, they
demonstrate the strength of the dual bounds and efficient ways of obtaining them in a distributed
algorithm, although parallel implementation of the proposed algorithms are not explored.

Parallel implementations of scenario decomposition have been discussed in Mulvey and Ruszczyński

2

(1995); Ryan et al. (2015); Ahmed (2013); Lubin et al. (2013). Mulvey and Ruszczyński (1995) pro-
poses a novel parallel decomposition algorithm for multistage stochastic optimization problems,
in which the subproblems are solved using a nonlinear interior point algorithm, and modified
by separable quadratic terms to coordinate the scenario solutions. Ahmed (2013) develops a syn-
chronous parallel implementation scheme for a proposed scenario decomposition approach for
0-1 stochastic programs. There a synchronization barrier is placed across the processes after solv-
ing the scenario subproblems and evaluating candidate solutions before coordinating scenario
solutions. Ryan et al. (2015) then proposes an asynchronous scheme that removes the barriers and
instead relies on a master-worker structure, which demonstrate better parallel efficiency on the
same set of test instances. Lubin et al. (2013) revisit the dual decomposition algorithm of Carøe
and Schultz (1999) from a computational perspective, and develop a synchronous parallel imple-
mentation scheme where load imbalance is identified as a barrier to parallel scalability. We fur-
ther refer the interested readers to Ruszczyński (1993); Birge and Rosa (1996); Nielsen and Zenios
(1997); Birge and Rosa (1996); Linderoth and Wright (2003, 2005); Birge et al. (1996); Fragniere et al.
(2000) for parallel implementation of other decomposition methods.

The scenario decomposition approaches discussed above focus on risk-neutral expected value
objectives. Focusing on scenario decomposition of risk-averse stochastic programs, Miller and
Ruszczyński (2011) consider a risk-averse two-stage stochastic linear program, in which the objec-
tive function is given as a composition of conditional risk measures. They develop two decompo-
sition algorithms, of which one uses a generic cutting plane approach and the other exploits the
composite structure of the objective function. Collado et al. (2012) propose a scenario decomposi-
tion algorithm with convergence guarantee for a risk-averse multistage stochastic program with a
finite scenario tree. The main idea of the algorithm lies on the construction of risk-neutral approx-
imations of the program by exploiting specific structure of dynamic risk measures. However, both
papers did not consider integer variables, and neither explored procedures for implementing the
decomposition algorithms in parallel.

In this paper, we consider risk-averse stochastic 0-1 programs (see, e.g., Ruszczyński, 2013)
with uncertain parameter that follows a discrete probability distribution. In particular, we study
coherent risk measures for measuring uncertain outcomes and evaluating the performance of de-
cisions under uncertainty. Our main contributions are as follows. First, we utilize a connection
between coherent risk measures and corresponding sets of probability measures in their dual rep-
resentation (see Shapiro, 2012; Shapiro and Ahmed, 2004) to derive equivalent minimax refor-
mulations of risk-averse 0-1 stochastic programs. Second, we develop three variants of the sce-
nario decomposition algorithm for this minimax formulation based on different relaxations of the
nonanticipaticity constraints. The algorithms proceed by solving scenario subproblems to obtain
candidate solutions and bounds, and subsequently cutting off the candidate solutions from the
search space to achieve convergence to an optimal solution. The algorithms are also applicable for
solving distributionally robust risk-averse problems with 0-1 variables, and can be implemented
in a distributed framework. Third, we investigate three parallelization schemes, with or without
barriers, by trading off communication time and computational time. The goal is to explore special

3

structures in risk-averse 0-1 stochastic programs to design effective and efficient parallelization al-
gorithms for implementing scenario decomposition. Fourth, we test two classes of 0-1 stochastic
programming test problems with diverse problem sizes from the SIPLIB test library, for which we
use conditional value-at-risk (CVaR) and mean-risk measures to build their risk-averse variants.
Our results demonstrate the computational efficacy of scenario decomposition and also show that
the proposed parallel implementation schemes can achieve near-linear speedup.

The remainder of the paper is organized as follows. In Section 2, we present risk-averse 0-
1 stochastic programs and their equivalent minimax reformulations, and propose three variants
of the scenario decomposition algorithm. In Section 3, we focus on designing parallel schemes
to implement the algorithms in a distributed framework and propose improvement strategies by
eliminating barriers. In Section 4, we report the computational results of the proposed algorithms
on two sets of two-stage 0-1 stochastic programs with different risk objectives and their distribu-
tionally robust variants. Section 5 concludes the paper and states future research directions.

2 Scenario Decomposition for Risk-averse 0-1 Stochastic Programs

We consider risk-averse stochastic 0-1 programs of the form

min
x

{
ρ(f(x, ξ)) : x ∈ X ⊆ {0, 1}d

}
. (1)

where x is a d-dimensional binary decision vector, ξ is a multivariate random vector, and the
cost function f(x, ξ) is convex in x for any realized value of ξ. We assume a finite support
{ξ1, . . . , ξK} of the random variable ξ, having the corresponding probabilities p1, . . . , pK . The
vector p = (p1, . . . , pK)> belongs to the polyhedral set

M :=

{
p = (p1, . . . , pK)> :

K∑
k=1

pk = 1, pk ≥ 0, ∀k = 1, . . . ,K

}
. (2)

Here ρ(·) is a generic measure that returns a scalar metric of the random cost f(x, ξ). In this paper,
we consider ρ(·) to be a coherent risk measure with an equivalent dual representation of the form
(see, e.g., Artzner et al., 1999; Shapiro and Ahmed, 2004),

ρ(f(x, ξ)) = max
q∈Qρ(p)

{Eq [f(x, ξ)]} , (3)

where we compute the expectation of the random f(x, ξ) based on an unknown probability vector
q = (q1, . . . , qK)>. Here q belongs to an ambiguity setQρ(p) ⊆M, determined by the coherent risk
measure ρ and nominal probabilities p1, . . . , pK . We later describe a few explicit forms of Qρ(p)
when examining specific coherent risk measures in our computations.

According to (3), the value of ρ(f(x, ξ)) is equivalent to the worst-case expectation of the ran-
dom cost f(x, ξ) over the probability distributions q ∈ Qρ(p). Therefore, we present an equivalent
minimax reformulation of the original problem (1):

MIMA : min
x∈X

max
q∈Qρ(p)

{
K∑
k=1

qkfk(x)

}
(4)

4

where we denote fk(x) ≡ f(x, ξk) for notation brevity. Throughout this paper, we assume that
minx∈X {fk(x)} is bounded for all k = 1, . . . ,K. The goal is to optimize MIMA via scenario decom-
position approaches and efficient parallel implementation schemes.

2.1 The Generic Scenario Decomposition Scheme

We solve MIMA using an iterative method that approaches the optimal objective through updating
a lower bound ` and an upper bound u. The upper bounds are obtained through objective values
of feasible x-solutions. The lower bounds are obtained from solving Lagrangian relaxations of
MIMA.

Following the standard scenario decomposition approach, we first replace the binary decision
variable x with scenario-based copies x1, . . . , xK and reformulate MIMA as

min
x1,...,xK∈X

max
q∈Qρ(p)

K∑
k=1

qkfk(x
k)

s.t.
K∑
k=1

αkx
k = x1 (5)

where α1, . . . , αK are positive scalars that sum to 1, and (5) are the nonanticipativity constraints
(NAC) ensuring that x1, . . . , xK take the same values. Note that the above formulation of the
nonanticipativity constraints makes use of the fact that the variables are 0-1. A general formula-
tion would be of the form xk = x1, ∀k = 2, . . . ,K which, however, would involve (K − 1) × d
constraints as compared to the d constraints in (5).

To decompose the problem, we relax (5) and penalize the violation (if any) by a Lagrangian
dual multiplier λ ∈ Rd. The resulting Lagrangian relaxation is given by

min
x1,...,xK∈X

max
q∈Qρ(p)

{
K∑
k=1

(
(αk − δk)λ>xk + qkfk(x

k)
)}

(6)

where for notational convenience, we let δ1 = 1 and δk = 0 for k = 2, . . . ,K. To recover scenario
subproblems, we consider a lower approximation of the Lagrangian model (6) by interchanging
the min and max operators:

g(λ) := max
q∈Qρ(p)

min
x1,...,xK∈X

{
K∑
k=1

(
(αk − δk)λ>xk + qkfk(x

k)
)}

= max
q∈Qρ(p)

{
K∑
k=1

min
xk∈X

(
(αk − δk)λ>xk + qkfk(x

k)
)}

. (7)

For any λ ∈ Rd, g(λ) represents a global lower bound for MIMA. The overall scenario decomposi-
tion algorithm optimizes (7) for given λ to update the lower bound ` and also obtains candidate
feasible solutions of x from scenario subproblems of (7) to update the upper bound u. At each
iteration, we eliminate binary solutions of x that have been evaluated and terminate the algorithm
when the gap between u and ` is closed.

5

Next we discuss three scenario decomposition algorithms that differ in how to solve g(λ) or its
variations to update `. We refer to them as DD1, DD2 and DD3, respectively.

2.2 DD1 by Optimizing g(0)

In the first approach, we simply set λ = 0, and use g(0) to update the lower bound. We essentially
relax the NAC (5), and update the lower bound ` with

g(0) = max
q∈Qρ(p)

{
K∑
k=1

min
xk∈X

{
qkfk(x

k)
}}

= max
q∈Qρ(p)

{
K∑
k=1

qk min
xk∈X

{
fk(x

k)
}}

, (8)

where we are able to pull q1, . . . , qK out of the K inner minimization subproblems, and thus par-
allelize the computation of each subproblem.

Without going through Lagrangian relaxation steps, we can verify (8) being a valid lower
bound to MIMA by following an alternative derivation below:

min
x∈X

ρ(f(x, ξ)) = min
x∈X

max
q∈Qρ(p)

Eq[f(x, ξ)]

≥ max
q∈Qρ(p)

min
x∈X

Eq[f(x, ξ)]

≥ max
q∈Qρ(p)

Eq
[
min
x∈X
{f(x, ξ)}

]
= ρ

(
min
x∈X

f(x, ξ)

)
= (8).

We compute the value of g(0) through (8) in two steps as follows.

• Step (i): for each k = 1, . . . ,K, optimize scenario subproblem

Scen(k): βk = min
x
{fk(x) : x ∈ X} ; (9)

• Step (ii): letting β = (β1, . . . , βK), optimize a maximization problem over variable q as

Cont(β): max
q

{
K∑
k=1

βkqk : q ∈ Qρ(p)

}
. (10)

Note that (8) is the dual representation of a coherent risk ρ (minx∈X f(x, ξ)) according to (3). Here
the random value minx∈X f(x, ξ) has finite realizations β1, . . . , βK computed through Step (i), with
the corresponding probabilities p1, . . . , pK . Therefore, Step (ii) can be done by optimizing the risk
function ρ (minx∈X f(x, ξ)) directly if possible, rather than using the dual form in (10).

Algorithm 1 provides the details of the DD1 algorithm, which iterates until ` and u are suf-
ficiently close. (We denote ε as a gap tolerance value.) In each iteration, we solve scenario sub-
problems Scen(k), ∀k = 1, . . . ,K, and compute g(0) to update the lower bound ` (steps 4–8).

6

Each subproblem has the same feasible region as MIMA. Thus, we collect subproblem solutions
x̂k, k = 1, . . . ,K into the set S, which are feasible to MIMA. We then use the candidate solutions in
set S to update the upper bound u (steps 9–11). This is done by evaluating

Eval(x̂) := ρ(f(x̂, ξ)) (11)

for given solution x̂ ∈ S (i.e., step (10)). We cut off all the evaluated solutions by adding the
corresponding no-good cut ∑

i=1,...,d:x̂i=0

xi +
∑

i=1,...,d:x̂i=1

(1− xi) ≥ 1 (12)

to every scenario subproblem Scen(k), for k = 1, . . . ,K, in future iterations (see step 12).

Algorithm 1 The DD1 scenario decomposition algorithm for solving MIMA
1: u← +∞, `← −∞
2: repeat
3: S ← ∅
4: for k = 1, . . . ,K do
5: (βk, x̂

k)← Scen(k)

6: S ← S ∪ {x̂k}
7: end for
8: `← max{`,Cont(β)}
9: for x̂ ∈ S do

10: u← min{u,Eval(x̂)}
11: end for
12: X ← X \ S.
13: until u− ` < ε

2.3 DD2 with a Cutting-Plane Approach

Note that in DD1 we do not update the Lagrange multipliers λ. Here we consider an algorithm
that combines an inner loop of deriving the maximum lower bound g(λ) in variable λ and an
outer loop of bounding the objective value and cutting off suboptimal solutions. Following (7),
we formulate a master problem as maxλ {g(λ)} over variables φ ∈ R, λ ∈ Rd and q ∈ [0, 1]K as:

max
φ,λ,q

φ (13)

s.t. φ ≤
∑K

k=1
min
xk∈X

{
(αk − δk)λ>xk + qkfk(x

k)
}

(14)

q ∈ Qρ(p), (15)

where constraints (14) are linear in φ, q, and λ. We relax (14) and enforce them by generating
cuts iteratively. Specifically, given a solution (φ̂, λ̂, q̂) to a relaxed master problem, for each k =

7

1, . . . ,K, we compute a scenario subproblem given by

βDD2
k = min

x

{
(αk − δk)λ̂>x+ q̂kfk(x) : x ∈ X

}
. (16)

If φ̂ >
∑K

k=1 β
DD2
k , then we add an optimality cut

φ ≤
∑K

k=1

(
(αk − δk)λ>x̂k + qkfk(x̂

k)
)

(17)

where x̂k represents an optimal solution to the subproblem (16), and re-iterate to solve the master
problem (13)–(15). We terminate the algorithm when φ̂ ≤

∑K
k=1 β

DD2
k which implies that con-

straints (14) are satisfied and φ̂ equals to maxλ g(λ). We then update the lower bound ` with φ̂.
The following relation holds throughout the cutting-plane iterations

K∑
k=1

βDD2
k ≤ max

λ
{g(λ)} ≤ φ̂.

Therefore, even before attaining maxλ{g(λ)}, we can update the lower bound ` with
∑K

k=1 β
DD2
k

in every iteration, which may close the gap between ` and u earlier.

Remark 1 For any λ̂ and nonnegative q̂, the subproblem (16) must be bounded, because Scen(k) is bounded
by assumption and xk ∈ X ⊆ {0, 1}d.

With the above new lower-bound calculation, the new decomposition algorithm is deduced
from replacing steps 4–8 in Algorithm 1 by Algorithm 2. To avoid the cutting-plane method tak-
ing excessively long time to converge, we can set an upper limit to the number of cutting-plane
iterations.

Algorithm 2 Lower bound computation subroutine in DD2.

1: λ̂← 0, q̂ ← p, φ̂← +∞
2: repeat
3: for k = 1, . . . ,K do
4: solve (16) to attain the optimal objective value βDD2

k and the optimal solution x̂k

5: S ← S ∪ {x̂k}
6: end for
7: `← max{`,

∑K
k=1 β

DD2
k }

8: add cut (17) to the master problem (13)–(15)
9: solve the master problem and attain an optimal solution (φ̂, λ̂, q̂)

10: until φ̂ ≤
∑K

k=1 β
DD2
k

8

2.4 DD3 as a Subgradient-based Algorithm

Given nonnegative weights αk, k = 1, . . . ,K with
∑K

k=1 αk = 1, unlike in DD1 and DD2, here we
consider NACs:

K∑
k=1

αkx
k = xi ∀i = 1, . . . ,K, (18)

which are K copies of (5) with the right-hand sides varying from x1 to xK . We associate each of
these constraints with multiplier qiλi where qi is the probability mass value of a “dual” distribution
from the ambiguity set Qρ(p) and λi is a d-dimensional variable, for all i = 1, . . . ,K. Following
similar steps for obtaining g(λ) in (7), we formulate a relaxation of MIMA with NAC (18) that
replace (5) by

g(λ1, . . . , λK) := max
q∈Qρ(p)

min
x1,...,xK∈X

{
K∑
i=1

qi

(
(λi)>

(
K∑
k=1

qkx
k − xi

)
+ fi(x

i)

)}

= max
q∈Qρ(p)

min
x1,...,xK∈X


K∑
k=1

qk

(
fk(x

k)−
(
λk
)>

xk
)

+

(
K∑
k=1

qkλ
k

)>(K∑
k=1

qkx
k

) .

(19)

Now consider a polyhedral set A(λ1, . . . , λK) =
{
q :
∑K

k=1 λ
kqk = 0

}
. A lower approximation of

g(λ1, . . . , λK) that has a decomposable inner minimization problem is given by

g(λ1, . . . , λK) := max
q∈Qρ(p)∩A(λ1,...,λK)

min
x1,...,xK∈X

{
K∑
k=1

qk

(
fk(x

k)−
(
λk
)>

xk
)}

(20)

= max
q∈Qρ(p)∩A(λ1,...,λK)

{
K∑
k=1

(
qk min

xk∈X

{
fk(x

k)−
(
λk
)>

xk
})}

. (21)

We compute g(λ1, . . . , λK) by following the two steps below.

• Step (i): for each k = 1, . . . ,K, solve a scenario subproblem:

βDD3
k = min

x∈X

{
fk(x)− (λk)>x

}
(22)

which is bounded following Remark 1.

• Step (ii): solve a maximization problem over the continuous variable q:

max
q

{
K∑
k=1

βDD3
k qk : q ∈ Qρ(p) ∩A(λ1, . . . , λK)

}
. (23)

The value of g(λ1, . . . , λK) for any given multipliers λ1, . . . , λK , will provide a valid lower bound.
We strive to obtain the best lower bound by maximizing g(λ1, . . . , λK) via a subgradient-based

9

Algorithm 3 Lower bound computation subroutine in DD3.

1: λk ← 0, ∀k = 1, . . . ,K

2: repeat
3: for k = 1, . . . ,K do
4: solve scenario subproblem (22) to attain the optimal objective value βDD3

k and the optimal
solution x̂k.

5: S ← S ∪ {x̂k}
6: end for
7: solve (23) to attain an optimal solution q̂ and the optimal objective value

∑K
k=1 β

DD3
k q̂k.

8: `← max{`,
∑K

k=1 β
DD3
k q̂k}

9: for k = 1, . . . ,K do
10: update λk by using the subgradient −q̂kx̂k.
11: end for
12: until achieving the general stop criteria for the subgradient method

algorithm. We repeat the steps of computing g(λ1, . . . , λK), and then updating λk for k = 1, . . . ,K

by using the subgradient −q̂kx̂k, where x̂k is an optimal solution to the kth subproblem (22). The
DD3 algorithm is deduced from replacing steps 4–8 in Algorithm 1 by Algorithm 3. Note that the
three approaches differ only in the steps of updating the lower bound `.

Remark 2 Suppose that the probability distribution p of the uncertainty ξ is not explicitly known. Instead,
an ambiguity set P ⊆ M of p, consisting of all possible distributions, is available. Let ρ (f(x, ξ)) be the
worst-case risk outcome for any p ∈ P . We define set

Dρ(P) := {q : q ∈ Qρ(p), ∀p ∈ P} , (24)

and consider a distributionally robust risk-averse program:

min
x∈X

ρ (f(x, ξ)) = min
x∈X

max
q∈Dρ(P)

{
K∑
k=1

qkfk(x)

}
. (25)

Comparing (25) with the formulation of MIMA in (4), we have Qρ(p) in the latter replaced by Dρ(P) in the
former, under the ambiguity of p. Therefore, we can easily adapt the aforementioned DD1, DD2, and DD3
algorithms to the distributionally robust risk-averse program (25).

3 Parallel Implementation Schemes

In this section, we explore parallel computing schemes for implementing the proposed dual de-
composition methods in a distributed framework. DD1 has a simpler iterative structure than DD2
and DD3. (The latter two run two loops and take potentially multiple iterations for updating the
Lagrange multipliers and the lower bound in each round.) As a result, DD1 is easier to be paral-
lelized, and the parallel schemes can scale better. In Section 4.2, we show that DD1 outperforms

10

the other two algorithms even when the steps in each algorithm are implemented in serial. Thus,
we focus on improving parallel computing and propose three schemes for parallelizing DD1. (We
present parallel schemes for DD2 or DD3 in Appendix B.)

3.1 An Overview of Parallel Algorithms

In a serial implementation of DD1/DD2/DD3, subproblems like Scen(·) and Eval(·) are solved
one by one. If there are multiple processes, one can spread the subproblems, and place a barrier
to synchronize all the processes which then exchange results for updating bounds and cuts be-
fore re-iteration. We refer to this scheme as Basic Parallel (BP) and present the details in Section
3.2. In this case, waiting caused by barriers and high intensity of communication may compro-
mise parallel efficiency. In Section 3.3, we introduce a master-worker scheme that dedicates one
process to consolidate information. In Section 3.4, we introduce another master-worker scheme
that avoids barriers. These two schemes are referred to as Master-Worker with Barriers (MWB) and
Master-Worker without Barriers (MWN), respectively. In particular, BP and MWB are “push” sys-
tems where we pre-assign computing jobs to processes. Specifically, given tasks 1, . . . , J (with no
prior knowledge about their time complexity), we assign them to N processes in a round-robin
manner, such that the nth process receives a subset

ΩJ,N
n := {j ∈ {1, . . . , J} : (j − 1) mod N = (n− 1)} (26)

of tasks. In contrast, MWN is a “pull” system, where jobs are kept in a queue, and each is waiting
to be solved whenever a process becomes available.

3.2 Basic Parallel (BP)

We present BP in Algorithm 4, which assigns the K scenarios across the N processes such that
Process n (named “Procn”) receives a subset ΩK,N

n of scenarios, for n = 1, . . . , N . Each process
solves subproblem Scen(k) for every assigned scenario k, and evaluates its optimal solution. The
evaluation result is used to update the local upper bound un in Procn. We then let all the processes
share their results through some collective operation, which, in general, communicates faster than
point-to-point sending/receiving messages, but implies a barrier such that all the processes must
reach the point before they can begin communication (Pacheco, 1997; Gropp et al., 1996). In prac-
tice, barriers cause waiting.

This scheme has another weakness as evaluating repeated solutions from different scenario
subproblems. In each process, we can do a local check between steps 5 and 6, to avoid evaluating
some x̂k that we have encountered earlier in the loop. However, we cannot avoid re-evaluation if
the same solution occurs in different processes, which is very likely.

3.3 Master-worker Parallel with Barriers (MWB)

Let ProcN be the master (process) consolidating solutions and updating the bounds. The restN−1

processes are workers sharing the computation of Scen(·) and Eval(·).

11

Algorithm 4 The BP Scheme at Procn (n ∈ {1, . . . , N})
1: u← +∞, `← −∞
2: repeat
3: Initialize the local upper bound un ← +∞.
4: for k ∈ ΩK,N

n do
5: (βk, x̂

k)← Scen(k)

6: un ← min{un,Eval(x̂k)}
7: S ← S ∪ {x̂k}
8: end for
9: pass {(βk, x̂k) : k ∈ ΩK,N

n } and un to all the other processes
10: `← max{`,Cont(β)}
11: u← min{u, u1, . . . , uN}
12: X ← X \ S.
13: until u− ` < ε

Every Procn (n 6= N) solves subproblem Scen(k) for all k ∈ ΩK,N−1
n , and sends the results to

the master. The master stores optimal value βk and collects non-repeated x̂k in a solution list S.
(Note that S is different from the solution set S - the latter only collects solutions but they are not
necessarily ordered, while the former arranges the candidate solutions in a certain order.) Once
it has attained the results from all K scenarios, it broadcasts the list S. Every worker receives the
whole list (for adding no-good cuts), and shares the evaluation of all solutions in the list S . Specif-
ically, let Si represent the ith solution in S . Every Procn (n 6= N) evaluates Si for all i ∈ Ω

|S|,N−1
n ,

and sends the results to the master. The master, after broadcasting S, updates the bounds and
forces all processes to terminate once it detects a sufficiently small gap. We present the algorith-
mic steps of a worker process in Algorithm 5 and of the master in Algorithm 6. (Here u′ denotes a
temporary, valid lower bound obtained at each worker, and S + x̂k means appending solution x̂k

to the tail of the list S .
With the master collecting and broadcasting solutions, evaluating duplicated solutions can

be avoided. In terms of communication, we use asynchronous “send/receive” signals, so that the
process that sends the message does not wait for the reception of the message but proceed with the
succeeding steps, which allows for more parallelism. However, this requires buffers to store the
data in transit. In each iteration of MWB, data to be transmitted contains at most K d-dimensional
binary vectors andK real numbers, which is a fairly modest amount. In step 10 of Algorithm 6 (or
step 6 of Algorithm 5), to send the solution list S from the master to the worker, we use broadcast,
which, again, is a collective operation implying a barrier across all the processes.

3.4 Master-worker Parallel without Barriers (MWN)

In BP and MWB, all the processes are going through iterations synchronously due to the barri-
ers implied by collective communication steps. Here we design a new scheme that avoids these

12

Algorithm 5 The MWB Scheme at Procn (n ∈ {1, . . . , N − 1}) (worker)
1: loop
2: for k ∈ ΩK,N−1

n do
3: (βk, x̂

k)← Scen(k)

4: send (βk, x̂
k) to ProcN

5: end for
6: gather S from ProcN

7: for i ∈ Ω
|S|,N−1
n do

8: u′ ← Eval(Si)
9: send u′ to ProcN

10: end for
11: X ← X \ S
12: end loop

Algorithm 6 The MWB Scheme at ProcN (master)
1: repeat
2: u← +∞, `← −∞
3: S ← ∅
4: for K times do
5: receive (βk, x̂

k) from Procn

6: if x̂k /∈ S then
7: S ← S + x̂k

8: end if
9: end for

10: broadcast S to Proc1, . . . ,ProcN−1

11: `← max{`,Cont(β)}
12: for |S| times do
13: receive u′ from Procn

14: u← min{u, u′}
15: end for
16: until u− ` < ε

17: terminate all processes

barriers. At the same time, we make it a pull system for better load balancing.
Formally, the master keeps a queue of idle workers as Qproc, and a queue of subproblems to

solve as Qjob. As long as both queues are non-empty, it repeatedly pops out from each a worker
and a job, then assigns the job to the worker. It then waits to receive any result from the workers.
Once heard from some worker, it adds the worker to Qproc, process the received results, and if
necessary creates new jobs. These steps are summarized in Algorithm 7. In particular, steps 1, 5
and 9 are detailed in Algorithms 10, 9 and 8, respectively.

13

Algorithm 7 The MWN Scheme at ProcN (worker)
1: initialization
2: repeat
3: while Qproc 6= ∅ and Qjob 6= ∅ do
4: n← pop(Qproc), j ← pop(Qjob)
5: assign j to Procn

6: end while
7: receive r from Procn

8: Qproc ← Qproc + n

9: process r (and create jobs to Qjob)
10: until u− ` < ε

11: terminate all processes

The master still keeps the bounds and the list S of solutions. On the reception of a result of
Eval(·), e.g., u′, the master uses it to update the upper bound. In the other case when receiving
a result of Scen(k), i.e., (βk, x̂

k), the master resolves Cont(β) which takes in the new value of βk,
to update the lower bound. If x̂k is new, it is appended to S and a job for evaluating its objective
value is created. In addition, every reception of Scen(k)’s result triggers to create a new job for
solving Scen(k), to roll on the iterations.

Algorithm 8 Master result processing subroutine (step 9 of Algorithm 7)
1: switch r:
2: case u′ :
3: u← min{u, u′}
4: case (βk, x̂

k) :
5: `← max{`,Cont(β)}
6: if x̂k /∈ S then
7: S ← S + x̂k

8: Qjob ← Qjob + Eval(x̂k)
9: end if

10: Qjob ← Qjob + Scen(k)

11: end switch

To avoid barriers, the system has no centralized step for informing the workers of all the
explored solutions, but point-to-point communication between the master and any individual
worker for a single job or the result of it. In order for the workers to know what cuts to add to the
subproblems, we let the master keep, for each worker n, an index τ(n) ∈ {0, . . . , |S|} pointing to
the end of a sublist of S which the worker has known and generated cuts. For example, if τ(1) = 3

and τ(2) = 5, it means that Proc1 and Proc2 have got cuts to exclude solutions S1, . . . ,S3, and
S1, . . . ,S5, respectively. Once it is time for Procn to update cuts, the master sends Sτ(n)+1, . . . ,S|S|,

14

then accordingly increase τ(n) to |S|. Note that additional cuts affect Scen(·) but not Eval(·). The
master therefore sends these solutions along with the jobs of Scen(·). Algorithm 9 presents the job
assignment subroutine with these details. Algorithm 10 presents the initialization steps.

Algorithm 9 Master job assignment subroutine (step 5 of Algorithm 7)
1: switch j:
2: case Eval(x̂) :
3: send (Eval(x̂)) to Procn

4: case Scen(k) :
5: S ← {Si : i = τ(n) + 1, . . . , |S|}
6: τ(n)← |S|
7: send (S,Scen(k)) to Procn

8: end switch

Algorithm 10 Master initialization subroutine (step 1 of Algorithm 7)
1: u← +∞, `← −∞
2: S ← ∅
3: τ(1), . . . , τ(N − 1)← 0

4: Qproc ← 〈1, . . . , N − 1〉
5: Qjob ← 〈Scen(1), . . . ,Scen(K)〉

The logic at the workers is straightforward. They receive tasks from the master, work on them
and send back the results. Algorithm 11 presents the steps.

Algorithm 11 The MWN Scheme at Procn (n ∈ {1, . . . , N − 1})
1: loop
2: receive j from ProcN

3: switch j:
4: case (Eval(x̂)) :
5: u′ ← Eval(x̂)

6: send u′ to ProcN

7: case (S,Scen(k)) :
8: X ← X \ S
9: (βk, x̂

k)← Scen(k)

10: end switch
11: end loop

A major difference of MWN from the previous schemes is that, the workers are asynchronous
in adding cuts. Given the cuts that Procn has generated, we denote the feasible region asXn. Then

15

each Scen(k) that Procn solves, precisely, is:

β′k(nk) = min{fk(x) : x ∈ Xnk}

where nk ∈ {1, . . . , N − 1} specifies the worker, to which the scenario subproblem Scen(k) is
assigned. A lower bound obtained in this case is

˜̀= Cont((β′1(n1), . . . , β
′
K(nK))).

To justify that the algorithm is valid with this lower bound, we show in the following that ˜̀ will
not cross with the upper bound u, when u is not yet optimal. Define X = Xn1 ∩ · · · ∩XnK , and for
k = 1, . . . ,K, consider

βk = min{fk(x) : x ∈ X}.

By definition, βk ≥ β′k(nk) for k = 1, . . . ,K. When u is suboptimal, any optimal solution x∗ must
not have been explored yet (i.e., x∗ /∈ S), and thus x∗ ∈ Xnk for k = 1, . . . ,K which implies that
x∗ ∈ X . Therefore, we also have βk ≤ fk(x∗) for k = 1, . . . ,K. Therefore,

u > Cont((f1(x∗), . . . , fK(x∗))) ≥ Cont((β1, . . . , βK)) ≥ Cont((β′1(n1), . . . , β
′
K(nK))) = ˜̀.

4 Computational Results

We implement the proposed parallelization schemes by OpenMPI 1.6 (Gabriel et al., 2004), and
perform the computation on the Flux HPC cluster at the University of Michigan. We use up to
21 compute nodes of the cluster, and each compute node has twelve 2.67 GHz Intel Xeon X5650
processors and 48GB RAM. All involved optimization models (including subproblems as a result
of decomposition) are solved by CPLEX 12.6 via ILOG Concert Technology. We set a runtime limit
of six hours for computing each instance.

4.1 Instances and Experimental Setup

We extract two sets of instances from the test problem library SIPLIB (Ahmed et al., 2015a):

• Stochastic server location problem (SSLP) instances from a telecommunication application
studied by Ntaimo and Sen (2005): The first stage decides where to place servers out of n
locations, and the second stage satisfies uncertain demand from m clients. The cost function
is given by

f(x, ξ) = γ>x+ min
y
{θ>1 y + θ>2 z : W1y +W2z ≥ r(ξ)− Tx, y ∈ {0, 1}n×m, z ∈ Rn+}

and the feasible region is x ∈ X = {0, 1}n. We use four sets of instances with n = 10 and
m = 50. They contain 50, 100, 500 and 1000 scenarios, respectively.

16

• Stochastic multiple 0-1 knapsack problem (SMKP) instances studied by Angulo et al. (2014):
The first and the second stages are multiple 0-1 knapsack problems with n and m entities,
respectively. The cost function reads as:

f(x, ξ) = γ>x+ min
y
{θ(ξ)>y : Wy ≥ r − Tx, y ∈ {0, 1}m}

and the feasible region is X = {x ∈ {0, 1}n : Ax ≥ w} with linear constraints Ax ≥ w.
The original dataset contains 30 instances each of which contains 20 scenarios. To examine
how problem size affects the algorithm performance, we pick the first instance, then modify
it to attain instances with 40, 80 and 160 scenarios. To modify a K-scenario dataset to K ′-
scenario, we first include the original K scenarios. Then repeat for K ′ −K times, generate
random numbers σ1, . . . , σK , then create a scenario k such that θ(ξk) is a weighed average of
the original θ(ξ1), . . . , θ(ξK) with weighing coefficients given by normalized σ1, . . . , σK , i.e.,

θ(ξk) =

∑K
k′=1 σk′θ(ξ

k′)∑K
k′=1 σk′

.

Table 1 presents the size and the performance of LP relaxations of these instances. Specifically,
var and # constr respectively give the numbers of binary variables and constraints in the corre-
sponding problems. SMKP has pure binary problems in both stages. SSLP has binary first-stage,
and mixed-binary second-stage problem, which involves 10 continuous variables in each scenario.
Both sets contain four instances with varying number of scenarios. In every instance, all the sce-
narios are equal likely, i.e., p1 = · · · = pK = 1/K. Regarding the number of variables and con-
straints, SSLP has the second-stage much bigger than the first-stage, while SMKP is the opposite.
The last section of the table presents the computational time (in seconds) of the LP relaxation (see
total time) and the gaps between the optimal objective values of the LP relaxation and the original
binary program (see tightness). There is a notable trend that the more scenarios, the longer the
computation and the weaker the LP relaxation.

Table 1: Sizes of different instances and performance of their LP relaxations
SSLP SMKP

50 100 500 1000 20 40 80 160

1st-stage
var 10 10 10 10 240 240 240 240

constr 1 1 1 1 50 50 50 50

2nd-stage
scen (K) 50 100 500 1000 20 40 80 160

var (per scen) 500 500 500 500 120 120 120 120
constr (per scen) 60 60 60 60 5 5 5 5

LP relaxation
total time 0.48 2.35 59.29 45.19 0.043 0.071 0.069 0.229
tightness 24.8% 25.8% 24.3% 27.9% 0.36% 2.99% 3.15% 5.53%

For the coherent risk measure, we choose conditional value-at-risk (CVaR), i.e., ρ(·) = CVaRα(·),
and set the reliability parameter α to 0.9. The uncertainty set in the dual representation of CVaR

17

contains only linear constraints (see Shapiro and Ahmed, 2004), given by

Qρ(p) =

{
(q1, . . . , qK) :

K∑
k=1

qk = 1, 0 ≤ qk ≤ pk/(1− α), ∀k = 1, . . . ,K

}
.

In this case, MIMA becomes a minimax linear integer program, and the maximization problems
Cont(β), (13)–(15), and (23), which emerge from the scenario decomposition algorithms, are all
linear programs.

To benchmark the performance of the scenario decomposition algorithms, we solve the follow-
ing equivalent reformulation of CVaR (Rockafellar and Uryasev, 2000, 2002):

CVaRα(f(x, ξ)) = min
η

{
η +

1

1− α

K∑
k=1

pk [fk(x)− η]+ : η ∈ R

}
,

and solve the considered risk-averse problem an extensive form mixed-integer program:

min
x,η,v1,...,vK

{
η +

1

1− α

K∑
k=1

pkvk : vk ≥ fk(x)− η, vk ≥ 0, ∀k = 1, . . . ,K, x ∈ X

}
. (27)

4.2 Results of Serial Implementation

The default serial scheme is directly calling an off-the-shelf solver to optimize model the exten-
sive form model (27). Table 2 compares the serial computational time (in second) of different ap-
proaches implemented in one process. If an instance is not solved to optimality within the runtime
limit of six hours, we present the optimality gaps in parentheses. We refer to Table 8 in Appendix
A for the detailed results of the time spent on solving subproblems, evaluating solutions, and the
number of iterations in the default and DD1 algorithms.

Table 2: Serial solution time (in second) for solving SSLP and SMKP instances

Scheme
SSLP SMKP

50 100 500 1000 20 40 80 160
default 195 201 (100%) (100%) 300 (0.09%) (0.11%) (0.16%)

DD1 248 502 4663 12750 2692 9866 11249 18774
DD2 1276 2570 (10%) (16%) (0.02%) (0.01%) (0.02%) (0.02%)
DD3 415 602 7231 (9%) 3496 9080 (0.11%) (0.11%)

Compared with default, the scenario decomposition methods are slower when the number of
scenarios is relatively small (e.g., SSLP 50, SSLP 100 and SMKP 20). However, as the number of
scenarios increases, they perform better in time efficiency: (i) the optimality gaps on SSLP 500
and SSLP 1000 are, respectively, 10% and 16% under DD2, which are much better than the two
100%s under the default scheme; (ii) DD3 yields a better optimality gap of 9% on SSLP 1000, and
can solve SSLP 500 in two hours; (iii) DD1 is the most efficient, solving the two instances in 4663

18

seconds and 12750 seconds, respectively. We observe a similar trend of computational efficacy on
solving modest and large instances of SMKP (40, 60, and 80) as

default < DD2 < DD3 < DD1.

Next we focus on implementing the three parallelization schemes on the DD1 algorithm, and
demonstrate the improved performance of the algorithm.

4.3 Results of Parallel Implementations of DD1

We capture the parallel time as the time that elapsed from the start of the parallel program to the
end. For each run we compute speedup as the ratio of the serial time to the parallel time. We test
all the three schemes introduced in Section 3 on both sets of SSLP and SMKP instances, and show
how the results of speedup change as we vary the number of processes in Figure 1.

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

perfect speedup BP MWB MWN

0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32
0
4
8

12
16
20
24
28
32

0 4 8 12 16 20 24 28 32

SSLP_50 SSLP_100 SSLP_500 SSLP_1000

SMKP_20 SMKP_40 SMKP_80 SMKP_160

Figure 1: Speedup versus number of processes for implementing DD1

In Figure 1, each subfigure presents the results on one particular instance. The vertical and
horizontal axes represent “speedup” and “number of processes”, respectively. We have them
scaled equally, so the main diagonal (in grey) indicates perfect parallelism where speedup is equal
to the number of processes. Each background grid cell has a height of 5 (unit-less) and a width of
5 processes. We use 2, 3, 6, 11 and 21 processes. The red, the blue and the green curves are results
of BP, MWB and MWN, respectively.

19

We observe several cases of super-linear speedup, i.e., points located above the diagonal line.
This is due to the way we parallelize, and the total workload may abate from the serial implemen-
tation. Consider the following simplified example. The serial program has spent 2 hours going
through some iterations, then comes to an iteration with three outstanding jobs (e.g., Scen(k) or
Eval(x̂)), that respectively take 1, 8 and 1 hours. The result of the third job leads to convergence.
The serial total time is thus 2 + (1 + 8 + 1) = 12 hours. However, if we have three processes each
taking care of one job. Then, the process responsible for the third job will detect convergence right
after 1 hour, and will right away terminate all the other processes. With two extra processes, the
iterations that previously took 2 hours will now take shorter, too. Therefore, the parallel total time
is shorter than 2 + 1 = 3 hours. In this case, we have achieved a speedup ≥ 4 with only three
processes.

We dive into Figure 1 for deducing other interesting results of using different parallel schemes.
First, comparing the red (BP) and the blue (MWB) curves, for every SMKP instance, we observe
a crossover of the two lines: the red line always starts climbing sharper, but flatten out earlier
and crosses with the blue one. Recall that BP has one more process sharing the computation than
MWB. This is an important advantage when N is small, which explains the red line climbing
faster in the beginning. This advantage, however, fades out as we increase N . In contrast, the
advantage of MWB that it avoids re-evaluating duplicate solutions stands out. This can be verified
by comparing the number of solutions BP and MWB evaluate, reported in Table 3.

Table 3: Number of evaluated x-solutions in the implementation of DD1 algorithm
SSLP SMKP

scheme num of processes (N) 50 100 500 1000 20 40 80 160

BP

2 139 183 259 172 9 14 22 34
3 155 214 489 221 11 16 24 42
6 170 247 701 324 15 21 30 52

11 184 266 892 882 17 27 37 62
21 189 283 1095 1151 20 34 48 74

MWB

2 117 136 240 187 8 12 15 23
3 117 136 240 187 8 12 15 23
6 117 136 240 188 8 12 15 23
11 117 134 240 188 8 12 15 23
21 117 136 240 189 8 12 15 23

In Table 3, for MWB, less time is spent on evaluation and is thus faster, which is reflected as the
blue curve climbing higher when N is large. On SSLP instances, BP scales worse than MWB, and
the discrepancy gets larger as N increases. This is because the more processes, the more time BP
wastes on evaluating duplicated solutions. This can be seen from the BP section in Table 3 where
the number or evaluated solutions increases along with the increase of N in all cases.

As we examine horizontally, MWB and MWN are complementary. When the number of sce-

20

narios is still small (e.g., SSLP 50, SSLP 100, SMKP 20, SMKP 40), MWB suffers from load imbal-
ance, but MWN achieves good speedup due to the deployed pull mechanism. As the number of
scenarios increases, there are more subproblems to solve and more solutions to evaluate. MWN
has to communicate more to dispatch jobs, which compromises the speed. In contrast, more sce-
narios means more jobs MWB can shuffle around between barriers, and thus load imbalance gets
alleviated. This explains why MWB being faster than MWN on SSLP 500, SSLP 100, SMKP 80
and SMKP 160.

In addition to speedup, we also analyze communication time, which is the total time elapsed
from the completion of the predecessor of a communication step (e.g., send, receive, broadcast,
etc.) to the start of its successor. Therefore, it consists of the time on transmitting data (the net
communication time) and the time on waiting to receive or broadcast data (the idle time). In
practice, compared to the latter, the former is almost negligible due to the modest quantity of data
being transmitted. We therefore can view the communication time as the idle time. We capture
the communication time of each process as comm(n). Figure 2 plots the total communication time
(in second)

N∑
n=1

comm(n),

against the number of processes. Table 4 presents the percentage of communication time con-

0

100

200

300

400

500

1 6 11 16 21

SSLP_50

0

100

200

300

400

500

1 6 11 16 21

SSLP_100

0

2000

4000

6000

8000

10000

1 6 11 16 21

SSLP_500

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21

SSLP_1000

0

5000

10000

15000

20000

25000

1 6 11 16 21

SMKP_20

BP MWB MWN

0

10000

20000

30000

40000

50000

60000

1 6 11 16 21

SMKP_40

0

4000

8000

12000

16000

20000

1 6 11 16 21

SMKP_80

0

5000

10000

15000

20000

25000

30000

1 6 11 16 21

SMKP_160

Figure 2: Communication time versus number of processes (N) of parallelizing DD1

tributed by the master, i.e.,
comm(N)∑N
n=1 comm(n)

.

We make the following observations.

21

Table 4: The percentage of communication time contributed by the master
SSLP SMKP

scheme N 50 100 500 1000 20 40 80 160

MWB

2 100% 100% 100% 100% 100% 100% 100% 100%
3 82% 91% 91% 89% 83% 50% 50% 85%
6 47% 43% 47% 63% 26% 20% 20% 29%
11 15% 18% 23% 31% 11% 10% 10% 11%
21 6% 7% 10% 10% 5% 5% 5% 5%

MWN

2 100% 100% 100% 100% 100% 100% 100% 100%
3 100% 100% 100% 100% 100% 100% 100% 100%
6 100% 100% 100% 100% 100% 100% 100% 100%
11 99% 99% 100% 100% 100% 100% 100% 100%
21 98% 97% 100% 100% 95% 99% 99% 100%

• In Figure 2, the curves for BP, MWB and MWN follow increasing, increasing and decreasing
trends, respectively.

• In BP, there are only collective communication steps which imply barriers. Except for the
small amount of time on transmitting data, the communication time is mainly from waiting
at barriers, which increases as the number of processes N increases.

• In MWN, the master is devoted to consolidating results from the workers. The more workers
we have, the shorter the master waits for results. We also see from Table 4 that nearly all the
communication time is contributed by the master (which implies that the workers are well
utilized for computation thanks to the pull mechanism). These explain why MWN curves
decrease in Figure 2.

• Although MWB has a similar master-worker structure, it contains a broadcasting step in-
volving all the processes and barrier waiting. As N increases, the communication time of
the master becomes shorter, however, the communication time of the workers increases in a
bigger magnitude. This offsets the drop of communication-time percentage for the master
in Table 4, and also leads to the shape of MWB curves in Figure 2.

Lastly, we compare the runtime (in second) between serial and parallel implementation schemes
of DD1 in Table 5, in which the first two rows recall the serial computational time of the default
and DD1 algorithms presented in Table 2. For each instance, we indicate in bold the shortest serial
time and the shortest parallel time. We observe in all instances that the fastest parallel scheme
outperforms the fastest serial scheme. Among the parallel schemes, MWN performs better for
small instances while MWB performs better for the largest scale instances.

22

Table 5: Comparing serial and parallel computation time (in second) of DD1 algorithm
SSLP SMKP

Scheme N 50 100 500 1000 20 40 80 160

Serial
default 1 195 201 (100%) (100%) 300 (0.09%) (0.11%) (0.16%)

DD1 1 248 502 4663 12750 2692 9866 11249 18774

Parallel

BP

2 170 377 7633 11412 1808 4560 4630 9779
3 113 271 8514 10781 1162 3897 3462 6877
6 66 132 4694 9844 782 2711 1879 3659
11 41 89 2074 7870 696 2539 1233 2521
21 31 52 1122 3991 685 2648 1202 1464

MWB

2 162 315 3758 6462 2641 7046 8162 14830
3 78 138 1514 2938 2400 5834 5251 10297
6 33 67 584 987 825 3418 2375 3840
11 26 41 327 510 684 2773 1169 1903
21 24 34 227 484 509 2269 826 1117

MWN

2 166 418 7200 7304 1625 7481 7322 7312
3 79 203 5783 7224 755 7582 7449 7615
6 32 86 1260 5540 232 3411 4860 7263
11 16 37 674 3058 162 2444 2943 7258
21 18 16 303 1489 120 777 844 2572

4.4 Results of 0-1 Stochastic Program with Mean-risk Measure

To investigate whether or not the selection of risk measure can affect the computational difficulty
of 0-1 risk-averse programs, we consider a mean-risk variant of the above CVaR-based model, in
which we minimize a weighted sum of a coherent risk and an expectation:

min {w · ρ(f(x, ξ)) + (1− w) · E[f(x, ξ)] : x ∈ X}

wherew is a given weight parameter between 0 and 1. The extended formulation (used to be MIMA
given the generic coherent risk measure ρ) now becomes:

MIMA′ : min
x∈X

max
q∈Qρ(p)

{
K∑
k=1

(wqk + (1− w)pk) fk(x)

}

to which all the proposed algorithms (i.e., DD1, DD2, DD3, and the parallel computing schemes)
can easily adapt.

Table 6 compares the runtime (in second) of the risk-averse problem (i.e., w = 1) with its
expectation-based counterpart (i.e., w = 0), under MWB. We see that they are very close on most
of the instances. We therefore can conclude that the proposed algorithm can handle a risk-averse
problem equally well with any coherent risk measure, as a transitional expectation-based stochas-
tic program.

23

Table 6: Results of mean-risk model variants and its expectation counterpart under MWB
SSLP 50 SSLP 100 SSLP 500 SSLP 1000

N w = 1 w = 0 w = 1 w = 0 w = 1 w = 0 w = 1 w = 0

time

2 6 6 13 13 162 162 315 344
3 3 3 6 6 78 76 138 138
6 1 1 3 3 33 33 67 65
11 1 1 2 2 26 25 41 48
21 1 1 2 2 24 29 34 34

optimal obj -253 -365 -248 -355 -246 -350 -250 -352

SMKP 20 SMKP 40 SMKP 80 SMKP 160
N w = 1 w = 0 w = 1 w = 0 w = 1 w = 0 w = 1 w = 0

time

2 3758 3814 6462 11930 2641 3651 7046 8706
3 1514 1525 2938 5995 2400 3448 5834 7257
6 584 583 987 2110 825 983 3418 4082
11 327 332 510 964 684 846 2773 3656
21 227 186 484 864 509 602 2269 3071

optimal obj 9357 9043 9550 9187 9475 9194 9572 9251

4.5 Results of Distributionally Robust Risk-averse Programs

As discussed in Remark 2, the distributionally robust risk-averse problem can be viewed as a
special case of the considered problem as long as we replace Qρ(p) with Dρ(P). Here we test a
distributionally robust risk-averse problem with

P =

{
p :

K∑
k=1

pk = 1, (1− υ)/K ≤ pk ≤ (1 + υ)/K, ∀k

}

where υ is a constant between 0 and 1. We vary υ = 0.3 and 0.6 on three instances (i.e., SSLP 100,
SSLP 1000, SMKP 80), use MWB to solve each case and present the results in Table 7. We also
show the results of the corresponding run given singleton-P (i.e., υ = 0.0) as benchmarks.

In Table 7, we observe that the change in runtime depending on υ is very small. This is reason-
able because the structure of P only affects the computation of Cont(β) in step 11 of Algorithm 6,
which in this case is a simple LP with negligible solution time.

5 Conclusions

In this paper, we reformulate a class of risk-averse 0-1 stochastic programs into minimax programs
by utilizing dual representations of coherent risk measures. We then develop three scenario-
decomposition-based algorithms (DD1, DD2, and DD3) based on different Lagrangian relaxation

24

Table 7: Computational results of distributionally robust risk-averse problem under MWB
SSLP 100 SSLP 1000 SMKP 80

N υ = 0 υ = 0.3 υ = 0.6 υ = 0 υ = 0.3 υ = 0.6 υ = 0 υ = 0.3 υ = 0.6

time

2 315 311 311 6462 8016 7210 8162 8326 8565
3 138 137 137 2938 2950 2866 5251 5444 5122
6 67 70 70 987 992 977 2375 2475 2474
11 41 42 42 510 641 640 1169 1245 1243
21 34 34 34 484 660 681 826 796 799

optimal obj -248 -245 -243 -250 -244 -239 9475 9484 9493

schemes. In DD1, the Lagrange multipliers are simply set to zero, and the gap between the upper
and lower bounds are closed solely by evaluating and cutting off feasible solutions. DD2 and DD3
seek to accelerate the convergence by adding an inner loop for strengthening the lower bounds
through a cutting-plane method and a subgradient method to update the multiplers, respectively.
Our computation results suggest the following:

1. All the scenario decomposition algorithms significantly outperform the method of directly
solving the risk-averse 0-1 program (e.g., the default scheme in Section 4.2), especially when
the number of scenarios is large.

2. The speeds of the three approaches follow:

DD2 < DD3 < DD1,

which implies that adjusting the dual multiplier is not quite effective in improving the lower
bounds, and motivates the parallelization of DD1.

To further reduce the runtime, we introduce three parallel schemes for DD1. In BP, there is
no hierarchy among processes. All of them are sharing subproblem computation and passing
results through collective communication steps. In MWB, with the objective of avoiding reevalu-
ating duplicate solutions and abating workload, we dedicate one process, termed as the master,
to collecting solutions and removing duplicates. This, however, means that there is one less pro-
cess sharing the computation. Similar to BP, there is extra waiting at the barriers implied by the
collective communication operations for passing cuts. In MWN, to avoid barriers we use an asyn-
chronous cut-adding strategy that only requires point-to-point communication between the mas-
ter and individual workers. Moreover, we deploy a “pull” mechanism in assigning subproblems
to processes which much better balances the load than the “push” mechanism in the previous two
schemes. Our computational results suggest the following:

1. Parallel implementation of DD1 can lead to super-linear speedup due to the early detection
of convergence achieved from spreading out the computation of subproblems.

2. When the number of processes is small, BP performs well. However, as we increase the
number of processes, the performance of BP is deteriorated by waiting caused by barriers.

25

3. MWB and MWN are complementary to each other. When the number of scenarios is small,
MWB suffers from load imbalance, and MWN achieves good speedup due to the deployed
pull mechanism. As the number of scenarios increases, the communication for job dispatch-
ing in MWN starts to compromise the performance, while MWB has load imbalance allevi-
ated and thus starts to perform well.

4. The choice of coherent risk measure in a risk-averse 0-1 stochastic program does not generate
significant impact on the computation time.

5. The same scenario decomposition algorithm and parallelization methods can be applied to
solve distributionally robust risk-averse 0-1 stochastic programs, with similar computational
efficiency.

Acknowledgment

Shabbir Ahmed is supported in part by the Office of Naval Research under grant number 127307.
Yan Deng and Siqian Shen have been supported in part by the National Science Foundation un-
der grant CMMI-1433066. Yan Deng is also grateful for the support from Michigan Institute for
Computational Discovery and Engineering Fellowship.

References

Ahmed, S. (2013). A scenario decomposition algorithm for 0-1 stochastic programs. Operations Research
Letters, 41(6):565–569.

Ahmed, S., Garcia, R., Kong, N., Ntaimo, L., Parija, G., Qiu, F., and Sen., S. (2015a). SIPLIB: a stochastic
integer programming test library. http://www2.isye.gatech.edu/˜sahmed/siplib/.

Ahmed, S., Luedtke, J., Song, Y., and Xie, W. (2015b). Nonanticipative duality, relaxations, and for-
mulations for chance-constrained stochastic programs. Available at Optimization-Online http:

//www.optimization-online.org/DB_HTML/2014/07/4447.html.

Angulo, G., Ahmed, S., and Dey, S. S. (2014). Improving the integer L-shaped method. Available
at Optimization-Online http://www.optimization-online.org/DB_HTML/2014/04/4332.

html.

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of risk. Mathematical Finance,
9(3):203–228.

Birge, J. R., Donohue, C. J., Holmes, D. F., and Svintsitski, O. G. (1996). A parallel implementation of the
nested decomposition algorithm for multistage stochastic linear programs. Mathematical Programming,
75(2):327–352.

Birge, J. R. and Louveaux, F. V. (2011). Introduction to Stochastic Programming. Springer, New York, NY.

Birge, J. R. and Rosa, C. H. (1996). Parallel decomposition of large-scale stochastic nonlinear programs.
Annals of Operations Research, 64(1):39–65.

Carøe, C. C. and Schultz, R. (1999). Dual decomposition in stochastic integer programming. Operations
Research Letters, 24:37–45.

26

Collado, R. A., Papp, D., and Ruszczyński, A. (2012). Scenario decomposition of risk-averse multistage
stochastic programming problems. Annals of Operations Research, 200(1):147–170.

Crainic, T. G., Fu, X., Gendreau, M., Rei, W., and Wallace, S. W. (2011). Progressive hedging-based meta-
heuristics for stochastic network design. Networks, 58(2):114–124.

Crainic, T. G., Hewitt, M., and Rei, W. (2014). Scenario grouping in a progressive hedging-based meta-
heuristic for stochastic network design. Computers & Operations Research, 43:90–99.

Dentcheva, D. and Römisch, W. (2004). Duality gaps in nonconvex stochastic optimization. Mathematical
Programming, 101(3):515–535.

Fragniere, E., Gondzio, J., and Vial, J.-P. (2000). Building and solving large-scale stochastic programs on an
affordable distributed computing system. Annals of Operations Research, 99(1-4):167–187.

Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay, V., Kambadur, P.,
Barrett, B., Lumsdaine, A., et al. (2004). Open MPI: Goals, concept, and design of a next generation
MPI implementation. In Recent Advances in Parallel Virtual Machine and Message Passing Interface, pages
97–104. Springer.

Gropp, W., Lusk, E., Doss, N., and Skjellum, A. (1996). A high-performance, portable implementation of
the MPI message passing interface standard. Parallel Computing, 22(6):789–828.

Linderoth, J. and Wright, S. (2003). Decomposition algorithms for stochastic programming on a computa-
tional grid. Computational Optimization and Applications, 24(2-3):207–250.

Linderoth, J. and Wright, S. J. (2005). Computational grids for stochastic programming. Applications of
stochastic programming, 5:61–77.

Lubin, M., Martin, K., Petra, C. G., and Sandıkçı, B. (2013). On parallelizing dual decomposition in stochas-
tic integer programming. Operations Research Letters, 41(3):252–258.

Miller, N. and Ruszczyński, A. (2011). Risk-averse two-stage stochastic linear programming: Modeling and
decomposition. Operations Research, 59(1):125–132.

Mulvey, J. M. and Ruszczyński, A. (1995). A new scenario decomposition method for large-scale stochastic
optimization. Operations Research, 43(3):477–490.

Nielsen, S. S. and Zenios, S. A. (1997). Scalable parallel benders decomposition for stochastic linear pro-
gramming. Parallel Computing, 23(8):1069–1088.

Ntaimo, L. and Sen, S. (2005). The million-variable “march” for stochastic combinatorial optimization.
Journal of Global Optimization, 32:385–400.

Pacheco, P. S. (1997). Parallel programming with MPI. Morgan Kaufmann.

Rockafellar, R. T. and Uryasev, S. (2000). Optimization of conditional Value-at-Risk. Journal of Risk, 2(3):21–
42.

Rockafellar, R. T. and Uryasev, S. (2002). Conditional Value-at-Risk for general loss distributions. Journal of
Banking and Finance, 26(7):1443–1471.

Rockafellar, R. T. and Wets, R.-B. (1976). Nonanticipativity and l1-martingales in stochastic optimization
problems. In Stochastic Systems: Modeling, Identification and Optimization II, pages 170–187. Springer.

Ruszczyński, A. (1993). Parallel decomposition of multistage stochastic programming problems. Mathemat-
ical programming, 58(1-3):201–228.

Ruszczyński, A. (2013). Advances in risk-averse optimization. In INFORMS Tutorials in Operations Research.
INFORMS.

27

Ryan, K., Rajan, D., and Ahmed, S. (2015). Scenario decomposition for 0-1 stochastic programs: Im-
provements and asynchronous implementation. Available at Optimization-Online http://www.

optimization-online.org/DB_FILE/2015/11/5201.pdf.

Shapiro, A. (2012). Minimax and risk averse multistage stochastic programming. European Journal of Opera-
tional Research, 219(3):719–726.

Shapiro, A. and Ahmed, S. (2004). On a class of minimax stochastic programs. SIAM Journal on Optimization,
14(4):1237–1249.

Shapiro, A., Dentcheva, D., and Ruszczyński, A. (2009). Lectures on Stochastic Programming: Modeling and
Theory, volume 9. SIAM, Philadelphia, PA.

Watson, J.-P., Wets, R. J., and Woodruff, D. L. (2010). Scalable heuristics for a class of chance-constrained
stochastic programs. INFORMS Journal on Computing, 22(4):543–554.

Watson, J.-P. and Woodruff, D. L. (2011). Progressive hedging innovations for a class of stochastic mixed-
integer resource allocation problems. Computational Management Science, 8(4):355–370.

APPENDIX

A Time spent on each step of the default and DD1 implementations

For the total solution time given in Table 2, we break it down and record the time of solving
scenario subproblems (i.e., Scen(·) in DD1), and the time of evaluating solutions (i.e., Eval(·)),
respectively presented in the columns scen time and eval time in Table 8. We also report in column
iter the number of iterations required for the upper and lower bounds to converge.

Table 8: Time (in second) and iteration counts of default and DD1 algorithms
SSLP SMKP

50 100 500 1000 20 40 80 160
default total time 195 201 (100%) (100%) 299 (0.09%) (0.11%) (0.16%)

DD1

total time 248 502 4663 12750 2692 9866 11249 18774
scen time 68 98 110 4857 2688 9853 11218 18704
eval time 180 404 4552 7893 3 13 31 70

iter 4 3 2 2 2 1 1 2

B Parallel Algorithm for DD2 and DD3

Unlike DD1, both DD2 and DD3 contain an inner loop that improves ` by adjusting objective-
function parameters as opposed to shrinking the feasible region. Let Λk represent the concatena-
tion of parameters that affect the scenario-k subproblem and vary in the inner loop. Let h(·) repre-
sent the function that maps (βDDi

k , x̂k,Λk)
K
k=1 to a tentative lower bound, and r

(
(βDDi
k , x̂k,Λk)

K
k=1

)
≥

28

0 represent the stop condition of the inner loop. We redescribe the double-loop structure as a single
loop, and present a general parallel scheme for DD2 and DD3 in Algorithm 12.

Algorithm 12 The Parallel Scheme for DD2 and DD3 at Procn (n ∈ {1, . . . , N})
1: u← +∞, `← −∞
2: initialize Λ1, . . . ,ΛK

3: repeat
4: un ← +∞
5: for k ∈ ΩK,N

n do
6: (βDDi

k , x̂k)← a scenario-k-based subproblem parameterized by Λk

7: un ← min{un,Eval(x̂k)}
8: end for
9: pass {(βDDi

k , x̂k) : k ∈ ΩK,N
n } and un to all the other processes

10: `← max{`, h
(
(βDDi
k , x̂k,Λk)

K
k=1

)
}

11: u← min{u, u1, . . . , uN}
12: if r

(
(βDDi
k , x̂k,Λk)

K
k=1

)
< 0 then

13: update Λ1, . . . ,ΛK

14: else
15: X ← X \ S
16: reset Λ1, . . . ,ΛK

17: end if
18: until u− ` < ε

This algorithm is similar to BP. The major difference is in the end of each iteration there are
two options. If r

(
(βDDi
k , x̂k,Λk)

K
k=1

)
< 0, we update Λ1, . . . ,ΛK (i.e., step 13) which corresponds

to proceeding to the next iteration of the inner loop in the double-loop algorithm. Otherwise, we
shrink the feasible region and reset Λ1, . . . ,ΛK (i.e., steps 15,16) which corresponds to closing the
inner loop and proceeding to the next iteration of the outer loop.

29

