
Generation of Feasible Integer Solutions on a Massively Parallel ComputerI,II

Utku Koca,b,∗, Sanjay Mehrotraa

aNorthwestern University, Evanston, IL, USA
bMEF University, Istanbul, TURKEY

Abstract

We present an approach to parallelize generation of feasible solutions of mixed integer linear programs in distributed

memory high performance computing environments. The approach combines a parallel framework with feasibility

pump (FP) as the rounding heuristic. The proposed approach runs multiple FP instances with different starting so-

lutions concurrently, while allowing them to share information. The starting solutions for multiple subroutines are

created by rounding the most fractional k variables of an optimal solution of the continuous relaxation. Our compu-

tational results on COR@L, MIPLIB 2003, and MIPLIB 2010 test sets suggest that the improvement resulting from

parallelization using our approach is statistically significant. Furthermore, running multiple short FP algorithms in

parallel can significantly outperform running a single long version even if both algorithms are given the same amount

of CPU time. This suggest that the benefits of parallelization are also due to information sharing.

Keywords: Mixed Integer Programming, Parallel Optimization, Feasibility Pump

1. Introduction

In this study we consider the problem of generating

high quality feasible solutions for unstructured Mixed

Integer Linear Programs (MILPs) in a parallel computa-

tional environment. MILP is extensively studied in the

literature. We suggest interested reader to [1] for a re-

cent review. Generating high quality feasible solutions

quickly is important in practice. This is because avail-

ability of feasible solutions with close to optimal objec-

tive value may help reduce the number of nodes in the

IThis study is supported by ONR (grant no:) and DoE (grant no:)
IIThe main part of the study was conducted while Utku Koc was a

post doctoral fellow at Northwestern University.
∗Corresponding author
Email addresses: utku.koc@mef.edu.tr (Utku Koc),

mehrotra@northwestern.edu (Sanjay Mehrotra)

branch and bound (B&B) tree in a branch and cut al-

gorithm. In this study, we propose a scheme that can

use multiple heuristics with various parameter settings

in parallel. Specifically, we empirically investigate the

use of Feasibility Pump (FP) to find feasible solutions

for unstructured MILPs in a parallel framework.

The motivation of this study is the emerging com-

puting environments. The clock speed of the high-tech

processors is more or less stable for the past few years.

Computer technology is now mainly focused on increas-

ing the number of processors and memory. With this in

mind, we move to a new era of developing parallel al-

gorithms for a variety of problems for desktop and high

performance computing. From a practical point of view,

Preprint submitted to Elsevier July 18, 2016

it is important to solve a problem or identify a good so-

lution within a reasonable amount of wall-clock time,

de-emphasizing the CPU-time used.

For MILPs, a way to use the power of parallel com-

puting is to search the branch and bound tree in par-

allel. Koch et al. [2] discuss that the speed up of a

B&B algorithm is around 20,000 compared to a sequen-

tial run, even if a million cores are used to search the

B&B tree. They discuss that the dis-proportionality in

the performance is mainly due to communication over-

head, idle time for initial tasks or termination (ramp-

up and ramp-down), performance effect of the redun-

dant work (some nodes may not have been evaluated

if fewer processors are used), and idle time due to la-

tency/contention/starvation.

The FP algorithm was first proposed by Fischetti et

al. [3]. An extension to general MILPs is proposed by

Bertacco et al. [4]. By a modification of the objec-

tive function, Achterberg and Berthold [5] found bet-

ter feasible solutions (Objective FP). Fischetti and Sal-

vagnin proposed different rounding heuristic by using

constraint propagation techniques after rounding some

of the variables [6]. Baena and Castro [7] extended the

FP so that the integer point is obtained by rounding a

point on the (feasible) line segment between the com-

puted feasible point and the analytic center for the re-

laxed LP. In this study, we provide a parallel framework

in which multiple feasibility heuristics starting from dif-

ferent solutions can communicate and share informa-

tion. Recently, Huang and Mehrotra studied a com-

bination of different types of random walks and FP in

which the FP algorithm is used as the rounding proce-

dure for interior random points. They generate feasible

solutions for MILPs [8] and Mixed Integer Convex Pro-

grams (MICPs) [9].

This paper has multiple contributions to the literature:

1) we assess the value of parallelization independent of

the increase in the CPU-time, 2) we provide a paral-

lel framework that can use multiple parameters for FP

type heuristics. Each parallel subroutine uses a different

rounding scheme so that the most fractional variables

are rounded in an enumerative fashion independently.

This study is the first of its kind in terms of using many

cores to generate feasible integer solutions in parallel

using enumeration in a distributed memory environment

with many cores. Our computational experiments sug-

gest that, running multiple algorithms for a short amount

of time in parallel can significantly outperform running

a single long version even if both algorithms are given

the same amount of CPU clock time. Thus, the benefits

of parallelization are not only due to the increase in the

CPU-time (given the same amount of wall clock time)

but also due to multiple algorithms running in parallel

and sharing information along the course of the algo-

rithms.

We present computational results describing our ex-

perience with the use of the FP heuristic in the parallel

subroutines. The original FP algorithm starts from the

rounded solution of an optimal solution of the continu-

ous relaxation. In this study, all possible rounded points

from the most fractional k variables are enumerated and

2k subroutines are run in parallel.

The rest of the paper is organized as follows: we de-

scribe our parallel heuristic framework for the use of

multiple heuristics in Section 2. Details of the round-

ing procedure are given in Section 3. Section 4 gives

2

the implementation details of the proposed algorithms.

The computational results and our experience regarding

the use of massively parallel systems are discussed in

Section 5. Finally, we conclude in Section 6.

2. A Concurrent Framework for Finding Feasible

Solutions for MILPs

In this section we describe our concurrent framework

to generate feasible solutions for MILPs. In our ap-

proach, we run multiple feasibility heuristics in parallel.

We refer to the algorithms running in different proces-

sors as the subroutines. Each parallel subroutine uses

different random number seed with different starting so-

lutions. Also, one may run different feasibility heuristics

in parallel. Note that, even if all the subroutines start

from the same solution and run independently, final in-

teger solutions may still be different. This is because

multiple instances can take different paths (due to the

inherent randomness) in the course of the parallel sub-

routines. Whenever one of the subroutines finds a feasi-

ble solution, it broadcasts the objective function value to

others. Then, all subroutines continue their search with

a new and better objective cut off constraint. Thus, the

information gained in one of the subroutines is shared

with the rest to enhance their search. This is an im-

portant feature of our concurrent optimization approach.

All subroutines update themselves as soon as the first

feasible solution is found. All parallel instances restart

their search (with the new collective information) at the

time a better solution is found. In other words, all sub-

routines continue as if they found a better solution which

is fed by the others. In this study, as a proof of concept,

we use FP as the rounding procedure at the subroutines

of our concurrent feasibility heuristic.

Regarding the communication during the run time,

one may use so called master/slave topology. In this

paradigm, master controls the overall course of the al-

gorithm. Slave programs, on the other hand, follow

the commands from the master, run the instances of the

heuristic, and return integer solution(s) to the master,

if any. The role of master includes distributing inputs

to and collecting results from the slaves. When one

of the slaves finds an integer solution, it sends the so-

lution to the master, along with the objective function

value. Moreover, any combination of parameter set-

tings, rounding methods, and anti cycling rules are also

valid. The main algorithm that runs at the master is pre-

sented in Algorithm 2.1.

Algorithm 2.1 Parallel Feasibility-Pump Running in
Master
Input: a MILP min{cT x : Ax ≥ b, x ∈ Rn, x j integer
∀ j ∈ I}, number of slaves each heuristic will run

Output: an integer solution to the above MILP
1: Spawn Slaves
2: Set LB = min{cT x : Ax ≥ b, x ∈ Rn}, UB = ∞ and

RHS = UB − ε
3: while termination criteria not met do
4: Inform slaves about new RHS
5: Collect results
6: if One of the slaves return an integer solution

then
7: Update UB = minimum of the slaves
8: Update RHS = UB − ε
9: end if

10: end while
11: Exit all the slaves and return best integer so far

We illustrate the algorithm running at the slaves in

Algorithm 2.2. Each slave uses a different random num-

ber seed and may run a different variant of a heuristic.

At each iteration of Algorithm 2.2, slave subroutine re-

3

ceives some information from the master (if any). Then

updates itself with the new information, creates a start-

ing solution for the algorithms depending on the type

of heuristic it is running. The heuristic subroutine con-

tinues until predetermined criteria is met or master pro-

vides new information. Whenever an integer solution

is identified, it is shared with the rest of the concurrent

subroutines by means of the master.

Algorithm 2.2 Parallel Heuristic Subroutine Running in
Slaves
Input: a MILP, RHS
Output: an integer solution to the MILP

1: Listen master for the type of heuristic that will be
run

2: while not killed by the master do
3: Listen master for parameters and information

(RHS)
4: Update RHS of the objective cutoff constraint
5: Get information form master (LP optimum (x∗lp))
6: Update with respect to the heuristic variant
7: Create a starting solution x
8: Run heuristic starting from x
9: Broadcast best integer solution

10: end while

The variants of the heuristic subroutines differ in

Steps 6-8 of Algorithm 2.2. The update procedure, gen-

erations of starting solutions, and running conditions of

the heuristics depend on the heuristic itself and informa-

tion provided by the master. Next, we define the variants

of heuristic subroutines and the feasibility pump algo-

rithm running in slaves in detail.

3. Variants of FP Heuristic

In this section we describe the details for the round-

ing subroutine, as well as the generation of the staring

solutions for rounding. We start with the details of the

basic FP algorithm as the rounding procedure.

3.1. Basic and Objective FP Algorithms

FP heuristic was first proposed by Fischetti et al. [3]

for 0-1 MILPs. The FP algorithm starts from a solution

x, searches for another solution x̂ that is as close as pos-

sible to a rounded solution of x (x̃) by solving an l1 norm

minimization problem of the form:

min ∆(x, x̃) =
∑
j∈I

|x j − x̃ j| (1)

Ax ≥ b (2)

cT x ≤ RHS (3)

x ∈ Rn, x j ∈ Z, ∀ j ∈ I, (4)

where (1) is the l1 norm distance, (2) and (4) are the

constraint set defined by the original MILP and (3) is

the objective cut off constraint.

Two decisions are made in this heuristic: starting so-

lutions and rounding procedure. Moreover, one needs to

define an iterative version that moves from one starting

solution to the next. In other words, one meeds to define

how x and x̃ are calculated at each iteration. Note that

the above model focuses on feasibility with no consid-

eration on the quality of the solution.

Using a normalized convex combination of the origi-

nal objective function and the above l1 norm objective,

one can generate better quality solutions (Objective-FP)

[5]. The idea is to focus more on the objective value

quality in the beginning of the algorithm, and feasi-

bility at the later stages by controlling the parameter

α ∈ (0, 1). For this purpose, the objective function (1)

of the above MILP (1) is replaced by

4

1 − α
||∆||

∆(x, x̃k−1) +
α

||c||
cT x, (5)

where ∆ is the l1 norm distance, c is the original objec-

tive vector and || · || is the euclidean norm. The parameter

α reduces gradually at each iteration of the Objective FP

algorithm provided in Algorithm 3.1.

We refer to the process of solving the problem of min-

imizing the convex combination defined in (5) as an FP

iteration. The original FP algorithm starts from an opti-

mal solution of the relaxation problem and rounds it to

the nearest integer. We refer to a solution x̂ to be an in-

teger solution if x̂ j is integer for all j ∈ I. If FP iteration

terminates with an integer solution, we have a feasible

solution for the original MILP. The objective function

value of this solution is fed back to the model as an ar-

tificial objective cutoff constraint cT x ≤ UB − ε, where

UB is the objective function value of the best incumbent

solution so far and ε is the improvement coefficient. Ob-

jective cutoff constraint is used to find solutions with im-

proved objective. If objective of the problem is known to

be integer, then ε = 1, else one needs to set ε to a small

tolerance (we use ε = 0.1). If the solution of the FP iter-

ation is not integer, the original FP algorithm continues

from this solution and rounds it to another integer solu-

tion. In other words, the next iteration starts from an op-

timal solution of the l1 norm minimization problem with

the same rounding scheme. The algorithm termites if

an optimal solution for MILP is found or time/iteration

limit is reached. Depending on the choice of the starting

solutions and the rounding scheme, multiple FP variants

can be defined.

Algorithm 3.1 Objective Feasibility Pump for MILP
Input: a MILP min{cT x : Ax ≥ b, x j integer ∀ j ∈ I}
Output: an integer solution to the above MILP

1: Initialize k = 0, LB = min{cT x : Ax ≥ b},UB :=
∞,RHS = UB − ε

2: Set xk := arg min{cT x : Ax ≥ b, cT x ≤ RHS }.
3: if xk is integer then
4: return xk

5: else
6: let x̃k := [xk] (= rounding of xk)
7: end if
8: while termination criteria not met do
9: k := k + 1

10: α = α × αr

11: compute xk := arg min{ 1−α
||∆||

∆(x, x̃k−1) + α
||c||c

T x :
Ax ≥ b, cT x ≤ RHS }

12: if xk is integer then
13: set UB := cT xk and RHS := UB − ε and go to

step 2.
14: end if
15: if ∃ j ∈ I : [xk

j] , x̃k
j then

16: set x̃ := [xk]
17: else
18: flip entries x̃k

j (j ∈ I) randomly
19: end if
20: end while

Note that the above algorithm may cycle. In the orig-

inal implementation by Fischetti et al. [3], whenever a

cycle is heuristically detected, a random perturbation is

applied by skipping Step 15 and directly moving to Step

18. In Step 18 of the algorithm, flipping an entry means

changing the rounding value of the entry. If x̃k
j < xk

j

and x̃k
j is to be flipped, we increase x̃k

j by one. Simi-

larly, if x̃k
j > xk

j , flipping corresponds to decreasing the

value of x̃k
j by one. In the cycle breaking perturbation,

a random number of indexes among the most fractional

entries are flipped. Note that, depending on the flipping

(rounding) scheme, the output of the algorithm can sig-

nificantly change. Additionally, using different random

number streams may have a significant impact on the

performance of the solutions generated by the FP algo-

5

rithm.

4. Implementation Details

We now describe the implementation details for our

concurrent optimization framework and FP. The details

of the computational environment are also given.

4.1. Parallel FP Implementation

For the master/slave paradigm, we use MPI (Message

Passing Interface) to ensure scalability. The communi-

cation between the slaves is done by the master. We

use Mersenne twister random number generator at each

slave. In order to ensure that each slave uses a different

random number stream, the seed for each generator is

fed by the master. The seeds are generated using a lin-

ear congruential method. Recall that whenever a feasi-

ble integer solution is found, objective cut off constraint

needs to be updated at all parallel processors. In our

implementation each slave updates itself then sends the

objective function value to the master process, which in

turn broadcasts the best of the slave objectives to the

other processors. The master process checks the slaves

for feasible solutions in a predetermined sequence. The

broadcast of the objective function value is done in the

same sequence. Due the communication lag, a slave

may have already found a solution that is better than the

broadcasted one. In this case, slaves do not update the

objective cutoff constraint.

The implementation allows any combination of mix-

ing multiple FP variants in a parallel setting. Multiple

termination criteria are implemented, however, we share

the results with a wall clock time limit. Wall clock time

is imposed to ensure that all parallel subroutines com-

plete at the same time. In a parallel setting where mul-

tiple variants are used, there may be drastic differences

in the completion time of a fixed number of iterations

and/or CPU-time. To get maximum computational ad-

vantage, we allow all parallel subroutines to complete

at the given wall clock time. Also, the algorithm termi-

nates if an optimal solution is found by one of the slaves.

4.2. Implementation of the Rounding Heuristics

The algorithm can be split into three basic stages, 1)

Start point generation, 2) Rounding and 3) Communica-

tion.

Stage 1 - Start point generation: The main difference

within FP implementations is based on this stage, The

starting solution for the original FP algorithm is an op-

timal solution for the continuous relaxation. One than

rounds this solution. In our implementation, each paral-

lel subroutine changes the rounding scheme in the fol-

lowing way: the most fractional k variables are set to

its floor or ceiling by different subroutines, k depending

on the total number of CPUs. If the parallelization level

is 2k, the most fractional k variables are enumerated by

considering both floor and ceiling of the values.

Stage 2 - Rounding: FP algorithm is implemented as

the rounding stage. The details are similar to the orig-

inal FP implementation by Fischetti et al.. However,

we turned off the branching phase. As the improvement

phase is handled by the master algorithm, internal im-

provement is also disabled. All other parameters are

used at the default values. Note that if FP implemen-

tation hits its internal iteration limits, the algorithm re-

sets those as long as the limits imposed by the master

6

is not met. Moreover, when a feasible solution is found,

the solution is polished by fixing all the integer variables

and re-optimizing on the continuous variables, if any.

Stage 3 - Communication: As soon as a feasible so-

lution is found by one of the parallel subroutines, it is

shared by the master. The master then updates all slaves

with the new incumbent. After each rounding iteration,

slaves check if there exists a new incumbent solution

and update objective cut off constraint, if necessary.

4.3. Computational Environment and Test Bed

All the algorithms are coded in C++. Computations

are performed on Northwestern University high perfor-

mance computing (HPC) system referred to as QUEST.

At the time this study is conducted QUEST clusters

had 252 Intel Westmere X5650 (2.66 GHz) nodes (3052

cores), 68 Intel Sandybridge E2670 (2.6 GHz) nodes

(1088 cores) and 110 Intel IvyBridge E5-2680 (2.8

GHz) nodes (2200 cores). This computations in this

study is carried out in the Westmere cluster. Each node

has at least 4GBs of memory per core for all the nodes.

In practice, as the number of cores needed increase, it is

reasonable to share the nodes with other users in HPC

systems. To access the resources in a reasonable time,

we allow to share the nodes with other users in all ex-

periments. We point out that, depending on internal and

external factors, controlling the process of the parallel

implementations is an issue in a shared machine. The

mapping of the nodes and cores may take some time de-

pending on system settings. We used MPI 3 standards

to employ the master/slave paradigm. Cplex 12.5 with

a coin-OR interface is used for solving the linear pro-

gramming relaxations at the slaves.

For our tests, we used 74 problems from the COR@L

library [10], 28 problems from the MIPLIB 2003 library

[11], and 84 feasible problems from the MIPLIB 2010

benchmark set [12]. As some of the problems are du-

plicate in the test sets, the total number of problems in

our test bed is 180. The details on the test problems are

provided in the Appendix.

5. Computational Results

In order to assess the value of parallelization irrespec-

tive of the increase in the CPU-time, we run the algo-

rithm in an increasingly parallel environment using 1, 2,

4, 8, 16, 32, 64, 128, 256, and 512 parallel subroutines.

The amount of time one wants to spend on heuristics to

generated feasible solutions depend on the user/solver

settings. In our runs the time limit for each problem

is calculated depending on the solution time of the first

continuous relaxation. In a set of preliminary experi-

ments, we calculated the time to solve the first relax-

ation at different times of the day and different days of

the week. This is done to get an understanding of how

the load of the HPC system effects the results even for

a single LP relaxation. We then averaged the solution

times (referred to as t). 90% of the problems (162 out

of 180) have t < 6 seconds. We run these problems for

up to 2560t wall clock time limit. 13 of the remaining

18 problems are run with 256t time limit. The limits

are selected in such a way that maximum time to run

each problem is limited to four hours. The remaining

five problems are not included in the analysis as 256t is

more that four hours. This was needed to ensure that

we get the resources on QUEST in a timely manner. We

7

recorded the results at 10t, 20t, 40t, . . ., 2560t for t < 6,

and 1t, 2t, 4t, . . ., 256t for t ≥ 6. The idea is to under-

stand the trade off between the wall clock time limit and

the number of processors. We tested both basic and ob-

jective FP algorithms in our analysis. Table 1 and 2 sum-

marizes the results for 10 parallelization levels (1, 2, 4,

. . .,512) and nine time levels (10t, 20t, 40t, . . ., 2560t).

Each cell represent the number of problems for which

the algorithm finds a feasible solution at a given paral-

lelization level and time limit. The numbers in parenthe-

sis represent the number of problems for which an op-

timal solution is found. Note that if an algorithm finds

a solution that is better than or equal to the best known

solution (reported at library web pages), it is considered

as optimal in this analysis. There are cases for which we

find solutions that are better than the best known values

reported in the library web pages, though they seem to

be outdated. We start the analysis with basic FP algo-

rithm.

Observe from Table 1 that as time increases (i.e.,

moving right at each row) the number of problems for

which a feasible (optimal) solution is found increases.

We observe that in most of the cases, increasing the par-

allelization level (i.e., moving down at each column)

provides at least the same results if not better. How-

ever, there are cases in which using the same amount

of time with more processors result in finding less so-

lutions. This may be due to two reasons: 1) increasing

the parallelization level increases the time to map the

processes to different processors, and 2) the runs for dif-

ferent parallelization levels are taken at different times

and environments. Both reasons are due to the compu-

tational and parallel environment. We provide a detailed

discussion on our experience on parallel HPC systems

in Section 5.1.

The total amount of resources used by an algorithm

can be calculated by multiplying the time spent and

number of processors. Each cell uses the same amount

of resources with its up-right and down-left cell. Mov-

ing in the down-left direction in the table represents the

use of same resources with more processors and less

time. Note that the numbers in each cell in columns with

more that 80t is comparable with its up-right and down-

left cell. For a general conclusion observe that the first

row represents a single processor (a classical serial al-

gorithm). Note that even if it is given a long time (i.e.,

2560t) a serial basic FP algorithm can find a solution

for 138 problems, 35 being optimal. When 32 proces-

sors are used with 80t time limit (32 times less), the run

finds a solution for 144 problems (34 being optimal).

The amount of resources used by both implementations

is the same (32 processors × 80t = 1 processor × 2560t

). The number of problems for which feasible solutions

are found increases with decreased time and increased

processors. In order for a clearer understanding, we ig-

nore the problems for which a serial algorithm can find

a solution in 80t time limit. These problems are likely

no to benefit from parallelization. We refer to this situa-

tion as anchoring at a single processor, 80t. Considering

both the number of problems for which a feasible and

optimal solution is found through several parallelization

levels, we conclude that parallel version of the basic FP

algorithm linearly scales, for time values greater than

80t and parallelization level less than 512.

The results for objective FP are provided in Table 2.

Comparing the results with Table 1 indicates that the ba-

8

Table 1: Number of problems for which basic FP finds a feasible(optimal) solution (total = 162)

10t 20t 40t 80t 160t 320t 640t 1280t 2560t

1 69(6) 92(9) 109(11) 116(14) 121(17) 128(20) 130(28) 132(33) 138(35)
2 90(10) 114(14) 120(17) 128(25) 133(33) 136(38) 136(45) 140(48) 141(50)
4 99(10) 116(13) 129(21) 133(29) 137(37) 141(42) 142(52) 143(55) 144(56)
8 106(16) 127(19) 133(23) 137(33) 139(41) 140(48) 146(60) 146(61) 148(64)

16 92(10) 123(16) 133(23) 137(31) 142(44) 145(54) 148(61) 149(63) 150(65)
32 117(15) 130(17) 137(27) 144(34) 144(45) 145(51) 149(61) 150(65) 150(68)
64 112(16) 132(20) 138(28) 143(38) 144(44) 148(58) 149(67) 149(68) 150(73)

128 117(14) 133(18) 138(23) 143(30) 145(34) 147(46) 149(58) 150(66) 151(73)
256 124(15) 134(18) 142(22) 145(22) 148(30) 150(39) 151(48) 151(58) 151(70)
512 126(13) 135(15) 143(19) 145(24) 148(32) 151(41) 151(44) 151(51) 151(58)

Table 2: Number of problems for which Objective FP finds a feasible(optimal) solution (total = 162)

10t 20t 40t 80t 160t 320t 640t 1280t 2560t

1 37(2) 66(6) 89(10) 105(12) 112(15) 116(18) 120(23) 123(26) 126(30)
2 52(7) 83(11) 103(17) 117(24) 124(29) 128(36) 131(40) 134(48) 136(51)
4 72(12) 98(20) 119(26) 129(32) 136(45) 138(50) 139(53) 141(56) 143(59)
8 74(17) 103(26) 122(33) 131(40) 137(45) 138(53) 140(55) 142(61) 145(62)

16 77(18) 109(25) 125(35) 134(44) 139(50) 142(57) 144(60) 146(65) 147(69)
32 78(19) 108(27) 124(34) 134(46) 140(54) 143(60) 145(63) 148(67) 148(69)
64 77(19) 110(31) 128(41) 138(49) 144(60) 146(65) 146(66) 149(70) 149(70)

128 81(18) 111(29) 129(41) 139(45) 145(56) 147(67) 147(70) 149(73) 151(76)
256 84(19) 112(31) 129(38) 139(47) 144(52) 147(63) 147(68) 149(73) 150(73)
512 85(17) 112(29) 132(43) 142(49) 145(53) 146(56) 147(68) 150(76) 150(79)

9

sic FP algorithm finds feasible solutions for more prob-

lems in almost all parallelization and time levels. This

is due to the fact that objective FP algorithm searches

for higher quality solutions in terms of objective func-

tion value and basic FP focuses only on feasibility. In

terms of the number of problems for which each algo-

rithm finds an optimal solution, objective FP seems to

provide better results. However, the comparison cannot

be generalized among parallelization and time levels.

Similar to the results for basic FP, moving in the down-

left direction in Table 2 provides better or equivalent re-

sults for time values greater than 80t and parallelization

level up to 512. Consider the results anchored at sin-

gle processor, 80t. The number of problems for which

a feasible(optimal) solution found is 105 (12). Increas-

ing the time limit 32 fold increases this number to 126

(30). However, using the same amount of resources but

in parallel with 32 cores, the numbers increase to 134

(46). On examining the table, we conclude that in terms

of the number of problems for which a feasible(optimal)

solution is found, objective FP scales linearly, for time

values greater than 80t and parallelization level less than

512. Figures 1 and 2 show how the number of prob-

lems for which basic and objective FP finds a feasible

solution changes with respect to different time and par-

allelization levels. For a clearer understanding, we in-

cluded the time values starting from 40t. Observe from

the figures that, the slope in the parallelization level di-

rection is more than the time increase direction. This is

due to the fact that the effects of parallelization is more

than that of time. Also, the effects of parallelization is

more in the lower levels.

Continuing with the 13 larger problems which are run

40	

160	

640	

2560	

100	

110	

120	

130	

140	

150	

160	

1	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	

150-­‐160	

140-­‐150	

130-­‐140	

120-­‐130	

110-­‐120	

100-­‐110	

Figure 1: Number found with respect to time and parallelization level
for Basic FP

40	

160	

640	

2560	

100	

110	

120	

130	

140	

150	

160	

1	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	

150-­‐160	

140-­‐150	

130-­‐140	

120-­‐130	

110-­‐120	

100-­‐110	

Figure 2: Number found with respect to time and parallelization level
for Objective FP

10

for up to 256t time limit, the results in Tables 3 and 4

provide the number of problems for which a feasible

(optimal) solution is found for basic and objective FP,

respectively. The results show a similar trend as that for

the small problems.

Considering the quality of the solutions generated at

each time limit and parallelization level, we perform

a pairwise comparison of all methods with equal re-

sources using Wilcoxon signed rank test on percentage

gap values. Table 5 and 6 present the significance of

the difference between multiple parallelization and time

levels for basic FP and objective FP algorithms, respec-

tively. The columns of the table corresponds to time

difference and rows correspond to processor difference.

For example, the value at row 2-4 and column 80t-40t

of Table 5 (α = −0.95) represents that the performance

difference between two processors and 80t and four pro-

cessors with 40t is significant with α = 0.95. The posi-

tive sign represents that the algorithm with more proces-

sors (and less time) is better, whereas a negative value

states that the longer algorithm (and more time) provides

statistically better solutions. Empty cells represent that

the performance difference is not significant. Recall that

both algorithms have the same resources thus, the per-

formance difference is due to parallelization irrespec-

tive of the increase in the CPU-time. Note that empty

cells and positive values are in favor of parallelization.

Observe that using two cores instead of one is statisti-

cally significant at all time limits for both basic and ob-

jective FP. The significance of parallelization increases

with time up to 64 cores for basic FP and up to 128 cores

for objective FP. The value of parallelization of FP in the

way described here decreases as the level of paralleliza-

tion increases, diminishing after 128 processors. Also,

the value of parallelization increase with time.

5.1. Additional Computational Experience

In this section, we share additional computational ex-

perience on running basic and objective FP in a dis-

tributed memory environment. Computers have become

commodities rather than technological equipments and

massive parallelization in a distributed memory setting

is the current trend. However, even the simplest appli-

cations encounter serious implementation and practical

issues. As the number of processors increase, it is more

difficult to have a dedicated set of nodes that can only

be accessed by a single user. Thus, one needs to ac-

cept sharing the computing resources with other users

that may run various types of programs with different

requirements. Some applications focus more on mem-

ory while others rely on CPU usage. Professional pro-

grams focus more on optimizing performance in a lower

coding level and may squeeze the use of memory and

CPU. Sharing a node with such applications may result

in underutilization on one side resulting in unfair distri-

bution of the resources. Depending on the underlying

system and message passing structure, the time to allo-

cate nodes, mapping of the processors varies. This also

depends on the programs running in all nodes.

The iteration count of the first feasible solution would

be the same across runs for the same slave if there

were no interruption from other slaves (no communi-

cation). However, the course of our parallel algorithm

depends on the time when the slaves find a solution (es-

pecially the first solution) rather than the iteration count

of the algorithms running in slaves. The slaves, on the

11

Table 3: Number of problems for which basic FP finds a feasible(optimal) solution for large problems (total =13)

1t 2t 4t 8t 16t 32t 64t 128t 256t

1 1(0) 3(0) 4(0) 6(0) 8(0) 8(0) 9(0) 9(0) 9(0)
2 2(0) 4(0) 7(0) 7(0) 9(1) 11(1) 11(1) 12(1) 12(1)
4 4(0) 4(0) 7(0) 8(0) 10(0) 11(1) 12(1) 12(1) 12(1)
8 3(0) 4(0) 7(0) 10(0) 11(0) 12(0) 12(1) 12(1) 12(1)

16 3(0) 4(0) 8(0) 12(0) 12(1) 13(1) 13(1) 13(1) 13(1)
32 4(0) 4(0) 8(0) 12(1) 13(1) 13(1) 13(1) 13(1) 13(1)
64 4(0) 4(0) 11(0) 12(0) 12(1) 13(1) 13(1) 13(1) 13(1)

128 4(0) 4(0) 11(0) 12(0) 13(1) 13(1) 13(1) 13(1) 13(2)
256 4(0) 4(0) 11(0) 12(0) 13(1) 13(1) 13(2) 13(3) 13(3)
512 4(0) 4(0) 11(0) 12(0) 13(1) 13(1) 13(2) 13(3) 13(3)

Table 4: Number of problems for which Objective FP finds a feasible(optimal) solution for large problems (total = 13)

1t 2t 4t 8t 16t 32t 64t 128t 256t

1 0(0) 2(0) 2(0) 4(0) 6(0) 7(0) 9(0) 10(0) 10(0)
2 0(0) 2(0) 4(0) 5(0) 9(0) 9(0) 12(1) 12(1) 12(1)
4 0(0) 2(0) 4(0) 5(0) 8(2) 10(2) 12(2) 12(2) 12(2)
8 1(0) 2(0) 5(0) 6(0) 10(2) 11(2) 12(2) 12(2) 12(2)

16 1(0) 3(0) 7(0) 7(0) 11(2) 12(2) 12(3) 12(3) 12(3)
32 1(0) 3(0) 8(0) 8(0) 12(2) 13(2) 13(2) 13(3) 13(3)
64 1(0) 6(0) 8(0) 9(0) 12(2) 13(3) 13(3) 13(3) 13(3)

128 1(0) 6(0) 8(0) 9(0) 12(2) 13(2) 13(3) 13(4) 13(4)
256 1(0) 6(0) 8(1) 9(1) 12(3) 13(4) 13(4) 13(4) 13(4)
512 1(0) 6(0) 8(0) 9(1) 12(3) 13(4) 13(4) 13(4) 13(5)

Table 5: Significance of parallelization for basic FP on problems with t < 6

20t-10t 40t-20t 80t-40t 160t-80t 320t-160t 640t-320t 1280t-640t 2560t-1280t

1-2 0.95 0.995 0.999 0.999 0.999 0.999 0.999 0.999
2-4 -0.995 -0.999 -0.95 0.95 0.999 0.999 0.999
4-8 0.999 -0.95 -0.95 0.95 0.999 0.999 0.999
8-16 -0.999 -0.999 -0.999 -0.999 -0.999
16-32 -0.999 -0.999 -0.999 -0.999 -0.99
32-64 -0.999 -0.999 -0.999 -0.999 -0.999
64-128 -0.999 -0.999 -0.999 -0.999 -0.999 -0.999 -0.999 -0.95
128-256 -0.999 -0.999 -0.999 -0.999 -0.999 -0.999 -0.999 -0.999
256-512 -0.995 -0.9 -0.95 -0.995 -0.999 -0.999 -0.999 -0.999

12

Table 6: Significance of parallelization for objective FP on problems with t < 6

20t-10t 40t-20t 80t-40t 160t-80t 320t-160t 640t-320t 1280t-640t 2560t-1280t

1-2 0.9 0.995 0.999 0.999 0.999 0.999 0.999 0.999
2-4 -0.9 0.95 0.99 0.999 0.999 0.999 0.999 0.999
4-8 -0.999 -0.99 -0.95 0.95 0.95 0.995
8-16 -0.999 -0.999 -0.995 0.9 0.9
16-32 -0.999 -0.999 -0.995 -0.9
32-64 -0.999 -0.999 -0.999 -0.995
64-128 -0.999 -0.999 -0.999 -0.999 -0.999 -0.95
128-256 -0.999 -0.99 -0.999 -0.999 -0.999 -0.999 -0.95 -0.9
256-512 -0.999 -0.999 -0.999 -0.999 -0.999 -0.999 -0.995 -0.99

other hand, are affected by the computing resources used

across different runs depending of the programs running

in different nodes. Although the slaves follow the same

track of iterations, the time to generate a particular so-

lution varies across replications. Thus, a specific set of

iterations may be interrupted by a solution fed by other

slaves. This suggest that the results depend on the state

of the computing resources, and may not replicate as this

state cannot be reproduced if the resources are shared

with other users. We would like to also note that due

to the synchronization in parallel implementations, de-

pending on how the processors are given priority, mul-

tiple runs may terminate with slightly different solution

even in a shared memory setting.

6. Conclusion

It is already shown that FP is a useful heuristic for

MILP as it usually finds feasible solutions for practical

problems in a reasonable computational time [5] [4], [3].

In all studies related to the use of FP, however, no paral-

lelization is used. In this study, we tested FP further in

a highly scalable parallel framework.

We note that starting FP from multiple rounded points

in parallel outperforms using the same starting solu-

tion (that is an optimum solution for the continuous

relaxation) and running with different random number

streams. There is a significant value of starting from

multiple rounded points in the presence of paralleliza-

tion. Extensive computational test indicate that the value

of increasing the level of parallelization is statistically

significant for up to 128 cores.

There are several other heuristics for finding fea-

sible solutions for MILP problems that can be used

as a part of a parallel implementation. Among them,

Pivot-and-Complement [13] performs simplex like piv-

ots to get slack variable into the basis and integer vari-

ables out of a basis. This is further extended by Balas

[14]. Another heuristic for 0-1 MILP is OCTANE, which

uses enumeration techniques on extended facets of the

octahedron [15]. Fischetti and Lodi propose a local

search algorithm [16] to improve an incumbent solu-

tion. A heuristic called Relaxation Induced Neigh-

borhood Search RINS solves sufficiently smaller sub-

MILPs to improve an incumbent solution [17]. The

use of random-walks was investigated in the FP setting

[8, 9]. Using these heuristics in a parallel framework are

considered as future research topics.

[1] A. Lodi, Mixed integer programming computation, in: M. Jnger,

13

T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank,

G. Reinelt, G. Rinaldi, L. A. Wolsey (Eds.), 50 Years of Integer

Programming 1958-2008, Springer Berlin Heidelberg, 2010, pp.

619–645.

[2] T. Koch, T. Ralphs, Y. Shinano, Could we use a million cores to

solve an integer program?, Mathematical Methods of Operations

Research 76 (1) (2012) 67–93. doi:10.1007/s00186-012-0390-9.

URL http://dx.doi.org/10.1007/s00186-012-0390-9

[3] M. Fischetti, F. Glover, A. Lodi, The feasibility pump, Mathe-

matical Programming 104 (1) (2005) 91–104.

[4] L. Bertacco, M. Fischetti, A. Lodi, A feasibility pump heuristic

for general mixed-integer problems, Discrete Optimization 4 (1)

(2007) 63–76.

[5] T. Achterberg, T. Berthold, Improving the feasibility pump, Dis-

crete Optimization 4 (1) (2007) 77–86.

[6] M. Fischetti, D. Salvagnin, Feasibility pump 2.0, Mathematical

Programming Computation 1 (2009) 201–222.

[7] D. Baena, J. Castro, Using the analytic center in the feasibility

pump, Operations Research Letters 39 (5) (2011) 310–317.

[8] K.-L. Huang, S. Mehrotra, An empirical evaluation of walk-and-

round heuristics for mixed integer linear programs, Computa-

tional Optimization and Applications 55 (3) (2013) 545–570.

[9] K.-L. Huang, S. Mehrotra, An empirical evaluation of a walk-

relax-round heuristic for mixed integer convex programs, Com-

putational Optimization and Applications 60 (3) (2015) 559–

585. doi:10.1007/s10589-014-9693-5.

URL http://dx.doi.org/10.1007/s10589-014-9693-5

[10] COR@L: Computational optimization research at lehigh

(http://coral.ie.lehigh.edu/mip-instances/).

[11] T. Achterberg, T. Koch, A. Martin, MIPLIB 2003,

Operations Research Letters 34 (4) (2006) 361–372.

doi:10.1016/j.orl.2005.07.009.

URL http://www.zib.de/Publications/abstracts/ZR-05-28/

[12] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold,

R. E. Bixby, E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz,

A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin, D. E. Steffy,

K. Wolter, MIPLIB 2010, Mathematical Programming Compu-

tation 3 (2) (2011) 103–163. doi:10.1007/s12532-011-0025-9.

URL http://mpc.zib.de/index.php/MPC/article/view/56/28

[13] E. Balas, C. H. Martin, Pivot-and-complement: A heuristic for

0-1 programming, Management Science 26 (1) (1980) 8696.

[14] E. Balas, S. Schmieta, C. Wallace., Pivot and shift - a mixed in-

teger programming heuristic, Discrete Optimization 1 (1) (2004)

3–12.

[15] E. Balas, S. Ceria, M. Dawande, F. Margot, G. Pataki, Octane: A

new heuristic for pure 0-1 programs, Operations Research 49 (2)

(2001) 207–225.

[16] M. Fischetti, A. Lodi, Local branching, Mathematical Program-

ming 98 (1) (2003) 23–47.

[17] E. Danna, E. Rothberg, C. Pape, Exploring relaxation induced

neighborhoods to improve MIP solutions, Mathematical Pro-

gramming 102 (1) (2005) 71–90.

14

APPENDIX

Table 7: Problem Profiles of COR@L Library

Problem Lower Bound Upper Bound Rows Columns Conti Bin Int

neos5 15 15 63 63 10 53 0
neos-584851 -11 -11 661 445 40 405 0
neos-881765 0 +∞ 278 712 0 712 0
neos-905856 -8 +∞ 403 686 0 686 0
neos-1121679 −∞ 16 6 62 12 50 0
neos-1211578 -77 -77 356 260 130 130 0
neos-1228986 -123 -123 356 260 130 130 0
neos-1337489 -77 -77 356 260 130 130 0
neos-1420205 40 40 383 231 0 126 105
neos-1430701 -78 -77 668 312 156 156 0
neos-1440447 -100 -100 561 260 130 130 0
neos-1460246 2325 2606 306 285 19 266 0
neos-1480121 43 43 363 222 152 70 0
ran14x18 1 3667.46 3736 284 504 252 252 0
rlp1 -1 15 68 461 11 450 0
roy 3208.957 3208.957 162 149 99 50 0
neos14 74333.34 74333.34 552 792 656 136 0
neos15 77895.21 81525.14 552 792 632 160 0
neos-1489999 354 354 1046 534 2 532 0
neos-911880 49.85281 54.83 83 888 48 840 0
neos-504815 2296.22 2296.22 1067 674 554 120 0
bienst1 46.75 46.75 576 505 477 28 0
bienst2 54.6 54.6 576 505 470 35 0
mcf2 65.66667 65.66667 664 521 465 56 0
neos-911970 50.572 54.76 107 888 48 840 0
neos-631517 11275806 11503309 351 1090 231 859 0
neos-1439395 -182 -180.33 775 364 182 182 0
22433 21477 21477 198 429 198 231 0
neos-1620807 6 6 1340 231 0 231 0
neos-1346382 -178 -176 796 520 260 260 0
neos-1426635 -178 -176 796 520 260 260 0
23588 8090 8090 137 368 137 231 0
neos-512201 513.57 513.57 1335 838 688 150 0
neos-504674 3635.87 3635.87 1344 844 694 150 0
neos-582605 −∞ 1 1240 1265 865 400 0
neos-1225589 1.23E+09 1.23E+09 675 1300 650 650 0
neos-631164 10948328 11315752 406 1282 245 1037 0
neos-955215 446.5 446.5 723 1302 672 630 0
neos-1440460 -180 -179.25 989 468 234 234 0
neos-1056905 −∞ 30 900 463 43 420 0
neos-1595230 9 9 1750 490 0 490 0
neos-1429461 -102 -101.25 1096 520 260 260 0
neos-1467067 -103.667 -103 1084 1196 598 598 0
neos-522351 17891.08 17891.08 1705 1524 1284 240 0
neos-538867 122 122 1170 792 0 792 0
neos-1200887 -74 -74 633 234 117 117 0
neos-1616732 −∞ 159 1999 200 0 200 0
neos-825075 -272 -272 328 800 0 800 0

15

Table 7: Problem Profiles of COR@L Library (continued)

Problem Lower Bound Upper Bound Rows Columns Conti Bin Int

neos-933815 759.7285 766 947 1728 888 840 0
neos-538916 134 134 1314 864 0 864 0
neos-906865 3175 3175 1634 1184 784 400 0
neos-863472 9.94541 11.69 523 588 56 532 0
binkar10 1 6742.2 6742.2 1026 2298 2128 170 0
neos11 9 9 2706 1220 320 900 0
neos-503737 50 52 500 2850 350 2500 0
neos-593853 1.17E+09 1.17E+09 1606 2400 1200 1200 0
neos-598183 18429.98 18429.98 992 1696 1260 436 0
neos-603073 16790.24 16790.24 992 1696 1260 436 0
neos-848150 0 +∞ 731 949 0 949 0
neos-892255 14 14 2137 1800 0 1800 0
neos-933364 760.4215 766 1006 1728 888 840 0
neos-934184 760.4215 766 1006 1728 888 840 0
neos-942323 15 17 754 732 48 684 0
neos-1311124 -182 -181 1643 1092 546 546 0
neos-1426662 -52 -44 1914 832 416 416 0
neos-1427181 -104 -102 1786 832 416 416 0
neos-1427261 -130 -127 2226 1040 520 520 0
neos-1429185 -78 -76 1346 624 312 312 0
neos-1436709 -129 -128 1417 676 338 338 0
neos-1437164 8 8 187 2256 0 2256 0
neos-1440457 -180 -179 1952 936 468 468 0
neos-1442119 -182 -181 1524 728 364 364 0
neos-1442657 -156 -154.5 1310 624 312 312 0
neos-1603512 0 5 555 730 1 729 0

Table 8: Problem Profiles of MIPLIB 2003 Library

Problem Objective Rows Cols Nonzeros Conti Bin Int

10teams 924 230 2025 12150 225 1800 0
a1c1s1 11503.44 3312 3648 10178 3456 192 0
aflow30a 1158 479 842 2091 421 421 0
aflow40b 1168 1442 2728 6783 1364 1364 0
cap6000 -2451380 2176 6000 48243 0 6000 0
danoint 65.66 664 521 3232 465 56 0
disctom -5000 399 10000 30000 0 10000 0
fixnet6 3983 478 878 1756 500 378 0
gesa2 25779900 1392 1224 5064 816 240 168
gesa2-o 25779900 1248 1224 3672 504 384 336
liu 1172 2178 1156 10626 67 1089 0
manna81 -13164 6480 3321 12960 0 18 3303
mas74 11801.2 13 151 1706 1 150 0
mas76 40005.1 12 151 1640 1 150 0
mkc -563.846 3411 5325 17038 2 5323 0
modglob 20740500 291 422 968 324 98 0
noswot -41 182 128 735 28 75 25
opt1217 -16 64 769 1542 1 768 0
p2756 3124 755 2756 8937 0 2756 0

16

Table 8: Problem Profiles of MIPLIB 2003 Library (continued)

Problem Objective Rows Cols Nonzeros Conti Bin Int

pp08aCUTS 7350 246 240 839 176 64 0
pp08a 7350 136 240 480 176 64 0
rout 1077.56 291 556 2431 241 300 15
set1ch 54537.8 492 712 1412 472 240 0
seymour 423 4944 1372 33549 0 1372 0
timtab1 764772 171 397 829 226 64 107
timtab2 1096560 294 675 1482 381 113 181
tr12-30 130596 750 1080 2508 720 360 0
vpm2 13.75 234 378 917 210 168 0

Table 9: Problem Profiles of MIPLIB 2010 Library

Problem Rows Columns Nonzeros Int Bin Conti

30n20b8 576 18380 109706 7344 11036
acc-tight5 3052 1339 16134 1339
aflow40b 1442 2728 6783 1364 1364
air04 823 8904 72965 8904
app1-2 53467 26871 199175 13300 13571
bab5 4964 21600 155520 21600
beasleyC3 1750 2500 5000 1250 1250
biella1 1203 7328 71489 6110 1218
bienst2 576 505 2184 35 470
binkar10 1 1026 2298 4496 170 2128
bnatt350 4923 3150 19061 3150
core2536-691 2539 15293 177739 15284 9
cov1075 637 120 14280 120
csched010 351 1758 6376 1457 301
danoint 664 521 3232 56 465
dfn-gwin-UUM 158 938 2632 90 848
eil33-2 32 4516 44243 4516
eilB101 100 2818 24120 2818
enlight13 169 338 962 169 169
ex9 40962 10404 517112 10404
glass4 396 322 1815 302 20
gmu-35-40 424 1205 4843 1200 5
iis-100-0-cov 3831 100 22986 100
iis-bupa-cov 4803 345 38392 345
iis-pima-cov 7201 768 71941 768
lectsched-4-obj 14163 7901 82428 236 7665
m100n500k4r1 100 500 2000 500
macrophage 3164 2260 9492 2260
map18 328818 164547 549920 146 164401
map20 328818 164547 549920 146 164401
mcsched 2107 1747 8088 14 1731 2
mik-250-1-100-1 151 251 5351 150 100 1
mine-166-5 8429 830 19412 830
mine-90-10 6270 900 15407 900
msc98-ip 15850 21143 92918 53 20237 853
mzzv11 9499 10240 134603 251 9989

17

Table 9: Problem Profiles of MIPLIB 2010 Library (continued)

Problem Rows Columns Nonzeros Int Bin Conti

n3div36 4484 22120 340740 22120
n3seq24 6044 119856 3232340 119856
n4-3 1236 3596 14036 174 3422
neos-1109824 28979 1520 89528 1520
neos-1337307 5687 2840 30799 2840
neos-1396125 1494 1161 5511 129 1032
neos13 20852 1827 253842 1815 12
neos-1601936 3131 4446 72500 3906 540
neos18 11402 3312 24614 3312
neos-476283 10015 11915 3945693 5588 6327
neos-686190 3664 3660 18085 60 3600
neos-849702 1041 1737 19308 1737
neos-916792 1909 1474 134442 717 757
neos-934278 11495 23123 125577 19955 3168
net12 14021 14115 80384 1603 12512
newdano 576 505 2184 56 449
noswot 182 128 735 25 75 28
ns1208400 4289 2883 81746 2880 3
ns1688347 4191 2685 66908 2685
ns1830653 2932 1629 100933 1458 171
opm2-z7-s2 31798 2023 79762 2023
pg5 34 225 2600 7700 100 2500
pigeon-10 931 490 8150 400 90
pw-myciel4 8164 1059 17779 1 1058
qiu 1192 840 3432 48 792
rail507 509 63019 468878 63009 10
ran16x16 288 512 1024 256 256
reblock67 2523 670 7495 670
rmatr100-p10 7260 7359 21877 100 7259
rmatr100-p5 8685 8784 26152 100 8684
rmine6 7078 1096 18084 1096
rocII-4-11 21738 9234 243106 9086 148
rococoC10-001000 1293 3117 11751 124 2993
roll3000 2295 1166 29386 492 246 428
satellites1-25 5996 9013 59023 8509 504
sp98ic 825 10894 316317 10894
sp98ir 1531 1680 71704 809 871
tanglegram1 b 68342 34759 205026 34759
tanglegram2 8980 4714 26940 4714
timtab1 171 397 829 107 64 226
triptim1 15706 30055 515436 9597 20451 7
unitcal 7 48939 25755 127595 2856 22899
vpphard 47280 51471 372305 51471
zib54-UUE 1809 5150 15288 81 5069
ns1758913 624166 17956 1283444 17822 134
netdiversion 119589 129180 615282 129180
mspp16 561657 29280 27678735 29280
bley xl1 175620 5831 869391 5831

18

