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Abstract

The details of a solver for minimizing a strictly convex quadratic objective function subject to

general linear constraints is presented. The method uses a gradient projection algorithm enhanced

with subspace acceleration to solve the bound-constrained dual optimization problem. Such gradient

projection methods are well-known, but are typically employed to solve the primal problem when only

simple bound-constraints are present. The main contributions of this work are three-fold. First, we

address the challenges associated with solving the dual problem, which is usually a convex problem even

when the primal problem is strictly convex. In particular, for the dual problem, one must efficiently

compute directions of infinite descent when they exist, which is precisely when the primal formulation

is infeasible. Second, we show how the linear algebra may be arranged to take computational advantage

of sparsity that is often present in the second-derivative matrix, mostly by showing how sparse updates

may be performed for algorithmic quantities. We consider the case that the second-derivative matrix

is explicitly available and sparse, and the case when it is available implicitly via a limited memory

BFGS representation. Third, we present the details of our Fortran 2003 software package DQP, which

is part of the GALAHAD suite of optimization routines. Numerical tests are performed on quadratic

programming problems from the combined CUTEst and Maros and Meszaros test sets.

1 Introduction

Quadratic problems occur naturally in many application areas such as discrete-time stabilization, economic

dispatch, finite impulse response design, optimal and fuzzy control, optimal power flow, portfolio analysis,

structural analysis, support vector machines and VLSI design [43]. They are also a vital component of so-

called recursive/successive/sequential quadratic programming (SQP) methods for nonlinear optimization,

in which the general nonlinear problem is tackled by solving a sequence of suitable approximating quadratic

problems [10,44]. Traditionally, quadratic problems have been solved by either active-set or interior-point

methods [68, Ch.6], but in certain cases gradient-projection methods may be preferred, which is the focus

of this manuscript.

We consider the strictly convex quadratic problem (QP)

minimize
x∈IRn

q(x) := 1
2 〈x,Hx〉+ 〈g, x〉 such that Ax ≥ c, (1.1)

where 〈·, ·〉 is the Euclidean inner product, the symmetric matrix H ∈ IRn×n is positive definite, and

A ∈ IRm×n is the constraint matrix for some positive integers m and n. We are especially interested in the

case when n is large and the structure of A and H may be exploited, e.g., when A and H are sparse [43]

or the inverse of H is represented in the form

H−1 = H−1
0 + VWV T (1.2)
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with the matrix H−1
0 ∈ IRn×n sparse and positive definite (often diagonal), the matrices V ∈ IRn×t and

W ∈ IRt×t dense with W symmetric and non-singular, and t a small even integer typically in the range

0–20 [12]. Matrices of the form (1.2) often arise as limited-memory secant Hessian approximations in SQP

methods [47–51,64,79].

It is well known [22] that (1.1) has a related primal-dual problem

maximize
(x,y)∈IRn+m

− 1
2 〈x,Hx〉+ 〈c, y〉 such that Hx−AT y + g = 0 and y ≥ 0 (1.3)

for which the optimal objective values of (1.1) and (1.3) are equal. After eliminating x from (1.3), an

optimal dual vector y∗ of (1.3) is a solution to the dual problem

y∗ = arg min
y∈IRm

qD(y) := 1
2 〈y,HDy〉+ 〈gD, y〉 such that y ≥ 0, (1.4)

where

HD := AH−1AT and gD := −AH−1g − c. (1.5)

Once y∗ is computed, the optimal x∗ may be recovered by solving Hx∗ = AT y∗ − g. The advantage of

this dual formulation is that the geometry of the feasible region is simpler—finding a feasible point is

trivial—but at the expense of a more complicated and likely dense Hessian HD. The method that we

consider does not require H−1 but rather that we can find u = H−1w by solving Hu = w or by other

means. Notice that (1.1) is infeasible if and only if (1.4) is unbounded; the latter is possible since HD may

only be positive semidefinite.

1.1 Prior work and our contributions

A great number of algorithms have been proposed to solve the general quadratic problem (1.1). They

may be classified as either interior-point algorithms, active-set methods, penalty methods, or projected

gradient methods, all of which we summarize in turn.

Interior-point methods typically are primal-dual [21,52,59,63,77] in the sense that they solve a linear

system during each iteration that is obtained from applying Newton’s Method for zero finding to a certain

shifted primal-dual linear system of equations. For problems that are convex but perhaps not strictly

convex, regularized formulations have been proposed [32] to address the issues associated with potentially

solving singular linear systems, or systems that are ill-conditioned. Primal-dual interior-point methods

are revered for their cheap iteration cost, but are difficult to be warm-started, i.e., to solve problem (1.1)

much more efficiently when given a good estimate of a solution as compared to an arbitrary starting point.

The class of active-set methods complements the set of interior-point solvers. They typically are robust

and benefit from warm-starts, but are less scalable than interior-point methods. Active-set methods solve

a sequence of equality-constrained quadratic subproblems (equivalently, they solve a sequence of linear

systems of equations) where the constraints are defined using the current active set (more accurately,

using a working set). The diminished capacity for active-set methods to scale is rooted in the fact that the

active-set estimates typically change by a single element during each iteration. Thus, it is possible that

an exponential number (exponential in the number of constraints) of subproblems may need to be solved

to obtain a solution to the original problem (1.1), which is potentially problematic when the number

of constraints is large. Primal feasible active-set methods [6, 37, 38, 46, 52, 59] require a primal-feasible

point that is often costly to obtain, whereas a trivial feasible point exists for dual feasible active-set

methods [4, 11, 39, 70, 74]. We also mention that non-traditional active-set methods have recently been

developed primarily motivated by solving certain problems that arise in optimal control [18, 19, 55], and

that dual active-set methods have also received attention [29,54].

The class of penalty methods may, in some sense, be considered as a compromise between interior-point

and active-set methods. Penalty methods solve the original generally constrained QP by solving a sequence

of QP problems with simpler constraint sets. For example, the method by Spellucci [75] uses a penalty

approach to formulate a new primal-dual quadratic objective function with simple bound-constraints whose
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first-order solutions correspond to solutions of the original generally constrained problem (1.1). Although

this is a reasonable approach, it typically does not perform well on moderately ill-conditioned problems

because the reformulated penalty problem has a condition number that is the cube of the condition

number of the original problem. A more standard augmented Lagrangian penalty approach is used by

Friendlander and Leyffer [31]. They improve upon standard augmented Lagrangian methods for general

nonlinear optimization by using the structure of the QP to more efficiently update problem parameters.

The augmented Lagrangian approach means that each subproblem is cheaper to solve, but to ensure

convergence, a penalty parameter and an estimate of a Lagrange multiplier vector must be iteratively

updated. In our experience, such penalty methods typically warm-start better than interior-point methods

but not as well as traditional active-set methods, and scale better than active-set methods, but not as well

as interior-point methods. In this sense, one may view them as a compromise between interior-point and

active-set methods.

The final class of QP methods, which consists of gradient projection methods, is well-known and

typically employed to solve the primal problem when only simple bound-constraints are present [23,24,65–

67,72]. When applied to bound-constrained problems, such methods have a modest cost per iteration and

usually perform well when the problems are well conditioned or moderately ill-conditioned. However, they

tend to perform poorly on ill-conditioned problems. Projection methods are less commonly used to solve

dual formulations. One such example is the primal-dual projection method used to solve liner-quadratic

problems that arise in dynamic and stochastic programming [80]. In this setting, however, both the

primal and dual problems have nonsmooth second derivatives. A second example is the dual projection

method [3], which focuses on the special structure of the QPs used to solve mixed-integer problems in

predictive control. The projection method in [69] is perhaps the most similar to ours. The authors present

a gradient projection method called DPG for solving the dual problem, and an accelerated version called

DAPG. The formulation of their method is motivated by obtaining an optimal worst-case complexity

result, and has a modest cost per iteration of O(mn). They prove that the convergence rate for DPG is

O(1/k), and that the convergence rate for DAPG is O(1/k2), where k is the iteration number. Both of these

methods require a single projected gradient iteration on the dual problem during each iteration. Whereas

their method was designed to obtain an optimal complexity result, the method that we describe is designed

to be efficient in practice. For example, whereas DPG and DAPG perform a single gradient projection

computation, we allow for either a search along the projected gradient path or a simple projected gradient

backtracking search. An additional enhancement to our method is subspace acceleration computations

that are routinely used in gradient projection methods.

The contributions of this paper can be summarized as follows. (i) We address the challenges faced by

gradient projection methods in the context of solving the dual QP problem, which is typically a convex

(not strictly convex) problem even when the primal problem is strictly convex. In particular, for the dual

problem, one must efficiently compute directions of infinite descent when they exist, which is precisely

when the primal formulation is infeasible. (ii) We show how the linear algebra may be arranged to take

computational advantage of structure that is often present in the second-derivative matrix. In particular,

we consider the case that the second-derivative matrix is explicitly available and sparse, and the case

when it is available implicitly via a limited memory BFGS representation. (iii) We present the details of

our Fortran 2003 software package DQP, which is part of the GALAHAD suite of optimization routines.

Numerical tests are performed on quadratic programming problems from the combined CUTEst and Maros

and Meszaros test sets.

1.2 Notation

We let I be the appropriately-dimensioned identity matrix and ej its jth column. The vector e will be

the appropriately-dimensioned vector of ones. The standard inner product of two vectors x and y in IRm

is denoted by 〈x, y〉, with the induced vector (Euclidean) norm being ‖x‖ :=
√
〈x, x〉. For any index set

S ⊆ {1, 2, . . . ,m}, we defined 〈x, y〉S :=
∑
j∈S xjyj with xj denoting the jth entry in x, i.e., 〈x, y〉S is the

standard inner produce over the sub-vectors of x and y that correspond to the index set S. Throughout,
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H ∈ IRn×n is positive definite and A ∈ IRm×n is the constraint matrix. The quantity max(y, 0) is the

vector whose ith component is the maximum of yj and 0; a similar definition is used for min(y, 0).

2 The Method

The method we use to solve the dual bound-constrained quadratic program (BQP) (1.4) is fairly standard

[13,16,65] and makes heavy use of projections onto the dual feasible set. Thus, we let

PD[y] := max(y, 0)

be the projection of y onto the dual feasible set

D := {y ∈ IRm : y ≥ 0}

associated with (1.4). The well-studied gradient projection method for BQP is given by Algorithm 2.1.

Algorithm 2.1 Accelerated gradient projection method for solving the BQP (1.4).

input: Solution estimate y ∈ D.

Choose ε > 0.

while ‖PD[y −∇qD(y)]− y‖ > ε do

1. (Cauchy point)

Set d = −∇qD(y) and compute αC = argminα>0 q
D(PD[y + αd]).

Set yC = PD[y + αCd].

2. (subspace step)

Compute A = A(yC) = {i : yC
i = 0}.

Compute ∆yS = argmin∆y∈IRm qD(yC + ∆y) such that [∆y]A = 0.

3. (improved subspace point)

Select αmax > 0 and then compute αS =argminα∈[0,αmax] q
D(PD[yC + α∆yS]).

Set y = PD[yC + αS∆yS].

end while

Computing only the Cauchy point yC during each iteration is sufficient to guarantee convergence

and, under suitable assumptions, to identify the set of variables that are zero at the solution [15, 61, 65].

Subsequently, the subspace step ∆yS will identify the solution, although empirically it also accelerates

convergence before the optimal active set is determined. The use of αmax allows for additional flexibility

although the choice αmax = ∞ would be common. Another choice would be to set αmax to the largest α

value satisfying (yC + α∆yS) ∈ D so that αS can easily be computed in closed form.

The Cauchy point and improved subspace point computations both require that we compute a mini-

mizer of the convex dual objection function along a piecewise linear arc. Of course, the exact minimizer

suffices, but there may be a computational advantage in accepting suitable approximations. We consider

both possibilities in turn.

2.1 An exact Cauchy point in Algorithm 2.1

The Cauchy point may be calculated by stepping along the piecewise linear arc PD[y+αd] while considering

the objective function on each linear segment [16, §3]. The entire behavior can be predicted while moving

from one segment to the next by evaluating and using the product HDp, where p is a vector whose non-

zeros occur only in positions corresponding to components of y that become zero as the segment ends;

thus, p usually has a single nonzero entry. The required product can be obtained as follows:

HDp = Au, where Hu = w and w = AT p.

Note that w is formed as a linear combination of the columns of AT indexed by the non-zeros in p.

4



Algorithm 2.2 Finding the Cauchy point (preliminary version).

input: Solution estimate y ∈ D and search direction d.

Compute the gradient ∇gD(y) = −AH−1(g −AT y)− c and Hessian HD = AH−1AT .

Compute the vector of breakpoints

αB

j =

{
−yj/dj if dj < 0

∞ if dj ≥ 0
for all j = 1, . . . n.

Compute the index sets I0 = {j : αB
j = 0} and A0 = I ∪ {j : yj = 0 and dj = 0}.

Set α0 = 0, e0 =
∑
j∈I0 djej , d

0 = d− e0, and s0 = 0.

Compute `0 = 〈∇gD(y), d0〉 and HDd0.

Set q′0 = `0 and compute q′′0 = 〈d0, HDd0〉.
for i = 0, 1, 2, . . . do

1. (find the next breakpoint)

Determine the next breakpoint αi+1, and then set ∆αi = αi+1 − αi.
2. (check the current interval for the Cauchy point)

Set ∆α := −q′i/q′′i .

if q′i ≥ 0, then return the exact Cauchy point yC = y + si. end if

if q′′i > 0 and ∆α < ∆αi, then return the exact Cauchy point yC = y + si + ∆αdi. end if

3. (prepare for the next interval)

Compute the index sets Ii+1 = {j : αB
j = αi+1} and Ai+1 = Ai ∪ Ii+1.

Compute ei+1 =
∑
j∈Ii+1 djej , s

i+1 = si + ∆αi di, and di+1 = di − ei+1.

Compute HDei+1 and 〈∇gD(y), ei+1〉.
Update `i+1 = `i − 〈∇gD(y), ei+1〉 and HDdi+1 = HDdi −HDei+1.

4. (compute the slope and curvature for the next interval)

Use HDdi+1 to compute γi+1 = 〈si+1, HDdi+1〉, q′i+1 = `i+1 + γi+1, and q′′i+1 = 〈di+1, HDdi+1〉.
end for

The details of the search along the piecewise linear path is given as Algorithm 2.2, which is based

on [17, Alg. 17.3.1 with typo corrections]. The segments are defined by “breakpoints”, and the first and

second derivatives of qD on the arc at the start of the ith segment are denoted by q′i and q′′i , respectively.

Algorithm 2.2 seems to need a sequence of products with A and AT and solves with H to form the

products with HD, but fortunately, we may simplify the process considerably. We consider two cases.

2.1.1 Sparse H

Suppose that H is sparse and that we have obtained the (sparse) Cholesky factorization

H = LLT , (2.1)

where L is a suitable row permutation of a lower triangular matrix. By defining x := −H−1(g − AT y),

hi := L−1AT di, and pi := L−1AT si, and rearranging the inner products, we obtain a simplified method

(Algorithm 2.3), in which products with A and back-solves with LT are avoided in the main loop.

Notice that the product ri = AT ei is with a sparse vector, and that each row of A need be accessed at

most a single time during the entire solve. Advantage may also be taken of sparsity in ri when performing

the forward solve Lwi = ri since in many cases wi will be sparse when L is very sparse. This depends, of

course, on the specific sparse factorization used, and in particular nested-dissection ordering favors sparse

forward solutions [33]. New subroutines to provide this (sparse right-hand side) functionality have been

added to each of the HSL packages MA57 [25], MA87 [56] and MA97 [58]. There may also be some gain on

high-performance machines in performing a block solve

L(wi . . . wi+j) = (ri . . . ri+j)
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Algorithm 2.3 Finding the Cauchy point (preliminary sparse version).

input: Solution estimate y ∈ D and search direction d.

Solve LLTx = AT y − g and then set ∇gD(y) = Ax− c.
Compute the vector of breakpoints

αB

j =

{
−yj/dj if dj < 0,

∞ if dj ≥ 0
for all j = 1, . . . n.

Compute the index sets I0 = {j : αB
j = 0} and A0 = I ∪ {j : yj = 0 and dj = 0}.

Set α0 = 0, e0 =
∑
j∈I0 djej , d

0 = d− e0, and p0 = 0.

Compute `0 = 〈∇gD(y), d0〉 and r0 = AT d0, and solve Lh0 = r0.

Set q′0 = `0 and compute q′′0 = 〈h0, h0〉.
for i = 0, 1, 2, . . . do

1. (find the next breakpoint)

Determine the next breakpoint αi+1, and then set ∆αi = αi+1 − αi.
2. (check the current interval for the Cauchy point)

Set ∆α := −q′i/q′′i .

if q′i ≥ 0, or q′′i > 0 and ∆α < ∆αi then define s component-wise by

sj =

{
α`dj for j ∈ I` for each ` = 0, . . . , i,
αidj for j /∈ ∪il=0I`.

end if

if q′i ≥ 0, then return the exact Cauchy point yC = y + s. end if

if q′′i > 0 and ∆α < ∆αi, then return the exact Cauchy point yC = y + s+ ∆αdi. end if

3. (prepare for the next interval)

Compute Ii+1 = {j : αB
j = αi+1} and Ai+1 = Ai ∪ Ii+1.

Compute ei+1 =
∑
j∈Ii+1 djej , d

i+1 = di − ei+1, and `i+1 = `i − 〈∇gD(y), ei+1〉.
Compute ri+1 = AT ei+1, and then solve Lwi+1 = ri+1.

Update pi+1 = pi + ∆αi hi and hi+1 = hi − wi+1.

4. (compute the slope and curvature for the next interval)

Compute γi+1 = 〈pi+1, hi+1〉, q′i+1 = `i+1 + γi+1, and q′′i+1 = 〈hi+1, hi+1〉.
end for

in anticipation of future wi+j for j > 0, as such solves may take advantage of machine cache. The

breakpoints may be found, as required, very efficiently using a heapsort [78].

While this algorithm is an improvement on its predecessor, it may still be inefficient. In particular,

the vectors {hi} will generally be dense, and this means that the computation of γi+1 and q′′i+1, as well

as the update for pi, may each require O(n) operations. As we have already noted, by contrast wi is

generally sparse, and so our aim must be to rearrange the computation in Algorithm 2.3 so that products

and updates involve wi rather than hi.

Note that, using the recurrence hi+1 = hi − wi+1 allows us to write

〈hi+1, hi+1〉 = 〈hi, hi〉+ 〈wi+1 − 2hi, wi+1〉,

while this and the recurrence pi+1 = pi + ∆αi hi give

〈pi+1, hi+1〉 = 〈pi, hi〉+ ∆αi〈hi, hi〉 − 〈pi+1, wi+1〉.

Combining this with the relationship q′′i = 〈hi, hi〉 yields the recursions

γi+1 = γi + ∆αiq′′i − 〈pi+1, wi+1〉 and q′′i+1 = q′′i + 〈wi+1 − 2hi, wi+1〉, (2.2)
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where we only need to take the inner products over components j for which wi+1
j 6= 0.

Now let

ui+1 = pi+1 − αi+1hi, (2.3)

where u0 = 0. Then it follows from pi+1 = pi + ∆αihi, αi+1 = αi + ∆αi, and hi+1 = hi − wi+1 that

ui+1 = pi + ∆αi hi − αi+1hi = pi + (∆αi − αi+1)hi = pi − αihi = pi − αi(hi−1 − wi)
= ui + αiwi.

Thus, rather than recurring pi, we may instead recur ui and obtain pi+1 = ui+1 + αi+1hi from (2.3) as

needed. The important difference is that the recursions for ui and hi only involve the likely-sparse vector

wi. Note that by substituting for pi+1, the recurrence for γi+1 in (2.2) becomes

γi+1 = γi + ∆αiq′′i − 〈ui+1, wi+1〉 − αi+1〈hi, wi+1〉,

which only involves inner products with the likely-sparse vector wi+1.

Rearranging the steps in Algorithm 2.3 using the above equivalent formulations gives our final method

stated as Algorithm 2.4. We note that in practice, we compute q′i+1 afresh when |q′i+1/q
′
i| becomes small

to guard against possible accumulated rounding errors in the recurrences.

2.1.2 Structured H

Suppose that H has the structured form (1.2). We assume that we can cheaply obtain

H−1
0 = BBT (2.4)

for some sparse matrix B (this is trivial in the common case that H−1 is diagonal). Now, consider

Algorithm 2.2 and define

hiB := BTAT di ∈ IRn, piB := BTAT si ∈ IRn, hiV := V TAT di ∈ IRt, and piV := V TAT si ∈ IRt.

The key, as in §2.1.1, is to efficiently compute

q′i = `i + 〈piB, hiB〉+ 〈piV,WhiV〉 and q′′i = 〈hiB, hiB〉+ 〈hiV,WhiV〉.

The terms 〈piV,WhiV〉 and 〈hiV,WhiV〉 involve vectors of length t and a matrix of size t × t, so are of low

computational cost; the updates si+1 = si + ∆αidi and di+1 = di − ei+1 show that the required vectors

hi+1
V and pi+1

V may be recurred via

hi+1
V = hiV − wi+1

V and pi+1
V = piV + ∆αihiV, where wi+1

V = V T ri+1 and ri+1 = AT ei+1.

Note that wi+1
V is formed from the product of the likely-sparse vector ri+1 and the t×n matrix V T . Thus,

we focus on how to efficiently compute

q′B,i := `i + 〈piB, hiB〉 and q′′B ,i := 〈hiB, hiB〉

since hiB and piB are generally dense. It follows from di+1 = di − ei+1 that

hi+1
B = hiB − wi+1

B and pi+1
B = piB + ∆αihiB, where wi+1

B = BT ri+1. (2.5)

Note that wi+1
B is likely to be sparse since it is formed from the product of the likely-sparse vector ri+1

and the sparse matrix BT . We then follow precisely the reasoning that lead to (2.2) to see that

q′B,i+1 = q′B,i − 〈∇gD(y), ei+1〉+ ∆αiq′′B ,i − 〈pi+1
B , wi+1

B 〉 and q′′B ,i+1 = q′′B ,i + 〈wi+1
B − 2hiB, w

i+1
B 〉,

where we only need to take the inner products over components j for which [wi+1
B ]j 6= 0. The only

remaining issue is the dense update to piB, which is itself required to compute 〈pi+1
B , wi+1

B 〉. However, we

may proceed as before to define ui+1
B = pi+1

B − αi+1hiB with uiB = 0 so that

ui+1
B = uiB + αiwiB (2.6)
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Algorithm 2.4 Finding the Cauchy point (sparse version).

input: Solution estimate y ∈ D and search direction d.

Solve LLTx = AT y − g and then set ∇gD(y) = Ax− c.
Compute the vector of breakpoints

αB

j =

{
−yj/dj if dj < 0,

∞ if dj ≥ 0
for all j = 1, . . . n.

Compute the index sets I0 = {j : αB
j = 0} and A0 = I ∪ {j : yj = 0 and dj = 0}.

Set α0 = 0, e0 =
∑
j∈I0 djej , d

0 = d− e0, u0 = 0, and r0 = AT d0.

Solve Lw0 = r0 and set h0 = w0.

Compute q′0 = 〈∇gD(y), d0〉 and q′′0 = 〈h0, h0〉.
for i = 0, 1, 2, . . . do

1. (find the next breakpoint)

Determine the next breakpoint αi+1, and then set ∆αi = αi+1 − αi.
2. (check the current interval for the Cauchy point)

Set ∆α := −q′i/q′′i .

if q′i ≥ 0, or q′′i > 0 and ∆α < ∆αi then define s component-wise by

sj =

{
α`dj for j ∈ I` for each ` = 0, . . . , i,
αidj for j /∈ ∪il=0I`.

end if

if q′i ≥ 0, then return the exact Cauchy point yC = y + s. end if

if q′′i > 0 and ∆α < ∆αi, then return the exact Cauchy point yC = y + s+ ∆αdi. end if

if ∆αi =∞ and q′′i ≤ 0 then the problem is unbounded below. end if

3. (prepare for the next interval)

Compute Ii+1 = {j : αB
j = αi+1} and Ai+1 = Ai ∪ Ii+1.

Compute ei+1 =
∑
j∈Ii+1 djej , d

i+1 = di − ei+1, and ui+1 = ui + αiwi.

Compute ri+1 = AT ei+1, and then solve Lwi+1 = ri+1.

4. (compute the slope and curvature for the next interval)

Compute q′i+1 = q′i − 〈∇gD(y), ei+1〉+ ∆αiq′′i − 〈ui+1 + αi+1hi, wi+1〉.
Compute q′′i+1 = q′′i + 〈wi+1 − 2hi, wi+1〉, and hi+1 = hi − wi+1.

end for

and

q′B,i+1 = q′B,i − 〈∇gD(y), ei+1〉+ ∆αiq′′B ,i − 〈ui+1
B , wi+1

B 〉 − αi+1〈hiB, wi+1
B 〉.

This recurrence for q′B,i+1 and the previous one for q′′B ,i+1 merely require ui+1
B and hiB, which may themselves

be recurred using the same likely-sparse wi+1
B from (2.5) and (2.6).

We summarize our findings in Algorithm 2.5.

2.2 An approximate Cauchy point in Algorithm 2.1

In some cases, it may be advantageous to approximate the Cauchy point using a backtracking projected

linesearch [65]. The basic idea is to pick an initial step size αinit > 0, a reduction factor β ∈ (0, 1) and a

decrease tolerance η ∈ (0, 1
2 ), and then compute the smallest nonnegative integer i for which

qD(yi+1) ≤ qD(y) + η〈∇gD(y), di+1〉 (2.7)

with

yi+1 = PD[y + αid], αi = (β)iαinit, and di+1 = yi+1 − y,
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Algorithm 2.5 Finding the Cauchy point (structured version).

input: Solution estimate y ∈ D and search direction d.

Compute x = (BBT + VWV T )(AT y − g) and then set ∇gD(y) = Ax− c.
Compute the vector of breakpoints

αB

j =

{
−yj/dj if dj < 0,

∞ if dj ≥ 0
for all j = 1, . . . n.

Compute I0 = {j : αB
j = 0} and A0 = I0 ∪ {j : yj = 0 and dj = 0}.

Set α0 = 0, e0 =
∑
j∈I0 djej , d

0 = d− e0, u0
B = 0, and p0

V = 0.

Compute r0 = AT d0, h0
B = BT r0, h0

V = V T r0.

Compute q′0 = 〈∇gD(y), d0〉 and q′′0 = 〈h0
B, h

0
B〉+ 〈h0

V,Wh0
V〉.

for i = 0, 1, 2, . . . do

1. (find the next breakpoint)

Determine the next breakpoint αi+1, and then set ∆αi = αi+1 − αi.
2. (check the current interval for the Cauchy point)

Set ∆α := −q′i/q′′i .

if q′i ≥ 0, or q′′i > 0 and ∆α < ∆αi then define s component-wise by

sj =

{
α`dj for j ∈ I` for each ` = 0, . . . , i,
αidj for j /∈ ∪il=0I`.

end if

if q′i ≥ 0, then return the exact Cauchy point yC = y + si. end if

if q′′i > 0 and ∆α < ∆αi, then return the exact Cauchy point yC = y + si + ∆αdi. end if

3. (prepare for the next interval)

Update the index sets Ii+1 = {j : αB
j = αi+1} and Ai+1 = Ai ∪ Ii+1.

Compute ei+1 =
∑
j∈Ii+1 djej , d

i+1 = di − ei+1, and ri+1 = AT ei+1.

Compute, wi+1
B = BT ri+1, wi+1

V = V T ri+1, and ui+1
B = uiB + αiwiB.

Set pi+1
V = piV + ∆αihiV and hi+1

V = hiV − wi+1
V .

4. (compute the slope and curvature for the next interval)

Compute q′B,i+1 = q′i − 〈∇gD(y), ei+1〉+ ∆αiq′′i − 〈ui+1
B + αi+1hiB, w

i+1
B 〉.

Compute q′′B ,i+1 = q′′i + 〈wi+1
B − 2hiB, w

i+1
B 〉.

Compute q′i+1 = q′B,i+1 + 〈pi+1
V ,Whi+1

V 〉 and q′′i+1 = q′′B ,i+1 + 〈hi+1
V ,Whi+1

V 〉.
Compute hi+1

B = hiB − wi+1
B .

end for

for i ≥ 0. Thus, we must efficiently compute yi+1, qi+1 := qD(yi+1), and q′i+1 = 〈∇gD(y), di+1〉. To this

end, we define ∆yi := yi+1 − yi for i ≥ 1. We can then observe that

q′i+1 = 〈∇gD(y), di+1〉 = 〈∇gD(y), yi − y + ∆yi〉 = q′i + 〈∇gD(y),∆yi〉 for i ≥ 1. (2.8)

To achieve efficiency, we take advantage of the structure of ∆yi and basic properties of the backtracking

projected line search. In particular, we know that once a component, say the jth, satisfies yij > 0, then

it will also hold that y`j > 0 for all ` ≥ i. Thus, in contrast to an exact Cauchy point search that moves

forward along the piecewise projected gradient path, the projected backtracking line search only starts to

free up variables as the iterations proceed. With this in mind, we compute the index sets

A = {j : yj = 0 and dj ≤ 0}, F = {j : dj > 0, or dj = 0 < yj}, and U = {1, 2, . . . ,m} \ (A∪F), (2.9)

at the beginning of the process, and maintain the index sets

Ai := {j ∈ U : yij = 0} and F i := {j ∈ U : yij > 0} for i ≥ 1, (2.10)
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as well as the index sets

Si1 := F i+1 ∩ Ai, Si2 := F i+1 ∩ F i ∩ Ai−1, and Si3 := F i+1 ∩ F i ∩ F i−1 for all i ≥ 2. (2.11)

The set A (F) contains the indices of variables that we know are active (free) at the Cauchy point that

will be computed. We also know that

F i ⊆ F i+1 and Ai+1 ⊆ Ai for all i ≥ 1

as a consequence of the approximate Cauchy point search. Using these inclusions, it follows that

Si+1
3 = Si3 ∪ Si2, Si+1

2 = Si1, and Si+1
1 = F i+2 ∩ Ai+1.

These index sets first become useful when noting that, for i ≥ 2, the following hold:

∆yij =


0 if j ∈ A ∪Ai+1,

β∆yi−1
j if j ∈ F ∪ Si3,

yi+1
j − yij if j ∈ Si1 ∪ Si2.

(2.12)

Also, for future reference, note that it follows from (2.12) that

∆yi = β∆yi−1 + δyi−1, with δyi−1
j :=

{
0 if j ∈ A ∪Ai+1 ∪ F ∪ Si3,

∆yij − β∆yi−1
j if j ∈ Si1 ∪ Si2,

(2.13)

where the vector δyi−1 is usually a sparse vector. Second, they are useful when computing the inner

products that involve ∆yi (e.g., see (2.8)) as shown in Algorithm 2.6. Note that by combining the

recursion performed for gi = 〈∇gD(y),∆yi〉 in Algorithm 2.6 with (2.8) we obtain an efficient recursion for

the sequence {q′i}. The other sequence {ci} that is recurred in Algorithm 2.6 will be used when considering

the different representations for H in the next two sections.

Algorithm 2.6 Efficiently computing ci = 〈∆yi, c〉 and gi := 〈∇gD(y),∆yi〉.
input: y1, y2, ∆y1, F , A, F1, A1, F2, and A2.

Compute S1
1 = F2 ∩ A1, S1

2 = ∅, and S1
3 = F1 ∩ F2.

Compute g1
F = 〈∇gD(y),∆y1〉F , g1

1 = 〈∇gD(y),∆y1〉S1
1
, g1

2 = 0, and g1
3 = 〈∇gD(y),∆y1〉S1

3
.

Compute c1F = 〈c,∆y1〉F , c11 = 〈c,∆y1〉S1
1
, c12 = 0, and c13 = 〈c,∆y1〉S1

3
.

Set g1 = g1
F + g1

1 + g1
2 + g1

3 and c1 = c1F + c11 + c12 + c13.

for i = 2, 3, . . . do

1. (Compute required elements of yi+1 and update active sets.)

Compute yi+1
j = yj + αidj for all j ∈ Si−1

1 and yi+1
j = PD(yj + αidj) for all j ∈ Ai.

Compute Ci = {j ∈ Ai : yi+1
j > 0}.

Set F i+1 = F i ∪ Ci and Ai+1 = Ai \ Ci.
2. (Compute required elements of ∆yi.)

Set Si1 = F i+1 ∩ Ai.
Set Si3 = Si−1

3 ∪ Si−1
2 and Si2 = Si−1

1 .

Compute ∆yij = yi+1
j − yij for all j ∈ Si1 ∪ Si2.

3. (Perform recursion.)

Set giF = βgi−1
F , gi1 = 〈∇gD(y),∆yi〉Si

1
, gi2 = 〈∇gD(y),∆yi〉Si

2
, and gi3 = β(gi−1

2 + gi−1
3 ).

Set ciF = βci−1
F , ci1 = 〈c,∆yi〉Si

1
, ci2 = 〈c,∆yi〉Si

2
, and ci3 = β(ci−1

2 + ci−1
3 ).

Set gi = giF + gi1 + gi2 + gi3 and ci = ciF + ci1 + ci2 + ci3.

end for
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Algorithm 2.7 Finding an inexact Cauchy point (sparse version).

input: Current point y ∈ D and search direction d.

Choose constants αinit > 0, β ∈ (0, 1), and η ∈ (0, 1
2 ).

Solve Lh = AT y − g and LTx = h, and then set ∇gD(y) = Ax− c.
Solve Lw = AT y, set v = w − h, solve LT z = v, and then set qD(y) = 1

2 〈w,w〉 − 〈y, c+Az〉.
Define A, F , and U using (2.9).

Set y1
j = yj + dj for j ∈ F and y1

j = PD[yj + αdj ] for j ∈ U .

Compute F1 and A1 using (2.10).

Solve Lv = g, then solve LT z = v, and then set q1 = 1
2 〈w,w〉−〈y1, c+Az〉 and q′1 = 〈∇qD(y), y1−y〉F∪U .

if q1 ≤ qD(y) + ηq′1 then return the approximate Cauchy point y1. end if

Compute y2
j = yj + α2dj for all j ∈ F ∪ F1 and y2

j = PD(yj + α2dj) for all j ∈ A1.

Compute C1 = {j ∈ A1 : y2
j > 0}.

Set F2 = F1 ∪ C1 and A2 = A1 \ C1.

Compute S1
1 = F2 ∩ A1, S1

2 = ∅, and S1
3 = F1 ∩ F2.

Compute ∆y1
j = y2

j − y1
j for all j ∈ F ∪ S1

1 ∪ S1
3 .

Compute g1
F = 〈∇gD(y),∆y1〉F , g1

1 = 〈∇gD(y),∆y1〉S1
1
, g1

2 = 0, and g1
3 = 〈∇gD(y),∆y1〉S1

3
.

Compute c1F = 〈c,∆y1〉F , c11 = 〈c,∆y1〉S1
1
, c12 = 0, and c13 = 〈c,∆y1〉S1

3
.

Set g1 = g1
F + g1

1 + g1
2 + g1

3 and c1 = c1F + c11 + c12 + c13.

Solve for s1 using (2.15), and then compute 〈s1, h〉 and 〈s1, s1〉.
Set q2 = q1 − c1 + 〈s1, h〉+ 1

2 〈s1, s1〉 and q′2 = q′1 + g1.

for i = 2, 3, . . . do

if qi ≤ qD(y) + ηq′i then return the approximate Cauchy point yi. end if

Set αi = (β)iαinit.

Compute yi+1
j = yj + αidj for all j ∈ Si−1

1 and yi+1
j = PD(yj + αidj) for all j ∈ Ai.

Compute Ci = {j ∈ Ai : yi+1
j > 0}.

Set F i+1 = F i ∪ Ci and Ai+1 = Ai \ Ci.
Set Si1 = F i+1 ∩ Ai, Si3 = Si−1

3 ∪ Si−1
2 , and Si2 = Si−1

1 .

Set ∆yij = yi+1
j − yij for all j ∈ Si1 ∪ Si2.

Set giF = βgi−1
F , gi1 = 〈∇gD(y),∆yi〉Si

1
, gi2 = 〈∇gD(y),∆yi〉Si

2
, and gi3 = β(gi−1

2 + gi−1
3 ).

Set ciF = βci−1
F , ci1 = 〈c,∆yi〉Si

1
, ci2 = 〈c,∆yi〉Si

2
, and ci3 = β(ci−1

2 + ci−1
3 ).

Set gi = giF + gi1 + gi2 + gi3 and ci = ciF + ci1 + ci2 + ci3.

Compute δsi−1 from (2.16) with δyi−1 defined by (2.13).

Compute 〈si, h〉 = β〈si−1, h〉+ 〈δsi−1, h〉.
Compute 〈si, si〉 = β2〈si−1, si−1〉+ 〈δsi−1, 2si−1 + δsi−1〉.
Set qi+1 = qi − ci + 〈si, h〉+ 1

2 〈si, si〉 and q′i+1 = q′i + gi.

end for

2.2.1 Sparse H

When H is sparse, we may use (1.4), (1.5), (2.1), and ci = 〈∆yi, c〉 introduced in Algorithm 2.6 to derive

qi+1 = qD(yi+1) = qD(yi + ∆yi) = qD(yi)− 〈∆yi, AH−1(g −AT y) + c〉+ 1
2 〈∆yi, AH−1AT∆yi〉

= qD(yi)− 〈∆yi, c〉+ 〈L−1AT∆yi, L−1(AT y − g)〉+ 1
2 〈L−1AT∆yi, L−1AT∆yi〉

= qD(yi)− 〈∆yi, c〉+ 〈si, h〉+ 1
2 〈si, si〉

= qi − 〈∆yi, c〉+ 〈si, h〉+ 1
2 〈si, si〉

= qi − ci + 〈si, h〉+ 1
2 〈si, si〉,

(2.14)

where

Lsi = AT∆yi and Lh = AT y − g. (2.15)
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Note that si is not likely to be sparse since ∆yi is usually not sparse, which makes the computation

in (2.14) inefficient. However, by making use of (2.13), we can see that

si+1 = βsi + δsi, where L(δsi) = AT (δyi) (2.16)

since Lsi+1 = βLsi + L(δsi) = βAT∆yi +AT (δyi) = AT
(
β∆yi + (δyi)

)
= AT∆yi+1. Moreover, since δyi

is usually sparse, it follows from (2.16) that the vector δsi will likely be sparse when L and A are sparse.

We can also use (2.16) to obtain

〈si+1, h〉 = β〈si, h〉+ 〈δsi, h〉 and

〈si+1, si+1〉 = β2〈si, si〉+ 〈δsi, 2si + δsi〉,

which allow us to perform the sparse updates required to compute (2.14). These observations are combined

with our previous comments to form Algorithm 2.7.

2.2.2 Structured H

When H is structured according to (1.2) and (2.4), an argument similar to (2.14) shows that

qi+1 = qD(yi+1) = qD(yi + ∆yi)

= qD(yi)− 〈∆yi, c〉+ 〈AT∆yi, H−1(AT y − g)〉+ 1
2 〈AT∆yi, H−1AT∆yi〉

= qi − 〈∆yi, c〉+ 〈hB, s
i
B〉+ 〈hV,WsiV〉+ 1

2 〈siB, siB〉+ 1
2 〈siV,WsiV〉,

= qi − ci + 〈hB, s
i
B〉+ 〈hV,WsiV〉+ 1

2 〈siB, siB〉+ 1
2 〈siV,WsiV〉,

(2.17)

where

siB = BTAT∆yi, hB = BT (AT y − g), siV = V TAT∆yi and hV = V T (AT y − g). (2.18)

Similar to (2.16), we can use (2.13) to obtain

si+1
B = βsiB + δsiB, with δsiB = BTAT (δyi), (2.19)

which in turn leads to

〈si+1
B , hB〉 = β〈siB, hB〉+ 〈δsiB, hB〉 and

〈si+1
B , si+1

B 〉 = β2〈siB, siB〉+ 〈δsiB, 2siB + δsiB〉.

These updates allow us to perform the sparse updates required to compute (2.17). These observations are

combined with our previous comments to form Algorithm 2.8.

2.3 The subspace step in Algorithm 2.1

Let A be the active set at the Cauchy point (see Algorithm 2.1) and F = {1, 2, . . . ,m}\A with mF = |F|.
By construction, the components of yC that correspond to A are zero, and those corresponding to the set

F are strictly positive. With ∆y = (∆yA,∆yF ), the subspace phase requires that we approximately

minimize
∆y∈IRm

1
2 〈∆y,HD∆y〉+ 〈∆y, gD +HDyC〉 such that ∆yA = 0,

whose solution (when it exists) we denote by ∆y∗ = (∆yA∗ ,∆y
F
∗ ) = (0,∆yF∗ ) with

∆yF∗ = argmin
∆yF∈IRmF

qF (∆yF ) := 1
2 〈∆yF , HF∆yF 〉+ 〈∆yF , gF 〉, (2.20)

where

HF := AFH−1(AF )T and gF := −AFH−1
(
g − (AF )T (yC)F

)
− cF . (2.21)

Here, AF and (yC)F /cF denote, respectively, the rows of A and components of yC/c that correspond to

the index set F . There are then two distinct possibilities. Either (2.20) has a finite solution or qF (∆yF ) is

unbounded below. Moreover, we may attempt to find such a solution using either a direct (factorization-

based) or iterative approach. We consider these aspects over the next several sections.
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Algorithm 2.8 Finding an inexact Cauchy point (structured version).

input: Current point y ∈ D and search direction d.

Choose constants αinit > 0, β ∈ (0, 1), and η ∈ (0, 1
2 ).

Compute x = (BBT + VWV T )(AT y − g), and then set ∇gD(y) = Ax− c.
Compute w = BTAT y, z = V TAT y, bg = BT g, and vg = V T g.

Compute hB = w−bg and hV = z−vg, and then set qD(y) = 1
2 〈w,w〉+ 1

2 〈z,Wz〉−〈y, c〉−〈w, bg〉−〈z,Wvg〉.
Define A, F , and U using (2.9).

Set y1
j = yj + dj for j ∈ F and y1

j = PD[yj + αdj ] for j ∈ U .

Compute F1 and A1 using (2.10).

Compute q1 = 1
2 〈y1, A(BBT + VWV T )AT y1〉+ 〈A(BB + VWV T )T g + c, y1〉.

Compute q′1 = 〈∇qD(y), y1 − y〉F∪U .

if q1 ≤ qD(y) + ηq′1 then return the approximate Cauchy point y1. end if

Compute y2
j = yj + α2dj for all j ∈ F ∪ F1 and y2

j = PD(yj + α2dj) for all j ∈ A1.

Compute C1 = {j ∈ A1 : y2
j > 0}.

Set F2 = F1 ∪ C1 and A2 = A1 \ C1.

Compute S1
1 = F2 ∩ A1, S1

2 = ∅, and S1
3 = F1 ∩ F2.

Compute ∆y1
j = y2

j − y1
j for all j ∈ F ∪ S1

1 ∪ S1
3 .

Compute g1
F = 〈∇gD(y),∆y1〉F , g1

1 = 〈∇gD(y),∆y1〉S1
1
, g1

2 = 0, and g1
3 = 〈∇gD(y),∆y1〉S1

3
.

Compute c1F = 〈c,∆y1〉F , c11 = 〈c,∆y1〉S1
1
, c12 = 0, and c13 = 〈c,∆y1〉S1

3
.

Set g1 = g1
F + g1

1 + g1
2 + g1

3 and c1 = c1F + c11 + c12 + c13.

Solve for s1
B using (2.18), and then compute 〈s1

B, hB〉 and 〈s1
B, s

1
B〉.

Set q2 = q1 − c1 + 〈s1
B, hB〉+ 1

2 〈s1
B, s

1
B〉 and q′2 = q′1 + g1.

for i = 2, 3, . . . do

if qi ≤ qD(y) + ηq′i then return the approximate Cauchy point yi. end if

Set αi = (β)iαinit.

Compute yi+1
j = yj + αidj for all j ∈ Si−1

1 and yi+1
j = PD(yj + αidj) for all j ∈ Ai.

Compute Ci = {j ∈ Ai : yi+1
j > 0}.

Set F i+1 = F i ∪ Ci and Ai+1 = F i \ Ci.
Set Si1 = F i+1 ∩ Ai, Si3 = Si−1

3 ∪ Si−1
2 , and Si2 = Si−1

1 .

Compute ∆yij = yi+1
j − yij for all j ∈ Si1 ∪ Si2.

Set giF = βgi−1
F , gi1 = 〈∇gD(y),∆yi〉Si

1
, gi2 = 〈∇gD(y),∆yi〉Si

2
, and gi3 = β(gi−1

2 + gi−1
3 ).

Set ciF = βci−1
F , ci1 = 〈c,∆yi〉Si

1
, ci2 = 〈c,∆yi〉Si

2
, and ci3 = β(ci−1

2 + ci−1
3 ).

Set gi = giF + gi1 + gi2 + gi3 and ci = ciF + ci1 + ci2 + ci3.

Compute δsi−1
B from (2.19) with δyi−1 defined by (2.13).

Compute 〈siB, hB〉 = β〈si−1
B , hB〉+ 〈δsi−1

B , hB〉.
Compute 〈siB, siB〉 = β2〈si−1

B , si−1
B 〉+ 〈δsi−1

B , 2si−1
B + δsi−1

B 〉.
Set qi+1 = qi − ci + 〈siB, hB〉+ 1

2 〈siB, siB〉 and q′i+1 = q′i + gi.

end for

2.3.1 Finite subspace minimizer

Since the objective in (2.20) is convex and quadratic, when qF (∆yF ) is bounded below its stationarity

conditions give that

HF∆yF∗ = −gF , (2.22)

that is to say

AFH−1(AF )T∆yF∗ = AFH−1
(
g − (AF )T (yC)F

)
+ cF . (2.23)

Given x, if we then define ∆x∗ via

x+ ∆x∗ = H−1
[
(AF )T

(
(yC)F + ∆yF∗

)
− g
]
,
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then we have (
H (AF )T

AF 0

)(
x+ ∆x∗

−(yC)F −∆yF∗

)
=

(
−g
cF

)
(2.24)

or equivalently (
H (AF )T

AF 0

)(
x+ ∆x∗
−∆yF∗

)
=

(
(AF )T (yC)F − g

cF

)
. (2.25)

Notice that, so long as (2.24) (equivalently (2.25)) is consistent, we have

∆x∗ = argmin
∆x∈IRn

1
2 〈x+ ∆x,H(x+ ∆x)〉+ 〈x+ ∆x, g〉 such that AF (x+ ∆x) = cF , (2.26)

with (yC)F + ∆yF∗ the Lagrange multiplier vector. Of course (2.26) is nothing other than a subproblem

that would be solved by a primal active-set method for a correction ∆x to a given x, and this indicates

that the dual generalized Cauchy point may alternatively be viewed as a mechanism for identifying primal

active constraints. Significantly, to find ∆yF∗ , we may use any of the many direct or iterative methods for

solving (2.23) or (2.25) [5].

2.3.2 Subspace minimizer at infinity

Since HF is positive semi-definite and possibly singular, the linear system (2.23) (equivalently (2.22)) may

be inconsistent. We shall use the following well-known generic result.1 (The proof follows by minimizing

‖Mu− b‖22 and letting v = b−Mu whenever Mu 6= b.)

Theorem 2.1. [The Fredholm Alternative [60, Thm 4, p.174]] Let M ∈ IRm×n and b ∈ IRm. Then, either

there exists u ∈ IRn for which Mu = b or there exists v ∈ IRm such that MT v = 0 and 〈b, v〉 > 0.

It follows from Theorem 2.1 that if (2.22) is inconsistent, there must be a direction of linear infinite

descent [14], i.e., a vector ∆yF∞ for which

HF∆yF∞ = 0 and 〈∆yF∞, gF 〉 < 0 (2.27)

along which

qF (α∆yF∞) = α〈∆yF∞, gF 〉

decreases linearly to minus infinity as α increases. Alternatively, examining (2.21), it is clear that incon-

sistency of (2.23) is only possible when cF does not lie in the range of AF . In this case, the Fredholm

alternative implies that there exists a ∆yF∞ satisfying

(AF )T∆yF∞ = 0 and 〈∆yF∞, cF 〉 > 0, (2.28)

which is also a direction of linear infinite descent since

qF (α∆yF∞) = −α〈∆yF∞, cF 〉.

We now consider how to use HF to find a ∆yF∞ that satisfies (2.27), and leave the details of how we might

instead satisfy (2.28) to Appendix A.1.

To find a ∆yF∞ satisfying (2.27), we require that HF∆yF∞ ≡ AFH−1(AF )T∆yF∞ = 0. Now, if we define

∆w∞ := H−1(AF )T∆yF∞, then we have that(
H (AF )T

AF 0

)(
∆w∞
−∆yF∞

)
=

(
0

0

)
. (2.29)

1Note that the sign of the inner product 〈b, v〉 is arbitrary, since, for −v, MT (−v) = 0 and 〈b,−v〉 < 0. We shall refer to

a negative Fredholm alternative as that for which the signs of the components of v are flipped.
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Moreover, the second requirement in (2.27) is that

0 > 〈∆yF∞, gF 〉 = 〈−∆yF∞, c
F 〉+ 〈∆w(k), (AF )T (yC)F − g〉, (2.30)

where we have used (2.21) and the definition of ∆w∞. Notice that (2.29)–(2.30) together satisfy the

negative Fredholm alternative to (2.25), which can be seen by applying Theorem 2.1 with data

M = K :=

(
H (AF )T

AF 0

)
, b :=

(
(AF )T (yC)F − g

cF

)
, u =

(
x+ ∆x

−∆yF

)
and v =

(
∆w

−∆yF∞

)
.

To see how we might compute the required direction of linear infinite descent in this case, suppose that

K = LBLT , (2.31)

where L is a permuted unit-lower-triangular matrix and B is a symmetric block diagonal matrix comprised

of one-by-one and two-by-two blocks—the sparse symmetric-indefinite factorization packages MA27 [26],

MA57 [25], MA77 [71], MA86 [57], MA97 [58], PARDISO [73] and WSMP [53] offer good examples. Crucially,

any singularity in K is reflected solely in B. Our method will return either a solution to (2.25) or to

(2.29)–(2.30). To this end, we define w so that

Lw = b,

and then consider trying to solve the system

Bz = w. (2.32)

If the system (2.32) is consistent, and thus there is a z satisfying (2.32), the vector u for which LTu = z

also solves Ku = b and thus its components solve (2.25). By contrast, if (2.32) is inconsistent, Theorem 2.1

implies that there is a vector p for which

Bp = 0 and 〈p, w〉 > 0. (2.33)

In this case, the vector v for which LT v = p also satisfies

Kv = LBLT v = LBp = 0

and

〈v, b〉 = 〈v, Lw〉 = 〈LT v, w〉 = 〈p, w〉 > 0

because of (2.33). Thus the Fredholm alternative for data K and b may be resolved by considering the

Fredholm alternative for the far-simpler block-diagonal B and w.

To investigate the consistency of (2.32), we form the spectral factorizations Bi = QiDiQ
T
i for an

orthonormal Qi and diagonal Di for each of the ` (say) one-by-one and two-by-two diagonal blocks, and

build the overall factorization

B =

 Q1 0 0

0
. . . 0

0 0 Q`


 D1 0 0

0
. . . 0

0 0 D`


 QT1 0 0

0
. . . 0

0 0 QT`

 = QDQT .

Singularity of B is thus readily identifiable from the block diagonal matrix D, and the system (2.32) is

consistent if and only if (QTw)i = 0 whenever Dii = 0, where Dii is the ith diagonal entry of the matrix D.

If the system is inconsistent, then a direction p of linear infinite descent satisfying (2.33) can be obtained

by defining J = {j : Djj = 0 and (QTw)j 6= 0} 6= ∅ and then setting p = Qs, where

sj =

{
0 for j /∈ J ,

(QTw)j for j ∈ J .
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In particular, it follows that

〈p, w〉 = 〈Qs,w〉 = 〈s,QTw〉 =
∑
j∈J

(QTw)2
j > 0 and Bp = QDQT p = QDs = 0

since Ds = 0 by construction. Thus, we have verified that this choice for p satisfies (2.33) as required.

New subroutines to implement the Fredholm alternative as just described have been added to the HSL

packages MA57, MA77 and MA97, and versions will be added to MA27 and MA86 in due course.

When H−1 is structured according to (1.2), it is easy to show that

H = H0 − ZU−1ZT ,

where U = W−1 + Y TH0Y ∈ IRt×t and Z = H0Y ∈ IRn×t. Although the decomposition (2.31) is possible

for such an H, it will most likely result in a dense factor L since H is dense, and thus a sparse alternative

is preferable. The trick is to see that (2.25), with (∆x,∆yF ) = (∆x∗,∆y
F
∗ ), may be expanded to give H0 (AF )T Z

AF 0 0

ZT 0 U

 x+ ∆x

−∆yF

−∆z

 =

 (AF )T (yC)F − g
cF

0

 , (2.34)

where we introduced the variables ∆z := U−1ZT (x+ ∆x). The leading (n+mF )× (n+mF ) block of this

system is sparse, and only the last t rows and columns are dense. If we consider Theorem 2.1 with data

M = K+ :=

 H0 (AF )T Z

AF 0 0

ZT 0 U

 and b =

 (AF )T (yC)F − g
cF

0

,
we can conclude that there either exists a vector

u =

 x+ ∆x

−∆yF

−∆z

 or v =

 ∆w

−∆yF∞
−∆z∞


such that the first two block components of u and v provide, respectively, either a solution to (2.25) or

its Fredholm alternative (2.29)–(2.30). A decomposition of the form (2.31) for K+ and its factors then

reveals the required solution to the subspace problem or a direction of linear infinite descent precisely as

outlined above for the sparse H case. Sparse factorizations of K+ generally aim to preserve sparsity, with

the few dense rows pivoted to the end of the factors.

2.3.3 Iterative methods

The obvious iterative approach for solving (2.20) is to use the conjugate gradient method to generate a

sequence {∆yFj } for j ≥ 0 starting from ∆yF0 = 0 (see Algorithm 2.9). Here, gj = ∇qF (∆yFj ) so that

g0 = gF . The iteration is stopped with ∆yF∗ = ∆yFj as an approximate solution to (2.20) when the

gradient gj = qF (∆yFj ) is small, or with ∆yF∞ = pj as a linear infinite descent direction when 〈pj , HF pj〉
is small. We note that a basic property of CG is that qF (∆yFj ) < qF (0) for all j ≥ 1.

The input gradient gF and each product HF pj requires products with A, AT and H−1 and as always the

latter are obtained using the Cholesky factors (2.1) or the structured decomposition (1.2) as appropriate.

Note that if 〈pj , HF pj〉 = 0 then HF pj = 0 since HF is positive semi-definite, and in this case

〈pj , gF 〉 = 〈pj ,∇qF (∆yFj )〉 − 〈pj , HF∆yFj 〉 = 〈pj ,∇qF (∆yFj )〉 = 〈pj , gj〉 < 0,

where we have used ∇qF (∆yFj ) = HF∆yFj + gF and the well-known fact that the CG iterations satisfy

〈pj , gj〉 < 0. Thus, the vector yF∞ = pj is a direction of linear infinite descent satisfying (2.27) at yC. On

the other hand, when 〈pj , HF pj〉 > 0, then

qF (∆yFj )− qF (∆yFj+1) = 1
2 〈pj , gj〉2/〈pj , HF pj〉, (2.35)
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Algorithm 2.9 The conjugate gradient method for solving (2.20).

input: gF and HF as defined in (2.21).

Set ∆yF0 = 0, g0 = gF , and p0 = −g0, and then choose ε > 0.

for j = 0, 1, 2, . . . do

if ‖gj‖ ≤ ε then return the subspace step ∆yF∗ := ∆yj . end if

if 〈pj , HF pj〉 ≤ ε then return the direction of linear infinite descent ∆yF∞ = pj . end if

Set αj = ‖gj‖22/〈pj , HF pj〉.
Set ∆yFj+1 = ∆yFj + αjpj .

Set gj+1 = gj + αjH
F pj .

Set βj = ‖gj+1‖22/‖gj‖22.

Set pj+1 = −gj+1 + βjpj .

end for

which follows from ∆yFj+1 = ∆yFj +αjpj and the fact that αj in Algorithm 2.9 can be equivalently written

as αj = −〈gj , pj〉/〈pj , HF pj〉. Thus, for some small ε∞ > 0, we stop the iteration whenever

〈pj , HF pj〉 ≤ 1
2ε∞〈pj , gj〉2

since (2.35) then gives a decrease in the dual objective function of at least 1/ε∞, which indicates that it

is likely unbounded below.

3 The Method for the General Problem Formulation

In practice most problems have the general form

minimize
x∈IRn

q(x) = 1
2 〈x,Hx〉+ 〈g, x〉 such that cL ≤ Ax ≤ cU and xL ≤ x ≤ xU , (3.1)

where any of the components for cL, cU , xL, and xU may be infinite (i.e., we permit one-sided or free con-

straints/variables) and individual pairs may be equal (i.e., we allow equality constraints/fixed variables).

We now briefly describe how our algorithm applies to this general formulation.

The constraints in (3.1) may be written as

Ag :=


A

−A
I

−I

x ≥


cL
−cU
xL
−xU

 =: cg, with dual variables yg :=


yL
−yU
zL
−zU

 .

Then using the recipe (1.4), we have the dual problem

argmin
yg

1
2y
T
g H

D

g yg + yTg g
D

g such that yg ≥ 0, (3.2)

with

HD

g = AgH
−1ATg and gD

g = −AgH−1g − cg. (3.3)

If we now introduce the notation

v =


yL
yU
zL
zU

 , J =


A

A

I

I

 , b =


cL
cU
xL
xU

 , HD := JH−1JT and gD := −JH−1g − b (3.4)

then it is easy to show that

yTg H
D

g yg = vTJH−1JT v = vTHDv and yTg g
D

g = vT (−JH−1g − b) = vT gD.
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Using these relationships, we see that problem (3.2) is equivalent to the problem

v∗ = argmin
v∈IRnv

qD(v) := 1
2v
THDv + vT gD such that (yL, zL) ≥ 0 and (yU , zU ) ≤ 0, (3.5)

where nv = 2m+ 2n, in the sense that a solution to (3.2) is trivially obtained from a solution to (3.5).

Notice that since

qD(v) = 1
2 [(AT (yL + yU ) + (zL + zU )]TH−1[AT (yL + yU ) + zL + zU ]

−[(yL + yU )TA+ (zL + zU )T ]H−1g − (cTLyL + cTUyU + xTLzL + xTUzU ),

that if (cL)i = (cU )i, for any i (i.e., the ith constraint is an equality constraint), then we may replace

the corresponding variables (yL)i and (yU )i in (3.5) by yi = (yL)i + (yU )i, where yi is not restricted

in sign. Also, anytime an infinite bound occurs, we omit the relevant dual variable, its bound and the

corresponding row of A or I from the formal description above.

To solve (3.5), we simply generalize the method used to solve (1.4). Let

PD[v] = [max(yL, 0),min(yU , 0),max(zL, 0),min(zU , 0)]T

be the projection of v = [yL, yU , zL, zU ]T onto the feasible region

D = {v = [yL, yU , zL, zU ]T : (yL, zL) ≥ 0 and (yU , zU ) ≤ 0}

for (3.5). Then we apply Algorithm 3.1.

Algorithm 3.1 Gradient projection method for solving the BQP (3.5).

input: Solution estimate v ∈ D.

while PD[v −∇qD(v)] 6= v do

1. (Cauchy point)

Set d = −∇qD(v) and compute αC = argminα>0 q
D(PD[v + αd]).

Set vC = PD[v + αCd].

2. (subspace step)

Compute A = A(vC) := {i : vC
i = 0}.

Compute ∆vS = argmin∆v∈IRnv qD(vC + ∆v) such that [∆v]A = 0.

3. (improved subspace point)

Select αmax > 0 and then compute αS =argminα∈[0,αmax] q
D(PD[vC + α∆vS]).

Set v = PD[vC + αS∆vS].

end while

The only significant differences for finding the Cauchy and improved subspace points using the obvious

extension of Algorithm 2.4—aside from the implicit increase in dimension when considering v rather than

y—are that (i) we need to compute additional breakpoints for the upper bounded variables using

αB

i =

{
−vj/dj if dj > 0,

∞ if dj ≤ 0,

(ii) the index sets Ii+1 need to take into account these extra breakpoints, and (iii) any mention of A and

c should now refer to J and b from (3.4).

The computation of the subspace step is likewise very similar. The Cauchy point fixes components of

v at zero, and this results in expanded systems of the form(
H (JF )T

JF 0

)(
x+ ∆x

−∆vF

)
=

(
(JF )T (vC)F − g

bF

)
(3.6)

for (2.25), and  H0 (JF )T Z

JF 0 0

ZT 0 U

 x+ ∆x

−∆vF

−∆z

 =

 (JF )T (vC)F − g
bF

0


for (2.34), where JF and bF consist of the components of (3.4) that are free at the Cauchy point vC.
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3.1 The special case of a diagonal Hessian

An important special case occurs when H is diagonal, and covers applications that include performing

`2-projections onto a polytope [2], solving bound-constrained least-squares problems [7,9, §7.7], and glob-

alization strategies within modern SQP algorithms [30, 49]. An obvious simplification is that any solve

involving H becomes trivial. A more significant advantage comes in the subspace phase. Suppose, without

loss of generality, that

JF =

(
AF1 AF2
I 0

)
, H =

(
H1 0

0 H2

)
, bF =

(
cF

x1

)
, x =

(
x1

x2

)
and g =

(
g1

g2

)
,

where AF1 ∈ IRm1×n1 , H1 ∈ IRn1×n1 and g1 ∈ IRn1 . Then, problem (3.6) can be written as
H1 0 (AF1 )T I

0 H2 (AF2 )T 0

AF1 AF2 0 0

I 0 0 0




x1 + ∆x1

x2 + ∆x2

−(yC)F −∆yF

−(zC)F −∆zF

 =


−g1

−g2

cF

x1

 , (3.7)

or equivalently ∆x1 = 0, ∆zF = g1 +H1x1 − (AF1 )T
(
(yC)F + ∆yF

)
− (zC)F , and(

H2 (AF2 )T

AF2 0

)(
x2 + ∆x2

−(yC)F −∆yF

)
=

(
−g2

cF −AF1 x1

)
. (3.8)

Thus the subspace phase is equivalent to finding a Fredholm alternative to the “reduced” system (3.8) or

equivalently a Fredholm alternative to

AF2 H
−1
2 (AF2 )T∆yF = AF2 H

−1
2

(
g2 − (AF )T (yC)F

)
+ cF −AF1 x1,

where we subsequently recover ∆x2 by solving trivially

H2(x2 + ∆x2) = (AF2 )T
(

(yC)F + ∆yF
)
− g2.

4 Regularized Problems

A related problem of interest—for example, in SlpQP methods for constrained optimization [28]—is to

minimize
x∈IRn

q(x) + σ‖(Ax− c)−‖1, (4.1)

for given σ > 0, where w− = max(0,−w) for any given w. Introducing the auxiliary vector v allows us to

write (4.1) equivalently as

minimize
(x,v)∈IRn+m

q(x) + σeT v such that Ax+ v ≥ c and v ≥ 0.

This has the dual

maximize
(x,v,y,z)∈IR2n+2m

− 1
2 〈x,Hx〉+ 〈c, y〉 such that Hx−AT y + g = 0, y + z = σe and (y, z) ≥ 0

or equivalently

minimize
y∈IRm

1
2 〈AT y − g,H−1(AT y − g)〉 − 〈c, y〉 such that 0 ≤ y ≤ σe. (4.2)

We may thus apply essentially the same accelerated gradient-projection method as before, but now we

need to project (trivially) into [0, σe]. Similarly, if we wish to

minimize
x∈IRn

q(x) + σ‖(Ax− c)‖1, (4.3)
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we may instead solve the dual

minimize
y∈IRm

1
2 〈AT y − g,H−1(AT y − g)〉 − 〈c, y〉 such that − σe ≤ y ≤ σe (4.4)

using accelerated gradient projection within [−σe, σe], and recover x from Hx = AT y − g.

If we consider the same problem in the infinity norm, namely

minimize
x∈IRn

q(x) + σ‖(Ax− c)−‖∞, (4.5)

then by introducing the auxiliary vector ν we can see that (4.5) is equivalent to

minimize
(x,ν)∈IRn+1

q(x) + σν such that Ax+ νe ≥ c and ν ≥ 0. (4.6)

The dual problem to (4.6) is then

maximize
(x,ν,y,ξ)∈IRn+m+2

− 1
2 〈x,Hx〉+ 〈c, y〉 such that Hx−AT y + g = 0, 〈e, y〉+ ξ = σ and (y, ξ) ≥ 0

or equivalently

minimize
y∈IRm

1
2 〈AT y − g,H−1(AT y − g)〉 − 〈c, y〉 such that y ≥ 0 and 〈e, y〉 ≤ σ. (4.7)

Once again, we may apply the accelerated gradient-projection method, but now the projection is into

the slightly more awkward scaled, orthogonal simplex Sm(σ) := {y ∈ IRm : y ≥ 0 and 〈e, y〉 ≤ σ}
for which there are nonetheless efficient projection algorithms [76]. In addition, in the subspace step

computation (2.25), the defining matrix may have an additional row and column e whenever the dual

constraint 〈e, y〉 ≤ σ is active. Similarly, to

minimize
x∈IRn

q(x) + σ‖(Ax− c)‖∞, (4.8)

we can solve the dual

minimize
(yL,yU )∈S2m(σ)

1
2 〈AT (yL − yU )− g,H−1(AT (yL − yU )− g)〉 − 〈c, yL − yU 〉 (4.9)

using accelerated gradient projection within S2m(σ), and subsequently obtain x fromHx = AT (yL−yU )−g.

5 Computational Experience

5.1 Implementation and test problems

We implemented the algorithm outlined in §2 and §3 for strictly-convex quadratic programs, in the general

form (3.1), as a Fortran 2003 package, DQP, that is available as part of GALAHAD [41]. Further details,

including a complete description of user control parameters, are provided in the package documentation

provided as part of GALAHAD.2 Features such as problem pre-processing, removal of dependent constraints,

general strategies for solving symmetric systems, exploiting parallelism in the linear algebra, presolve

strategies, and problem scaling are similar to those described in [40] for the interior-point QP solver CQP

within GALAHAD; package default values are chosen unless otherwise specified. Algorithm DQP offers a

choice of (dual) starting point strategies. These include allowing the user to specify the starting point,

picking a point that is free from each dual bound (yL, zL) ≥ 0 and (yU , zU ) ≤ 0, a point for which every

component is equal to one of its bounds, as well as the point that solves a separable approximation to

2Available from http://galahad.rl.ac.uk/galahad-www/. A Matlab interface is also provided.
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(3.5) in which HD is replaced by the zero or identity matrix; our experiments start with all dual values at

zero.

Both folklore and empirical evidence [65] on bound-constrained QPs suggest that the dual active set

A(k) (equivalently the fixed variables/constraints at the Cauchy point) changes rapidly. Thus solving (3.6)

(or finding its Fredholm alternative) is unlikely to benefit from matrix factorization updating techniques

[36] usually associated with active-set methods, and it is better to solve successive systems (3.6) ab initio.

While we can confirm this behavior on well-conditioned problems, our experience with more difficult ones

is that although there can be rapid changes in the active set between iterations, in many cases the active

set changes gradually in some phases of its iteration history, especially towards the end. Thus while our

initial instinct was not to provide special code to cope with more gradual active-set changes, we are now

convinced that there should be some provision to update factorizations if requested.

Specifically, during the kth iteration of DQP, the coefficient matrix for (3.6) is of full rank (thus we

are not required to seek a Fredholm alternative), and if the change in the active set at iteration k + 1

is modest, we may use the Schur-complement updating technique [8, 35, 36, 45] implemented as SCU in

GALAHAD to solve (3.6) at this new iteration rather than resorting to refactorization. The details are quite

standard [45, §3], but we choose to remove constraints that are present in A(k) but not in A(k+1) before

we add constraints that are in A(k+1) but not in A(k) since removing constraints maintains full rank, while

adding them may result in a rank-deficient system. If rank-deficiency is detected, the Schur-complement

update is abandoned, and the Fredholm alternative is sought instead. In addition, we limit the size of the

Schur complement to 100 new rows (by default) before refactorization; setting the limit to zero disables

Schur-complement updating. We stop each run as soon as

‖PD[v −∇qD(v)]− v‖ ≤ max(εa, εr · ‖PD[v0 −∇qD(v0)]− v0‖), (5.1)

where εa = 10−6 and εr = 10−16, so long as a limit of 30 minutes or 10,000 iterations has not already

been reached.

Our tests involved the quadratic programming examples from the combined CUTEst [42] and Maros

and Meszaros [62] test sets—multiple instances of similar nature were excluded. We only considered the

68 strictly convex problems (see Table A.2.1). A problem was identified as being strictly convex by using

the GALAHAD package SLS, which provides a common interface to a variety of solvers, from the Harwell

Subroutine Library (HSL) and elsewhere, for dense and sparse symmetric linear systems of equations.

We used the HSL solver MA97 [58]—a direct method designed for solving sparse symmetric systems—to

determine if the Hessian matrix H was numerically positive definite.

All numerical experiments were performed on eight cores of a workstation comprised of thirty-two Intel

Xeon ES-2687W CPUs (3.1GHz, 1200MHz FSB, 20MB L3 Cache) with 65.9 GiB of RAM. GALAHAD and

its dependencies were compiled in double precision with gfortran 4.6 using fast (-O3) optimization and

OpenMP enabled (-fopenmp).

5.2 Evaluation of DQP

We first considered the performance of DQP in the case when approximate solutions to the subspace

subproblem were computed using the iterative CG method (see Section 2.3.3). The complete set of detailed

results can be found in Table A.2.1. This instance of DQP failed on 12 problems, where a failure means

that the termination test (5.1) was never achieved. Of the 12 failures, 10 were because the maximum

allowed iteration limit was reached and 2 was because the maximum allotted time limit was achieved.

For comparison, we also considered the performance of DQP in the case when high accuracy solutions to

the subspace subproblem were computed using factorizations (see Sections 2.3.1 and 2.3.2). The complete

set of results can be found in Table A.2.2. (Note that problems FIVE20B and FIVE20C were excluded

because of an error in the factorization subroutine.) We can see that this instance of DQP failed on 25

problems, which is twice as many as when CG was used. However, note that 18 of these failures were

because the maximum allowed time limit was reached, 2 because the maximum allowed iterations was
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reached, and 5 because local infeasibility was detected. Thus we can conclude that the degradation in

performance is primarily due to reaching the time limit, which is a consequence of using the more expense

factorizations in liu of CG.

Interestingly, between the two variants of DQP, the only problems not solved were, CONT1-200, LASER,

and QPBAND. Together with our previous discussion, this highlights the trade-off between using iterative

and direct methods for solving the subspace subproblem. Namely, that the direct methods tend to be more

expensive and more frequently struggle to solve problems in the time allotted, while iterative methods are

much cheaper per iteration but more frequently find it difficult to achieve the requested accuracy.

The previous paragraph motivates us to investigate how effectively DQP can obtain approximate solu-

tions for various levels of accuracy. To answer this problem we tracked the iterates computed by DQP and

saved the total number of iterations and total time required to reach the following optimality tolerance

levels: 10−1, 10−2, 10−3, 10−4, 10−5, and 10−6. The full set of results for when CG is used as the subprob-

lem solver is given in Table A.3.1, while the results for the case when factorizations are used can be found

in Table A.3.2. For illustrative purposes, we represent the data found in these tables in the form of stacked

bar graphs in Figures 5.1 and 5.2 for the CG case, and Figures 5.3 and 5.4 for the factorization case. (We

only include problems that DQP was able to achieve the finest stopping tolerance of 10−6.) These plots

have a stack of 6 rectangles for each test problem. For each of these 6 rectangles, the fraction filled with

blue represents the fraction of the total iterations (Figures 5.1 and 5.3) or total time (Figures 5.2 and 5.4)

needed to achieve the various accuracy levels: the jth stacked block (counting from the bottom up) for

each problem corresponds to the accuracy level 10−j for each j ∈ {1, 2, 3, 4, 5, 6}.
Figures 5.1 and 5.2 for DQP when CG was used as the subspace solver clearly show a very tight

relationship between the number of iterations and times required to reach the 6 different accuracies. In

fact, for most problems, the difference in the bars for the fraction of iterations (Figure 5.1) and the

times (Figure 5.2) are indistinguishable; two exceptions are DUAL3 and TABLE7. We also remark that two

problems in Figure 5.2 do not have any stacked bars because no significant time was needed to reach the

final desired accuracy. As expected, observe that in most cases the majority of iterations are needed to

reach the first optimality tolerance of 10−1, although problems LISWET2–LISWET6 are exceptions.

Figures 5.3 and 5.4, which are based on using factorizations to solve the subspace subproblem, also

illustrate the close relationship between the number of iterations (Figure 5.3) and times required (Fig-

ure 5.4) to reach the 6 different accuracy levels; there is somewhat more variability here when compared

to using CG. As before, there is one problem (DUAL4) in Figure 5.4 that does not have any stacked bars

because no significant time was needed to reach the final desired accuracy. One can also observe that the

figures associated with the use of a direct method (Figures 5.3 and 5.4) tend to be “denser” towards the

bottom when compared to the use of CG (Figures 5.1 and 5.2). This is perhaps no surprise since it is

often the case that only a couple of iterations are required to obtain a high accuracy solution for direct

methods once the active set at the solution has been identified; this appears to often be the case once

the tolerance of 10−2 is reached. We also mention that obtaining high accuracy solutions for problems

LISWET2–LISWET6 seems to be somewhat challenging, much as we observed when CG was used.

Overall, we are satisfied with these results. They clearly show the trade-off that exists between using

iterative and direct subproblem solvers. By allowing for the use of both, we are able to solve 65 of the 68

problems to an accuracy of at least 10−6.

6 Final Comments and Conclusions

We presented the details of a solver for minimizing a strictly convex quadratic objective function subject

to general linear constraints. The method uses a gradient projection strategy enhanced by subspace accel-

eration calculations to solve the bound-constrained dual optimization problem. The main contributions of

this work are three-fold. First, we address the challenges associated with solving the dual problem, which

is usually a convex problem even when the primal problem is strictly convex. Second, we show how the

linear algebra may be arranged to take computational advantage of sparsity that is often present in the
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Figure 5.1: A comparison of iterations for DQP when using an iterative subproblem solver.
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Figure 5.2: A comparison of times for DQP when using an iterative subproblem solver.

second-derivative matrix. In particular, we consider the case that the second-derivative matrix is explicitly

available and sparse, and the case when it is available implicitly via a limited memory BFGS represen-

tation. Third, we present the details of our Fortran 2003 software package DQP, which is part of the
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Figure 5.3: A comparison of iterations for DQP when using a direct method to solve each subproblem.
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Figure 5.4: A comparison of times for DQP when using a direct method to solve each subproblem.

GALAHAD suite of optimization routines. Numerical tests showed the trade-off between using an iterative

subproblem solver versus a direct factorization method. In particular, iterative subproblem solvers are

typically computationally cheaper per iteration but less reliable at achieving high accuracy solutions, while

24



direct methods are typically more expensive per iteration but more reliable at obtaining high accuracy

solutions given enough time. Both options are available in the package DQP.

The numerical results showed that DQP is often able to obtain high accuracy solutions, and is very

reliable at obtaining low accuracy solutions. This latter fact makes DQP an attractive option as the

subproblem solver in the recently developed inexact sequential quadratic optimization (SQO) method

called iSQO [20]. The solver iSQO is one of the few SQO methods that allows for inexact subproblem

solutions, a feature that is paramount for large-scale problems. The conditions that iSQO requires to be

satisfied by an approximate subproblem solution can readily be obtained by DQP.

We also considered how effective DQP could be when used as the second stage of a cross-over method

with the first stage being an interior-point solver. Specifically, we used the GALAHAD interior-point solver

CQP and changed over to DQP once the optimality measures were below 10−2. Our tests showed that

DQP was not especially effective in this capacity. The reason seemed to be because CQP [40] was designed

to be effective on degenerate problems and have the capacity of obtaining high accuracy solutions; this

was achieved by using nonstandard parameterizations and high-order Taylor approximations of the central

path. As a consequence, we believe that CQP remains the best solver for solving QP problems when good

estimates of the solution are not known in advance. However, we still believe that when solving a sequence

of QP problems (e.g., in SQO methods) or more generally anytime a good solution estimate is available,

the method DQP is an attractive option.

In terms of cross-over methods, one could also consider using DQP as a first stage solver that provides

a starting point to a traditional active-set method. Although we have not yet used DQP in this capacity, it

does have the potential to be efficient and more stable than using DQP alone. The potential for improved

stability is because the performance of DQP is tied to its ability to identify the optimal active-set. Although

such a feature holds under certain assumptions for gradient projection methods, performance often steeply

degrades when such assumptions do not hold; this is typically not true of a traditional active-set method.

Finally, although duality via (1.3) holds more generally when H is positive semi-definite, it is not

always then possible to eliminate the variables x as in (1.4) to arrive at a dual with simple non-negativity

constraints. In particular, the dual may involve additional general linear inequality constraints on y, and

projection into this region may prove to be very expensive—indeed, the projection may itself be posed

as a strictly-convex QP. Fortunately for problems involving regularization, such as those discussed in §4,

very minor modifications are required to fit our basic framework.
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[24] Z. Dostál and J. Schöberl. Minimizing quadratic functions subject to bound constraints with the rate

of convergence and finite termination. Comput. Optim. Appl., 30(1):23–43, 2005.

[25] I. S. Duff. MA57 - a code for the solution of sparse symmetric definite and indefinite systems. ACM

Transactions on Mathematical Software, 30(2):118–144, 2004.

[26] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear equations.

ACM Transactions on Mathematical Software, 9(3):302–325, 1983.

[27] I. S. Duff and J. K. Reid. The design of MA48: a code for the direct solution of sparse unsymmetric

linear systems of equations. ACM Transactions on Mathematical Software, 22(2):187–226, 1996.

[28] R. Fletcher. An `1 penalty method for nonlinear constraints. In P. T. Boggs, R. H. Byrd, and R. B.

Schnabel, editors, Numerical Optimization 1984, pages 26–40, Philadelphia, USA, 1985. SIAM.

[29] A. Forsgren, P. E Gill, and E. Wong. Primal and dual active-set methods for convex quadratic

programming. Mathematical Programming, pages 1–40, 2015.

[30] M. P. Friedlander, N. I. M. Gould, S. Leyffer, and T. Munson. A filter active-set trust-region method.

Technical Report Preprint ANL/MCS-P1456-0907, Argonne National Laboratory, Illinois, USA, 2007.

[31] M. P. Friedlander and S. Leyffer. Global and finite termination of a two-phase augmented Lagrangian

filter method for general quadratic programs. SIAM Journal on Scientific Computing, 30(4):1706–

1729, 2008.

[32] M. P. Friedlander and D. Orban. A primal–dual regularized interior-point method for convex quadratic

programs. Mathematical Programming Computation, 4(1):71–107, 2012.

[33] A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-

Hall, Englewood Cliffs, New Jersey, USA, 1981.

[34] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Maintaining LU factors of a general sparse

matrix. Linear Algebra and its Applications, 88/89:239–270, 1987.

[35] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. A Schur-complement method for sparse

quadratic programming. In M. G. Cox and S. J. Hammarling, editors, Reliable Scientific Computation,

pages 113–138, Oxford, England, 1990. Oxford University Press.

[36] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Inertia-controlling methods for general

quadratic programming. SIAM Review, 33(1):1–36, 1991.

[37] P. E. Gill, W. Murray, and M. A. Saunders. User’s guide for QPOPT 1.0: a Fortran package for

quadratic programming. Report SOL 95-4, Department of Operations Research, Stanford University,

Stanford, CA, 1995.

[38] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. A Schur-complement method for sparse

quadratic programming. In M. G. Cox and S. J. Hammarling, editors, Reliable Numerical Computa-

tion, pages 113–138. Oxford University Press, 1990.

[39] D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly convex quadratic

programs. Mathematical Programming, 27(1):1–33, 1983.

[40] N. I. M. Gould, D. Orban, and D. P. Robinson. Trajectory-following methods for large-scale degenerate

convex quadratic programming. Mathematical Programming Computation, 5(2):113–142, 2013.

[41] N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD—a library of thread-safe fortran 90 packages

for large-scale nonlinear optimization. ACM Transactions on Mathematical Software, 29(4):353–372,

2003.

27



[42] N. I. M. Gould, , D. Orban, and Ph. L. Toint. CUTEst : a constrained and unconstrained test-

ing environment with safe threads for mathematical optimization. Computational Optimization and

Applications, 60(3):545–557, 2015.

[43] N. I. M. Gould and Ph. L. Toint. A quadratic programming bibliography. Numerical Analysis Group

Internal Report 2000-1, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2000. See

”http://www.numerical.rl.ac.uk/qp/qp.html”.

[44] N. I. M. Gould and Ph. L. Toint. SQP methods for large-scale nonlinear programming. In M. J. D.

Powell and S. Scholtes, editors, System Modelling and Optimization, Methods, Theory and Applica-

tions, pages 149–178, Dordrecht, The Netherlands, 2000. Kluwer Academic Publishers.

[45] N. I. M. Gould and Ph. L. Toint. An iterative working-set method for large-scale non-convex quadratic

programming. Applied Numerical Mathematics, 43(1–2):109–128, 2002.

[46] N. I. M. Gould and Ph. L. Toint. Numerical methods for large-scale non-convex quadratic program-
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[63] C. Mészáros. The BPMPD interior point solver for convex quadratic problems. Optimization Methods

and Software, 11(1-4):431–449, 1999.

[64] J. L. Morales, J. Nocedal, and Y. Wu. A sequential quadratic programming algorithm with an

additional equality constrained phase. IMA Journal of Numerical Analysis, 32:553–579, 2012.
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Appendix A

A.1 Directions of linear infinite descent using AF

We show how one might find a suitable ∆yF∞ satisfying (2.28) when cF is not in the range space of AF

(i.e., when (2.23) is inconsistent). Recall that AF has mk rows, and suppose that

AF = P

(
L

M

)
(U N), (A.1.1)

where P is a permutation matrix, L and U are, respectively, rk by rk unit lower and upper triangular

matrices, and the rank rk ≤ min(n,mk); such a “rectangular” LU factorization is implemented in many

modern sparse-matrix packages (e.g., LUSOL [34], MA48 [27] and MUMPS [1]). Let(
cF1
cF2

)
= PT cF , (A.1.2)

where cF1 has rk components. The following holds.

Lemma A.1.1. Suppose that cF does not lie in the range of AF . Then

dF := cF2 −ML−1cF1 6= 0. (A.1.3)

Proof. For a contrapositive proof, suppose that cF2 = ML−1cF1 . Writing w = L−1cF1 , we have(
L

M

)
w =

(
cF1
cF2

)

or equivalently AF v = cF , where v =

(
U−1w

0

)
. This completes the proof since this shows that cF

lies in the range of AF . 2

This result allows us to determine whether there is a direction of linear infinite descent by checking whether

dF is zero or not; in practice small rounding errors need to be taken into account.

Next, let dF be nonzero, D be any diagonal matrix for which Dii ≥ 0, and DdF 6= 0, and then define

∆yFD2 := DdF (A.1.4)

and

∆yFD1 := −L−TMT∆yFD2. (A.1.5)

Then we have the following crucial result.

Lemma A.1.2. Suppose that cF does not lie in the range of AF , and that ∆yFD2 and ∆yFD1 are defined

by (A.1.4) and (A.1.5). Then, the vector

∆yF∞ = P

(
∆yFD1

∆yFD2

)
(A.1.6)

satisfies (2.28).

Proof. It follows trivially from (A.1.1), (A.1.6), and (A.1.5) that

(AF )T∆yF∞ =

(
UT

NT

)
(LT MT )PT∆yF∞ =

(
UT

NT

)
(LT∆yFD1 +MT∆yFD2) = 0.
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Moreover (A.1.5) implies that

〈∆yFD1, c
F
1 〉 = −〈L−TMT∆yFD2, c

F
1 〉 = −〈∆yFD2,ML−1cF1 〉,

which together with (A.1.6), (A.1.2), and the definition of D shows that

〈∆yF∞, cF 〉 = 〈∆yFD1, c
F
1 〉+ 〈∆yFD2, c

F
2 〉 = 〈∆yFD2, c

F
2 −ML−1cF1 〉 = 〈DdF , dF 〉 > 0,

where we used Lemma A.1.1 to derive the last inequality. This completes the proof. 2

Of course the action of the inverses in (A.1.3) and (A.1.5) would be implemented in practice as forward

and back solves with the triangular L and its transpose. The most obvious choices for D are the identity

matrix, in which case ∆yFD2 = dF , or the rank-one matrix eje
T
j for some j satisfying dFj 6= 0, in which case

yFD2 = dFj ej . We summarize our procedure in terms of general data A and c in Algorithm A.1.1.

Algorithm A.1.1 Computing a feasible direction or a direction of infinite descent satisfying (2.28).

procedure [∆x,∆y, flag] = dolid(A,c)

input: A ∈ IRm×n and c ∈ IRm.

1. (compute the LU factorization of A)

Compute nonsingular matrices L and U in IRr×r and a permutation matrix P so that

A = P

(
L

M

)
(U N),

2. (compute a feasible point for A(x+ ∆x) = c or a direction of linear infinite descent)

Compute

d = c2 −Mw, where

(
c1
c2

)
= PT c, Lw = c1, and c1 ∈ IRr.

if d = 0 then

Set flag to false and ∆y = 0, and compute the feasible point

x+ ∆x =

(
U−1w

0

)
.

else

Compute diagonal matrix D such that Dii ≥ 0 and Dd 6= 0.

Set flag to true and ∆x = 0, and compute the direction of linear infinite descent

∆y = P

(
∆y1

∆y2

)
, where ∆y2 = Dd and ∆y1 = −L−TMT∆y2.

end if

end procedure

In practice, the LU factorization of AF is preceded by block triangularization. Specifically, row and

column permutations P and Q are applied so that

AF = P


AF11 0 · · · 0

AF21 AF22

. . . 0
...

...
. . . 0

AF`1 AF`2 · · · AF``

Q, (A.1.7)
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where each diagonal block, except perhaps the last, is square and order ni, say. Vitally, rather than

computing the LU factors of AF , only the diagonal blocks are factorized. That is, rather than finding

(A.1.1), the factorizations

AFii =

(
Lii
Mii

)
(Uii Nii), for i = 1, . . . , `, (A.1.8)

involving triangular matrices Lii and Uii of order ri ≤ ni are obtained (any further row permutations have

been absorbed into P ). To discover whether there are directions of infinite descent and when they exist

to find one, we proceed by considering the blocks.

To illustrate the general procedure, suppose we have (after suitable row and column permutations)

A =

(
A11 0

A21 A22

)
and c =

(
c1
c2

)
.

We first use Algorithm A.1.1 to compute [∆x1,∆y1, f lag] = dolid(A11, c1), and if flag is true, then

∆y :=

(
∆y1

0

)
is a direction of linear infinite descent. If flag has the value false, then the vector c1 lies in the range of

A11. So now suppose there is a direction of linear infinite descent

∆y =

(
∆y1

∆y2

)
with ∆y2 6= 0. In particular, this means that AT∆y = 0, or equivalently that

AT22∆y2 = 0 and AT11∆y1 = −AT21∆y2.

In this case ∆y1 = −A+T
11 A

T
21∆y2, where A+

11 is the generalized inverse of A11, and

〈c,∆y〉 = 〈c2 −A21A
+
11c1,∆y2〉.

Thus we seek ∆y2 for which

AT22∆y2 = 0 and 〈c(2)
2 ,∆y2〉 6= 0, where c

(2)
2 := c2 −A21A

+
11c1.

We may check this by calling dolid(A22, c
(2)
2 ). Clearly this idea may be applied recursively by partitioning

A21, A22, and c2. We summarize the procedure in Algorithm A.1.2.

Note that Algorithm A.1.2 only provides the direction of linear infinite descent or confirms that there

is no such direction. In the latter case, one has then to solve (2.25) to recover a solution (2.22). Clearly it

is inefficient to check for a direction of linear infinite descent when it is unlikely that there will be one, and

equally it is wasteful to try to compute a finite minimizer when this is unlikely to happen. Pragmatically,

therefore, we would apply the method of §2.3.1 when mk ≤ n and only resort to that from §2.3.2 when

(2.25) is reported to be inconsistent. When mk > n, the method of §2.3.2 takes precedence, and we only

use (2.25) when we have failed to find a direction of linear infinite descent.
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Algorithm A.1.2 Computing a feasible direction or a direction of infinite descent satisfying (2.28).

input: Matrix AF factorized as in (A.1.7) and cF .

Let cj denote the jth block of components of PT cF for j = 1, 2, . . . ` and some `.

for i = 1, . . . , ` do

Set ci ← ci −
∑i−1
j=1Aij∆xj and compute [∆xi,∆yi, f lag] =dolid(Aii, ci).

if flag has the value true then

Back solve by performing ATjj∆yj = −
∑i
k=j+1A

T
jk∆yk for j = i− 1, . . . , 1.

return the direction of infinite descent

∆yF = P


∆y1

...

∆yi
0

 .

end if

if i = ` then

return there does not exist a direction of infinite descent.

end if

end for
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A.2 Detailed Summary of Numerical Results

Tables A.2.1 (iterative subproblem solver) and A.2.2 (direct subproblem solver) summarize the results

of DQP for the test problems. We provide values for the objective value (Obj. Value), primal violation

(Primal Viol.), dual violation (Dual Viol.), and complementarity violation (Comp. Viol.) at the final

iterate. The number of iterations computed (Iters.) and time required (Time) are also supplied. The final

column (Status) indicates the outcome of the solution process; see Table A.2.3 for the meaning of each

status value.

Table A.2.1: Results for package DQP when an iterative subproblem solver is used.

Name Obj. Value Primal Viol. Dual Viol. Comp. Viol. Iters. Time Status

AUG2DC 1.81836806E+06 5.5E-08 5.7E-14 5.3E-06 4 0.20 0

AUG2DCQP 6.49813468E+06 4.7E-07 2.3E-13 1.3E-03 35 1.00 0

AUG3DC 2.76540711E+04 1.2E-07 1.8E-15 1.8E-06 1 0.03 0

AUG3DCQP 6.15603837E+04 1.6E-08 3.6E-15 5.9E-07 16 0.56 0

BTS4 6.90514312E+07 6.8E-08 2.3E-13 1.4E-04 10 1.29 0

CBS 5.36161663E+06 4.7E-07 1.1E-13 1.7E-04 7 0.13 0

CONT-050 -4.56385182E+00 9.4E-07 4.1E-17 7.8E-08 1694 13.01 0

CONT1-100 -4.64440164E+00 9.9E-07 1.1E-16 1.1E-07 28743 894.66 0

CONT1-200 -4.73584419E+00 2.9E-01 2.8E-18 2.0E-03 -13999 -1800.10 -19

DALE 1.82596990E+04 3.0E-08 1.8E-15 5.2E-08 6 0.20 0

DEGENQP 1.13968254E-09 1.1E-08 5.9E-14 5.5E-09 102 7.46 0

DUAL1 3.50129677E-02 2.2E-11 3.3E-15 3.2E-10 10 0.51 0

DUAL2 3.37336714E-02 8.9E-16 2.0E-15 3.2E-17 8 0.01 0

DUAL3 1.35755832E-01 3.7E-12 6.0E-15 2.7E-10 8 0.01 0

DUAL4 7.46090652E-01 4.9E-11 3.8E-15 1.6E-09 4 0.00 0

FIVE20B 1.37339055E+08 9.7E-07 2.3E-13 1.5E-03 21 3.36 0

FIVE20C 1.62654515E+08 1.6E-07 2.3E-13 1.9E-03 46 8.03 0

HIE1327D 2.48905243E+06 7.3E-08 1.1E-13 9.6E-06 21 0.09 0

HIE1372D 8.06298962E+05 8.4E-08 5.7E-14 3.8E-05 7 0.02 0

HIER13 7.50704295E+06 8.1E-08 1.1E-13 6.4E-04 6 0.06 0

HIER133A 7.28073418E+06 3.9E-07 2.3E-13 1.5E-03 18 0.17 0

HIER133B 7.28073418E+06 3.9E-07 2.3E-13 1.5E-03 18 0.17 0

HIER133C 7.28073418E+06 3.9E-07 2.3E-13 1.5E-03 18 0.17 0

HIER133D 2.99559854E+07 4.6E-07 4.5E-13 1.7E-03 20 0.18 0

HIER133E 2.99559854E+07 7.5E-08 2.3E-13 3.9E-04 23 0.21 0

HIER16 1.04347325E+07 8.2E-09 1.1E-13 5.7E-05 8 0.12 0

HIER163A 8.69609949E+06 3.5E-09 1.1E-13 6.1E-06 24 0.38 0

HIER163B 8.69609949E+06 3.5E-09 1.1E-13 6.1E-06 24 0.38 0

HIER163C 8.69609949E+06 3.5E-09 1.1E-13 6.1E-06 24 0.38 0

HIER163D 3.47843980E+07 3.1E-07 1.1E-13 1.7E-04 26 0.41 0

HIER163E 3.47843980E+07 3.1E-07 1.1E-13 1.7E-04 26 0.41 0

HUES-MOD 3.48244898E+07 3.0E-12 4.4E-16 2.5E-07 4 0.01 0

HUESTIS 3.48245418E+10 1.9E-12 0.0E+00 1.8E-04 4 0.00 0

JJTABEL3 1.30980707E+14 3.7E-07 9.3E-10 1.2E+00 6544 50.55 0

KSIP 5.75815430E-01 5.3E-07 2.2E-16 1.1E-05 -100001 -21.28 -18

LASER 1.14592952E+02 3.5E+02 9.5E-07 4.4E+02 -100001 -1722.22 -18

LISWET1 5.07215863E+00 3.6E-05 2.8E-14 1.1E-02 -100001 -410.40 -18

LISWET2 4.99798638E+00 9.0E-07 5.6E-16 1.7E-06 5920 24.17 0

LISWET3 4.99776948E+00 9.3E-07 2.2E-16 1.5E-06 1649 6.53 0

LISWET4 4.99779938E+00 9.7E-07 2.2E-16 2.5E-06 5786 22.83 0

LISWET5 4.99782483E+00 9.8E-07 6.2E-16 2.0E-06 3208 12.77 0

LISWET6 4.99788651E+00 9.6E-07 4.4E-16 1.3E-06 2360 9.40 0

LISWET7 5.00215132E+00 1.4E-04 4.1E-14 5.4E-02 -100001 -411.09 -18

LISWET8 5.19206925E+00 1.4E-02 2.4E-13 1.4E-01 -100001 -397.44 -18

LISWET9 2.21560671E+01 7.5E-03 8.2E-13 1.7E+00 -100001 -398.40 -18

LISWET10 5.02426900E+00 1.6E-03 2.8E-14 6.0E-03 -100001 -400.56 -18

LISWET12 1.21770710E+01 8.0E-03 6.8E-13 3.4E+00 -100001 -401.34 -18

MOSARQP1 -3.82140982E+03 8.7E-07 7.1E-15 9.6E-07 62 0.98 0

MOSARQP2 -5.05259194E+03 2.7E-07 7.1E-15 2.3E-06 20 0.37 0

NINE12 3.27678548E+07 5.2E-07 1.1E-13 2.0E-04 12 0.47 0

NINE5D 3.79459871E+07 1.1E-07 1.1E-13 3.6E-05 13 0.62 0

NINENEW 2.73604976E+07 4.7E-07 2.3E-13 6.6E-04 12 0.30 0

OSORIO 1.13368430E+01 6.5E-09 2.5E-16 2.7E-08 7 0.07 0

POWELL20 5.20895823E+10 1.0E-06 0.0E+00 5.0E+00 24611 419.11 0

QPBAND -3.21962814E+06 0.0E+00 3.3E-01 2.9E+02 -398 -1800.56 -19

STCQP1 3.67100485E+05 1.2E-08 1.8E-12 2.9E-06 4 0.79 0

STCQP2 3.71892743E+04 2.4E-07 4.8E-13 1.9E-05 32 2.88 0

TABLE1 2.78623226E+12 1.1E-08 2.3E-10 4.2E-03 1122 4.14 0

TABLE3 2.93000638E+09 6.8E-09 1.8E-12 1.1E-04 29 0.43 0

TABLE4 2.93000638E+09 6.8E-09 1.8E-12 1.1E-04 29 0.43 0

TABLE5 2.93000638E+09 6.8E-09 1.8E-12 1.1E-04 29 0.43 0

TABLE6 2.78623226E+12 4.7E-08 1.2E-10 3.6E-02 1098 4.06 0

TABLE7 7.79587339E+08 8.1E-08 3.6E-12 7.8E-05 13 0.02 0

TABLE8 1.91933038E+02 8.9E-09 1.7E-15 9.2E-10 3 0.01 0

TARGUS 1.68744463E+07 1.3E-07 4.5E-13 2.7E-04 185 0.11 0

TOYSARAH 5.89122424E+19 4.0E+02 1.2E-07 2.1E+11 -100001 -894.75 -18

TWO5IN6 1.91002932E+07 3.5E-07 2.3E-13 2.6E-04 10 0.27 0

YAO 2.48349703E+01 5.7E-04 3.1E-13 8.0E-01 -100001 -411.01 -18
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Table A.2.2: Results for package DQP when a direct subproblem solver is used.

Name Obj. Value Primal Viol. Dual Viol. Comp. Viol. Iters. Time Status

AUG2DC 1.81836807E+06 5.7E-13 5.7E-14 3.6E-10 1 0.07 0

AUG2DCQP 6.49813474E+06 1.4E-12 2.3E-13 3.8E-09 6815 217.79 0

AUG3DC 2.76540711E+04 1.5E-13 1.8E-15 6.1E-13 1 0.08 0

AUG3DCQP 6.15603837E+04 3.6E-14 3.6E-15 1.9E-12 135 8.76 0

BTS4 6.90514292E+07 5.8E-05 2.3E-13 2.3E-01 -4398 -1800.10 -19

CBS 5.36161663E+06 1.4E-12 1.7E-13 3.8E-11 6 0.26 0

CONT-050 0.00000000E+00 6.8E+00 3.2E+62 4.6E+62 -2429 -45.54 -5

CONT1-100 0.00000000E+00 9.7E+00 2.7E+61 1.7E+62 -3716 -339.94 -5

CONT1-200 0.00000000E+00 8.7E+00 1.0E+62 1.8E+62 -3622 -1443.41 -5

DALE 1.82596990E+04 1.1E-10 1.8E-15 2.9E-10 6 0.16 0

DEGENQP 2.35828854E+01 7.6E+00 4.5E+03 1.2E+01 -17642 -1800.10 -19

DUAL1 3.50129678E-02 2.1E-13 4.8E-15 7.6E-15 12 0.01 0

DUAL2 3.37336714E-02 6.5E-14 2.1E-15 2.3E-15 8 0.01 0

DUAL3 1.35755833E-01 5.6E-14 4.0E-15 8.1E-15 8 0.02 0

DUAL4 7.46090649E-01 2.2E-15 4.6E-15 1.9E-15 4 0.00 0

HIE1327D 2.48905242E+06 8.5E-07 1.1E-13 3.1E-03 3062 255.06 0

HIE1372D 8.06298962E+05 5.4E-11 2.8E-14 7.3E-08 6 0.06 0

HIER13 7.50699445E+06 9.2E-04 2.3E-13 1.5E+01 -4251 -1800.17 -19

HIER133A 7.28065677E+06 1.2E-03 1.1E-13 9.3E+00 -3409 -1800.35 -19

HIER133B 7.28066894E+06 2.3E-03 2.3E-13 1.0E+01 -3433 -1800.45 -19

HIER133C 7.28068850E+06 8.2E-04 1.1E-13 6.3E+00 -3410 -1800.31 -19

HIER133D 2.99558560E+07 1.7E-03 2.3E-13 2.7E+01 -3694 -1800.31 -19

HIER133E 2.99555414E+07 7.9E-03 2.3E-13 7.6E+01 -3443 -1800.12 -19

HIER16 1.04280522E+07 2.4E-02 1.1E-13 9.4E+02 -903 -1801.11 -19

HIER163A 8.68585956E+06 4.1E-02 5.7E-14 8.7E+02 -796 -1801.97 -19

HIER163B 8.68605451E+06 5.3E-02 1.1E-13 8.4E+02 -787 -1800.68 -19

HIER163C 8.68488527E+06 6.0E-02 5.7E-14 9.5E+02 -789 -1800.34 -19

HIER163D 3.47533066E+07 6.1E-02 2.3E-13 2.6E+03 -794 -1801.22 -19

HIER163E 3.47729480E+07 3.4E-02 2.3E-13 1.0E+03 -795 -1801.47 -19

HUES-MOD 3.48244898E+07 2.7E-12 4.4E-16 2.6E-07 4 0.07 0

HUESTIS 3.48245418E+10 1.1E-12 0.0E+00 1.1E-04 4 0.02 0

JJTABEL3 1.30980708E+14 4.0E-01 4.7E-10 1.1E+07 -100001 -839.10 -18

KSIP 5.75797349E-01 5.6E-07 2.8E-17 1.1E-16 81304 23.90 0

LASER 0.00000000E+00 2.1E+02 2.5E+62 1.5E+64 -64 -0.61 -5

LISWET1 7.22189448E+00 1.3E-11 1.3E-12 1.5E-07 1169 2.23 0

LISWET2 4.99808204E+00 5.0E-07 2.8E-15 4.6E-08 482 1.03 0

LISWET3 4.99777877E+00 1.6E-15 2.1E-16 1.8E-15 52 0.19 0

LISWET4 4.99781511E+00 2.2E-15 2.6E-16 6.8E-15 87 0.24 0

LISWET5 4.99783185E+00 2.7E-15 6.1E-16 5.9E-15 68 0.22 0

LISWET6 4.99789739E+00 2.2E-15 2.2E-16 4.8E-15 69 0.22 0

LISWET7 9.98951642E+01 8.7E-11 7.3E-12 7.6E-06 1659 3.62 0

LISWET8 1.43130575E+02 8.7E-11 7.3E-12 5.9E-06 897 2.63 0

LISWET9 3.92920161E+02 8.7E-11 7.8E-12 6.6E-06 905 4.00 0

LISWET10 9.89648678E+00 1.1E-11 1.0E-12 1.2E-07 622 1.46 0

LISWET12 3.47518978E+02 8.7E-11 7.3E-12 7.0E-06 936 3.63 0

MOSARQP1 -3.82140980E+03 5.4E-15 7.1E-15 3.0E-15 84 0.55 0

MOSARQP2 -5.05259194E+03 2.2E-14 7.1E-15 7.4E-15 34 0.21 0

NINE12 3.27678548E+07 2.9E-08 2.3E-13 1.1E-03 176 201.30 0

NINE5D 9.75187214E+06 3.7E+02 1.1E-13 1.5E+05 -168 -1807.39 -19

NINENEW 2.73588127E+07 2.2E-02 1.1E-13 6.0E+02 -2776 -1800.03 -19

OSORIO 1.13368430E+01 1.8E-14 4.4E-16 1.8E-14 7 0.33 0

POWELL20 5.20895828E+10 9.3E-10 0.0E+00 5.8E-03 2501 38.16 0

QPBAND 0.00000000E+00 0.0E+00 2.3E+62 4.9E+65 -4210 -1491.66 -5

STCQP1 3.67100485E+05 3.2E-13 2.3E-12 7.7E-10 4 2.90 0

STCQP2 3.71892743E+04 1.8E-14 6.5E-13 1.3E-12 17 2.39 0

TABLE1 2.78623226E+12 4.3E-08 2.9E-11 3.3E-02 279 1.25 0

TABLE3 2.93000638E+09 6.7E-07 3.6E-12 2.7E-02 21840 505.33 0

TABLE4 2.93000638E+09 8.1E-07 3.6E-12 2.4E-02 22498 533.54 0

TABLE5 2.93000638E+09 3.9E-07 1.8E-12 1.7E-02 24521 573.97 0

TABLE6 2.78623225E+12 1.4E-04 1.2E-10 1.5E+07 -100001 -438.35 -18

TABLE7 7.79587339E+08 2.2E-11 9.1E-13 4.6E-07 22 0.04 0

TABLE8 1.91933038E+02 1.8E-14 1.8E-15 1.8E-13 3 0.01 0

TARGUS 1.68744463E+07 1.7E-12 2.3E-13 8.3E-09 201 0.07 0

TOYSARAH 5.88881391E+19 5.9E+05 1.2E-07 2.9E+15 -73844 -1800.00 -19

TWO5IN6 9.47197659E+06 1.3E+02 1.1E-13 1.3E+05 -366 -1801.26 -19

YAO 1.97704616E+02 2.3E-10 1.6E-11 3.2E-05 3 0.01 0

Status Meaning

0 Optimality conditions met.

-5 Problem was determined to be locally infeasible.

-18 Maximum iteration limit was reached.

-19 Maximum time limit was reached.

Table A.2.3: Meaning of the status column in Tables A.2.1 and A.2.2.
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A.3 Required Iterations and Time to Reach Various Accuracies

Tables A.3.1 (iterative subproblem solver) and A.3.2 (direct subproblem solver) give the total number of

iterations (Iters.) and total time (Time) needed to meet termination tolerances 10−1 through 10−6.

Table A.3.1: Checkpoint information for package DQP when an iterative subproblem solver is

used.

Iters. Time

Name 10−1 10−2 10−3 10−4 10−5 10−6 10−1 10−2 10−3 10−4 10−5 10−6

AUG2DC 2 2 2 3 3 4 0.05 0.05 0.05 0.08 0.08 0.10

AUG2DCQP 23 25 27 31 33 35 0.69 0.74 0.79 0.90 0.95 1.00

AUG3DC 1 1 1 1 1 1 0.02 0.02 0.02 0.02 0.02 0.02

AUG3DCQP 16 16 16 16 16 16 0.54 0.54 0.54 0.54 0.54 0.54

BTS4 8 8 9 9 10 10 1.03 1.03 1.16 1.16 1.28 1.28

CBS 6 6 6 7 7 7 0.11 0.11 0.11 0.13 0.13 0.13

CONT-050 258 384 1126 1274 1462 1694 2.07 3.03 8.68 9.80 11.23 13.00

CONT1-100 34 8565 10864 24240 25950 28743 1.13 267.10 338.58 754.25 807.37 894.13

CONT1-200 2583 2703 -1 -1 -1 -1 355.00 370.17 -1.00 -1.00 -1.00 -1.00

DALE 5 5 5 5 6 6 0.16 0.16 0.16 0.16 0.19 0.19

DEGENQP 96 96 98 102 102 102 7.28 7.28 7.33 7.44 7.44 7.44

DUAL1 8 9 10 10 10 10 0.01 0.01 0.01 0.01 0.01 0.01

DUAL2 6 8 8 8 8 8 0.01 0.01 0.01 0.01 0.01 0.01

DUAL3 4 7 7 8 8 8 0.00 0.01 0.01 0.01 0.01 0.01

DUAL4 1 3 3 3 4 4 0.00 0.00 0.00 0.00 0.00 0.00

FIVE20B 12 14 15 17 19 21 1.93 2.24 2.40 2.72 3.03 3.35

FIVE20C 36 38 40 42 44 46 6.28 6.62 6.97 7.32 7.66 8.01

HIE1327D 11 14 17 18 20 21 0.05 0.06 0.07 0.08 0.08 0.09

HIE1372D 5 5 7 7 7 7 0.01 0.01 0.02 0.02 0.02 0.02

HIER13 4 4 4 5 6 6 0.04 0.04 0.04 0.05 0.06 0.06

HIER133A 10 11 11 18 18 18 0.09 0.10 0.10 0.17 0.17 0.17

HIER133B 10 11 11 18 18 18 0.09 0.10 0.10 0.17 0.17 0.17

HIER133C 10 11 11 18 18 18 0.10 0.11 0.11 0.17 0.17 0.17

HIER133D 13 15 15 15 18 20 0.12 0.14 0.14 0.14 0.17 0.18

HIER133E 14 17 19 20 21 23 0.13 0.16 0.18 0.19 0.19 0.21

HIER16 6 6 6 7 8 8 0.09 0.09 0.09 0.11 0.12 0.12

HIER163A 14 15 18 21 22 24 0.22 0.24 0.29 0.33 0.35 0.38

HIER163B 14 15 18 21 22 24 0.22 0.24 0.29 0.33 0.35 0.38

HIER163C 14 15 18 21 22 24 0.22 0.24 0.29 0.33 0.35 0.38

HIER163D 17 19 22 22 24 26 0.27 0.30 0.35 0.35 0.38 0.41

HIER163E 17 19 22 22 24 26 0.27 0.30 0.35 0.35 0.38 0.41

HUES-MOD 4 4 4 4 4 4 0.01 0.01 0.01 0.01 0.01 0.01

HUESTIS 4 4 4 4 4 4 0.00 0.00 0.00 0.00 0.00 0.00

JJTABEL3 6541 6541 6541 6543 6544 6544 50.49 50.49 50.49 50.51 50.52 50.52

KSIP 5 103 1519 8884 -1 -1 0.02 0.28 1.50 3.68 -1.00 -1.00

LASER -1 -1 -1 -1 -1 -1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

LISWET1 0 6 21 295 -1 -1 0.00 0.02 0.08 1.21 -1.00 -1.00

LISWET2 0 4 22 54 441 5920 0.00 0.01 0.09 0.22 1.79 24.15

LISWET3 0 4 20 77 436 1649 0.00 0.01 0.08 0.30 1.73 6.53

LISWET4 0 4 29 76 625 5786 0.00 0.01 0.11 0.30 2.46 22.81

LISWET5 0 4 17 117 522 3208 0.00 0.01 0.07 0.46 2.07 12.76

LISWET6 0 4 26 148 590 2360 0.00 0.01 0.10 0.59 2.35 9.40

LISWET7 0 5 16 783 -1 -1 0.00 0.02 0.06 3.21 -1.00 -1.00

LISWET8 0 4 316 -1 -1 -1 0.00 0.01 1.25 -1.00 -1.00 -1.00

LISWET9 0 37 18665 -1 -1 -1 0.00 0.14 73.61 -1.00 -1.00 -1.00

LISWET10 0 5 60 1767 -1 -1 0.00 0.02 0.24 7.05 -1.00 -1.00

LISWET12 0 40 3395 -1 -1 -1 0.00 0.15 13.34 -1.00 -1.00 -1.00

MOSARQP1 46 51 51 53 57 62 0.74 0.82 0.82 0.84 0.90 0.97

MOSARQP2 20 20 20 20 20 20 0.37 0.37 0.37 0.37 0.37 0.37

NINE12 8 8 9 10 11 12 0.32 0.32 0.35 0.39 0.43 0.47

NINE5D 8 11 11 12 12 13 0.38 0.52 0.52 0.57 0.57 0.62

NINENEW 7 8 9 10 12 12 0.17 0.20 0.22 0.24 0.29 0.29

OSORIO 2 3 3 4 6 7 0.04 0.05 0.05 0.05 0.06 0.06

POWELL20 9054 13469 16136 18570 21666 24611 143.16 221.31 268.59 311.74 366.65 418.85

QPBAND -1 -1 -1 -1 -1 -1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

STCQP1 4 4 4 4 4 4 2.90 2.90 2.90 2.90 2.90 2.90

STCQP2 25 25 27 28 30 32 15.72 15.72 16.90 17.50 18.68 19.87

TABLE1 33 1119 1119 1121 1121 1122 0.12 4.12 4.12 4.13 4.13 4.13

TABLE3 19 21 22 25 27 29 0.28 0.31 0.33 0.37 0.40 0.43

TABLE4 19 21 22 25 27 29 0.28 0.31 0.32 0.37 0.40 0.43

TABLE5 19 21 22 25 27 29 0.28 0.31 0.32 0.37 0.40 0.43

TABLE6 23 1096 1097 1097 1097 1098 0.09 4.05 4.05 4.05 4.05 4.06

TABLE7 9 10 11 12 12 13 0.02 0.02 0.02 0.02 0.02 0.02

TABLE8 3 3 3 3 3 3 0.01 0.01 0.01 0.01 0.01 0.01

TARGUS 185 185 185 185 185 185 0.11 0.11 0.11 0.11 0.11 0.11

TOYSARAH -1 -1 -1 -1 -1 -1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

TWO5IN6 6 8 8 9 10 10 0.16 0.22 0.22 0.24 0.27 0.27

YAO 47 71 3778 -1 -1 -1 0.19 0.29 15.45 -1.00 -1.00 -1.00
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Table A.3.2: Checkpoint information for package DQP when a direct subproblem solver is used.

Iters. Time

Name 10−1 10−2 10−3 10−4 10−5 10−6 10−1 10−2 10−3 10−4 10−5 10−6

AUG2DC 1 1 1 1 1 1 0.27 0.27 0.27 0.27 0.27 0.27

AUG2DCQP 6815 6815 6815 6815 6815 6815 890.77 890.77 890.77 890.77 890.77 890.77

AUG3DC 1 1 1 1 1 1 0.31 0.31 0.31 0.31 0.31 0.31

AUG3DCQP 134 134 134 135 135 135 33.76 33.76 33.76 35.20 35.20 35.20

BTS4 486 1314 2484 4030 -1 -1 863.80 2321.94 4362.33 7062.49 -1.00 -1.00

CBS 6 6 6 6 6 6 1.35 1.35 1.35 1.35 1.35 1.35

CONT-050 -1 -1 -1 -1 -1 -1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

CONT1-100 -1 -1 -1 -1 -1 -1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

CONT1-200 -1 -1 -1 -1 -1 -1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

DALE 5 5 6 6 6 6 0.53 0.53 0.64 0.64 0.64 0.64

DEGENQP -1 -1 -1 -1 -1 -1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

DUAL1 8 10 10 11 12 12 0.01 0.01 0.01 0.01 0.01 0.01

DUAL2 6 7 8 8 8 8 0.01 0.01 0.01 0.01 0.01 0.01

DUAL3 4 6 7 8 8 8 0.01 0.01 0.01 0.01 0.01 0.01

DUAL4 1 3 3 3 4 4 0.00 0.00 0.00 0.00 0.00 0.00

HIE1327D 87 189 603 1222 2500 3062 20.99 44.45 138.72 280.88 577.09 704.46

HIE1372D 6 6 6 6 6 6 0.15 0.15 0.15 0.15 0.15 0.15

HIER13 1006 2481 -1 -1 -1 -1 1132.75 2767.33 -1.00 -1.00 -1.00 -1.00

HIER133A 965 1829 -1 -1 -1 -1 1340.32 2544.38 -1.00 -1.00 -1.00 -1.00

HIER133B 793 1926 -1 -1 -1 -1 1096.55 2643.27 -1.00 -1.00 -1.00 -1.00

HIER133C 1302 2060 -1 -1 -1 -1 1827.50 2873.03 -1.00 -1.00 -1.00 -1.00

HIER133D 1997 2743 -1 -1 -1 -1 2599.48 3525.58 -1.00 -1.00 -1.00 -1.00

HIER133E 1645 2716 -1 -1 -1 -1 2267.25 3750.37 -1.00 -1.00 -1.00 -1.00

HIER16 846 -1 -1 -1 -1 -1 5554.50 -1.00 -1.00 -1.00 -1.00 -1.00

HIER163A 721 -1 -1 -1 -1 -1 5508.16 -1.00 -1.00 -1.00 -1.00 -1.00

HIER163B 731 -1 -1 -1 -1 -1 5602.53 -1.00 -1.00 -1.00 -1.00 -1.00

HIER163C 763 -1 -1 -1 -1 -1 5823.36 -1.00 -1.00 -1.00 -1.00 -1.00

HIER163D -1 -1 -1 -1 -1 -1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

HIER163E 381 -1 -1 -1 -1 -1 2889.72 -1.00 -1.00 -1.00 -1.00 -1.00

HUES-MOD 4 4 4 4 4 4 0.07 0.07 0.07 0.07 0.07 0.07

HUESTIS 4 4 4 4 4 4 0.02 0.02 0.02 0.02 0.02 0.02

JJTABEL3 -1 -1 -1 -1 -1 -1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

KSIP 290 367 3005 21811 81299 81304 6.38 6.77 8.55 13.87 27.70 27.70

LASER -1 -1 -1 -1 -1 -1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

LISWET1 0 5 1169 1169 1169 1169 0.00 0.04 2.21 2.21 2.21 2.21

LISWET2 0 4 23 127 320 482 0.00 0.04 0.16 0.42 0.80 1.03

LISWET3 0 4 15 48 52 52 0.00 0.04 0.13 0.18 0.19 0.19

LISWET4 0 5 15 76 87 87 0.00 0.05 0.12 0.22 0.24 0.24

LISWET5 0 4 15 55 66 68 0.00 0.05 0.13 0.20 0.22 0.22

LISWET6 0 4 14 53 69 69 0.00 0.04 0.12 0.19 0.22 0.22

LISWET7 0 4 1659 1659 1659 1659 0.00 0.04 3.61 3.61 3.61 3.61

LISWET8 0 4 897 897 897 897 0.00 0.04 2.63 2.63 2.63 2.63

LISWET9 0 901 904 905 905 905 0.00 3.99 3.99 3.99 3.99 3.99

LISWET10 0 5 51 622 622 622 0.00 0.04 0.22 1.46 1.46 1.46

LISWET12 0 936 936 936 936 936 0.00 3.62 3.62 3.62 3.62 3.62

MOSARQP1 79 83 84 84 84 84 0.52 0.55 0.55 0.55 0.55 0.55

MOSARQP2 33 34 34 34 34 34 0.21 0.21 0.21 0.21 0.21 0.21

NINE12 175 176 176 176 176 176 479.41 481.79 481.79 481.79 481.79 481.79

NINE5D -1 -1 -1 -1 -1 -1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

NINENEW 646 2706 -1 -1 -1 -1 1037.07 4417.92 -1.00 -1.00 -1.00 -1.00

OSORIO 3 3 4 5 7 7 0.46 0.46 0.71 1.40 1.90 1.90

POWELL20 2501 2501 2501 2501 2501 2501 186.30 186.30 186.30 186.30 186.30 186.30

QPBAND -1 -1 -1 -1 -1 -1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

STCQP1 4 4 4 4 4 4 6.09 6.09 6.09 6.09 6.09 6.09

STCQP2 16 17 17 17 17 17 6.41 6.65 6.65 6.65 6.65 6.65

TABLE1 43 46 47 63 279 279 0.80 0.86 0.88 1.17 5.11 5.11

TABLE3 4606 8008 11582 14922 18186 21840 456.39 791.98 1153.32 1497.13 1829.26 2198.03

TABLE4 4208 8320 11752 15204 18682 22498 439.86 872.43 1219.74 1573.94 1927.13 2322.22

TABLE5 4366 8589 12901 16749 20515 24521 444.67 874.73 1318.60 1717.90 2104.66 2511.45

TABLE6 60 63 64 68 161 -1 1.05 1.10 1.12 1.19 2.76 -1.00

TABLE7 22 22 22 22 22 22 0.04 0.04 0.04 0.04 0.04 0.04

TABLE8 3 3 3 3 3 3 0.01 0.01 0.01 0.01 0.01 0.01

TARGUS 201 201 201 201 201 201 0.07 0.07 0.07 0.07 0.07 0.07

TOYSARAH -1 -1 -1 -1 -1 -1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

TWO5IN6 -1 -1 -1 -1 -1 -1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

YAO 3 3 3 3 3 3 0.01 0.01 0.01 0.01 0.01 0.01
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