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ABSTRACT. This technical report presents new solution methods for the block
relocation problem (BRP). Although most of the existing work focuses on the
restricted BRP, we tackle the unrestricted BRP, which yields more opportuni-
ties for optimisation. Our contributions include fast heuristics able to tackle
very large instances within seconds, fast metaheuristics that provide very com-
petitive performance on benchmark data sets as well as a branch-and-bound
algorithm that outperforms the best existing exact method and provides new
optimal solutions. The branch-and-bound algorithm is adapted to tackle the
restricted BRP as well, again outperforming existing methods for that prob-
lem.
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1. INTRODUCTION

In a world where container port traffic increases steadily [2], the optimisation of
logistics at container terminals is more relevant than ever. Containers are typically
stored in stacks between their arrival at the terminal and their departure when a
vehicle picks them up. Similarly, at steel production factories, slabs are stored in
stacks between their production and the time when they are picked up by a vehicle
for further delivery. In both contexts, space is limited and the way items are
stacked, be they containers or slabs, has an impact on productivity. In both cases
it is possible to reorganise stacks with a crane in order to improve productivity. For
this reason, optimisation problems related to loading, unloading and premarshalling
of stacks in storage areas have been the subject of increasing attention over the last
five years, as emphasised in a recent survey by Lehnfeld and Knust [I1I]. In this
report we provide new advances for the block relocation problem (BRP), which is
an unloading problem which we succinctly describe now.

A set of n items, usually called blocks or containers, are organised into W stacks
and have to be retrieved in a certain order. It is usually considered that item 1
has to be retrieved first, then item 2, and so on until item n. An item may only
be retrieved if it is on top of its stack. Otherwise, the items that block it (i.e. are
above it) must be relocated to another stack first. A relocation involves taking an
item from the top of a stack and putting it on top of another stack. Additionally,
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stacks may not exceed a certain height H,,,,. The goal is to retrieve all items while
minimising the total number of relocations required to do so.

It is possible to represent the BRP using a graph: to each configuration of the
items in the bay, which we call a state, we associate a node. To each possible
relocation from one state to another, we associate an arc with weight 1. To each
possible retrieval of an item, also representing a transition from one state to another,
we associate an arc with weight 0. Considering the set V' of all nodes (possible
states) and the set A of all arcs (possible transitions between those states), we
obtain a directed graph G = (V,A). The shortest path from the initial state
(source) to the empty state (sink) then yields the optimal solution to the BRP. An
example of this graph representation is given in Appendix[6] However the size of V
and A grows exponentially with the number of items and the number of stacks. It
is therefore impractical to consider this whole graph explicitly. Any optimisation
method for the BRP consists in finding a path from source to sink while exploring
only a subset of the whole graph.

The contribution of this report is threefold. First, we develop new heuristic
operations to quickly build high quality solutions for the BRP. Second, we design a
new constructive metaheuristic framework to use these operations in an even more
efficient way, trading a bit of CPU effort for increased solution quality. Third, we
develop a new exact method for the BRP, which is also applied to the restricted
BRP with minor modifications. All methods are validated through experiment, and
we establish that all of them improve on the current state of the art.

The remainder of this report is organised as follows. In Section[2] we quickly sur-
vey recent literature on the BRP. In Section [3] we present various heuristic methods
for the unrestricted BRP. In Section [4 we introduce a simple but effective branch-
and-bound algorithm for the unrestricted BRP. We also adapt it to work with the
restricted BRP. Section [5] presents experimental validation for our contributed opti-
misation methods. Finally, we draw some conclusions and suggest further research
directions.

2. LITERATURE REVIEW

The BRP has received notable attention in the last six years. In their recent
survey, Lehnfeld and Knust [II] present an overview of the scientific literature
on loading, unloading and premarshalling problems. Using their terminology, the
BRP is an unloading problem. They make a difference between forced moves, that
involve relocating items blocking the next item to be removed, and voluntary mowves,
that involve any other type of relocation. Voluntary moves are also called cleaning
moves by Petering and Hussein [12]. We want to emphasise this difference here since
most of the existing contributions only consider forced moves. Put differently, the
assumption is that the only items that may be relocated are those blocking the next
item to be retrieved. From now on, we call this assumption A1, as named by Caserta
et al. [4]. The BRP under assumption Al is the restricted BRP, otherwise it is the
unrestricted BRP. It should be noted here that under assumption Al, only two
situations can occur: (i) Either the next item to be retrieved is on top of a stack,
in which case it is retrieved; (ii) Or there are items blocking it, in which case these
items are relocated. In that context, the only decision making that can be done is
determining to which other stack these items should be relocated.
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The BRP is first introduced by Kim and Hong [9]. They consider the now-
common BRP setting where every item has a different priority, as well as a setting
where priorities are given to groups of items. Their work is under assumption Al,
i.e. only forced moves are considered. The authors propose a branch-and-bound
algorithm to solve instances with up to 30 items and 6 stacks within less than
one hour. They also design a heuristic rule to relocate items, that estimates the
expected number of additional relocations needed after a certain relocation and
greedily selects the relocation minimising that number. This heuristic produces
solutions within one or two seconds and ranges on average between 2% and 16%
from the optimum, depending on instance classes.

Lee and Lee [I0] present a three-phase heuristic for a BRP where the objective
function also considers the distance between stacks. Assumption Al is also made.
In the first phase, a solution is constructed heuristically. In the second phase,
the number of relocations is reduced by merging relocations of same items. This is
performed using a mixed-integer program (MIP). In the third phase, a consideration
of distance between stacks is added to a simplified version of the MIP from phase
2.

Caserta et al. [3] also use assumption Al and design a corridor method algorithm.
The corridor method is a heuristic framework that explores limited amount of
solutions within an exact framework, similar to what is done in beam search. In
that case, the exact framework is a dynamic programming algorithm.

Jovanovic and Voss [8] propose a chain heuristic that considers the next two
items to be relocated and avoids to relocate the first one to the stack that is the
best for the second one. This is under assumption Al. The authors insist on
the difference between simple and complex methods. Simple methods typically
compute within less than a second. They compare this method to other previous
contributions, notably Wu and Ting [14] and Caserta et al. [4], and show that their
chain heuristic performs better than the other simple heuristics. The best results
reported are from the beam search of Wu and Ting [I4], but at the expense of CPU
effort.

Wu and Ting [I4] develop a beam search algorithm for the BRP with assumption
Al. The beam search is based on a breadth-first branch-and-bound algorithm.
Using a depth-first scheme instead, the authors also propose a branch-and-bound
algorithm. They also propose three heuristic rules to determine where the next
item should be relocated.

Tanaka and Takii [I3] introduce a new lower bound for the restricted BRP. This
lower bound is not applicable to the unrestricted BRP since it relies on the fact that
items blocking the next item to remove have to be relocated next. Integrating it
into a branch-and-bound algorithm, they show that their new lower bound improves
the performance of branch-and-bound on the restricted BRP.

Caserta et al. [4] provide a complexity study of the BRP. They prove that the
BRP is NP-hard for any finite H,,,, and W < n. They then formulate two MIP
models, BRP-I and BRP-II. BRP-I considers all possible relocations while BRP-IT
follows assumption Al. They also provide a simple example that emphasises that
assumption Al implies losing optimality. We reproduce this example in Figure
However, only model BRP-II is tested, so there is no assessment of the cost of as-
sumption Al. Finally, the authors also provide a simple heuristic under assumption
Al.
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Figure 1: For H,,,; = 4, optimal solution with assumption Al has 6 relocations
but optimal solution without Al has 4 relocations.

Expésito-Izquierdo et al. [6] correct the BRP-II model from Caserta et al. [4],
then present a new branch-and-bound algorithm for the restricted BRP. The branch-
and-bound is compared to the A* algorithm from Expdsito-Izquierdo et al. [5] and
results show that the newer method is faster.

Zehendner et al. [I5] present an improved mathematical formulation for the
restricted BRP. They first correct the BRP-II model from Caserta et al. [4], then
provide an alternative model with less variables. This allows them to reduce CPU
effort and to solve more instances than with the corrected BRP-II.

Forster and Bortfeldt [7] develop methods for the unrestricted BRP where pri-
orities are given to groups of items rather than to single items. They first develop
an improved lower bound, compared to previous contributions simply considering
the number of items that need to be relocated. They also develop a construction
heuristic that applies what they call BG moves. BG stands for Bad-Good and in-
volves the relocation of an item which was previously blocking another item into a
stack where it does not block any item. If BG moves can be performed then they
are performed, with a priority given to moves to a non-empty stack. A tree search is
also presented. In order to keep CPU effort low, only certain moves are considered,
so the method is similar to a beam search. BG moves are always preferred within
this tree search procedure. The authors then compare their method to previous
contributions, although these previous contributions are considering the restricted
BRP.

Petering and Hussein [I2] consider the BRP without assumption A1l. They first
develop a MIP model, called BRP-III, with considerably less variables than BRP-
I from Caserta et al. [4]. Although it provides a lower bound of worse quality
than BRP-I, BRP-IIT still performs better on average. Still, the authors conclude
that a mathematical programming approach is not sufficient for real-world use, and
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propose a look-ahead heuristic called LA-N. The N refers to the degree of looking-
ahead. Instead of attempting to relocate items from only the stack of the next
item to retrieve, LA-N looks at the stacks of the next N items to retrieve. If there
is a promising voluntary move in one of these stacks, it is performed. Voluntary
moves are considered promising if they involve relocating an item that needs to
be relocated sooner or later, in a way that involves never having to relocate it
again. By definition, LA-1 only considers forced moves. LA-N is compared to fast
methods from previous contributions (Kim and Hong [9], Aydin and Unliiyurt [I],
Caserta et al. [3], Lee and Lee [10]) and shows to be competitive on some instance
sets while dominating other methods on other instance sets. Overall it is safe to
conclude that it is the best heuristic among all those compared.

Expésito-Izquierdo et al. [5] develop an A* algorithm for the BRP with and
without assumption Al. They obtain optimal solutions that are inconsistent with
those reported in Caserta et al. [4], and report the inconsistency. However their
solutions are always checked for feasibility and sometimes better than those reported
by Caserta et al. [4], which suggests the errors are in the latter. They also develop a
knowledge-based heuristic and compare it to known optimal solutions as well as to
the solutions obtained by Forster and Bortfeldt [7]. The knowledge-based heuristic
is better on average, but not systematically.

Most contributions cited above focus on the restricted BRP, i.e. under assump-
tion Al. However it is difficult to find a good reason for that assumption other
than making the problem more tractable. In the following, we focus on the un-
restricted BRP. Since the branch-and-bound algorithm from Section [4] can very
easily be adapted to tackle the restricted BRP, we do perform such an adaptation.
Therefore we also report results on the restricted BRP.

3. NEW METHODS FOR THE BLOCK RELOCATION PROBLEM

We look at two kinds of operations for voluntary moves, which we name safe
moves and relocating decreasing sequences. We also consider forced moves, as
abundantly described in the literature. In that case, we follow the LA-1 heuristic
described by Petering and Hussein [12], which is similar to the LA heuristic pre-
sented by Caserta et al. [4]. We now describe safe moves and decreasing sequences,
then we explain how they can be combined into heuristics. For that purpose, we
use the following notation:

I" is the set of stacks.

e top(s) is the item on top of stack s.

e tops() = {top(s)|s € T'} is the set of all items that have no item above
them.

e Jowest(s) is the lowest-index element in stack s. For instance if stack s has
items 6, 4, 2, 7 in that order then lowest(s) = 2. If s is an empty stack
then lowest(s) = n + 1 (n being the index of the final item to remove).

e N R is the number of relocations that have already been performed to reach
the current state.

e [b(i) is 0 if ¢ is well-placed, i.e. is not placed above an item of lower index;
1 otherwise.

e sr(i) is 0 if 4 can be placed on top of a stack, other than its current stack,

without creating any conflict; 1 otherwise.
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e LB is a valid lower bound on the number of necessary relocations. In its
simplest form: LBy =} ey ,,y b(4). Forster and Bortfeldt [7] introduce a
more advanced version (LBy) which is 1 4+ LBy if i € tops()|lb(i)+sr(i) <
2, LBy otherwise.

e height(s) gives the number of items in s.

3.1. Safe relocations. We introduce the concept of conflict: a conflict occurs
when a given item is positioned above at least one item of smaller index. In other
words, when an item blocks at least one other item. At any given stage of the
solution process, NR + LB gives us a lower bound on the final solution quality.
Keeping that in mind, we focus on relocations that do not increase N R+ LB, which
we call safe.

We define safe 1-relocates as relocations that involve moving an item ¢ from stack
s to stack t such that i < lowest(t) Ai > lowest(s). A safe 1-relocate adds 1 to NR
while subtracting 1 from LB, the end result being that NR + LB stays the same.
When several safe 1-relocates can be performed and we need to decide which one is
the best, we use a heuristic rule similar to what is found in LA. More precisely, the
safe 1-relocate of item ¢ from stack s to stack ¢ has an impact d;; = lowest(t) — 1,
and the safe 1-relocate that minimises d;; is considered to be the best for heuristic
purpose. We note here that safe 1-relocates are similar to the BG moves described
in Forster and Bortfeldt [7].

We also define safe 2-relocates as relocating item i from s to ¢ such that (i) there
is no possible safe 1-relocate, (ii) i < lowest(t) (i.e. ¢ does not block any other
item once relocated), (iii) this relocation creates a possibility to safely 1-relocate
another item. Safe 2-relocates are safe with LBy but not with LBj, which is too
myopic. A safe 2-relocate is characterised by moving item ¢ from s to ¢ in order
to allow to safely 1-relocate item j to s. Such a relocation is only a safe 2-relocate
if i < lowest(t) A j < lowest(s\ {i}). The impact of this safe 2-relocate is then
defined as dj;,, = lowest(s \ {i}) — j + lowest(t) — i. Again, the heuristically best
safe 2-relocate is the one that minimises impact.

3.2. Decreasing sequences. We note here that none of the moves described above
allows to solve the instance described in Figure [I] optimally. Similarly, no fast
heuristic from the literature allows to find it. In the following we propose a new
type of move aimed at dealing with that case.

We consider the case where s is the stack of the next item to retrieve, with
top(s) > lowest(s), i.e. top(s) needs to be relocated. We look at the decreasing
sequence DS(s) of consecutive elements starting from top(s) downward that does
not include lowest(s). In the case of Figure|l] this sequence is DS(2) = (5,4, 3). If
there is a stack ¢ where top(s) can be safely 1-relocated, then the whole sequence
can also be safely 1-relocated there, assuming there is enough height available. If
not, then it may still be interesting to make room so that it becomes possible.
For example in Figure [I] the optimal solution involves relocating item 2 to stack
0 then relocating DS(2) to stack 1. Given DS(s) and a target stack ¢ where
we want to relocate it, we can estimate the cost of enabling such a relocation
by evaluating the impact on LB;. In order to do that, we first determine the
sequence u € t of items which have to be relocated so that the modified stack
t' = t\u can receive DS(s) without creating any conflict, i.e. such that lowest(t") >
top(s) A height(t') +|DS(s)| < H.
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The impact of this relocation is estimated as ), 1 — Ib(i) + sr(i). In other
words, relocating an item that needed to be relocated anyway is rewarded while
relocations that create conflicts are penalised. The sequence of relocations that
minimises impact is considered to be the best one.

3.3. Combinations of these operators. We propose a general heuristic scheme
that considers the following types of operations, in this order of priority:

(1) Retrieve items that can be retrieved without any relocation
(2) Perform voluntary moves if possible
(3) Perform forced moves

Step 1 is obvious and step 3 is done in a similar fashion as with the LA heuristic as
explained above, so all that remains to specify is step 2. The operators introduced
above have different time complexities and aim at dealing with different situations.
We apply them using different heuristics for voluntary moves.

SM-1. iteratively performs the best safe 1-relocate until there are no safe 1-relocates
SM-2. iteratively tries to perform the best safe 1-relocate; if there is none, it tries
to perform the best safe 2-relocate

DSEQ. iteratively tries to perform the best decreasing sequence relocate
SmSEQ-1. iteratively tries to perform the best safe 1-relocate; if there is none, it
tries to perform the best decreasing sequence relocate

SmSEQ-2. iteratively tries to perform the best safe 1-relocate; if there is none, it
tries to perform the best safe 2-relocate; if there is none, it tries to perform the best
decreasing sequence relocate

3.4. Rake search: a new constructive metaheuristic framework. In pre-
liminary experiments, we made the observation that the first steps taken in con-
structing a solution, i.e. the first relocations, are crucial to the quality of the final
solution. Conversely, if the first steps are well taken, it is not very hard to find a
good solution afterwards. This was also observed when trying to build solutions by
hand. We now propose a solution framework that exploits this aspect of the BRP.

We present a new constructive metaheuristic framework, inspired by beam search
and tree search in general, which we call rake search. It relies on the idea of
completing a partial solution with a quick construction heuristic. Rake search
starts as a breadth-first tree search procedure, generating level after level of the
tree. Once a level that has w nodes or more is reached, the tree search stops and
each node is used as a starting point for various construction heuristics. The best
solution found is kept.

In our case, at any given node of the search tree, we start by retrieving all the
items that can be retrieved without requiring any relocation. Once this is done,
many relocations are possible, each giving rise to a different branch of the search
tree. Some of these are generated, thus producing the next level of the search
tree. More precisely, we generate all safe 1-relocates and all safe 2-relocates. We
also generate all possible forced moves, i.e. relocating the item on top of the stack
where the next item to retrieve is, to any other stack.

Once a level of at least w nodes is reached, each of the nodes (partial solutions)
is used as a starting point for each of heuristics SM-1, SM-2, SmSEQ-1, SmSEQ-2.
Assuming there are exactly w nodes before this step, 4w solutions are constructed
in total. In practice there are more than that since we produce a whole level of
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the search tree before stopping, instead of stopping as soon as there are exactly w
nodes.

4. EXACT SOLUTION OF THE BRP

We develop a simple branch-and-bound algorithm for the BRP. For any given
node of the branch-and-bound tree, i.e. state of the stacks or partial solution, we
first retrieve all items that can be retrieved without any relocation. At this point,
LBy (see Section [3)) gives us a valid lower bound on the final cost (total number of
relocations) of the solution. Given a valid upper bound U B, obtained for instance
by using one of the heuristics mentioned above, a node of the branch-and-bound
tree can be pruned as soon as NR + LB > UB. The successors of a given node
are then obtained by exploring the various possible relocations. In order to speed
up the search we introduce a look-ahead mechanism that assesses the changes in
NR and LB induced by a relocation, and only generates the new node if it cannot
already be pruned using U B. This avoids unnecessary memory allocations of many
nodes of the branch-and-bound tree. In order to create a new node, implementation
possibilities are either (i) copying the parent node then modifying the copy, which
involves memory allocation, or (ii) storing the sequence of branching decisions at
each node and applying them to the starting solution (root node) when processing
a node, then reversing them, which involves a lot of writing to memory. Either way,
our look-ahead mechanism allows to reduce the amount of these costly operations.

We note here that if the tree is explored in a best-first fashion and disregarding
our look-ahead mechanism, our algorithm is in fact equivalent to the A* algorithm
proposed by Expésito-Izquierdo et al. [6]. However we find that running a depth-
first search yields better results.

We also tried using LB, by Forster and Bortfeldt 7] since it is a stronger lower
bound than LBj. It actually decreases the performance of our algorithm strongly.
The reason is that in most cases LB = LBy, while in a few cases only it holds that
LB; = LBy + 1 . However LB; takes longer to compute and overall, the benefit
does not outweigh the cost of this computation.

This branch-and-bound algorithm can easily be adapted to solve the restricted
BRP: instead of trying every possible relocation at a given node, we only try relo-
cating the item on top of the stack where the next item to be retrieved is. Therefore
we also implement a version of our algorithm for the restricted BRP.

5. EXPERIMENTS

Our algorithms are implemented using the Python programming language and
run with PyPy, which is usually faster than the vanilla Python interpreter but still
typically slower than other compiled languages such as C or Java. The CPU is
an Intel Xeon Processor E5-2670 v2 (25M Cache, 2.50 GHz) with a 4-GB RAM
limit. The operating system is Linux. We note here that the RAM limitation
only makes a difference for our best-first B&B algorithm. For the depth-first B&B
all runs were completed using an initial limit of 1GB, which was never reached.
We increased the limit to allow the best-first version to be compared to the A*
algorithm from Expésito-Izquierdo et al. [5], which uses 4 GB, once we noticed that
the best-first B&B was sometimes running out of memory. The best-first B&B
still runs out of memory in many cases. The heuristics have very low memory
requirement.
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Although there exist many contributions using the same set of instances, a direct
comparison of all of them is not possible for two reasons:

e Some studies consider the restricted BRP, others the unrestricted BRP.
The restricted BRP considers additional constraints so the solutions that
are optimal for the unrestricted BRP are not necessarily feasible for the
restricted BRP.

e Even though the instances are the same, the height limit H,,., is not
always the same. Some authors consider that there is no height limit, some
consider it to be 2H — 1, where H is the height of the initial configuration,
and others use H + 2.

5.1. Heuristics for the unrestricted BRP. We first compare our work to con-
tributions on the unrestricted BRP. In a first step of experiments, we compare it
to the LA-N heuristic of Petering and Hussein [I2]. We implemented their LA-N
heuristic and use some of its components for our heuristics. Rake search is run
with w = 50 and its results are reported in column RS-50. Each heuristic is deter-
ministic and is run once on each test instance. Instances are grouped into classes
whose name is HxS, where H is the height of each stack in the initial configura-
tion and S is the number of stacks. Each class has 40 instances. For these runs,
H,ar = 2H — 1. Table [I] summarises these results. Aside from rake search, every
run finishes instantly. In the worst case rake search takes less than five seconds so
there is little point in comparing CPU times.

Rake search consistently provides the best results, at the cost of a few seconds of
CPU time. Among the “fast heuristics”, i.e. all except rake search, SM-2 provides
the best results on average, suggesting that safe relocations are a good idea. Ex-
cept for the smallest instance size, one of our heuristics always obtains the best
result among all fast heuristics. DSEQ is the worst method overall, suggesting that
relocating decreasing sequences is not necessarily relevant. We note here that even
though these instances are of a size matching currently cited applications of the
BRP, they are all rather small.

In a second set of experiments, we compare our methods to the tree search
from Forster and Bortfeldt [7] (TS) as well as the knowledge-based heuristic of Expésito-
Izquierdo et al. [5] (KB). The authors from both contributions provide results for
two settings, unlimited H,,q, and Hp,q = H + 2, so we provide results for these
two settings as well.

It appears that the results from both previous contributions are sometimes erro-
neously rounded. For instance, for H,,,, = H 4+ 2 and instance class 3x4, Expdsito-
Izquierdo et al. [5] report an average objective value of 6.02. Since it is an average
over 40 instances, this means that the sum of objective values over these 40 in-
stances is 241, which is on average 6.025, which should be rounded to 6.03 and
not 6.02. This kind of mistake appears a few times and we suppose it is due to
limitations in floating point number representation on computers. We report here
the corrected values.

Those results are summarised in Tables [2| and Rake search (RS) provides
more often than not a better solution than TS or KB, while keeping CPU effort
low (again below five seconds for the worst case). Both TS and KB take between
0 and 60 seconds depending on the cases. For unlimited H,,4., RS provides better



10 FABIEN TRICOIRE(? | JUDITH FECHTER(®), AND ANDREAS BEHAM®

HxS LA-1 LA-2 LA-3 LA-S-1 RS50 SM-1 SM-2 DSEQ SmSEQ-1 SmSEQ-2

3x3 5.08 5.08 5.08 5.08 4.95 5.10 5.12 6.22 5.17 5.20
3x4 6.30 6.25 6.28 6.28 6.03 6.25 6.22 7.17 6.28 6.22
3x5 7.05 7.00 6.95 6.97 6.85 6.92 7.00 7.47 6.92 6.95
3x6 8.45 8.40 8.47 8.47 8.28 8.45 8.38 8.97 8.40 8.35
3x7 9.32 9.28 9.22 9.25 9.12 9.22 9.25 9.53 9.22 9.25
3x8 10.72  10.60 10.65  10.82 10.30 10.70  10.70  10.88 10.62 10.60
4x4 10.90 10.43 10.38  10.38 9.80 10.22  10.25  12.75 10.53 10.47
4x5 13,55 13.32  13.22 13.03 12.28 1293 12.72  14.38 12.93 12.97
4x6 14.45 1430 14.15  14.03 13.40 14.05 13.82 15.20 13.95 13.95
4x7 16.62 16.43 16.40  16.38 15.43 16.20 1593 16.80 15.95 16.00
ox4 16.45 15.85 15.75  15.75 14.68 15.72 15.60 19.70 16.07 16.05
5 6] 20.25 20.00 19.77  19.70 17.95 19.32 19.23  23.05 19.60 19.73
5x6 23.52  23.07 2298 2255 21.20 22.18 21.85 25.27 22.02 22.07
ox7 25.68  25.25 2523 24.77 22,75 2418 23.50 26.38 24.02 23.73
ox8 28.65 28.60 28.27v 27.82  25.90 2752 27.07 29.93 27.15 27.12
ox9 31.85  31.35 31.18 30.70  28.65 30.18 29.82 31.93 30.18 30.18
ox10 34.50 34.10 33.62 3345 31.18 32.62 32.02 34.30 32.48 32.25
6x6 34.15 3355 3290 3248 28.82 31.82 31.12 35.77 31.60 31.35
6x10  48.65 4845 47.60 46.62 42.25 4530 44.20 48.58 45.60 44.95
10x6 89.75 86.85 86.70 84.95 72.75 85.17 81.28 98.35 83.70 82.78

10x10 126.75 125.62 123.75 119.95 101.38 113.83 109.03 128.03 114.03 112.15

Table 1: Performance of our heuristics compared to LA — N methods on benchmark
instances from Caserta et al. [3]. Hyqe = 2H — 1.

results than the other two methods in 12 cases while KB does so on 5 cases and
TS never does. For H,,.. = H + 2, RS provides better results in 15 cases while
KB does so in 2 cases and TS never does. For H,,,.. = H + 2, both KB and TS
seem to be hitting a limit around instances of size 10x10: they are systematically
better than all of our fast heuristics for all instance sizes except for that one, which
happens to be the largest one. This is also the only case where TS reaches its CPU
budget limit of one minute. This decrease in performance on larger instances also
applies for TS when H,,,, is unlimited. Overall RS provides the best performance
and also does not hit any computational limit for instances of this size.

5.2. Scalability of the fast heuristics. One issue regarding the existing data sets
is that they are relatively small. In order to assess the robustness and scalability
of our fast heuristics, we now provide experimental results on larger data sets with
up to 100 stacks and 10,000 items. Since we implemented the LA-N heuristic
from Petering and Hussein [I2], we can compare it with our heuristics. For S €
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100} we generate 40 random instances with S stacks
and S? items, uniformly distributed among those stacks in a random order. We
then compare our fast heuristics as well as the LA-N using those instances. We
do not include the heuristics by Forster and Bortfeldt [7] and Expdsito-Izquierdo
et al. [5] since they already hit a limit for 10 stacks and 100 items. Hpq, is set
to 2H — 1. Table {4 reports average values for this experiment. Table [5| reports



NEW SOLUTION METHODS FOR THE BLOCK RELOCATION PROBLEM 11

HxS KB TS RSH50 SM-1 SM2 DSEQ SmSEQ-1 SmSEQ-=2

3x3 4.95 4.95 4.95 5.03 5.03 6.30 5.10 5.13
3x4 6.03 6.05 6.03 6.23 6.18 7.00 6.20 6.15
3x5 6.88 6.85 6.85 6.90 6.95 7.45 6.90 6.90
3x6 8.28 8.28 8.28 8.35 8.30 8.98 8.33 8.30
3x7 9.10 9.20 9.13 9.20 9.23 9.43 9.15 9.20
3x8 10.38 10.45 10.30 10.60 10.60 10.85 10.55 10.55
4x4 9.70 9.90 9.78 10.13  10.15  12.35 10.40 10.35
4x5 12.30  12.63 12.28 12.80 12.68 14.13 12.80 12.85
4x6 13.38 13.70 1340 1390 13.75 15.10 13.85 13.85
4x7 15.60 15.78 15.43 16.15 1593 16.70 15.90 15.95
ox4 14.68 15.00 14.70  15.88 15.65 18.85 16.03 16.03
5 &) 18.03 18.63 17.95 1938 19.23 22.63 19.60 19.65
5x6 21.08 21.83 21.20 22.13 21.85 25.00 21.98 21.98
ox7 23.28 2358 22.70 24.08 2343 26.28 23.98 23.65
ox8 26.65 26.73 25.90 2740 26.98 29.83 27.00 27.00
ox9 29.40 2945 28.63 30.03 29.60 31.95 30.00 29.90
5x10  31.70 31.85 31.18 32,53 32.03 34.08 32.30 32.08
6x6 2898 29.68 28.85 31.78 31.08 35.63 31.43 31.28
6x10 4245 43.60 42.18 45.18 43.95 48.48 45.50 44.65
10x6 76.03 75.65 72.70 84.78 8148 97.23 84.08 83.05

10x10 104.03 116.90 101.03 113.25 108.60 127.73 114.25 112.35

Table 2: Performance of our heuristics compared to the tree search of Forster and
Bortfeldt [7] (TS) and the knowledge-based heuristic of Expésito-Izquierdo et al.
[B] (KB). Unlimited H.qq-

the corresponding average CPU times in seconds. First of all, we note that
methods SM-2, DSEQ, SmSEQ-1 and SmSEQ-2 are much slower when instance
size increases. However a CPU effort of around a minute to solve an instance with
10,000 items is still reasonable, especially with an interpreted language. Second of
all, there are several hints that relocating whole decreasing sequences is in fact a
good idea when instance size increases: above size 70x70, all the methods using this
type of relocation provide better solutions than all other methods. For instances
of size 30x30 and above, DSEQ always provides better solutions than all LA-N
methods. Moreover, the methods providing the best results overall are very clearly
SmSEQ-1 and SmSEQ-2, which do consider relocating decreasing sequences, even
though they only do it when no safe relocate is found. That appears to be the
winning combination, as it is also faster than DSEQ, probably due to the fact
that evaluating how to relocate decreasing sequences is more CPU intensive than
evaluating safe relocates.

5.3. Exact methods. The only two exact methods for the unrestricted BRP that
we are aware of are model BRP-III from Petering and Hussein [12] and the A*
algorithm by Expdsito-Izquierdo et al. [5]. BRP-IIT was applied to instances with
up to nine containers only, and is likely unable to solve bigger instances. We
compare our branch-and-bound (B&B) to the results of the A* for the unrestricted
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HxS KB TS RSH50 SM-1 SM2 DSEQ SmSEQ-1 SmSEQ-=2

3x3 4.98 4.98 4.95 5.10 5.13 6.23 5.18 5.20
3x4 6.03 6.05 6.03 6.25 6.23 7.18 6.28 6.23
3x5 6.88 6.85 6.85 6.93 7.00 7.48 6.93 6.95
3x6 8.28 8.28 8.28 8.45 8.38 8.98 8.40 8.35
3x7 9.15 9.23 9.13 9.23 9.25 9.53 9.23 9.25
3x8 10.38 1040 10.30 10.70 10.70  10.88 10.63 10.60
4x4 9.78 9.93 9.83 10.40 10.33  12.90 10.75 10.73
4x5 12.33 1265 12.33 13.15 1293 14.73 13.13 13.13
4x6 13.35 13.70  13.43 14.13 1393 15.33 14.05 14.03
4x7 1548 15.78 15.43 16.35 16.00 16.93 16.03 16.05
ox4 15.45 1553 14.90 16.33 16.13 19.98 16.85 16.75
5 6] 18.68 18.80 18.13 19.60 19.40 23.93 19.90 20.00
5x6 21.63 22.08 21.38 22,53 2225  26.75 22.68 22.70
ox7 23.45 23.58 22.95 2478 24.15 27.50 24.65 24.38
ox8 26.45 27.03 26.18 2795 2758 30.40 27.73 27.70
ox9 29.13 30.06 28.83 31.05 30.55 33.10 31.03 30.98
ox10  31.90 32.25 31.35 33.60 33.10 35.60 33.15 32.98
6x6 30.40 31.13 29.58 3280 32.33 39.60 33.45 33.18
6x10  44.08 4448 43.15 47.10 4580 50.63 47.05 46.63
10x6  85.45 83.03 78.10 90.85 88.10 112.00 93.08 93.38

10x10 121.50 125.38 106.88 121.28 115.98 144.70 123.50 121.73

Table 3: Performance of our heuristics compared to the tree search of Forster and
Bortfeldt [7] (TS) and the knowledge-based heuristic of Expésito-Izquierdo et al.
Bl (KB). Hypax = H + 2.

HxS LA-1 LA2 LA3  LASI  SM-1 SM2  DSEQ SmSEQ-1 SmSEQ-2
10x10 125.07 12450  122.30  116.85  115.67 109.03  123.65  112.45 110.65
20x20 74760  TA7.12 74060  708.83  673.55  644.25  751.60  636.30 628.88
30x30 212350 2124.90 2133.28  2051.05 1955.95 1821.17  2047.22  1768.40  1750.20
40x40  4426.10  4444.65  4450.65  4399.00  4252.95 3840.62  4237.40  3642.45  3607.75
50x50  7808.62  7855.60  7864.48  T962.77 766548  6901.95 T463.55  6443.65  6418.12
60x60  12584.92 12702.10 12726.30 13159.80 12667.17 11286.65 11616.35 10094.73 10068.88
70x70  18537.42 18611.47 18756.85 19907.25 19188.22 16886.00 17069.22 14766.45 14752.75
80x80  26058.65 26102.70 26084.70 28286.62 27218.92 24219.75 23681.83 20483.53 20466.65
90x90  35114.90 35214.97 35327.53 39008.00 37701.43 33162.03 31850.03 27136.70 27107.78
100x100 45891.32 46202.40 46443.53 52205.05 50259.47 4424545 40930.12 35176.25 35137.70

Table 4: Performance of our heuristics compared to LA — N methods on large
randomly generated instances.

BRP of Expdsito-Izquierdo et al. [5]. They consider two settings: unlimited H,, g,
and H,., = H + 2. We provide results for both settings. The B&B starts with
an upper bound which is the best solution obtained by our five fast heuristics. We
report results for two versions of our branch-and-bound algorithm: depth-first and
best-first. The A* from Expésito-Izquierdo et al. [5] runs for 24 hours, whereas our
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HxS LA-1 LA-2 LA-3 LA-S-1 SM-1 SM-2 DSEQ SmSEQ-1 SmSEQ-2
10x10 0.00 0.00 0.01 0.01 0.01  0.02 0.02 0.02 0.02
20x20 0.00 0.00 o0.01 0.01 0.02  0.05 0.06 0.03 0.04
30x30 0.01 0.01 0.01 0.02 0.05 0.17 0.33 0.14 0.15
40x40 0.03 0.03 0.03 0.05 0.13  0.60 1.42 0.51 0.57
50x50 0.06 0.06 0.06 0.09 0.29 1.69 4.44 1.46 1.59
60x60 0.10 0.11 0.11 0.18 0.61 4.06 11.18 3.55 3.81
70x70 0.17 019 0.20 0.34 1.21 9.33  25.55 7.81 8.34
80x80 029 030 0.31 0.53 2.06 18.59 52.55 15.42 16.41
90x90 0.42 044 047 0.81 3.27  33.19  98.60 27.74 29.34
100x100 0.63 0.66 0.68 1.23 5.14 57.80 174.21 49.46 51.86

Table 5: CPU effort of our heuristics compared to
randomly generated instances.

LA — N methods on large

HxS  A* depth-first best-first
3x3 40 40 40
3x4 40 40 40
3x5 40 40 40
3x6 40 40 40
3x7 40 40 40
3x8 40 40 40
4x4 40 40 40
4x5 40 40 40
4x6 40 40 38
4x7 5 39 37
5x4 40 40 33
5x5 25 37 21
5x6 1 30 15
5x7 1 25 16
5x8 0 17 11
5x9 0 13 6
5x10 0 9 7
6x6 0 5 0
6x10 O 0 0
10x6 0 0 0
10x10 O 0 0

Table 6: Results of our depth-first and best-first branch-and-bound algorithms
H,ow = H + 2. Each row
represents the number of instances solved within the allotted time budget, per
instance size.

versus A* method from Expdsito-Izquierdo et al. [5].

branch-and-bound algorithm only runs for one hour. These results are reported in
Tables [6] and [7} where each line indicates how many instances of a certain size can
be solved by each algorithm. The depth-first branch-and-bound is dominating the
other two methods. This being said, our best-first algorithm also provides better
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HxS  A* depth-first best-first

3x3 40 40 40
3x4 40 40 40
3x5 40 40 40
3x6 40 40 40
3x7 40 40 40
3x8 40 40 40
4x4 40 40 40
4x5 40 40 40
4x6 40 40 38
4x7 5 39 37
ox4 40 40 34
5)6) 25 36 23
5x6 1 31 18
ox7 1 26 21
ox8 0 20 14
ox9 0 16 8

5x10 0 13 12
6x6 0 6 2

6x10 0 0 0

10x6 0 0 0

10x10 O 0 0

Table 7: Results of our depth-first and best-first branch-and-bound algorithms
versus A* method from Expésito-Izquierdo et al. [5]. Unlimited H,pq.. Each row
represents the number of instances solved within the allotted time budget, per
instance size.

performance than the A* overall, with a few exceptions. This is noteworthy because
they are basically the same algorithm and our branch-and-bound only runs for one
hour instead of 24 hours for the A*. There is also the fact that all our code is in
Python, which is typically slower than Java, the language with which the A* was
implemented. The only algorithmic difference between the two algorithms is the
look-ahead mechanism when evaluating new successors, and apparently it is enough
to make up for a much shorter CPU budget as well as a supposedly less efficient
implementation. Using better starting upper bounds may also help B&B.

We now evaluate the quality of our algorithm when it is modified to solve the
restricted BRP. Results are available from Expdsito-Izquierdo et al. [6] and from Ze-
hendner et al. [I5]. The results from Expdsito-Izquierdo et al. [6] do not allow a
very interesting comparison since a small subset of instances is considered and
they can all be solved within a few seconds. We observe a similar behaviour on
these instances. The instance that requires the highest CPU effort among all con-
sidered is 4-6-1, which requires 17.476 seconds for the branch-and-bound algorithm
by Expésito-Izquierdo et al. [6] and 11.819 seconds for our B&B. All other instances
are solved in less than a second in Expdsito-Izquierdo et al. [6] and in less than 2
seconds by our B&B. We can provide more detailed results in comparison with the
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HxS  MIP depth-first B&B

3x3 40 40
3x4 40 40
3x5 40 40
3x6 40 40
3x7 40 40
3x8 40 40
4x4 40 40
4x5 40 40
4x6 40 40
4x7 40 40
5x4 40 40
5x5 39 39
5x6 33 36
5x7 24 32
5x8 9 28
5x9 5 19
5x10 2 17
6x6 7 10
6x10 2 1
10x6 0 0
10x10 O 0

Table 8: Restricted BRP: Results of our depth-first branch-and-bound algorithms
versus MIP approach method from Zehendner et al. [I5]. H,ae = H + 2. Each
row represents the number of instances solved within the allotted time budget, per
instance size.

mixed-integer programming (MIP) approach of Zehendner et al. [T5], since the au-
thors report how many instances are solved over all 40 instances of each size. Their
approach also has a time limit of one hour. They also report the average CPU time
required to solve mon-trivial instances, where trivial instances are those for which
the initial lower bound is equal to the initial upper bound. However, our approach
uses different bounds than theirs and instances that are trivial for the MIP are not
necessarily trivial for our B&B and vice-versa. For that reason we only report the
number of instances solved within the allotted time. They only consider the setting
where H,,,, = H + 2, so we only report results for this setting. Since previous
experiments showed that our depth-first B&B is better, this is the one we use for
that experiment. Table [§|reports these results. Overall, the depth-first B&B solves
more instances than the MIP approach of Zehendner et al. [I5] within the same
time budget. There is one case, for size 6x10, where the MIP solves 2 instances and
our B&B only solves one.

6. CONCLUSIONS AND PERSPECTIVES

In this report we have presented several contributions for the block relocation
problem. Even though most of the existing work concerns the restricted BRP, we
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focused our work on the unrestricted BRP, which yields more opportunities for op-
timisation. We first introduced fast heuristics that provide solutions for instances
of realistic size within an instant. We then integrated them into a new construction
metaheuristic framework, named rake search, in order to provide even better solu-
tions within a few seconds. We also showed that when considering larger instances,
our fast heuristics provide a very significant improvement over existing fast meth-
ods, with around 30% improvement for the largest instances considered, all within
a few seconds. This experiment also emphasised the value of considering sequences
of items with increasing priorities, which allows to conduct less relocations overall
by relocating such a sequence as a unique entity. We also developed a branch-and-
bound algorithm which is the best exact approach to date for the unrestricted BRP.
This allowed us to compute previously unknown optimal solutions for a number of
instances. This algorithm could possibly be improved by computing better com-
binatorial bounds, which is a direction for future research. We also modified this
algorithm to solve the restricted BRP, which allowed us to provide results that are
better than those from the literature.
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GRAPH REPRESENTATION OF THE BLOCK RELOCATION PROBLEM

As mentioned in Section [l any BRP instance is associated to a graph where
the nodes correspond to various states of the bay and the arcs represent possible
transitions between those states. A given arc has a weight of 1 if it corresponds to a
relocation, while removing an item from the bay is associated to a null weight. We
also consider the initial state of the bay as the source node and the state associated
to an empty bay as the sink node. Solving the BRP is then equivalent to finding
the shortest path from source to sink. Without loss of generality, we consider that
if a given state allows to remove the next item to be removed, then that is the only
transition that is allowed from that state (node).

We now illustrate this representation with a small instance considering 3 items
and 3 stacks. The first stack contains items 1 and 3, the second stack contains
items 2, the third stack is empty. This instance is represented in Figure [2, where
the source is leftmost and the sink is rightmost.
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Figure 2: Full graph for a small instance of the BRP with 3 items and 3 stacks.
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