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Abstract The search for a better understanding of complex systems calls for quantitative model 

development. Within this development process, model fitting to observational data (calibration) 

often plays an important role. Traditionally, local optimization techniques have been applied to 

solve nonlinear (as well as linear) model calibration problems numerically: the limitations of 

such approaches in the nonlinear context – due to their local search scope – are well known. In 

order to properly address this issue, global optimization strategies can be used to find (in 

practice, to approximate) the best possible model parameterization. This work discusses an 

application of nonlinear regression model development and calibration in the context of space 

engineering. We study a scientific instrument, installed on-board of the International Space 

Station and aimed at studying the Sun’s effect on the Earth’s atmosphere. A complex sensor 

temperature monitoring objective has motivated the adoption of an ad hoc calibration 

methodology. Due to the apparent non-convexity of the underlying regression model, a global 

optimization approach has been implemented: the LGO software package is used to carry out the 

numerical optimization required periodically for each stage of the analysis. We report 

computational performance results and offer related insight. Our case study shows the robust and 

efficient performance of the global scope model calibration approach.  
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1 Introduction 
 

Regression analysis (Bates and Watts, 1988; Seber and Wild, 1989; Björck (1996); Sen and 

Srivastava 2011; Chatterjee and Hadi, 2012; Greene, 2012; Kleijnen, 2015) is an important 

subject across a broad range of studies in econometrics, engineering, and the sciences. Nonlinear 

regression is a general framework for regression analysis in which the observational data are 

modeled by a postulated nonlinear function: this function is then parameterized according to a 

stated optimality criterion. A quick Internet search for the key words “Nonlinear Regression” 

returns close to 2,700,000 results (as of March 2016, using Google’s search engine), clearly 

indicating a substantial interest towards the subject. 
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The most frequently used classical optimization method to find the parameters of a nonlinear 

regression model (based on the minimization of the corresponding least squares error function) is 

the Levenberg–Marquardt algorithm (LMA). The LMA is a modification of the Gauss-Newton 

method, proposed by Levenberg (1944) and rediscovered by Marquardt (1963): consult e.g. the 

related discussions in Press et al. (1992), Björck (1996), and Kelley (1999). In the LMA a 

linearized local approximation of the nonlinear model is used sequentially, and – based on a 

suitable initial solution “guess” – the model parameters are iteratively refined.  

The model fitting exercise can become a hard numerical challenge when the conjectured 

regression model includes highly nonlinear functions. This study will discuss such a case with 

compositions of trigonometric functions in the regression model. In similar cases, the error 

function can be multi-extremal: hence, different initial solution “guesses” can lead to locally best 

model fitting results of broadly varying quality – calling for a global scope calibration strategy. 

Model development studies in which a proper global optimization approach is required arise 

in numerous real-world applications: consult e.g., Pintér (1990, 1996, 2003), Van der Molen and 

Pintér (1993), Finley et al. (1998) for related examples and case studies. The substantial 

advances in global optimization witnessed in recent decades support the application of global 

optimization algorithms and software to handle challenging nonlinear model fitting problems. 

Without going into details on the subject of global optimization that are outside of the scope of 

the present discussion, we refer e.g. to (Horst and Pardalos 1995; Pintér, 1996; Pardalos and 

Romeijn, 2002; Liberti and Maculan, 2005; Pintér, 2002, 2006, 2009).  

The chapter is organized as follows. The subjects of model calibration, global optimization 

and information regarding the LGO software package are concisely presented and discussed in 

Section 2. Following these brief expositions that serve as the technical basic of our modeling and 

solution approach, we present a trend analysis and failure detection case study arising in a 

current space engineering application (Section 3). Section 4 presents concluding notes, followed 

by a list of references.  

Let us mention that a broad range of space engineering case studies is discussed in the edited 

volumes Fasano and Pintér (2013, 2016): several of these studies include also various model 

calibration tasks as important ingredients. 

 

 

2 Global Optimization for Nonlinear Model Fitting   

 

2.1 The Model Calibration Problem  

 

Model development is an essential research tool in many quantitative studies. In very general 

terms, the following main phases of such development can be distinguished: 

 

1) formulation of model objectives 

2) determination of the model structure (functional form selection) based on domain specific 

knowledge and expertise 

3) data collection and analysis, to support model development  

4) model fitting to data (calibration, parameterization) 

5) validation and sensitivity study 

6) applications in analysis, forecasting, management, and so on. 

 



Hence, model calibration is an important stage of the process of understanding and managing 

complex (chemical, engineering, environmental, physical, or other) systems.  

In order to present a general model calibration problem statement, we introduce the following 

notation: 

 

t = 1,…,T time moments of system observations; T is the number of data used  

x  model parameters (to be selected according to some chosen optimality criterion); x 

is assumed to be a real n-vector  

D set of admissible (feasible) model parameterizations 

M continuous (real-valued, scalar) model function; the values of M depend on x, for 

each value of t = 1,…,T 

mt model output data at time t; mt=M(x,t); their sequence is {mt}, for  t = 1,…,T 

ot measurement data at time t corresponding to mt; their sequence is {ot}, t = 1,…,T 

f continuous error function that expresses the discrepancy between the sequences  

m = {mt} and o = {ot}: f = f({mt},{ot}). 

 

Applying these notations, the generic model calibration problem can be formulated as  

 

 min f({mt},{ot}) (1) 

 mt = M(x,t) t = 1,…,T 

 x  D  Rn. 

 

In order to specify the general model (1), next we present some frequently used model types. 

The set of feasible parameter settings D can be defined by explicit finite lower and upper bounds 

(n-vectors l and u) regarding x, as well as by an optional set of k ≥ 0 additional constraints 

written in summary form as g(x) ≤ 0 (g denotes a continuous k-dimensional vector function when 

such constraints are present):  

 

 D = {x: l ≤ x ≤ u, g(x) ≤ 0}. (2) 

 

Based on these conditions, D is a bounded subset of the n-dimensional Euclidean space; we 

will assume that D is non-empty.  

The aggregate model error function f is often defined using a suitably chosen lp-norm to 

measure the discrepancy between the vectors m and o: 

 

 f = f({mt},{ot}) = ||m-o||p           1 ≤ p ≤ . (3)

  

Various extensions of this model can be introduced to handle more general formulations, 

including consideration for uncertainties and/or for multiple model calibration objectives: 

consult, e.g. Van der Molen and Pintér (1993), Pintér (1996).  

In the context of our discussion, let us point out that the general nonlinear model calibration 

problem (1)-(3) could well be multi-extremal: cf. e.g. Pintér (1996) Chapter 4.5, and several 



environmental modeling case studies discussed in the same work that illustrate this aspect. For 

this reason, we have been introducing and using global optimization technology to handle 

nonlinear model calibration problems across a range of application areas. 

 

 

2.2 The Global Optimization Model 

 

The model calibration problem (1)-(3) belongs to the general class of continuous global 

optimization models stated as 

 

 min f(x)  (4) 

 D = {x: l ≤ x ≤ u, g(x) ≤ 0} (5) 

 f and g (the latter component-wise) are continuous functions in [l, u]. (6) 

 

Notice the absence of the usual convexity assumptions in the above general model formulation 

that would justify the use of local optimization tools. In (4)-(6) not only the objective f could be 

multi-extremal, but the feasible region D could also be non-convex. At the same time, the above 

stated key assumptions already guarantee that the optimal solution set X* of model (1)-(3) is 

non-empty. For additional technical details, we refer to Pintér (1996). 

 

 

2.3 LGO Solver Suite for Nonlinear Optimization 

 

The traditional numerical optimization methods used for model calibration seek only for local 

optima (tacitly assuming the availability of a sufficiently good initial parameter vector). In the 

general framework presented here this may not be a realistic assumption: therefore global scope 

search strategies will be required to parameterize (possibly multi-extremal) nonlinear regression 

models.  

Specifically, we will use the Lipschitz Global Optimizer (LGO) solver suite for constrained 

nonlinear – both global and local – optimization. LGO can handle models with merely 

continuous structure (without asking for higher order – gradient, Hessian – information); and its 

operations are based on model function values. This feature makes LGO a suitable choice to 

tackle a broad range of model calibration problems, including completely “black box” models, in 

addition to standard (analytically defined) models. 

LGO has been discussed in other works, cf. e.g. Pintér (1996, 1997, 2009, 2015): therefore 

here we present only a summary description. The design of LGO is based on the flexible 

combination of several nonlinear optimization algorithms, each with corresponding theoretical 

(provable) global and local convergence properties. It should be noted that the name LGO 

reflects the original (first) global solver component embedded in the software. (Note in passing 

that even this solver component uses only model function values, without requiring exact – 

typically unknown – Lipschitz-continuity information.)  

Next, we briefly describe the overall algorithmic structure of LGO. LGO includes a local 

solver (LS) option which precedes all global search options. LS can be started either from an 

initial solution point provided by the user, or from a default point determined by LGO. The LS 

search mode can be also used without a subsequent global search phase. Following the LS phase, 



two quick global pre-solvers are launched: each of these is followed by LS from the current best 

point, if an improved solution has been found. The overall purpose of these solver components is 

to provide a reasonable quality solution with a relatively small global search effort. Next, one of 

three theoretically “exhaustive” global search options is invoked based on the LGO user’s 

preference: the methods to choose from are branch-and-bound (BB), single-start partially 

randomized search (RS), and multi-start partially randomized search (MS). Each of BB and RS is 

followed by a LS phase, while each major MS iteration is followed by a corresponding LS phase. 

Based on the solver options summarized above, LGO – as a stand-alone solver suite – can be 

used for both global and local constrained nonlinear optimization. Without going into further 

details, we refer to Pintér (1996) for an in-depth discussion of the theoretical results leading to 

the global search options BB, RS and MS. The relatively inexpensive first global pre-solver is 

described in Pintér and Horváth (2013); the second one is an unpublished heuristic strategy. The 

LS method is a generalized reduced gradient algorithm implementation: for background, consult 

e.g. Edgar et al. (2001).  

In the practical context of numerical optimization – that is, in resource-limited computations – 

each one of LGO’s “exhaustive” global search options generates a global solution estimate(s) 

that is (are) refined by the seamlessly following local search mode(s). This way, the expected 

overall result of using LGO is global and/or local search based high-quality feasible solution that 

satisfies at least the local optimality criteria. (To guarantee theoretical local optimality, standard 

local smoothness conditions need to apply – at least whenever LS is invoked.)  

At the same time, one should keep in mind that no global − or, in fact, any other − 

optimization software will always work satisfactorily, with default settings and under resource 

limitations related to model size, time, model function evaluation, or other usage limits. With this 

cautionary remark in mind, extensive numerical tests and a growing range of practical 

applications demonstrate that LGO and its platform-specific implementations can find high-

quality numerical solutions to complicated and sizeable GO problems. For details, consult e.g. 

Pintér (1996, 2002, 2014, 2015), Pintér and Kampas (2013), with references to a range of 

applications – including also real-world model fitting problems.  

LGO is available for use with a range of compiler platforms (C/C++/C#, Fortran 77/90/95), 

with seamless links to several optimization modeling languages (currently, AMPL, GAMS, 

MPL), to Excel, and to the leading high-level technical computing systems Maple, Mathematica, 

and MATLAB.  

The structure of the compiler-based core LGO implementation used in our study is shown by 

Fig. 3: a brief explanation of the symbols displayed follows below. 

LGOMAIN is a driver program that defines or retrieves from the input file (called LGO.IN) 

LGO’s static calling parameters before activating LGO. The adjective static refers to model 

descriptor and solver option information that is defined (or read) only once and then remains 

unchanged during a specific LGO run. LGOMAIN may also include additional user actions such 

as links to other program files and to external applications, to report generation and to the further 

optional use of LGO results. 

LGOFCT serves to define the dynamic components of an optimization problem: these are 

defined by the model objective f and constraint functions g. Here dynamic means that this file 

will be called at every algorithmic iteration step of LGO, to evaluate its functions depending on 

the algorithmically generated sequence of input variable arguments x. Again, this file may 

include calls to other application programs (as needed), in order to evaluate the model functions.  



LGO.IN is an optionally used LGO input parameter (text) file that stores LGO’s static calling 

parameters (unless these are directly defined by LGOMAIN).  

The source code files LGOMAIN and LGOFCT are to be compiled and linked to the LGO 

(object or dynamic link library) file. Upon launching the generated executable program, 

LGOMAIN invokes the LGO solver suite; then LGO iteratively calls LGOFCT.  

LGO's operations can be partially controlled by the static input parameter file LGO.IN, or by 

changing LGOMAIN: this structure supports repeated LGO runs under various model 

specifications and/or solver option settings. Of course, LGOFCT can also be changed if 

necessary to test different model variants. LGOMAIN optionally reads LGO.IN when launched; 

in the opposite case all calling parameters are directly defined in LGOMAIN.  

LGO optionally generates result text files, on different levels of detail specified by the user. 

The first one of these files, called LGO.SUM, presents only a concise summary of the results 

obtained. The second file, called LGO.OUT, provides more detailed information pertinent to the 

optimization process. The third file, called LGO.LOG, reports the entire sequence of all 

arguments x generated and the resulting function values f and g.  

 

LGO.IN  

  

LGOMAIN   LGO   LGOFCT 

  

LGO.SUM   LGO.OUT   LGO.LOG  

 

Fig. 1 LGO application program structure  

 

For additional details, we refer to the earlier listed references, especially to the current LGO 

manual (Pintér, 2015). 

 

 

3 A Regression Model Case Study in Space Engineering  
 

3.1 Introduction   

 

Columbus is a science laboratory that is part of the International Space Station (ISS): it is the 

largest contribution to the ISS made by the European Space Agency (ESA). For information 

related to the ISS, consult NASA (2016a); regarding Columbus, see ESA (2016a). The 

Columbus laboratory carries an extensive collection of instruments. These instruments – referred 

to as payloads – are aimed at performing various requested scientific experiments, and can be 

located either internally or externally.   

The SOLAR (external) payload (ESA 2016b, see Fig. 2 below) has the scope of studying the 

Sun with extremely high accuracy across most of its spectral range. Its scientific contributions 

are mainly focused on solar and stellar physics, as well as on the Sun’s interaction with the 



Earth’s atmosphere. Its monitoring activity has been in continuous operation since its installation 

outside the ESA Columbus module in February 2008.  
 

 
                                                    

Fig. 2 SOLAR 

Copyright © ESA; http://www.esa.int/ESA_Multimedia/Images/2008/01/SOLAR 

 

SOLAR consists of three instruments that complement each other, to allow measurements of the 

solar spectral irradiance virtually throughout the whole electromagnetic spectrum (from 17 nm to 

100 μm) in which 99% of all solar energy is emitted. These instruments are referred to as SOL-

ACES (SOLar Auto-Calibrating Extreme UV/UV Spectrophotometers; see NASA, 2016b), 

SOLSPEC (SOLar SPECtral Irradiance measurements; see NASA, 2016c) and SOVIM (SOlar 

Variable and Irradiance Monitor; see NASA, 2016d). 

The present discussion is focused on monitoring the SOLAR sensor temperature. Relevant 

data are retrieved continuously from the ISS to the Earth, in order to carry out a dedicated trend 

analysis and failure detection activity. This is accomplished periodically (every three months), 

applying regression analysis as described in the following subsections.        

 

 

3.2 Trend Analysis and Failure Detection 

 

From the point of view of regression modeling, the trend analysis and failure detection activity 

essentially consists of deriving (repeatedly) the analytical expression representing the sensor 

temperature trend, from the data available for each time period analysed. (Actually, for safety 

reasons – in order to increase data reliability – two sensors are utilized and the average of their 

measurements is considered.) This analysis is then used in conjunction with a reference function 

to identify possible deviations from the nominal state, together with the identification of possibly 

occurring anomalies, as well as to predict (through extrapolation) the future behaviour of the 

system, with respect to the temperature control. A further goal is to verify that the expected 

temperature trend stays inside the admissible operational range. 

At its nominal state, the temperature trend is expected to have two leading modes: a primary 

(carrier) and a secondary (modulating) periodic mode, as depicted by Fig. 3.          

 



 
 

Fig. 3 Primary periodical (carrier) mode and secondary periodical (modulating) mode 

 

The first mode is associated with the nodal precession of the ISS, with a period of about two 

months (NASA, 2016a). The secondary mode is determined by the orbital motion of the ISS 

around the Earth, with a period of about 90 minutes. Both modes are therefore assumed to have 

approximately a sinusoidal nominal trend. A possible systematic physical degradation of the 

SOLAR thermal protection system (due to ambient radiation) is hypothesized next: for the sake 

of simplicity, the corresponding trend function is assumed to be linear, see Fig. 4.     
 

 
 

Fig. 4 Possible systematic (linear) degradation function: an example 
 

 

3.3 The Model Calibration Problem 

 

The analytical formulation of the regression model outlined above leads to an optimization 

problem, defined by the following objective function 
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We also consider the following box constraints:  

 

  111 , AAA  ,  222 , AAA  ,  010101 ,TTT  ,  020202 ,TTT  , 

 111 ,KKK  ,  222 ,KKK  ,  RRR , ,  SSS , . (8) 



 

In model (7)-(8) SRKTAKTA ,,,,,,, 20221011 are model parameters to estimate; I denotes the set of 

sampling time moments, and iD  are the corresponding temperature measurements. The objective 

function terms )sin( 1011 tKTA   are related to the primary mode, the terms )sin( 2022 tKTA  are 

related to the secondary mode, and SRt   is the possible linear degradation. 

The computational difficulty of this global optimization problem is dictated by its highly 

multi-modal objective function. Evidently (after considering the specific notations), model (7)-

(8) is a special case of both generic model formulations (1)-(3) and (4)-(6).     

 

 

3.4 Solving the Regression Model 

 

This section provides some insights and details regarding the actual application of the globally 

optimized model calibration approach. Our experimental results will be merely outlined, due to 

confidentiality restrictions: nonetheless, what follows will suffice to illustrate the efficiency of 

the methodology adopted.  

Let us point out that the amount of telemetry data to handle is huge. Approximately 150 

million sample points (observations affected by abnormal gaps and spikes that are to be properly 

filtered) have been retrieved since 2011. This circumstance has induced the need to develop a 

dedicated pre-processing package which will not be discussed here.  

Fig. 5 illustrates a typical solution extracted from the set of those obtained so far, considering 

365 days of observation on the horizontal axis and temperature trend expressed in centigrade 

degrees on the vertical axis. 

 

 
 

Fig. 5 Solution typology: graphical representation 

 

The experimental analysis that has been performed since 2008 to date has highlighted a slight 

increment of the amplitude 1A of the primary mode. A linear degradation rate of about 1.35 

degC/year has furthermore been detected based on the mean value since 2008 to date. By 

extrapolating the latter information, compliance with the currently given tolerance limits would 

be guaranteed until 2025, well beyond the mission deadline.  

No actual anomalies have been identified so far, although apparently some occurred: in fact, 

these were related to non-nominal manoeuvres of the ISS itself. Fig. 6 shows an example of such 



explainable anomalies, pointing out the supposed deviation by circling the relevant two sets of 

measurements. In all observed cases, the event times corresponded exactly to specific non-

standard control actions performed by the ISS.     

 

 
 

Fig. 6 An example of explained anomalies 

 

In our study, the LGO solver suite has been regularly (sequentially) used to solve model 

calibration problems of the type (7)-(8). Since the frequencies and amplitudes corresponding to 

the primary and secondary modes respectively are characterized by pronouncedly different 

scales, in practice the relevant parameters could be estimated separately. A first analysis is 

therefore performed regarding the primary set of terms including a possible 

degradation SRKTA ,,,, 1011 , while neglecting the secondary terms 2022 ,, KTA . Next, a number of 

short-term sub-intervals is selected, and then an evaluation of the secondary parameters can be 

carried out, while keeping the results obtained for the primary terms. The average values of the 

secondary terms, derived considering the entire set of sub-intervals selected, will yield the final 

estimation. At each step of this analysis, the numerical results obtained in the previous step for 

the entire set of model parameters ( SRKTAKTA ,,,,,,, 20221011 ) have been utilized as initial 

solution “guess” values. 

 

Test Case 

Number 

Number 

of  

Variables 

Time Period  
Number 

of Data 

Entries 

Program 

Execution 

Time 

Normalized 

Least 

Squares 

Error 

Global 

Optimality 

Status 
Days Dates 

TEST 1 5 365 01/01/2013 →12/31/2014  2186 01:42:06 21.97 Optimum Reached 

TEST 2 5 365 04/01/2013 → 03/31/2014 2191 03:16:28 22.17 Optimum Reached 

TEST 3 5 365 07/01/2013→ 06/30/2014 2270 02:24:37 25.92 Optimum Reached 

TEST 4 5 365 10/01/2013→ 09/30/2014 2193 01:07:01 23.24 Optimum Reached 

TEST 5 5 365 01/01/2014→ 12/31/2014 2183 00:43:04 23.12 Optimum Reached 

TEST 6 5 90 01/01/2014→ 03/31/2014  542 05:52:42 20.04 Optimum Reached 

TEST 7 5 90 04/01/2014 → 06/30/2014 1083 11:53:49 23.96 Optimum Reached 

TEST 8 5 90 07/01/2014 → 09/30/2014 1636 18:08:29 18.65 Optimum Reached 

TEST 9 5 90 10/01/2014 → 12/31/2014 2183 02:12:37 13.88 Optimum Reached 

 

Table 1 Illustrative experimental results 

 



In order to provide an overview of the solution quality obtained by the LGO solver, 

observational data related to the time period January 2013 to December 2014 have been 

considered and analysed according to two different temporal frameworks: 365 days and 90 days. 

A set of 9 model fitting test case results is summarized in Table 1, indicating also the number of 

observational data used, the computational effort (expressed as hours:minutes:seconds), and the 

solution quality obtained. The number of the optimized (primary) variables is 5, in each case 

shown. 

For both timeframes considered, LGO finds parameter settings that lead to remarkably well- 

fitted models. Two examples of the solutions found are shown by Fig. 7 and Fig. 8 respectively: 

the scattered dots (representing actual data) are compared with the continuous line representing 

the expected trend according to the parameterized model resulting from the analysis. 

 Fig. 7 Example of analysis for the carrier mode (TEST 1, 365 days) 

 

 
Fig. 8 Example of analysis for the carrier mode (TEST 9, 90 days) 

 

In all examples presented, a high-quality numerical global optimum is reached. Additional 

statistical analysis of the residuals (normalized with respect to the mean value of the model 

function) exhibits an apparently “normal-like” distribution: see Fig. 9. This finding is in line with 

the underlying statistical assumptions of the least squares based model fitting paradigm. 

 



 
Fig. 9 Normal-like distribution of residuals for carrier mode 

 

 

4 Conclusions  
 

This work discusses a nonlinear regression model development and calibration study in the 

context of an application in space engineering. We study the SOLAR payload, installed on-board 

of the International Space Station. This scientific device is aimed at studying the Sun’s effect on 

the Earth’s atmosphere. Due to the apparent non-convexity of the underlying mathematical 

model, a global optimization approach has been proposed for model calibration. The LGO solver 

suite is used to carry out the numerical optimization required periodically for each analysis stage. 

Insights regarding the experimental results and computational performance are provided. Our 

case study demonstrates the efficiency of the approach proposed, as well as of the software used.  

Regarding the SOLAR mission, future research can be directed towards optimizing further 

model parameters relevant to the payload, such as the voltage/current involved. Extensions to 

other scientific instruments on-board the International Space Station can also be foreseen, as well 

as applications related to future scenarios including the anticipated challenge of interplanetary 

missions.           
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