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Abstract

In this article, we discuss an alternative method for deriving conservative approximation models for

two-stage robust optimization problems. The method mainly relies on a linearization scheme employed

in bilinear optimization problems, therefore we will say that it gives rise to the “linearized robust

counterpart” models. We identify a close relation between this linearized robust counterpart model and

the popular affinely adjustable robust counterpart model. We also describe methods of modifying both

types of models to make these approximations less conservative. These methods are heavily inspired

by the use of valid linear and conic inequality in the linearization process for bilinear models. We

finally demonstrate how to employ this new scheme in a set of four operations management problems

to improve the performance and guarantees of robust optimization.

Index terms— Two-stage adjustable robust optimization, affinely adjustable robust counterpart,

linear programming relaxation, bilinear optimization.

1 Introduction

Classical robust optimization (RO) assumes that all decisions are here-and-now, i.e., they must be

made before the realization of uncertainty. However, this assumption is not realistic in many real-
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world problems. Take for instance a location-transportation problem (as studied in Atamtürk and

Zhang (2007); Zeng and Zhao (2013); Bertsimas and de Ruiter (2016)) for which, while the locations

of the production/storage facilities need to be decided as quickly as possible, the decision of how many

goods to transport to each customer can be delayed until their respective uncertain demand is revealed.

To address the uncertainty in such problems, Ben-Tal et al. (2004) introduced an adjustable robust

optimization (ARO) problem that takes the following form in a two-stage setting where the uncertainty

is limited to the right-hand side of the constraint set:

(ARO) maximize
x∈X ,y(ζ)

min
ζ∈U

cTx+ dT y(ζ) (1a)

subject to Ax+By(ζ) ≤ Ψ(x)ζ , ∀ ζ ∈ U , (1b)

where x ∈ Rnx identifies decisions that must be made “here and now” while y : Rnζ → Rny identifies

decisions that can adapt to the realization of the uncertain vector of parameters ζ ⊂ Rnζ , with U as the

“uncertainty set”. Furthermore, the ARO model will have A ∈ Rm×nx , B ∈ Rm×ny , c ∈ Rnx , d ∈ Rny ,

and Ψ : Rnx → Rm×nζ such that Ψ(x) is an affine function of variable x. Since finding a solution

to problem (1) is computationally intractable, Ben-Tal et al. suggested instead solving the affinely

adjustable robust counterpart (AARC) of the problem, wherein adjustable decisions are forced to be

affine functions of the observed uncertain vector ζ, i.e., the so called affine decision rule y(ζ) := Y ζ+y,

for some Y ∈ Rny×nζ and y ∈ Rny ; therefore, problem (1) is conservatively approximated with

(AARC) maximize
x∈X ,y,Y

min
ζ∈U

cTx+ dT (Y ζ + y) (2a)

subject to Ax+B(Y ζ + y) ≤ Ψ(x)ζ, ∀ ζ ∈ U . (2b)

In recent years, the AARC framework has been successfully applied in a number of fields of practice,

such as energy planning (Jabr et al., 2015), production planning (Melamed et al., 2016; Kim and

Do Chung, 2017), power systems (Li et al., 2015; Lorca and Sun, 2017; Dehghan et al., 2017), location-

transportation and lot sizing problems (Bertsimas and de Ruiter, 2016), reservoir management (Gauvin

et al., 2017), and supply chain management (Simchi-Levi et al., 2016; Buhayenko and den Hertog, 2017).

Although this literature seems to indicate that affine decision rules perform well in many applications,

there are still a number of cases where AARC leads to overly conservative solutions. We present the

following example of a location-transportation problem to illustrate this point.

Example 1 (Location-Transportation Problem). Consider the following robust location-transportation
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problem:

maximize
x,v,y(ζ)

min
ζ∈U

−
∑
i

cixi + kivi +
∑
i

∑
j

ηijyij(ζ) (3a)

subject to
∑
i

yij(ζ) ≤ ζj , ∀ j ∈ J , ∀ ζ ∈ U (3b)∑
j

yij(ζ) ≤ xi , ∀ i ∈ I , ∀ ζ ∈ U (3c)

y(ζ) ≥ 0 , ∀ ζ ∈ U (3d)

0 ≤ xi ≤Mvi , ∀ i ∈ I (3e)

vi ∈ {0, 1} , ∀ i ∈ I . (3f)

In this problem, variable vi indicates whether one opens a facility at location i for each i ∈ I, variable

xi denotes the production capacity of the facility i, and variable yij denotes how many goods are shipped

from facility i to customers at location j, with j ∈ J . The demand for location j is characterized by

ζj. Parameter ηij > 0 denotes the unit revenue of goods shipped from facility i to customer j, while ci

and ki denote variable and fixed capacity cost for facility i respectively. Let us now consider a special

case with 2 facility and 3 customer locations. Specifically, we will let the parameters c, K, and M be

respectively equal to 0.6, 100,000, and 100,000, while the matrix η is defined as η =

5.9 5.6 4.9

5.6 5.9 4.9

.

Furthermore, the uncertain demand ζ is assumed to lie in the following budgeted uncertainty set U :

U = {ζ
∣∣∃ δ ∈ [0, 1]n, ζj = ζ̄j − ζ̂jδj , ∀ j ,

∑
j

δj ≤ Γ} ,

where the nominal demand, ζ̄j, is set to 20,000 while the maximum deviation ζ̂j := 18, 000, for all

j, and where the budget Γ := 2. In this example, one can numerically establish that the most robust

solution is to open only one facility with a capacity of 24,000 units at the second location profit in order

to achieve in the worst-case profit of 6,600 while under nominal demand the profit reaches as much as

10,600. Yet, the AARC model is unable to identify this solution and instead conservatively prescribes

not to open any facility in this region.

In this paper, we introduce a new scheme for constructing conservative approximation models,

named Linearized Robust Counterpart (LRC) models, of ARO problems as presented in (1). While

similar linearized models have been previously proposed for a robust surgery block allocation problem

in Denton et al. (2010), a robust multi-item newsvendor problem in Ardestani-Jaafari and Delage (2016),

and more recently for the robust validation of a network design in Chang et al. (2017)1, we present for

1To the best of our knowledge, the work of Chang et al. (2017) was developed independently from the results presented in
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the first time a comprehensive investigation of how it can be employed on a general ARO problem. In

doing so, we offer the following contributions:

• Our proposed scheme allows us to 1) re-interpret AARC as the model that is obtained when

applying the linearization scheme found in Sherali and Alameddine (1992) to a certain bilinear

optimization problem derived from the worst-case analysis (a.k.a. adversarial problem); 2) exploit

valid linear and conic inequalities that are used in bilinear optimization problems to identify

tractable reformulations that improve upon AARC; 3) demonstrate how such reformulations can

identify solutions that are strict improvements over AARC on four types of operations management

problems.

• We establish for the first time that affine decision rules can be applied on a modified version of the

ARO problem where constraint violation is allowed but only if the right penalty is paid, namely

through:

(Penalized ARO) maximize
x∈X ,y(ζ),z(ζ))

min
ζ∈U

cTx+ dT y(ζ)− uT z(ζ)

subject to Ax+By(ζ) ≤ Ψ(x)ζ + z(ζ) , ∀ ζ ∈ U ,

where z : Rnζ → Rm is an adjustable variable that measures the amount of violation while u ∈ Rm

is a vector of “large enough” (to be clarified later) marginal penalties. This procedure leads to a

conservative approximation model (named MLRC) which is guaranteed to be feasible even when

AARC fails to be feasible. An extensive set of numerical experiments performed on a facility

location-transportation problem provides further evidence that this new scheme can significantly

improve the quality of first stage decisions and bounds on worst-case profit for problem instances

that suffer from large potential perturbations.

• Finally, we discuss interesting connections to recent literature that proposes copositive program-

ming reformulations to the ARO problem. In particular, we show for the first time how exact

copositive programming reformulations are related to AARC when ARO satisfied the relatively

complete recourse property.

The remainder of the paper is organized as follows. In Section 2, we introduce the linearized robust

counterpart model associated to an ARO problem with a polyhedral uncertainty set. Next, in Section 3,

this paper and mostly focuses its analysis on the network design application. For this application, the authors claim (without

a formal proof) that LRC leads to a tighter conservative approximation than AARC leaving the question open of whether the

two approaches are equivalent. They also hint at the possibility of generalizing their approach to the ARO model, which is

done in full detail for the first time in this paper.
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we establish the equivalence between the LRC and AARC models. Section 4 describes the two methods

that can be used to tighten the LRC/AARC approximation. Section 5 briefly describes how one might

extend our results to general convex uncertainty sets. We then present in Section 6 four instances of

operations management applications where the use of our new scheme leads to strict improvements

compared to what is achieved by previous methods proposed in the literature. An exhaustive set of

numerical experiments involving the location-transportation problem are presented in Section 7. Finally,

we discuss the connection to recent copositive programming reformulations of ARO in Section 8 and

conclude in Section 9.

2 The Linearized Robust Counterpart Model

In order to present the LRC model, we need to make the following three assumptions.

Assumption 1. Let U be a bounded and non-empty polyhedral set defined as U := {ζ|Pζ ≤ q} where

P ∈ RnU×nζ , q ∈ RnU .

Assumption 2. Let the ARO model possess relatively complete recourse, namely, that

∀x ∈ X , ∃ y(ζ) : Ax+By(ζ) ≤ Ψ(x)ζ ∀ ζ ∈ U .

Assumption 3. For all x ∈ X , there exists a feasible ζ, such that the recourse problem is bounded. In

other words, let problem (1) be bounded above.

The three assumptions described above should not be considered limiting. Considering Assumption

1, it is typically the case that U includes, at very least, a nominal, or most-likely, scenario, and that all

possible scenarios reside in a bounded set. Satisfying Assumption 2 is mostly a matter of formulating

X so that it does not include any solutions for which there might be no feasible second-stage solutions,

a situation that is typically associated with an infinite loss. Finally, it is reasonable to assume that

problem (1) is bounded above in realistic practical problems.

Let us now consider the fact that the ARO model can be formulated as

maximize
x∈X

g(x) (4)

where g(x) is defined as

g(x) := min
ζ∈U

max
y

cTx+ dT y (5a)

subject to Ax+By ≤ Ψ(x)ζ . (5b)
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Based on Assumption 2, one can apply duality theory on the inner maximization problem to show that

g(x) is exactly equal to

g(x) = min
ζ,λ

cTx+ (Ψ(x)ζ)Tλ− (Ax)Tλ (6a)

subject to BTλ = d (6b)

Pζ ≤ q (6c)

λ ≥ 0 , (6d)

where λ ∈ Rm is the dual variable associated with constraint (5b).

Lemma 1. Problem (6) possesses a feasible solution and its optimal value is finite.

Proof. Assumption 3 guarantees that, for all x ∈ X , there exists a feasible ζ̄ for which the maximization

problem in y has a finite optimal value. By the strong duality property, this indicates that, for this

same ζ̄, the minimization problem in λ also has a finite optimal value and must therefore have a feasible

solution λ̄. Together, the pair (ζ̄, d̄) constitutes a feasible solution for problem (6). �

In Sherali and Alameddine (1992), the authors employ a linearization scheme that exploits a set of

valid inequalities for a bilinear optimization problem similar to problem (6). In the context that we

study here, this scheme leads us to consider that

g(x) = min
ζ,λ

cTx+ tr(Ψ(x)ζλT )− (Ax)Tλ (7a)

subject to (6b)− (6d)

ζλTB = ζdT (7b)

PζλT ≤ qλT (7c)

BTλλT = dλT (7d)

λλT ≥ 0 , (7e)

where tr(·) stands for the trace operator, and where, for any two matrices A and B of the same dimension

n ×m, a constraint A ≤ B stands for Aij ≤ Bij for all i = 1, . . . , n and j = 1, . . . ,m, and similarly

for the constraint A = B. Note that, in this model, constraints (7b) to (7e) are a set of redundant

constraints that were added to problem (6). In particular, constraint (7b) is implied from

(6b)⇒ BTλζT = dζT ⇒ ζλTB = ζdT .
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Moreover, constraints (7c)-(7e) can be similarly derived:

(6c)&(6d)⇒ PζλT ≤ qλT ,

(6b)⇒ BTλλT = dλT ,

(6d)⇒ λλT ≥ 0 .

We next linearize problem (7) by introducing the variables ∆ ∈ Rnζ×m and Λ ∈ Rm×m, respectively

defined as ∆ := ζλT and Λ := λλT , such that

g(x) = min
ζ,λ,∆,Λ

cTx+ tr(Ψ(x)∆)− (Ax)Tλ (8a)

subject to (6b)− (6d)

∆B = ζdT (8b)

P∆ ≤ qλT (8c)

BTΛ = dλT (8d)

Λ ≥ 0 (8e)

Λ = λλT (8f)

∆ = ζλT . (8g)

A simple relaxation of problem (8) will lead to the linearized robust counterpart model for problem (1).

Proposition 1. The following linearized robust counterpart model is a conservative approximation of

problem (1):

(LRC) maximize
x∈X ,Y,y,S,s

cTx+ dT y − qT s (9a)

subject to P TS = Y TBT −Ψ(x)T (9b)

Ax+By + ST q ≤ 0 (9c)

P T s = −Y Td (9d)

s ≥ 0 , S ≥ 0 , (9e)

where Y ∈ Rny×nζ , y ∈ Rny , S ∈ RnU×m, and s ∈ RnU .

Proof. First, we relax problem (8) by removing constraint (8g) to get a lower bound for g(x). Next,

we consider that since, when constraints (6b)-(6d), and (8c) are satisfied, one can simply let Λ̂ := λ̂λ̂T
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in order to satisfy constraints (8d)-(8f), the problem stays the same when disregarding Λ and the three

constraints (8d)-(8f). Hence, we obtain a lower bound for g(x) in the form

g(x) ≥ gLRC(x) := min
ζ,λ,∆

cTx+ tr(Ψ(x)∆)− (Ax)Tλ (10a)

subject to BTλ = d (10b)

Pζ ≤ q (10c)

λ ≥ 0 (10d)

∆B = ζdT (10e)

P∆ ≤ qλT . (10f)

Since, based on Lemma 1, there exists a solution (ζ̂, λ̂) that satisfies constraints (10b), (10c), and (10d),

one can confirm that the triplet (ζ̂, λ̂, ∆̂), with ∆̂ := ζ̂λ̂T , is a feasible solution to problem (10). Hence,

strong duality applies for problem (10) so that it can be equivalently represented as

gLRC(x) = max
Y,y,S,s

cTx+ dT y − qT s (11a)

subject to P TS = Y TBT −Ψ(x)T (11b)

Ax+By + ST q ≤ 0 (11c)

−P T s = Y Td (11d)

s ≥ 0 , S ≥ 0 , (11e)

where the variables y ∈ Rny , s ∈ RnU , Y ∈ Rny×nζ , and S ∈ RnU×m are the dual variables associated

with constraints (10b), (10c), (10e), and (10f) respectively. We next combine problem (11) with the

maximization over variable x ∈ X , which leads to LRC (9). �

While it is known that evaluating the worst-case value of a given first-stage solution, i.e., evaluating

g(x), is computationally intractable, we can show that it is possible to efficiently evaluate a bound on

the worst-case value of the solution of the LRC model.

Lemma 2. Given that x̂ is the optimal solution of LRC (9) and (λ̂, ζ̂, ∆̂) is the optimal solution of

problem (10), when x is fixed to x̂, we have that

0 ≤ g(x̂)− gLRC(x̂) ≤ (Ψ(x)ζ̂)T λ̂− tr(Ψ(x)∆̂) .

Proof. Given that (λ̂, ζ̂) is a feasible solution of problem (6) when x is fixed to x̂, and since gLRC(x̂) =

cT x̂+
∑

ij Ψ(x)ij∆̂ji − (Ax̂)T λ̂, this indicates that

0 ≤ g(x̂)− gLRC(x̂) ≤ (Ψ(x)ζ̂)T λ̂− tr(Ψ(x)∆̂) . �
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3 Relation to AARC

In this section, we explain how the LRC model can be considered equivalent to the conservative ap-

proximation model obtained with AARC.

Proposition 2. LRC (9) is equivalent to AARC (2).

Proof. Proof. As a first step, we reformulate problem (10) in terms of an inner and an outer minimiza-

tion operations

gLRC(x) = min
ζ∈U

min
λ,∆

cTx+ tr(Ψ(x)∆)− (Ax)Tλ (12a)

subject to BTλ = d (12b)

Pζ ≤ q (12c)

λ ≥ 0 (12d)

∆B = ζdT (12e)

P∆ ≤ qλT . (12f)

We next derive the dual formulation of the inner minimization over λ and ∆ as

max
y,Y,S

cTx+ dT (y + Y ζ) (13a)

subject to Ax+By + ST q ≤ 0 (13b)

P TS = Y TBT −Ψ(x)T (13c)

S ≥ 0 , (13d)

where y ∈ Rny , Y ∈ Rny×nζ and S ∈ RnU×m are the dual variables associated with constraints (12b),

(12e), and (12f) respectively. Based on Sion’s minimax theorem, since U is bounded, the same value

for gLRC(x) can be obtained by reversing the order of minimization over ζ and maximization over y,

Y , and S. Equivalently, we have that

gLRC(x) = max
y,Y,S

min
ζ∈U

cTx+ dT (Y ζ + y) (14a)

subject to Ax+By + ST q ≤ 0 (14b)

P TS = Y TBT −Ψ(x)T (14c)

S ≥ 0 . (14d)
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We next consider the ith row of constraint (14b) and the ith column of constraint (14c):

Ai:x+Bi:w + (S:i)
T q ≤ 0, (15a)

P TS:i = Y T (Bi:)
T − (Ψ(x)i:)

T (15b)

where Ai:, Bi:, and Ψ(x)i: denote the ith row of matrices A, B, and Ψ(x) respectively, and S:i denotes

the ith column of matrix S. We show that constraints (15a) and (15b) are equivalent to

Ai:x+Bi:(Y ζ + y) ≤ Ψ(x)i:ζ, ∀ ζ ∈ U . (16)

We do so by considering that S is not in the objective function so that we can remove S from the set

of decision variables and instead replace constraints (15a) and (15b) with

min
S:i

Ai:x+Bi:w + (S:i)
T q ≤ 0 , (17a)

subject to P TS:i = Y T (Bi:)
T − (Ψ(x)i:)

T , (17b)

where the embedded minimization problem can be replaced by a maximization problem, using duality

theory. This leads us to considering constraint (17) as equivalent to

max
ζ

Ai:x+Bi:w + (Y T (Bi:)
T − (Ψ(x)i:)

T )T ζ ≤ 0 ,

subject to Pζ ≤ q

with ζ the dual variable of (17b). We have thus confirmed that constraints (15a) and (15b) are equivalent

to (16), and likewise that constraints (14b) and (14c) are equivalent to constraint (2b). Therefore, the

LRC model (9) is equivalent to the AARC model (2). �

4 Improving LRC and AARC using Valid Inequalities

In this section, we identify two types of valid inequalities that can be employed to formulate improved

versions of LRC that provide tighter conservative approximations. First, we will make use of valid linear

inequalities that can be derived from an implicit upper bound on the optimal solution for λ in problem

(6). This process will lead to a modified LRC model that preserves the computational complexity of

LRC while guaranteeing the feasibility of the resulting approximation model. Secondly, we will identify

a set of valid conic inequalities that will lead to a semi-definite programming formulation for LRC.
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4.1 Exploiting an implicit bound on λ∗

We start with a reasonable assumption that can be used to generate helpful valid inequalities for problem

(6) and obtain our Modified LRC (MLRC) model.

Assumption 4. One can identify a bounding vector u ∈ Rm such that, for all x ∈ X and for all ζ ∈ U ,

there exists an optimal solution λ∗ ≤ u for the problem

minimize
λ

(Ψ(x)ζ −Ax)Tλ (18a)

subject to BTλ = d (18b)

λ ≥ 0 . (18c)

At first glance, one might consider that Assumption 4 is rather limiting given that λ is an abstract

object. One should, however, be aware that such a bound u is guaranteed to exists. Indeed, based on

Lemma 1 there always exist a finite optimal solution for problem (18) and,in particular, one that lies

at one of the vertices of the feasible polyhedron. Since the number of vertices of a polyhedra defined

by a finite number of constraint is finite, we must conclude that such a u exists. A challenge remains

in identifying the tightest values possible for u. For this reason, we propose a numerical procedure that

can be used to identify tighter bounds once an initial gross estimate has been found. We will later in

subsections 6.3 and 6.4 investigate two practical examples where such initial estimates can be found

analytically.

Proposition 3. Given that the columns of B are linearly independent and an initial bound M such

that u := M satisfies Assumption 4, for any fixed k = 1, 2, . . . ,m, one can identify a tighter bound u∗k

that satisfies Assumption 4 by solving the following mixed-integer linear program

u∗k := max
λ,v

λk (19a)

subject to BTλ = d (19b)

λi ≤M(1− vi) , ∀ i (19c)
m∑
i=1

vi + ny = nλ (19d)

λ ≥ 0 , v ∈ {0, 1}m . (19e)

Proof. Proof. For any fixed x ∈ X and ζ ∈ U , given that problem (18) is known to be feasible and

finite (see Lemma 1), it must be the case that an optimal solution λ∗ for the problem is located at one

of the vertices of the polyhedra defined by BTλ = d and λ ≥ 0. By definition, for any vertex λν of this

polyhedra, there must exists a set of indices I ⊆ {1, . . . ,m} such that:
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1. |I| = nλ − ny

2. the set {B:1, . . . , B:ny} ∪ {ei}i∈I contains linearly independent vectors

3. λν is the unique solution to the following system of equations

BTλν = d eTi λ
ν = 0 , ∀ i ∈ I .

It therefore follows that if ‖λν‖∞ ≤ M for all the vertex v of this polyhedron, then problem (19)

necessarily returns an optimal value λ̄∗k that satisfies λ∗k ≤ maxν λ
ν
k ≤ u∗k. �

It is worth mentioning that the bound obtained using Proposition 3 can be further tightened by also

imposing that

2’. the set {B:1, . . . , B:ny} ∪ {ei}i∈I:vi=1 contains linearly independent vectors.

Although it is not clear how to solve the resulting problem in the form of a MILP, since verifying

whether such a condition is satisfied is rather straightforward (using the rank of the matrix composed

of the different vectors), in practice one can employ a constraint-generation scheme that progressively

adds linear constraints to problem (19) in order to reject the current optimal solutions for v, until

problem (19) returns an optimal solution that satisfies this condition.

Proposition 4. Given Assumption 4, the following modified linearized robust counterpart model is a

conservative approximation to problem (1):

(MLRC) maximize
x∈X ,Y,y,S,s,W,w

cTx+ dT y − qT s− uTw − uTWq (20a)

subject to Y TBT − P T (S −W ) = Ψ(x)T (20b)

Ax+By + (S −W )T q − w ≤ 0 (20c)

−P T (s+Wu) = Y Td (20d)

s ≥ 0 , S ≥ 0 , w ≥ 0 , W ≥ 0 , (20e)

where Y ∈ Rny×nζ , y ∈ Rny , S ∈ RnU×m, s ∈ RnU , W ∈ RnU×m, and w ∈ Rm. Furthermore, the

optimal value of problem (20) is necessarily larger than or equal to the optimal value of LRC (9).

Proof. Proof. Given that Assumption 4 is satisfied, the following constraints are valid inequalities for

problem (6) in the sense that they can be added to this problem without affecting its optimal value:

λ ≤ u (21a)

(q − Pζ)(u− λ)T ≥ 0 (21b)
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where constraint (21b) can be linearized by replacing ∆ := ζλT as

P∆ ≥ qλT − (q − Pζ)uT . (22)

Adding constraints (21a) and (22) to problem (10) leads to MLRC after applying duality theory. �

Similarly as was the case for the original LRC model, one can uncover an intimate connection

between MLRC and conservative approximations that are obtained using AARC. This connection is

made explicit in the following proposition.

Proposition 5. The MLRC (20) is equivalent to applying affine decision rules to the following two-

stage problem:

maximize
x∈X ,y(ζ),z(ζ)

min
ζ∈U

cTx+ dT y(ζ)− uT z(ζ) (23a)

subject to Ax+By(ζ) ≤ Ψ(x)ζ + z(ζ), ∀ ζ ∈ U (23b)

z(ζ) ≥ 0 , ∀ ζ ∈ U . (23c)

When observing problem (23) closely, one can readily recognize that it replaces the ARO problem

with

maximize
x∈X ,y(ζ),z(ζ)

min
ζ∈U

cTx+ dT y(ζ)−
∑
i

ui max(0 , eTi (Ψ(x)ζ −Ax−By(ζ))) ,

where ei ∈ Rm is the i-th column of the identify matrix. In other words, this is a two-stage robust

optimization where one does not impose that the recourse policy y(·) be feasible but instead imposes a

penalty to the profit that is proportional to the magnitude of the violation of each constraint. In fact,

one can show that the marginal penalties u defined in Assumption 4 are large enough to ensure that

problem (23) is equivalent to problem (1), i.e., that there is an optimal solution of (23) with z∗(ζ) := 0.

The penalties described in u should, however, be selected as small as possible in order for the estimate

of the worst-case profit to be more accurate.

We believe this interpretation of the MLRC model provides valuable new insights on how to apply

affine decision rules (or more general ones) to multi-stage decision problems. Note however, that

the optimal affine decision rules obtained from solving penalized models such as (23) might not be

implementable for all possible realizations of ζ and are therefore more difficult to interpret as optimal

recourse policies. While this does not prevent the approximation model from identifying good first-stage

decisions x∗, it implies that once x∗ is implemented and ζ̄ is observed, one needs to seek the recourse
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decision that minimizes the specific recourse problem that is being experienced,2 i.e.,

maximize
y

dT y

subject to Ax∗ +By ≤ Ψ(x∗)ζ̄

When doing so, the incurred cost is guaranteed to be smaller than what had been anticipated by the

conservative approximation scheme applied to (23).

Proof. Proof. Adding constraints (21a) and (22) to problem (10) leads to the following formulation:

gMLRC(x) := min
ζ,λ,∆

cTx+ tr(Ψ(x)∆)− (Ax)Tλ (24a)

subject to (10b)− (10f)

λ ≤ u (24b)

P∆ ≥ qλT − (q − Pζ)uT . (24c)

Similarly to what was described in the proof of Proposition 2, the function gMLRC(x) can be reformu-

lated as

gMLRC(x) = max
Y,y,W,w,S

min
ζ∈U

cTx+ dT (Y ζ + y)− uT (w +W T (q − Pζ)) (25a)

subject to P TS = Y TBT −Ψ(x)T + P TW (25b)

Ax+Bw + ST q ≤W T q + w (25c)

S ≥ 0 (25d)

w ≥ 0 , W ≥ 0 , (25e)

where w ∈ Rm and W ∈ RnU×m are respectively the dual variables associated with constraints (24b)

and (24c). Again, the constraints (25b)-(25d) can be replaced with

Ax+B(Y ζ + y) ≤ Ψ(x)ζ + w +W T (q − Pζ), ∀ ζ ∈ U ,

and decision variable S removed from the optimization problem. In this way, we obtain

gMLRC(x) = max
Y,y,W,w

min
ζ∈U

cTx+ dT (Y ζ + y)− uT (w +W T (q − Pζ)) (26a)

subject to Ax+B(Y ζ + y) ≤ Ψ(x)ζ + w +W T (q − Pζ), ∀ ζ ∈ U (26b)

w ≥ 0 , W ≥ 0 . (26c)

2As discussed in Delage and Iancu (2015), such a procedure needs in principle to be applied for any solution scheme that

does not guarantee “Bellman-optimality” and in particular for the solution of models where affine decision rules are employed.
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We next introduce new variables z and Z as

z := w +W T q , Z := −W TP ,

where z ∈ Rm and Z ∈ Rm×nζ . Therefore, problem (25) can be reformulated as

gMLRC(x) = max
Y,y,W,Z,z

min
ζ∈U

cTx+ dT (Y ζ + y)− uT (z + Zζ) (27a)

subject to Ax+B(Y ζ + y) ≤ Ψ(x)ζ + z + Zζ, ∀ ζ ∈ U (27b)

Z = −W TP (27c)

z −W T q ≥ 0 (27d)

W ≥ 0 . (27e)

We finally show that constraints (27c)-(27e) are equivalent to the following constraint:

z + Zζ ≥ 0 , ∀ ζ ∈ U . (28)

This is done by considering that, for some fixed j, duality can once again be used to reformulate the

constraint that

max
w:j

zj −W T
:j q ≥ 0 (29a)

subject to ZTj: = −P TW:j (29b)

W:j ≥ 0 (29c)

as the constraint that

min
ζ

zj + Zj:ζ ≥ 0 . (30a)

subject to Pζ ≤ q (30b)

This completes our proof. �

The relation between MLRC and schemes that employ affine decision rules can be exploited to

demonstrate that MLRC is always a feasible approximation model. Namely, it provides a feasible

first-stage solution even in situations where AARC model (2) is an infeasible problem.

Corollary 1. Both MLRC (20) and the optimization problem obtained by employing static or affine

decision rules in problem (23) are conservative approximations of problem (1) which necessarily admit

a feasible solution.
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This result follows from the fact that MLRC is equivalent to employing affine decision rules in

problem (23) which can be shown to have a static feasible solution. In particular, let x̄ be any member

of X , while letting y(ζ) := 0 and for each zi(ζ) := max(0; maxζ∈U e
T
i (Ax̄ − Ψ(x̄)ζ)), where ei ∈ Rm is

the i-th column of the identify matrix, and which is finite since U was assumed to be bounded. There

must therefore exist a feasible assignment for MLRC (20) otherwise it would be in contradiction with

Proposition 5.

Remark 1. It is worth mentioning that any information about λ∗ that takes the shape of linear inequal-

ities Pλλ
∗ ≤ qλ can be exploited in a very similar way as was done in this section with the information

λ∗ ≤ u. Indeed, in doing so, one obtains a conservative approximation model that is equivalent to

employing affine decision rules in the following penalized ARO:

maximize
x∈X ,y(ζ),z(ζ)

min
ζ∈U

cTx+ dT y(ζ)− qTλ z(ζ)

subject to Ax+By(ζ) ≤ Ψ(x)ζ + P Tλ z(ζ), ∀ ζ ∈ U

z(ζ) ≥ 0 , ∀ ζ ∈ U .

Furthermore, if Pλ is such that there exists some z such that P Tλ z > 0 (as is the case when Pλ = I

and qλ = u) then the resulting conservative approximation is guaranteed to be feasible. The question

remains however of how to efficiently identify a compact set of inequalities, through Pλ and qλ, that

describes a tight outer approximation of the convex hull of the vertices of {λ |λ ≥ 0, BTλ = d}.

4.2 Exploiting Valid Conic Inequalities

Our second source of improvement for the LRC model comes from considering the following set of

quadratic equalities:  Λ ∆T

∆ Ξ

 =

 λ

ζ

 [
λT ζT

]
, (31)

where Λ ∈ Rm×m and Ξ ∈ Rnζ×nζ , such that Λ := λλT and Ξ := ζζT . It is well known that this system

of equations can be relaxed using the following matrix inequality Λ ∆T

∆ Ξ

 �
 λ

ζ

 [
λT ζT

]
,
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where A � B indicates that A − B is in the cone of positive semi-definite matrices. This non-linear

matrix inequality reduces to a linear matrix inequality after applying Schur’s complement
Λ ∆T λ

∆ Ξ ζ

λT ζT 1

 � 0 . (32)

This constraint can be added to problem (10) with additional valid inequalities involving Λ and Ξ to

obtain the tighter SDP-LRC model.

Proposition 6. Given Assumption 4, the following semi-definite programming linearized robust coun-

terpart is a conservative approximation of problem (1):

gSDP-LRC(x) = min
ζ,λ,∆,Λ,Ξ

cTx+ tr(Ψ(x)∆)− (Ax)Tλ (33a)

subject to BTλ = d (33b)

Pζ ≤ q (33c)

0 ≤ λ ≤ u (33d)

∆B = ζdT (33e)

P∆ ≤ qλT (33f)

P∆ ≥ qλT − (q − Pζ)uT (33g)
Λ ∆T λ

∆ Ξ ζ

λT ζT 1

 � 0 (33h)

ΛB = λdT (33i)

PΞP T + qqT ≥ PζqT + qζTP T (33j)

0 ≤ Λ ≤ uλT (33k)

Λ + uuT ≥ λuT + uλT . (33l)

Moreover, the optimal value of maxx∈X gSDP-LRC(x) is necessarily larger than or equal to the optimal

value of LRC (9) and MLRC (20).

Proof. Proof. We start by including the new variables Λ and Ξ and constraint (32) in problem (10).

One can then realize that constraints (8d) and (8e) can now help tighten the feasible region. Finally, a

final tightening step can be achieved by exploiting the fact that Pζ ≤ q implies the following:

q − Pζ ≥ 0⇒ (q − Pζ)(q − Pζ)T ≥ 0⇒ PζζTP T + qqT ≥ PζqT + qζTP T
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and that λ ≤ u implies that λλT ≤ uλT and

(u− λ)(u− λ)T ≥ 0 ⇒ uuT − uλT − λuT + λλT ≥ 0 ,

which together lead to constraints (33j), (33k), and (33l) after replacing Ξ := ζζT and Λ := λλT . �

Note that, although we presented gSDP-LRC(x) as a minimization problem, a semi-definite program-

ming duality can be employed to obtain a maximization representation of this function that can be

integrated with the maximization in x as was done with other LRC models. We, however, omit the de-

tails of this reformulation for aesthetics reasons. Given the connections to AARC that were established

regarding the LRC and MLRC models, we suspect that a similar connection could be obtained for the

SDP-LRC model. In fact, the authors of Ardestani-Jaafari and Delage (2016) were able to establish

such a connection for a special case of the SDP-LRC model. A quick look at their result suggests that

the connection that could be established here is highly technical and would provide rather limited new

insights.

5 LRC for General Uncertainty Sets

In this section, we extend our LRC model so that it can accomodate general convex uncertainty sets,

i.e., U is not polyhedral. In this regard, we will instead consider uncertainty sets that can be represented

as

Ugeneral := {ζ ∈ Rnζ | fl(ζ) ≤ ql, ∀ l = 1, . . . , L} (34)

using a set of convex fl(·) functions. To establish an extension of LRC, we will need to make use of the

notion of perspective functions for a special class of convex functions.

Assumption 5. The uncertainty set Ugeneral defines a bounded convex set containing a strictly feasible

solution ζ̄ such that fl(ζ̄) < ql for all l = 1, . . . , L. Furthermore, for each l = 1, . . . , L, the function

fl(·) is a lower semi-continuous convex function. This implies that, according to the Fenchel-Moreau

Theorem, it must be that fl(x) = supy x
T y − f∗(y), where fl∗(y) is the convex conjugate of fl(·), i.e.,

fl∗(y) := supz y
T z − fl(z).

Definition 1. (Hiriart-Urruty and Lemaréchal, 2001) For each l = 1, . . . , L, let hl : Rnζ × R+ → R

be the closure of the perspective function hl(z, t) := cl tfl(z/t). In particular, given that fl(·) satisfies
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Assumption 5, we have that

hl(z, t) := sup
y
zT y − tfl∗(y) =


tfl(z/t) if t > 0

limt→0+ tfl(z/t) if t = 0

∞ otherwise

.

Based on this definition, it is clear that hl(z, t) is jointly convex in z and t.

Under the uncertainty set Ugeneral, when Assumption 4 is satisfied, the value of g(x) becomes

g(x) = min
ζ,λ

cTx+ (Ψ(x)ζ)Tλ− (Ax)Tλ (35a)

subject to BTλ = d (35b)

fl(ζ) ≤ ql, ∀ l (35c)

0 ≤ λ ≤ u (35d)

ζλTB = ζdT (35e)

λifl(ζ) ≤ λiql , ∀ i , ∀ l (35f)

(ql − fl(ζ))(ui − λi) ≥ 0 , ∀ i , ∀ l . (35g)

As was done for polyhedral sets, under Assumption 5 this optimization model can be linearized

using perspective functions:

g(x) ≥ gGLRC(x) = min
ζ,λ,∆

cTx+ tr(Ψ(x)∆)− (Ax)Tλ (36a)

subject to BTλ = d (36b)

fl(ζ) ≤ ql, ∀ l (36c)

0 ≤ λ ≤ u (36d)

∆B = ζdT (36e)

hl(∆:i, λi) ≤ qlλi , ∀ i , ∀ l (36f)

hl(ζui −∆:i, ui − λi) ≤ ql(ui − λi) , (36g)

where constraint (36f) is derived from

fl(ζ) ≤ ql ⇒ λifl(ζ) ≤ qlλi ⇒ λi(sup
y
ζT y − fl∗(y)) ≤ qlλi ⇒ sup

y
(λiζ)T y − λifl∗(y) = h(∆:i, λi) ≤ qlλi
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and constraint (36g) is derived from(
ql − fl(ζ)

)
(ui − λi) ≥ 0⇒ (ui − λi)fl(ζ) ≤ ql(ui − λi)

⇒ sup
y

(ui − λi)ζT y − (ui − λi)fl∗(y) ≤ ql(ui − λi)

⇒ hl(ζ(ui − λi), ui − λi) ≤ ql(ui − λi)

⇒ hl(ζui −∆:i, ui − λi) ≤ ql(ui − λi) ,

for all i and for all l, and where the term ζλi is linearized through ∆:i. One might apply duality theory

to problem (36) to derive a compact mathematical programming representation of the LRC model

under Ugeneral. Regarding the relation between this more general LRC model and AARC, Appendix

A will demonstrate that the problem maximizex∈X gGLRC(x) always produces a tighter conservative

approximation than employing affine decision rules in problem (23). It is worth noting however that,

based on the proof presented in Appendix A, it appears legitimate to believe that the two schemes are

equivalent in most practical situations.

6 Examples

In this section, we provide examples of four applications for which the schemes presented in Section

4 (namely MLRC and SDP-LRC) can provide strict improvement compared to approaches that are

commonly used in practice. The first and second applications, namely a multi-item newsvendor problem

and a surgery block allocation problem, will involve special cases of ARO (known as complete recourse

problem) for which MLRC trivially reduces to AARC so that only SDP-LRC can improve performance.

Surprisingly, for the surgery allocation problem we will show that AARC already provides strictly

better solutions than the model recently presented in Denton et al. (2010), although the latter model

was believed by the authors to provide an optimal robust solution. For the third and fourth application,

namely the facility location problem introduced in Section 1 and a multi-product assembly problem,

we will show how one obtains a u that satisfies Assumption 4 in order to formulate the MLRC model

and demonstrate that using this MLRC can generate strict improvement. We provide further evidence

of the extent of this improvement in Section 7 where extensive numerical experiments for the facility

location problem are presented.

We note that, in this section, in order to be more concise in our descriptions, we let I and J

represent the sets {1, . . . ,m} and {1, . . . , n} respectively, and consider that i ∈ I and j ∈ J when the

membership for i and j is left unspecified.
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6.1 Multi-item newsvendor problem

Consider the following robust multi-item newsvendor problem:

max
x∈X

min
ζ∈U

∑
j

rj min(xj , ζj)− cjxj + sj max
j

(xj − ζj , 0)− pj max(ζj − xj , 0) , (37)

where rj , cj , sj ≤ rj , and pj denote sale price, ordering cost, salvage price, and shortage cost of a unit

of the j-th item, j ∈ J , respectively, and ζj denotes the demand for item j for each j. Problem (37) is

a special case of ARO, as

max
x∈X ,y(ζ)

min
ζ∈U

∑
j

yj(ζ)

subject to yj(ζ) ≤ (rj − cj)xj − (rj − sj)(xj − ζj) , ∀ j ∈ J ,∀ ζ ∈ U

yj(ζ) ≤ (rj − cj)xj − pj(ζj − xj) , ∀ j ∈ J ,∀ ζ ∈ U .

In Ardestani-Jaafari and Delage (2016), the authors show that affine decision rules are actually

optimal in this problem when U is defined as

U(Γ) =


ζ

∣∣∣∣∣∣∣∣∣∣∣∣
∃ δ+, δ− ∈ Rn,

δ−j ≥ 0, δ+
j ≥ 0

δ+
j + δ−j ≤ 1 , ∀ j∑
j δ

+
j + δ−j = Γ

ζj = ζ̄j + (δ+
j − δ

−
j )ζ̂j


,

where affine decision rules are made with respect to (δ+, δ−), and when Γ is an integer value. One should

however explore for other uncertainty set whether it is possible to get a conservative approximation that

is tighter than AARC using the MLRC or SDP-LRC models. Regarding the MLRC model, one can

actually show that the dual variables of the recourse problem are already bounded for this multi-item

newsvendor problem. Specifically, the dual problem takes the shape of

min
λ1,λ2

∑
j

λ1
j ((rj − cj)xj − (rj − sj)(xj − ζj)) +

∑
j

λ2
j ((rj − cj)xj − pj(ζj − xj))

subject to λ1
j + λ2

j = 1 , ∀ j ∈ J ,

λ1 ≥ 0 , λ2 ≥ 0 ,

which already implies that λ1 ≤ 1 and λ2 ≤ 1 for any feasible solution. Hence, when formulating MLRC

model (20) with u = 1, one obtains a model that is exactly equivalent to LRC model (9) and AARC

(following Proposition 2). We are therefore left with the question of whether SDP-LRC can provide

strict performance improvements. We will achieve this with the following example.
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Let us consider an example with n = 3, r = [ 80 80 80 ], c = [ 70 50 20 ], s = [ 20 15 10 ],

and p = [ 60 60 50 ]. Demand vector ζ is defined in the following uncertainty set U :

Ũ(Γ) =

ζ
∣∣∣∣∣∣∣∣∣ ∃ δ

+, δ− ∈ Rn,

δ−j ≥ 0, δ+
j ≥ 0 ζ1 = ζ̄j + ζ̂j(δ

+
1 + δ+

2 − δ
−
1 − δ

−
2 )/2

δ+
j + δ−j ≤ 1 , ∀ j & ζ2 = ζ̄j + ζ̂j(δ

+
2 + δ+

3 − δ
−
2 − δ

−
3 )/2∑

j δ
+
j + δ−j = Γ ζ3 = ζ̄j + ζ̂j(δ

+
3 + δ+

1 − δ
−
3 − δ

−
1 )/2

 .

We compare, as it is shown in Table 1, the optimal bound on worst-case profit and the achieved worst-

case profit of solutions obtained from the LRC model, the SDP-LRC model, and the semi-definite

programming model (denoted by SDP-A&D) proposed in Ardestani-Jaafari and Delage (2016). In this

example, LRC is not exact and can actually be improved upon using models such that SDP-A&D and

SDP-LRC. In particular, the bound on best achievable worst-case profit is increased by a factor of about

3 and 10 using SDP-A&D and SDP-LRC respectively. This translates directly in some improvement

in performance of solutions of SDP-A&D and SDP-LRC which achieve a worst-case profit that are

respectively near 4 and 16 times better than what is achieved by the solution of AARC. It is also clear

that the SDP-LRC model is responsible for most of the improvement. We next study what is the price

that is paid in terms of computations.

In order to evaluate how each model trades-off between solution computation time and quality, we

generated 10 random instances of multi-item newsvendor problems with 5, 10, 20, 30, and 40 items

and uncertainty budgets Γ varying between 10% and 90% of the total number of items. For each case,

a random instance was generated by letting r = 100 and selecting each cj uniformly on the interval

[1, 60], each pj ∼ [1, cj ], and sj ∼ [1, cj ]. The uncertainty set was randomly constructed using

ŨP (Γ) =

ζ
∣∣∣∣∣∣ ∃ δ+, δ− ∈ Rn, δ−j ≥ 0, δ+

j ≥ 0, δ+ + δ− ≤ 1,
∑
j

δ+
j + δ−j = Γ, ζ = ζ̄ + diag(ζ̂)P (δ+ − δ−)

 .

where ζ̂ ∼ [1, ζ̄] with ζ̄ = 100, and where P ∈ Rn×n is a matrix where each term was uniformly drawn

from [−1, 1] and each row normalized so that it sums to one.

Table 2 presents the average computation time take by CPLEX 12.7.1 to solve AARC, and by

DSDP 5.8 (Benson et al., 2000) to solve SDP-LRC, and SDP-A&D. It also presents the average relative

improvement achieved by SDP-LRC and SDP-A&D in terms of optimal bound on best achievable worst-

case profit. Based on these results, it appears that SDP-LRC does give rise to a heavier computation

burden than SDP-A&D but also to solutions of noticeably better quality (19% improvement on average).
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Table 1: Comparison of optimal bound and worst-case profit associated to solutions obtained from

conservative approximation models and exact models in a newsvendor problem

AARC/(M)LRC SDP-LRC Exact model SDP-A&D†

Optimal bound on worst-case profit 41.83 411.08 825.83 113.01

Worst-case profit of solution 41.83 664.76 825.83 150.94

† SDP-A&D refers to the semi-definite programming model proposed in Ardestani-Jaafari and Delage (2016)

6.2 Surgery block allocation problem

Consider the following surgery block allocation problem:

minimize
x,Z,y(ζ)

max
ζ∈U

c
∑
i

xi + d
∑
i

yi(ζ) (38a)

subject to yi(ζ) ≥
∑
j

ζjZij − wxi , ∀ i ∈ I , ∀ ζ ∈ U (38b)

y(ζ) ≥ 0 , ∀ ζ ∈ U (38c)∑
i

Zij = 1 , ∀ j ∈ J (38d)

Zij ≤ xi , ∀ i ∈ I (38e)

x ∈ {0, 1}m , Z ∈ {0, 1}m×n , (38f)

where for each i = 1, 2, . . . ,m, variable xi denotes whether we will open Operating Room (OR) i or not,

while, for each j = 1, 2, . . . , n, the variable Zij ∈ {0, 1} decides whether surgery block j will be allocated

to OR i. Each ζj captures the duration of surgery block j, which is a priori not known exactly. As the

surgeries are performed, if the total amount of time needed in OR i exceeds the planned session length

w, then one has to schedule some overtime yi. The cost model includes a fixed cost c for opening any

OR and a variable overtime cost d. Note that constraint (38d) captures the fact that a surgery block

needs to be assigned to exactly one OR, while constraint (38e) captures the fact that surgery blocks

can be assigned to an OR only if it is opened.

Proposition 7. When U := {ζ ∈ Rn | ∃ δ ∈ [0, 1]n, ζ = ζ̄ + ζ̂δ,
∑

j δj ≤ Γ}, employing affine decision

rules in the surgery block allocation problem provides a conservative approximation that is at least as

tight as the reformulation proposed in Denton et al. (2010) (see model (40) in that paper).
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Proof. Proof. Indeed, the model presented in Denton et al. (2010) can be rewritten as

minimize
x,Z

gDenton(x, Z)

subject to
∑
i

Zij = 1 , ∀ j ∈ J

Zij ≤ xi , ∀ i ∈ I

x ∈ {0, 1}m , Z ∈ {0, 1}m×n ,

where

gDenton(x, Z) := min
α,γ,κ

∑
i

cxi +
∑
i

γi + Γα

subject to α ≥ dζ̂jZij − κij , ∀ i ∈ I , ∀ j ∈ J

γi ≥
∑
j

κij − d(wxi −
∑
j

ζ̄jZij)

α ≥ 0 , γ ≥ 0 , κ ≥ 0 ,

where α ∈ R, γ ∈ Rm, and κ ∈ Rm×n. By duality, we can also represent this function as

gDenton(x, Z) := max
λ,∆

∑
i

cxi +
∑
ij

dζ̂jZij∆ij −
∑
i

d(wxi −
∑
j

ζ̄jZij)λi

subject to 0 ≤ λi ≤ 1 , ∀ i ∈ I

0 ≤ ∆ij ≤ λi , ∀ i ∈ I , ∀ j ∈ J∑
ij

∆ij ≤ Γ ,

where λ ∈ Rm and ∆ ∈ Rm×n.

Based on Proposition 2 and the details presented in the proof of Proposition 9, we now know that

employing affine decision rules in problem (38) is equivalent to optimizing

minimize
x,Z

gLRC(x, Z)

subject to (38d), (38e), (38f) ,
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where

gLRC(x, Z) := max
λ,δ,∆

∑
i

cxi +
∑
ij

dζ̂jZij∆ij −
∑
i

d(wxi −
∑
j

ζ̄jZij)λi

subject to 0 ≤ λi ≤ 1 , ∀ i ∈ I

0 ≤ δj ≤ 1 , ∀ j ∈ J∑
j

δj ≤ Γ

0 ≤ ∆ij ≤ δj , ∀ i ∈ I , ∀ j ∈ J

∆ij ≤ λi , ∀ i ∈ I , ∀ j ∈ J∑
j

∆ij ≤ Γzi , ∀ i ∈ I

1− δj − λi + ∆ij ≥ 0 , ∀ i ∈ I , ∀ j ∈ J∑
j

δj −
∑
j

∆ij ≤ Γ(1− λi) , ∀ i ∈ I .

We will now exploit the fact that we can add the constraint
∑

ij ∆ij ≤ Γ to the problem associated

to gLRC(x, Z) without affecting the optimal value that it will return. This is because, for any optimal

solution (λ∗, δ∗,∆∗), one can simply replace ∆∗ with ∆′ such that ∆′ij := Zij∆ij satisfies all constraints

and achieves the same objective. Indeed we have that

0 ≤ ∆ij ≤ δj ⇒ 0 ≤ ∆ijZij ≤ δj ⇒ 0 ≤ ∆′ij ≤ δj

∆ij ≤ zi ⇒ ∆ijZij ≤ zi ⇒ ∆′ij ≤ zi∑
j

∆ij ≤ Γzi ⇒
∑
j

∆ijZij ≤ Γzi ⇒
∑
j

∆′ij ≤ Γzi

∑
ij

∆′ij =
∑
ij

∆ijZij ≤
∑
ij

δjZij =≤
∑
j

δj
∑
i

Zij =
∑
j

δj ≤ Γ .
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Hence, we have that

gLRC(x, Z) = max
λ,δ,∆

∑
i

cxi +
∑
ij

dζ̂jZij∆ij −
∑
i

d(wxi −
∑
j

ζ̂jZij)zi

subject to 0 ≤ zi ≤ 1 , ∀ i ∈ I

0 ≤ δj ≤ 1 , ∀ j ∈ J∑
j

δj ≤ Γ

0 ≤ ∆ij ≤ δj , ∀ i ∈ I , ∀ j ∈ J

∆ij ≤ zi , ∀ i , ∀ j ∈ J∑
j

∆ij ≤ Γzi , ∀ i ∈ I

1− δj − λi + ∆ij ≥ 0 , ∀ i ∈ I , ∀ j ∈ J∑
j

δj −
∑
j

∆ij ≤ Γ(1− λi) , ∀ i ∈ I∑
ij

∆ij ≤ Γ ,

meaning that, for any feasible x and Z, it must be that gLRC(x, Z) ≤ gDenton(x, Z), since the latter

involves an optimization model that is exactly the same as the former except that it imposes fewer

constraints. We conclude that exploiting affine decision rules must lead to a tighter conservative ap-

proximation. �

Consider a particular problem instance in which there are three surgery blocks and 2 operating

rooms that can run for 8 hours. The cost of opening a room is $39,000, and the overtime cost is $100

per minute. The duration of each of the three surgery blocks is planned to be equal to 0 min, 240 min,

and 320 min, but could last up to 160 min, 352 min, and 512 min respectively. We set the budget to

Γ = 2.

In this context, one can show that the model proposed by Denton will suggest opening only one OR,

where all blocks will be scheduled for an estimated worst-case total cost of $822,000. On the other hand,

one can verify that opening both ORs and scheduling the biggest block in one OR and the two smaller

ones in the second OR leads to a worst-case total cost of $812,000. Note that the worst-case total cost

of this solution is estimated at $828,000 by the Denton model. One can further confirm that the exact

optimal solution is the one that is returned by the AARC (and LRC) model. Hence, this exact solution

will also be identified by MLRC, which is actually equivalent to AARC following a siilar argument as

presented in Section 6.1, and by SDP-LRC. Table 3 summarizes the optimal bounds on worst-case cost
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obtained for the two types of solutions (i.e., open one or two ORs) using AARC, MLRC, SDP-LRC,

and an exact solution of ARO.

The fact that employing affine decision rules can provide better solutions than the model in Denton

et al. (2010) is surprising, as it is stated in Denton et al. (2010) that their proposed reformulation

provides an exact solution to the robust surgery block allocation problem. The issue in the argument

presented by the authors of that paper is found in their Proposition 6, which states that a certain poly-

hedron only has integer extreme points. Appendix B provides arguments that disprove this proposition.

6.3 Location-transportation problem

We now revisit the location-transportation problem presented in (3) and describe how to formulate the

associated MLRC. We will then establish whether MLRC is able to provide a less conservative solution

than the one obtained by AARC and the model proposed in Ardestani-Jaafari and Delage (2017) for

the instance of this problem described in Example 1.

In order to formulate the MLRC model, one first needs to identify a u that satisfies Assumption 4.

To do so, we start by reminding the reader of the recourse problem that arises in this application:

maximize
y

−
∑
i

cixi + kivi +
∑
i

∑
j

ηijyij (39a)

subject to
∑
i

yij ≤ ζj , ∀ j ∈ J (39b)∑
j

yij ≤ xi , ∀ i ∈ I (39c)

y ≥ 0 . (39d)

Hence, the dual formulation of the recourse function takes the form

minimize
λ1,λ2,λ3

−
∑
i

cixi + kivi +
∑
j

ζjλ
1
j +

∑
i

xiλ
2
i (40a)

subject to λ1
j + λ2

i − λ3
ij = ηij , ∀ i ∈ I , ∀ j ∈ J (40b)

λ1 ≥ 0 , λ2 ≥ 0 , λ3 ≥ 0 , (40c)

where λ1 ∈ Rn, λ2 ∈ Rm, and λ3 ∈ Rm×n are dual variables associated with constraints (39b), (39c),

and (39d) respectively. Our goal is therefore to identify tight bounds for λ1∗, λ2∗, and λ3∗.

Since x ≥ 0 and ζ ≥ 0, the objective function of problem (40) is non-decreasing in λ1 and λ2. One

can therefore conclude that, at optimum, each term of λ1∗ will be such that it will either be equal to 0
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or involved in a one active constraint among the set of constraints

λ1
j + λ2

i ≥ ηij , ∀ i ∈ I , ∀ j ∈ J .

It must therefore be that

λ1∗
j ≤ max(0 , max

i
ηij − λ2∗

i ) ≤ max(0 , max
i
ηij) := u1

j , ∀ j ∈ J .

Similarly, in the case of λ2∗, we have

λ2
i ≤ max(0 , max

j
ηij − λ1∗

j ) ≤ max(0 , max
j
ηij) := u2

i , ∀ i ∈ I .

Finally, since λ3∗
ij = λ1∗

j +λ2∗
i −ηij := u3

ij , one could conclude that λ3
ij ≤ max(0 , maxi ηij+maxj ηij−ηij).

Based on propositions 4 and 5, we know that we obtain conservative approximation to problem (3)

when employing affine decision rules in the following augmented model:

maximize
x,y(ζ),z1(ζ),z2(ζ),z3(ζ),v

min
ζ∈U

−
∑
i

cixi − kivi +
∑
i

∑
j

ηijyij(ζ)−
∑
i

u1
i z

1
i (ζ)−

∑
j

u2
jz

2
j (ζ)−

∑
ij

u3
ijz

3
ij

subject to
∑
i

yij(ζ) ≤ ζj + z1
j (ζ) , ∀ j ∈ J , ∀ ζ ∈ U∑

j

yij(ζ) ≤ xi + z2
i (ζ) , ∀ i ∈ I , ∀ ζ ∈ U

y(ζ) ≥ 0 , ∀ ζ ∈ U

z1(ζ) ≥ 0 , z2(ζ) ≥ 0 , ∀ ζ ∈ U

0 ≤ xi ≤Mvi , ∀ i ∈ I

vi ∈ {0, 1} , ∀ i ∈ I .

where z1 : Rn → Rn, z2 : Rn → Rm, and z3 : Rn → Rm×n can be interpreted as violation adjustments

for constraints (3b), (3c), and (3d) respectively. In Ardestani-Jaafari and Delage (2017), the authors

employed a special case of such a conservative approximation where z1
j (ζ) := z1

j ζj , z
2(ζ) := 0, and

z3(ζ) := 0, and showed that there exist instances of the location-transportation problem for which this

conservative approximation is strictly tighter than employing affine decision rules directly in model (3).

When addressing the specific problem instance presented in Example 1, one can verify whether

the bounds for λ1∗, λ2∗, and λ3∗ can be improved. This can be done by solving problem (19) with

M := 2‖η‖∞ = 11.8 since for k = 1, 2, 3 we have that λk∗ ≤ maxij |ηij |, and exploiting the proposed

constraint generation scheme. This leads to establishing the following bounds:

u1 :=


5.9

5.9

4.9

 u2 :=

 5.9

5.9

 u3 :=

 0 0.6 1

7.2 0 1

 .
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Table 4 compares the performance of AARC proposed by Ben-Tal et al. (2004), ELAARC proposed

by Ardestani-Jaafari and Delage (2017) and our proposed MLRC in this problem instance. One can

observe from the table that while AARC exhibits “over-conservatism” by refusing to open any of the

facilities, ELAARC instead provides facility location plan that achieves 70% of the best worst-case profit

possible. The optimality gap is actually reduced to zero when using MLRC. It is worth remind the reader

that AARC (and implicitely ELAARC and MLRC) was shown in Ardestani-Jaafari and Delage (2017)

to provide an exact solution to this model when Γ = 1 or Γ = 3, however this example confirms that

some improvement is possible for other sizes of budgets and that MLRC is a promising alternative to

consider. This point of view will be further reinforced in the extensive numerical experiments presented

in Section 7.

Finally, we compare the computational time of LRC, MLRC, and ELAARC as it is illustrated in

Table 5. From this table, one can observe that the computational time of MLRC is not significantly

heavier than that of the other models, and it can be solved in less than 23 minutes using CPLEX

solver for medium-sized instances. We also remark that larger sized instances of MLRC might be more

effectively addressed using a similar decomposition scheme as presented in Ardestani-Jaafari and Delage

(2017).

6.4 Multi-product assembly problem

In this problem, a manufacturer produces n products using m different types of parts. It is a two-stage

problem wherein, the manufacturer pre-orders xi units for part i ∈ I with a cost of ci per unit in the

first stage; and when demand is realized, it must be determined how many products, yj , to make for

each type j ∈ J . The robust multi-product assembly problem can be formulated as follows:

maximize
x,y(ζ)

min
ζ∈U

−cTx+ (q − l)T y(ζ) + sT (x−Ay(ζ)) (41a)

subject to y(ζ) ≤ ζ , ∀ ζ ∈ U (41b)

Ay(ζ) ≤ x ,∀ ζ ∈ U (41c)

y(ζ) ≥ 0 ,∀ ζ ∈ U (41d)

0 ≤ x ≤M , (41e)

where ζ ∈ Rn is the uncertain demand for each product and where parameters q and l denote, respec-

tively, the selling price and production cost per unit of the products, while s denotes the salvage unit

value of unused parts. Finally Aij denotes the number of units of part i that is required to assemble
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product j.

As was done for the previous example, one can hope to identify a tighter conservative approximation

than with AARC by employing affine decision rules in the following augmented model:

maximize
x,y(ζ),z1(ζ),z2(ζ),z3(ζ)

min
ζ∈U

−cTx+ (q − l)T y(ζ) + sT (x−Ay(ζ))− u1T z1(ζ)− u2T z2(ζ)− u3T z3(ζ)

subject to y(ζ) ≤ ζ + z1(ζ) ,∀ ζ ∈ U

Ay(ζ) ≤ x+ z2(ζ) ,∀ ζ ∈ U

y(ζ) ≥ 0− z3(ζ) ,∀ ζ ∈ U

z1(ζ) ≥ 0 ,∀ ζ ∈ U

z2(ζ) ≥ 0 ,∀ ζ ∈ U

z3(ζ) ≥ 0 ,∀ ζ ∈ U

0 ≤ x ≤M ,

where z1 : Rn → Rn, z2 : Rn → Rm, and z3 : Rn → Rn can be interpreted as violation adjustments for

constraints (41b), (41c), and (41d). Yet, in this case, the u bounds are obtained from the dual problem:

minimize
λ1,λ2,λ3

ζTλ1 + xTλ2 (42a)

subject to λ1
j +

∑
i

Aijλ
2
i − λ3

j = qj − lj +AT:js , ∀ j ∈ J (42b)

λ1 ≥ 0 , λ2 ≥ 0 , λ3 ≥ 0 , (42c)

where λ1 ∈ Rn, λ2 ∈ Rm, and λ3 ∈ Rn are the dual variables associated to constraints (41b), (41c), and

(41d). Here again, the objective function is non-decreasing in λ1 and λ2 so that, at optimum, each term

of these two vectors is either zero or is involved in at least one active constraint among the following

set:

λ1
j +

∑
i

Aijλ
2
i ≥ qj − lj +AT:js , ∀ j ∈ J .

This indicates to us that

λ1∗
j ≤ max(0 , qj − lj +AT:js−

∑
i

Aijλ
2∗
i ) ≤ max(0 , qj − lj +AT:js) := u1

j ,

and that

λ2∗
i ≤ max(0 , max

j∈Ji

1

Aij
(qj − lj +AT:js− λ1

j −
∑
i′ 6=i

Aijλ
2∗
i )) ≤ max(0 , max

j∈Ji

1

Aij
(qj − lj +AT:js)) := u2

i ,
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where the set of indices Ji := {j |Aij 6= 0}. Finally, since λ3 is uniquely determined based on λ1 and

λ2, we have that

λ3
j = λ1

j +
∑
i

Aijλ
2
i − qj + lj −AT:js ≤ u1

j +
∑
i

Aiju
2
i − qj + lj −AT:js := u3

j .

We conclude this example with a description of the specific context in which exploiting the infor-

mation about the bound u on λ∗ leads to a strictly tighter conservative approximation. In particular,

consider a multi-product assembly problem with three products and two different types of parts. The

pre-order variable x is bounded by 100,000, the cost of parts A and B are, respectively, $25 per unit

and $3 per unit, while the salvage value is $4 per unit and $1 per unit. Furthermore, the difference

between the selling price and the unit production cost of each product is: $380/unit, $800/unit, and

$1200/unit respectively for products #1 to #3. Next, we have that product #1 requires 9 units of

both parts, product #2 requires 5 units of part B, and #3 requires 9 units of A and 4 units of B.

Finally, for products #1 to #3, the nominal demand is respectively of 9000, 10,000, and 8000 units

while the worst-case demand for each is 1000, 2000, and 0 units respectively. In this specific context,

one can exploit the above closed-form bounds u1 := [ 425 805 1240 ]T , u2 := [ 140 310 ]T , and

u3 := [ 4050 1550 2500 ]T . However, using problem (19), with M := 4050, allows us to tighten these

bounding vectors even more:

u1∗ :=


335

795

1160

 u2∗ :=

 129

290

 u3∗ :=


2275

655

0

 .
As it is shown in Table 6, when the budget of uncertainty is set to Γ = 2, a direct application of

affine decision rules in problem (41) will lead to a worst-case profit estimated at 2.474 million dollars;

meanwhile employing affine decision rules in the equivalent formulation that allows penalized violations

achieves a worst-case profit estimated at 2.722 million dollars (namely a 10% increase in profit). This

confirms that the MLRC model can provide a strictly tighter conservative approximation for this type

of problem.

7 Extensive Numerical Study of Location-transportation

Problem

In this section, we perform an extensive comparison of the quality of the solutions that are provided for

the location-transportation problem of Section 6.3 by AARC, MLRC, and the ELAARC model proposed
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by Ardestani-Jaafari and Delage (2017) on a set of randomly generated location-transportation problem

instances. In particular, we generated 1000 instances of a problem containing 5 facility and 10 customer

locations, where the nominal demand and maximum deviation are respectively equal to ζ̄j = 20, 000

and ζ̂j = 0.9ζ̄j = 18, 000 for all j while the variable and fixed capacity costs are respectively c = 0.6 and

K = 50, 000. In each instance, the marginal revenue ηij associated to goods shipped from each location

i ∈ I to each customer j ∈ J is independently and identically drawn from a uniform distribution over

the interval [4, 7].

In discussing our finding, we will make use the following expressions which are borrowed from

Ardestani-Jaafari and Delage (2017):

• The “optimized worst-case bound” of a conservative approximation model refers to the best lower

bound on worst-case profit that can be achieved according to this model (i.e., optimal value of the

conservative approximation model).

• The “optimal worst-case profit” of a problem instance refers to the best worst-case profit that can

be achieved for this instance.3

• The “relative optimized bound gap” of a conservative approximation model refers to the relative

difference between the optimal worst-case profit of the problem instance and the optimized worst-

case bound of this model.

• The “relative suboptimality gap” of the solution of a conservative approximation model refers

to the relative difference between the optimal worst-case profit for a problem instance and the

worst-case profit achieved when implementing the approximate facility location decisions while

the transportation plan is re-optimized when the demand is observed.

Regarding the quality of the optimized worst-case bound, one might first observe in Table 7 that

the average optimized bounds always strictly improves when using ELAARC and MLRC models. One

might further notice that the most significant improvements appear to occur exactly when passing

from the ELAARC model to the MLRC model. Specifically, the ELAARC and MLRC models are

able to improve the average relative optimized bound gap obtained with AARC by 0.19% and 10.10%

respectively. Furthermore, it appears that a significant gain is achieved with the introduction of MLRC,

such that the proposed relative optimized bound gap are on average less than 1.67% from being exact.

Finally, one might notice that, this reduction becomes more significant as one increases the required

3Implementation detail: The optimal value of the ARO model is obtained using the column-and-constraint generation

algorithm presented in Zeng and Zhao (2013).
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level of robustness, Γ, as long as Γ < 10. A similar observation can be made for the ELAARC model for

which the difference with AARC is barely noticeable for small values of Γ. While Ardestani-Jaafari and

Delage (2017) had noticed that marginal improvement in performance could be obtained by employing

affine decision rules in a penalized form of the recourse problem (leading to the ELAARC model), this

new study clearly illustrates how a more thorough application of this scheme can be beneficial when

the amount of uncertainty is large.

Table 8 provides additional statistics about the relative suboptimality gap of the different solutions

proposed by each approximation model in the 10,000 problem instances surveyed in Table 7 (i.e., 1000

randomly generated instances evaluated for all Γ = 1, . . . , 10). Specifically, the table indicates, the

proportion of instances for which an approximation model was able to identify a solution whose relative

suboptimality gap was within a given range. The table also presents the average and maximum relative

suboptimality gap for each conservative approximation model. While similar observations as before

could be repeated here, the main one in this table might be how the added flexibility employed in the

MLRC truly gives this approximation scheme significantly better chances of a high-quality solution in

terms of relative suboptimality gap. Numerically speaking, this did not appear to come at a price in

terms of solution time (resolution time of all three models were comparable) although this would need

to be verified in the context of larger scale problems.

8 Implications for Copositive Programming Reformula-

tions

Since the publication of the thesis of Ardestani-Jaafari (2016) on which this article is based, a few stud-

ies have shed some additional light on the connections between two-stage robust optimization problems

and reformulation schemes for non-convex quadratic programs, and in particular with copositive pro-

gramming. In Hanasusanto and Kuhn (2016), the authors consider a generalization of our ARO problem

(1) which takes the shape of a distributionally robust problem that is based on Wasserstein balls where

the uncertainty lies in both the objective and right-hand side of the recourse problem. Unlike our As-

sumption 2, they assume that the problem has complete recourse and present an equivalent copositive

program. In the case where complete recourse does not hold (as in the examples of sections 6.3 and 6.4),

the authors propose a sequence of copositive programs known to provide solutions that converge to the

optimal solution. In an article developed independently, Xu and Burer (2016) also present an equivalent
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copositive programming reformulation for two-stage robust optimization problems with right-hand side

uncertainty. Unlike in Hanasusanto and Kuhn (2016), their approach can handle convex uncertainty set

of arbitrary structure. The authors also establish a connection with AARC and a conic programming

reformulation that is obtained by approximating the copositive cone from within. In a recent revision,

the authors were inspired by our idea of bounding the dual recourse variable λ in order to provide

an exact copositive programming reformulation for relatively complete recourse problem although no

connections to AARC have yet been identified for the resulting reformulation.

In this section, we reuse the ideas of both Hanasusanto and Kuhn (2016) and Xu and Burer (2016)

to strengthen the connections between the ARO model with relatively complete recourse, copositive

programming, and both MLRC and SDP-LRC derived in Section 4. We start with an essential as-

sumption that can be made without loss of generality in order to apply the theory related to copositive

programming.

Assumption 6. The uncertain vector ζ is known to lie in the non-negative orthant, i.e. U ⊂ Rnζ+ .

This assumption is made without loss of generality since one can always redefine ζ := ζ+ − ζ− with

ζ+ ≥ 0 and ζ− ≥ 0.

We next repeat an important result of Section 4 which stated that under assumptions 1-4, the ARO

model is equivalent to maximizex∈X g(x) where g(x) is evaluated using

g(x) = min
ζ,λ

cTx+ (Ψ(x)ζ)Tλ− (Ax)Tλ (43a)

subject to BTλ = d (43b)

Pζ ≤ q (43c)

0 ≤ λ ≤ u . (43d)

In particular, it can be reformulated in a form that is more standard for non-convex quadratic programs:

g(x) = min
y

cTx+ yT Q̃(x)y + 2c̃(x)T y

subject to Ãy = b̃

y ≥ 0 ,

where y ∈ Rñ, with ñ := 2m+ nζ + nU so that y captures [λT ζT (q − Pζ)T (u− λ)T ] and where

Q̃(x) :=


0 (1/2)Ψ(x) 0

(1/2)Ψ(x)T 0 0

0 0 0

 c̃(x) :=


−(1/2)Ax

0

0

 Ã :=


BT 0 0 0

0 P I 0

I 0 0 I

 b̃ :=


d

q

u

 ,
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Based on corollary 8.1 and 8.3 of Burer (2012), one can directly establish the following completely

positive reformulation for g(x):

g(x) = min
Y,y

cTx+ tr(Q̃(x)TY ) + 2c̃(x)T y (44a)

subject to Ãy = b̃ (44b)

ÃY = b̃yT (44c) Y y

yT 1

 ∈ KCP , (44d)

where Y ∈ Rñ×ñ and where KCP is the cone of completely positive matrices, i.e.

KCP :=

{
M ∈ Rñ+1×ñ+1

∣∣∣∣∣M =
∑
k∈K

zkz
T
k for some finite {zk}k∈K ⊂ Rñ+1+1

+ \ 0

}
∪ {0} .

Given that completely positive programs are convex optimization model, one can hope to obtain a

tight bound using conic duality so that

g(x) ≥ max
W,w,t

cTx+ b̃Tw − t (45a)

subject to

 Q̃(x)− (1/2)(W T Ã+ ÃTW ) c̃(x)− (1/2)(ÃTw −W T b̃)

c̃(x)T − (1/2)(ÃTw −W T b̃)T t

 ∈ KCop ,(45b)

where t ∈ R, and where w ∈ Rny+nU+m and W ∈ Rny+nU+m×ñ contain the dual variables associated to

constraints (44b) and (44c) respectively, while KCop refers to the dual cone of KCP also known as the

cone of copositive matrices, i.e.

KCop :=
{
M ∈∈ Rñ+1×ñ+1

∣∣M = MT , zTMz ≥ 0 , ∀ z ∈ Rñ+
}
.

When attempting to prove that strong duality holds, a sufficient step consists in verifying whether

problem (45) is strictly feasible. We refer the reader to Appendix C for a complete proof of this claim.

Lemma 3. Given assumptions 4 and 6, problem (45) is strictly feasible. In particular it is even strictly

feasible when KCop is replaced with Rñ+1×ñ+1
+ ⊂ KCop.

At this point, we have assembled all the ingredient to present yet a second equivalent copositive

programming formulation of ARO for relatively complete recourse problems (see RLP model in Xu and

Burer (2016) for the original equivalent model).
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Corollary 2. Given assumptions 4 and 6, the following copositive program is equivalent to problem

(1):

maximize
x∈X ,W,w,t

cTx+ b̃Tw − t (46a)

subject to

 Q̃(x)− (1/2)(W T Ã+ ÃTW ) c̃(x)− (1/2)(ÃTw −W T b̃)

c̃(x)T − (1/2)(ÃTw −W T b̃)T t

 ∈ KCop . (46b)

Proof. Proof. Strong duality follows from the fact that the dual problem (45) is strictly feasible, follow-

ing Lemma 3, and bounded, which follows easily from Assumption 3 since it states that maxx∈X g(x)

is bounded. �

Corollary 3. Given assumptions 4 and 6, and some cone K ⊆ KCop, the conic program obtained by

replacing KCop by K in problem (46) provides a conservative approximation to problem (1). Further-

more,

1. if K = K1 := Rñ+1×ñ+1
+ , then the conic program reduces to a linear program that is equivalent to

MLRC (20);

2. if K = K2 := Rñ+1×ñ+1
+ +Kñ+1×ñ+1

PSD , i.e. the Minkowski sum of the non-negative orthant and the

cone Kñ+1×ñ+1
PSD of positive semi-definite matrices, then the conic program reduces to a semi-definite

program that is equivalent to maxx∈X gSDP-LRC(x).

3. if K1 ⊆ K ⊆ KCop then the conic program provides a tighter approximation than MLRC

4. if K2 ⊆ K ⊆ KCop then the conic program provides a tighter approximation than maxx∈X gSDP-LRC(x).

See Appendix C for proof.

Compared to Hanasusanto and Kuhn (2016), the particularity of this non-convex quadratic program

(43) is that it has a bounded feasible space which can be exploited to establish strong duality even

thought the ARO does not satisfy the complete recourse assumption. Alternatively, Xu and Burer

(2016) did propose imposing a bound on ‖λ‖2 in order to help with duality yet did not attempt to

further connect the resulting model to the AARC approach. Furthermore, the reformulation that is

obtained using ‖λ‖2 cannot readily be approximated using linear programming. One should also be

aware that there exists hierarchies of both polyhedral and semi-definite cones that can be used to

cover the range K1 ⊆ K ⊆ KCop and K2 ⊆ K ⊆ KCop respectively and produce tighter conservative

approximations albeit at a higher computational price. We refer the reader to Parrilo (2000) and Bomze

and de Klerk (2002) for some examples.
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9 Conclusions

In this paper, we proposed a linearization scheme that can be used to construct tractable conservative

approximation models for two-stage adjustable robust optimization problems with right-hand side un-

certainty. We showed that this scheme provides an alternate interpretation of models obtained through

the use of AARC. Yet, by considering the adversarial problem as a bilinear optimization problem that

needs to be linearized, it becomes very natural to identify modifications based on valid linear and

conic inequalities that will improve LRC and consequently provide tightening procedures for AARC.

Based on these results, it is clear that the LRC model can help us to better understand the quality of

solutions obtained from AARC and offers a perspective that might help design better approximation

methods for two-stage adjustable robust optimization models (e.g., the penalty based method presented

in Proposition 5) . We finally surveyed the types of improvement that our proposed models might offer

in four different operations management applications and shed some light on how this scheme relates to

approaches that are based on copositive programming reformulations as were presented in Hanasusanto

and Kuhn (2016) and Xu and Burer (2016).
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A Relation to AARC for General Uncertainty Sets

For simplicity, we present the connection between GLRC and AARC for a convex uncertainty set

described as Ugeneral := {ζ ∈ Rnζ | f(ζ) ≤ q} and when no bounds are known for the dual variables

λ ∈ Rm.

Proposition 8. Given that f(·) satisfies Assumption 5, the GLRC model presented below provides a

tighter conservative approximation than the AARC model presented in (2) when the uncertainty set is

described as Ugeneral:

maximize
x∈X

gGLRC(x) ,
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where

gGLRC(x) := min
ζ,λ,∆

cTx+ tr(Ψ(x)∆)− (Ax)Tλ (47a)

subject to BTλ = d (47b)

f(ζ) ≤ q (47c)

λ ≥ 0 (47d)

∆B = ζdT (47e)

h(∆:i, λi) ≤ qλi , ∀ i . (47f)

Proof. Proof. Based on Definition 1, constraint (47f) can be explicitly described as

sup
z

∆T
:iz − λif∗(z) ≤ qλi , ∀ i .

One can then construct the Lagrangian function of problem (47) using the following form :

L(ζ, λ,∆, y, Y, s) := cTx+ tr(Ψ(x)∆)− (Ax)Tλ+ yT (d−BTλ) + tr(Y (ζdT −∆B)

+
∑
i

si(sup
z

∆T
:iz − λif∗(z)− qλi)

= sup
z1,...,zm

cTx+ tr(Ψ(x)∆)− (Ax)Tλ+ yT (d−BTλ) + tr(Y (ζdT −∆B)

+
∑
i

si∆
T
:izi − λisif∗(zi)− qsiλi) ,

where y ∈ Rny , Y ∈ Rny×nζ , and s ∈ Rm are respectively the dual variables associated to constraints

(47b), (47e), and (47f). Now letting L(ζ, λ,∆, y, Y, s, {zi}mi=1) denote the expression on the right of the

supz1,...,zm operator, we necessarily have that

gGLRC(x) = inf
ζ : f(ζ) ≤ q

∆, λ : λ ≥ 0

sup
y,Y,s≥0,{zi}mi=1

L(ζ, λ,∆, y, Y, s, {zi}mi=1) (48a)

≥ inf
ζ:f(ζ)≤q

sup
y,Y,s≥0,{zi}mi=1

inf
∆,λ≥0

L(ζ, λ,∆, y, Y, s, {zi}mi=1) . (48b)

One can then analytically resolve the optimum in terms of λ and ∆ as

gGLRC(x) ≥ min
ζ:f(ζ)≤q

max
y,Y,s≥0,{zi}mi=1

cTx+ dT (y + Y ζ)

subject to (Ψ(x))Ti: − Y TBT
i: + sizi = 0 , ∀ i

Ai:x+Bi:y + sif∗(zi) + qsi ≤ 0 , ∀ i .
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The equality constraint can further be used in conjunction with the fact that sif∗(zi) = h∗(sizi, si) :=

supy siz
T
i y − sif(y), to obtain

gGLRC(x) ≥ min
ζ:f(ζ)≤q

max
y,Y,s≥0

cTx+ dT (y + Y ζ)

subject to Ai:x+Bi:y + h∗(Y
TBT

i: − (Ψ(x))Ti: , si) + qsi ≤ 0 , ∀ i .

After applying Sion’s minimax theorem as was done in the proof of Proposition 2, one obtains

gGLRC(x) ≥ max
y,Y,s≥0

min
ζ:f(ζ)≤q

cTx+ dT (y + Y ζ)

subject to Ai:x+Bi:y + h∗(Y
TBT

i: − (Ψ(x))Ti: , si) + qsi ≤ 0 , ∀ i ,

where the last constraint can be reformulated as

Ai:x+Bi:y + inf
si≥0

sup
ζ
Bi:Y ζ −Ψ(x)i:ζ − sif(ζ) + qsi ≤ 0

since si is not involved in the objective function. Given that there exists a point ζ̄ such that f(ζ̄) < q,

strong duality theory will apply here and allow one to reformulate this constraint as

Ai:x+Bi:y + sup
ζ

inf
si≥0

Bi:Y ζ −Ψ(x)i:ζ − sif(ζ) + qsi ≤ 0 ,

and finally

Ai:x+Bi:y + sup
ζ:f(ζ)≤q

Bi:Y ζ −Ψ(x)i:ζ ≤ 0 .

These steps allow us to reach our conclusion:

gGLRC(x) ≥ max
y,Y

min
ζ:f(ζ)≤q

cTx+ dT (y + Y ζ)

subject to Ax+B(y + Y ζ) ≤ Ψ(x)ζ ≤ 0 , ∀ ζ : f(ζ) ≤ q ,

which is the conservative approximation of the worst-case performance for x when employing affine

decision rules. Note that equality is met in this expression if one is able to establish the right constraint

qualification conditions for a minimax theorem to apply in (48). In this case, LRC becomes equivalent

to AARC. �

B Counterargument to Proposition 6 in Denton et al.

(2010)

We first recall the proposition that can be found in Denton et al. (2010).
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Proposition 9. (Proposition 6 from Denton et al. (2010)) The polyhedron defined by the following

constraints has integer extreme points when τ is an integer∑
ij

∆ij ≤ τ (49a)

0 ≤ ∆ij ≤ Yijzj , ∀ i ∈ I , ∀ j ∈ J (49b)

0 ≤ zj ≤ 1 , ∀ j ∈ J , (49c)

where ∆ ∈ Rn×m and z ∈ Rm and where the parameter Y ∈ {0, 1}n×m satisfies the property that∑
j Yij = 1 for all i ∈ I.

Here is a counter-proposition.

Proposition 10. Let n = 3, m = 2, Y12 = Y21 = Y31 = 1, and Γ = 2, then the polyhedron defined by

equations (49a), (49b), and (49c) has the following extreme point:

∆̄ =


0 1

0.5 0

0.5 0

 z̄ =

 0.5

1

 .

Proof. Proof. This can easily be shown by verifying that this solution is feasible and that it satisfies

exactly a set of 8 linearly independent constraints. The eight constraints are∑
ij

∆ij ≤ 2 −∆11 ≤ 0 ∆12 ≤ z2 ∆21 ≤ z1

−∆22 ≤ 0 ∆31 ≤ z1 −∆32 ≤ 0 z2 ≤ 1 .

Putting all these together we get

1 1 1 1 1 1 0 0

−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 −1

0 0 1 0 0 0 −1 0

0 0 0 −1 0 0 0 0

0 0 0 0 1 0 −1 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 1





∆11

∆12

∆21

∆22

∆31

∆32

z1

z2



=



2

0

0

0

0

0

0

1



.

Since this matrix is invertible and the pair (∆̄, z̄) satisfies this system of equations, we have confirmed

that this assignment describes an extreme point of the polyhedron.
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C Proofs of Section 8

Proof. Proof of Lemma 3. We will exploit Farkas lemma to identify a ray (γt̄, γw̄, γW̄ ), parametrized

by γ > 0, such that −(1/2)((γW̄ )T Ã+ ÃT (γW̄ )) −(1/2)(ÃT (γw̄)− (γW̄ )T b̃)

−(1/2)(ÃT (γw̄)− (γW̄ )T b̃)T γt̄

 = γM̄ ,

for some

M̄ :=

 −(1/2)(W̄ T Ã+ ÃT W̄ ) −(1/2)(ÃT w̄ − W̄ T b̃)

−(1/2)(ÃT w̄ − W̄ T b̃)T t̄

 ≥ 1 .

This will consequently imply that there exists a γ̄ > 0 for which Q̃(x)− (1/2)((γW̄ )T Ã+ ÃT (γW̄ )) c̃(x)T − (1/2)(ÃT (γw̄)− (γW̄ )T b̃)

c̃(x)T − (1/2)(ÃT (γw̄)− (γW̄ )T b̃)T γt̄

 =

 Q̃(x) c̃(x)

c̃(x)T 0

+γ̄M̄ > 0 .

First, based on Assumption 1, the boundedness of U implies that there is an M > 0 such that

1T ζ ≥M is inconsistent with Pζ ≤ q. By Farkas lemma, this implies that there necessarily exists some

s ∈ RnU and s0 ∈ R that satisfy the following linear inequalities:

s ≥ 0 s0 ≥ 0 P T s ≥ s0 qT s < Ms0 .

Yet, since assumptions 1 and 6 state that U ⊂ Rnζ+ is non-empty, this implies that s0 > 0. Indeed, if

s0 = 0, the existence of a feasible ζ̂ ≥ 0 leads to a contradiction:

0 ≤ sTP ζ̂ ≤ sT q < 0 ⇒ 0 < 0 .

We finally conclude from this exercise that there must exist a s̄ := 1 + αs, with α ≥ 0 such that

s̄ ≥ 1 and P T s̄ = P T 1 + αP T s ≥ P T 1 + αs0 ≥ 1. This occurs in fact when choosing α := (1/s0)(1 +

max(maxi=1,...,nζ P
T
:i 1 , 0)).

Second, we demonstrate that

M̄ :=

 −(1/2)(W̄ T Ã+ ÃT W̄ ) −(1/2)(ÃT w̄ − W̄ T b̃)

−(1/2)(ÃT w̄ − W̄ T b̃)T t̄

 ≥ 1

for the following assignment:

t̄ := 1 w̄ := −(2 + max(s̄T q + 1Tu , 0))


0

s̄

1

 W̄ := −


0

s̄

1

 1T .
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Studying each term separately we get:

−1

2

W̄
T Ã+ ÃT W̄ ) =

1

2
(


P T s̄

1

s̄

1

 1T + 1
[
P T s̄ 1 s̄ 1

]
 ≥ 1

− 1

2

(
ÃT w̄ − W̄ T b̃

)
=

1

2

(1 + max(s̄T q + 1Tu , 0))


P T s̄

1

s̄

1

− q
T s̄− 1Tu


≥ 1

2
((2 + max(s̄T q + 1Tu , 0))− qT s̄− 1Tu) ≥ 1

t̄ ≥ 1

This completes our proof. �

Proof. Proof of Corollary 3. Given that we have established that strong duality applies for problem

(45) whether the copositive cone is replaced with Rñ+1×ñ+1
+ or Rñ+1×ñ+1

+ + Kñ+1×ñ+1
PSD , our efforts can

focus on comparing gMLRC(x) and gSDP-LRC(x) to the optimal value of problem (44) with KCP replaced

with the dual cone of Rñ+1×ñ+1
+ , which is K1 := Rñ+1×ñ+1

+ , and the dual cone of Rñ+1×ñ+1
+ +Kñ+1×ñ+1

PSD

which is K2 := Rñ+1×ñ+1
+ ∩Kñ+1×ñ+1

PSD respectively. In what follows, we simply refer to the value of each

of these two bounds as g1(x) and g2(x) respectively.

First, whether the cone is replaced with K1 or K2, we can exploit the equalities of problem (44) to

reformulate g1(x) and g2(x) as

gi(x) = min
Y,y,Λ,Ξ,λ,ξ

cTx+ tr(Q̃(x)TY ) + 2c̃(x)T y (50a)

subject to (44b)− (44c) Y y

yT 1

 = Φ


Λ ∆T λ

∆ Ξ ζ

λT ζT 1

ΦT (50b)

 Y y

yT 1

 ∈ Ki , (50c)
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with i = 1, 2 and where Φ ∈ Rñ+1×nλ+nzeta+1 is the matrix defined as

Φ :=



I 0 0

0 I 0

0 −P q

−I 0 u

0 0 1


.

We omit to provide the details of this equivalence as they are purely algebraic. One can indeed expand

the list of linear equalities expression in constraint (50b) to see that each one of them simply repeats

an equality constraint present in constraints (44b) and (44c).

Next, in problem (24), one can certainly consider additional decision variables Λ ∈ Rm×m and

Ξ ∈ Rnζ×nζ that need to satisfy constraints (33j), (33k), and (33l), without affecting the feasible set in

terms of (ζ, λ,∆) given that the assignment Λ := λλT and Ξ = ζζT always satisfies these constraints.

Furthermore, in both problems (24) and (33) one can exploit Assumption 6 to identify a list of redundant

constraints. Namely, based on Farkas lemma, this assumption implies that there must exist some matrix

Q ∈ Rm×m such that:

Q ≥ 0 , QP = −I , Qq ≤ 0 .

We can therefore derive the following implications:

(10c) ⇒ P∆ ≤ qλT ⇒ QP∆ ≤ QqλT ⇒ ∆ ≥ 0

(24c) ⇒ P∆ ≥ qλT − (q − Pζ)uT ⇒ QP∆ ≥ QqλT −Q(q − Pζ)uT ⇒ ∆ ≤ ζuT

(33j) ⇒ PΞP T + qqT ≥ PζqT + qζTP T ⇒ QPΞP T ≥ Qq(Pζ − q)T +QPζqT ⇒ ΞP T ≤ ζqT

⇒ ΞP T ≤ ζqT ⇒ QΞP T ≤ QζqT ⇒ Ξ ≥ 0 .

Hence, one can establish that

gMLRC(x) = min
Y,y,Λ,Ξ,λ,ξ

cTx+ tr(Q̃(x)TY ) + 2c̃(x)T y

subject to (44b)− (44c), (50b) Y y

yT 1

 ≥ 0 .

This readily implies that g1(x) = gMLRC(x) which completes the first part of the proof.
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In the case of gSDP-LRC(x), the same argument leads us to establish

gSDP-LRC(x) = min
Y,y,Λ,Ξ,λ,ξ

cTx+ tr(Q̃(x)TY ) + 2c̃(x)T y

subject to (44b)− (44c), (50b) Y y

yT 1

 ≥ 0 ,


Λ ∆T λ

∆ Ξ ζ

λT ζT 1

 � 0 .

Although this does not exactly give rise to the optimization problem associated to g2(x) because of the

different linear matrix inequalities, they are both equivalent because of constraint (50b) and the fact

that Φ is full rank. Namely, it is clear that
I 0 0 0 0

0 I 0 0 0

0 0 0 0 1

Φ = I ⇒


Λ ∆T λ

∆ Ξ ζ

λT ζT 1

 � 0⇔ Φ


Λ ∆T λ

∆ Ξ ζ

λT ζT 1

ΦT � 0⇔

 Y y

yT 1

 � 0 .

This implies that g2(x) = gSDP-LRC(x). The last two conclusions 3 and 4 of the theorem follow naturally

from the fact that employing K ⊇ K1 in problem (46) would mean that the feasible set is relaxed and

must achieve a larger optimal value than MLRC, and similarly in the case of SDP-LRC. This completes

our proof. �
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Table 2: Computation time and quality of bounds obtained from AARC/(M)LRC and SDP-LRC

compared to SDP-A&D†

Computational time (in sec) Improvement (in %)

Γ% AARC/(M)LRC SDP-LRC SDP-A&D† SDP-LRC SDP-A&D

5

10 <1 1 1 0.00 0.00

30 <1 1 1 0.07 0.02

50 <1 1 1 0.19 0.07

70 <1 1 1 0.14 0.01

90 <1 1 1 0.00 0.00

10

10 <1 5 1 1.79 0.00

30 <1 5 1 14.18 0.04

50 <1 6 1 18.65 0.03

70 <1 6 1 43.01 0.01

90 <1 6 1 47.12 0.00

20

10 <1 61 6 3.52 0.01

30 <1 61 7 0.82 0.02

50 <1 60 7 21.57 0.02

70 1 66 6 20.91 0.01

90 1 70 7 35.10 0.00

30

10 3 360 27 4.63 0.03

30 3 361 30 18.40 0.03

50 2 356 27 10.63 0.04

70 2 408 26 15.72 0.02

90 3 368 31 71.84 0.01

40

10 3 1209 66 3.71 0.19

30 2 1260 76 8.02 0.64

50 3 1214 78 15.28 0.04

70 2 1244 69 44.24 0.03

90 2 1192 85 81.78 0.01

†SDP-A&D refers to the semi-definite programming model proposed in Ardestani-Jaafari and Delage (2016).
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Table 3: Comparison of the worst-case cost for different solution methods to the surgery block alloca-

tion problem

Alternative AARC’s/(M)LRC’s SDP-LRC’s Exact model RORA†

Open one OR $822,000 $822,000 $822,000 $822,000

Open two ORs $812,000 $812,000 $812,000 $828,000

†RORA refers to the “exact” reformulation proposed in Denton et al. (2010).

Table 4: Comparison of optimal bound on worst-case profit and worst-case profit associated to solutions

of each model in an instance of RLTP

AARC/LRC MLRC SDP-LRC Exact model ELAARC†

Optimal bound on

worst-case profit

0 6600 6600 6600 4024

Worst-case profit of

solution

0 6600 6600 6600 4622

†ELAARC refers to the approximation model proposed in Ardestani-Jaafari and Delage (2017).
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Table 5: Computational time of LRC, MLRC and the available approximation in the literature

|I| |J | Γ AARC/LRC MLRC ELAARC†

10 20

10% 3 7 5

30% 3 11 5

50% 4 10 7

70% 9 15 10

90% 6 14 8

20 20

10% 18 67 31

30% 31 78 25

50% 44 110 41

70% 70 215 70

90% 61 274 102

20 40

10% 489 891 775

30% 488 1074 391

50% 690 452 750

70% 1027 1339 616

90% 457 556 356

†ELAARC refers to the approximation model proposed in Ardestani-Jaafari and Delage (2017) solved directly using

CPLEX.Is this the constraint generation algorithm or one-shot reformulation. This should be specified.

Table 6: Optimal solution of AARC and MLRC in the instance of multi-product assembly problem

AARC/LRC MLRC SDP-LRC Exact model

# of parts type A 92,793 81,000 81,000 81,000

# of parts type B 91,000 91,000 91,000 91,000

Optimal bound on

worst-case profit

$2.474 million $2.722 million $2.722 million $2.722 million

Worst-case profit

of solution

$2.474 million $2.722 million $2.722 million $2.722 million
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Table 7: Average relative optimized bound gap (Bound gap) and average relative suboptimality gap

(Subopt. gap) for the solutions obtained from each approximation model under different values of

budget. Note that Ardestani-Jaafari and Delage (2017) showed that AARC provides an exact solution

when Γ = 1 and Γ = 10 in these problem instances.

Γ
AARC MLRC ELAARC†

Bound

gap

Subopt.

gap

Bound

gap

Subopt.

gap

Bound

gap

Subopt.

gap

1 0 0 0 0 0 0

2 0.88 0.66 0.25 0.20 0.88 0.66

3 2.26 2.03 0.75 0.59 2.25 2.02

4 4.18 3.99 1.15 0.93 4.15 3.96

5 7.03 6.87 1.48 1.19 6.98 6.82

6 11.12 10.99 1.45 1.19 11.01 10.86

7 17.63 17.54 1.65 1.48 17.36 17.26

8 28.31 28.29 2.97 2.92 27.73 27.45

9 46.25 34.18 7.01 6.99 45.45 21.17

10 0 0 0 0 0 0

Avg. 11.77 10.46 1.67 1.54 11.58 9.02

†ELAARC refers to the approximation model proposed in Ardestani-Jaafari and Delage (2017).
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Table 8: Proportion of the 10,000 problem instances analysed in Table 7 for which the relative sub-

optimality gap of each approximation model was within a certain range. Average gap and maximum

gap are also reported.

Gap range AARC/LRC MLRC ELAARC

=0 20.6 23.8 20.6

≤0.1 20.9 27.4 20.9

≤1 28.4 56.3 28.4

≤10 61.4 99.3 62.3

Avg. 10.5 1.6 9.0

Max. 50.0 13.3 46.3

†ELAARC refers to the approximation model proposed in Ardestani-Jaafari and Delage (2017).
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