
A FRAMEWORK FOR SOLVING
MIXED-INTEGER SEMIDEFINITE PROGRAMS

TRISTAN GALLY, MARC E. PFETSCH, AND STEFAN ULBRICH

ABSTRACT. Mixed-integer semidefinite programs arise in many applications
and several problem-specific solution approaches have been studied recently. In
this paper, we investigate a generic branch-and-bound framework for solving
such problems. We first show that strict duality of the semidefinite relaxations is
inherited to the subproblems. Then solver components like dual fixing, branch-
ing rules, and primal heuristics are presented. We show the applicability of an
implementation of the proposed methods on three kinds of problems. The re-
sults show the positive computational impact of the different solver components,
depending on the semidefinite programming solver used. This demonstrates
that practically relevant mixed-integer semidefinite programs can successfully
be solved using a general purpose solver.

1. INTRODUCTION

The solution of mixed-integer semidefinite programs (MISDPs), i.e., semidefinite
programs (SDPs) with integrality constraints on some of the variables, received
increasing attention in recent years. There are two main application areas of such
problems: In the first area, they arise because they capture an essential structure
of the problem. For instance, SDPs are important for expressing ellipsoidal uncer-
tainty sets in robust optimization, see, e.g., Ben-Tal et al. [10]. In particular, SDPs
appear in the context of optimizing robust truss structures, see, e.g., Ben-Tal and
Nemirovski [11] as well as Bendsøe and Sigmund [12]. Allowing to change the
topological structure then yields MISDPs; Section 9.1 will provide more details.
Another application arises in the design of downlink beamforming, see, e.g., [56].
The second main area is the reformulation of combinatorial optimization problems,
see, e.g., Rendl [59] and Sotirov [68] for surveys. Indeed, SDPs are attractive in
this context since they often provide strong dual bounds. Integrality constraints
then already appear in the original formulation.

A natural solution method for MISDPs is branch-and-bound, and several appli-
cation-specific approaches have appeared in the literature. Examples are Rendl et
al. [60] for the max-cut problem, as well as Armbruster et al. [7] and Anjos et al. [6]
for graph partitioning. One key aspect for all these approaches is that although
SDPs usually provide strong dual bounds, they take more time to solve than linear
programs. Moreover, from a software engineering perspective, SDP-solvers are not
yet as advanced as their linear counterparts, for instance, with respect to presolving
and numerical stability.

Going beyond the just mentioned application-specific approaches, the goal of
this article is to introduce a generic framework for solving MISDPs. The mo-
tivation and longterm goal is to provide black-box-software that can be used in
versatile conditions, similarly to the state-of-the-art in mixed-integer linear pro-
gramming. In this paper, we make one step in this direction.

1

2 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

In order to provide a generic framework, several theoretical and practical chal-
lenges have to be dealt with. We first discuss the theoretical question of when
strong duality can be guaranteed for each of the SDPs arising from the original one
by adding linear constraints, e.g., strengthened bounds on the variables. We show
in Section 5 that if strong duality holds for an original feasible SDP-relaxation
and the optimal set is compact, this also holds for the SDP-relaxation of feasible
subproblems. This result is important, since strong duality is necessary for the ap-
plication of (primal-)dual approaches. We then introduce a dual fixing method in
Section 6 that allows to fix variables based on an incumbent value and exploiting
integrality conditions. In Section 7, we present further solver components for a
generic MISDP-solver and discuss preprocessing, branching rules, primal heuris-
tics, and solving the SDP-relaxations. Section 8 discusses implementation issues.
We demonstrate the applicability of this approach on three show-cases, which are
introduced in Section 9. Finally, in Section 10, we investigate the influence of
different SDP-solvers, branching rules, dual fixing, and primal heuristics as well
as the occurrence of numerical difficulties in our implementation of a branch-and-
bound algorithm for mixed-integer semidefinite programming.

The only existing similar project that we are aware of is YALMIP [47, 48],
which is based on MATLAB and provides an interface to a very large number of
solvers. However, its branch-and-bound part is not (yet) designed to be competi-
tive. In comparison, our SCIP-SDP framework is written in C/C++ and is build on
SCIP [65]. It can be extended by additional solver components and is available in
source code.

2. NOTATION

Throughout this paper, we will use the following notation. The set of the first n
positive integers is written as [n] := {1, . . . ,n}. For some x ∈ R, we write bxc :=
max{n ∈ Z : n ≤ x} for the largest integer less or equal to x and similarly dxe
for the smallest integer greater or equal to x. The cardinality of a set I is |I|. For
x ∈Rn, we define ‖x‖0 := |{i ∈ [n] : xi 6= 0}| as the size of the support of x.

The set of all symmetric n× n matrices is denoted by Sn ⊂ Rn×n and A •B :=
∑i, j∈[n] Ai jBi j = Tr(A · B) is the standard inner product on Sn, where Tr(X) :=
∑

n
i=1 Xii is the trace of a matrix X . We write A � 0 if the matrix A is symmetric

and positive semidefinite and A � 0 if it is symmetric and positive definite. The
1
2 n(n+1)-dimensional vector of all upper triangular entries of X ∈ Sn is written as
vec(X). For y ∈ Rn, we write Diag(y) for the n× n matrix having entries of y on
the diagonal and 0 otherwise. Conversely, diag(X) is the vector consisting of all
diagonal entries of X . For a matrix X ∈ Sn, ‖X‖∞ := maxi, j∈[n]|Xi j| is the maximum
norm and ‖X‖F := (∑i, j∈[n]|Xi j|2)1/2 defines the Frobenius norm. For any index-set
I ⊆ [n] of size k and a vector x ∈ Rn, xI is the k-dimensional vector of all compo-
nents of x indexed by I. Similarly, for X ∈ Sn, the matrix XI is the k× k matrix of
all entries of X with indices in I× I. Furthermore, In ∈Rn×n is the identity matrix.
For some condition B, the indicator function 1B ∈ {0,1} is 1 if and only if B is true.

Moreover, ei is the i-th unit vector in Rn. For a vector space X , dim(X) is its
dimension, and for some subset S ⊆ X , the linear span is written as span(S) :=
{y ∈ X : ∃k ∈N, λ ∈Rk, x1, . . . ,xk ∈ S, y = ∑

k
i=1 λixi}. The range of an operator

A : X→Y is denoted by Range(A) := {A (x) : x∈ X}, and the preimage of y∈Y
is given by A −1(y) := {x ∈ X : A (x) = y}.

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 3

3. MIXED-INTEGER SEMIDEFINITE PROGRAMS

In this paper, we discuss a framework for solving mixed-integer semidefinite pro-
grams (MISDP) of the form

(D-MISDP)

sup b>y

s.t. C−
m

∑
i=1

Ai yi � 0,

`i ≤ yi ≤ ui ∀ i ∈ [m] ,

yi ∈Z ∀ i ∈ I,

with C ∈ Sn, b ∈ Rm, and Ai ∈ Sn, `i ∈ R∪{−∞}, ui ∈ R∪{∞} for all i ∈ [m].
The set of indices of integer variables is given by I ⊆ [m]. The model (D-MISDP)
arises by adding integrality constraints to a semidefinite program written in a form
usually referred to as “dual”. One could also consider the primal form:

(P-MISDP)

inf C •X

s.t. Ai •X = bi ∀ i ∈ [m] ,

X � 0,

X ∈Zn×n,

possibly with additional variable bounds. Using standard techniques, (D-MISDP)
can be transformed to (P-MISDP) and conversely. Thus, as usual, it is somewhat
arbitrary which model is primal or dual. We will use the dual form as the primary
form in order to be consistent with most parts of the literature.

4. SDP-BASED BRANCH-AND-BOUND ALGORITHM

Mixed-integer semidefinite programs can be solved with a straight-forward branch-
and-bound algorithm. Branch-and-bound was first proposed for integer linear pro-
grams by Land and Doig [44] in 1960. Already in 1965, Dakin [21] realized that
the problems do not have to be linear, but that the same technique can also be ap-
plied to general problems with integrality constraints, as long as the subproblems
obtained by relaxing the integrality conditions and possibly adding variable bounds
can be solved to optimality. Applying this algorithm to mixed-integer semidefinite
programs leads to Algorithm 1.

Remark 1.
(1) A requirement for Algorithm 1 is that one can compute optimal solutions ŷ in

Step 4, in particular, the optimal value is attained. This can theoretically be
guaranteed, for instance, if the subproblems for Ŝ have a compact optimality
set; see Section 5 for a discussion.

(2) Algorithm 1 terminates after a finite number of nodes/iterations if the feasible
set S is bounded. In this case, there are only finitely many assignments for the
integer variables. This can for instance be guaranteed, if all variable bounds
`i and ui are finite. Note that Algorithm 1 need not terminate if the relaxation
set S is unbounded, even in the special case of mixed-integer linear programs,
e.g., for min{x : x+ y = 1

2 , x ∈Z+, y ∈Z}.
(3) If (D-MISDP) is infeasible, Step 7 is never executed and the algorithm termi-

nates with L =−∞.

4 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

Algorithm 1: SDP-based branch-and-bound algorithm

Input: bounded MISDP sup{b>y : y ∈ S, yi ∈Z ∀ i ∈ I},
S := {y ∈Rm : C−∑

m
i=1 Ai yi � 0, `i ≤ yi ≤ ui}

Output: optimal solution y∗ or “infeasible” if L =−∞

1 set T := {S}, L :=−∞;
2 while T 6= /0 do
3 choose Ŝ ∈ T , set T = T \{Ŝ};
4 solve sup{b>y : y ∈ Ŝ} with optimal solution ŷ;
5 if b>ŷ > L then
6 if ŷi ∈Z for all i ∈ I then
7 y∗ := ŷ, L := b>ŷ;
8 else
9 choose i ∈ I with ŷi 6∈Z;

10 Ŝ≤ := {y ∈ Ŝ : yi ≤ bŷic}, Ŝ≥ := {y ∈ Ŝ : yi ≥ dŷie};
11 T := T ∪{Ŝ≤, Ŝ≥};

(4) The handling of unbounded problems is more delicate. In the mixed-integer
linear case, it is possible to show that for every problem with finite optimal
value an optimal solution with a polynomial size in the encoding length of the
problem exists. Thus, one can make the problem bounded by adding corre-
sponding bounds on the variables. See, e.g., Schrijver [64] for a discussion.

For bounded semidefinite programs, Porkolab and Khachiyan [58] proved
the existence of an optimal solution with encoding length that is exponential in
the encoding length of the problem. It remains an open problem whether these
bounds can be extended to the mixed-integer case. We will therefore always
assume that Algorithm 1 terminates, e.g., because the problem is bounded.

5. STRONG DUALITY AFTER ADDING INEQUALITIES

The main work when applying branch-and-bound arises in solving the semidefinite
relaxations in Step 4. Here SDPs of the form

(D)

sup b>y

s.t. C−
m

∑
i=1

Ai yi � 0,

y ∈Rm,

(P)

inf C •X

s.t. Ai •X = bi ∀ i ∈ [m] ,

X � 0.

have to be solved, and the supremum needs to be attained to proceed with Step 5
of Algorithm 1. The bounds on the y variables are omitted in this formulation,
since these can also be integrated in the semidefinite constraints as additional rows
and columns, which are zero apart from a diagonal entry of yi− `i or ui− yi. The
resulting matrix will be positive semidefinite if and only if these diagonal entries
are nonnegative and the remaining part of the matrix is positive semidefinite.

A common approach to solve these problems are interior-point methods, see,
e.g., Nesterov and Nemirovskii [54] and Ye [74]. Typically, these algorithms re-
quire strong duality for validity or convergence guarantees. An important charac-
teristic of semidefinite programs ensuring strong duality is the existence of points

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 5

in the relative interior of either (P) or (D), the so-called Slater condition. This is
due to the following proposition, with the main result originally proven by Bellman
and Fan [9] for slightly different versions of (P) and (D):

Proposition 1 (see, e.g., Helmberg [37], Todd [69]). Let p∗ and d∗ be the optimal
objective values of (P) and (D). Then the following holds:
(1) If (P) has a strictly feasible point X∗ � 0 and (D) is feasible, then p∗ = d∗ and

this value is attained for (D). Furthermore, if the Ai are linearly independent,
then the optimal set of (D) is compact.

(2) If (D) has a strictly feasible point y∗ with C−∑
m
i=1 Ai y∗i � 0 and (P) is feasible,

then p∗ = d∗ and this value is attained for (P). Furthermore, the optimal set
of (P) is compact.

(3) If (P) and (D) both have strictly feasible points, then p∗ = d∗ and this value
is attained for both problems. Furthermore, the optimal set of (P) is com-
pact, and if the Ai are linearly independent, then the optimal set of (D) is also
compact.

If neither (P) nor (D) has a relative interior point, strong duality no longer holds
and there might be a nonzero duality gap between primal and dual optimal so-
lutions, see, e.g., [37, 67, 69]. If only one problem is strictly feasible, then this
problem might not attain its optimal value and therefore the existence of a KKT-
point is not guaranteed. For this reason, interior-point methods in semidefinite
programming in general require the existence of strictly feasible solutions for both
(P) and (D), see, e.g., [74].

A natural question is whether strong duality or even the existence of strictly
feasible solutions is inherited from the predecessor subproblems in a branch-and-
bound tree. In this section, we investigate the general question of inheritance when
adding linear inequalities. We start with the primal form (P-MISDP), before ex-
tending the results to the dual form (D-MISDP) via duality.

If a linear inequality is added to (P-MISDP), the corresponding slack variable
increases the dimension. Therefore, we will allow a general affine constraint
Am+1 • X = bm+1 with Am+1 ∈ Sn+1 to be added to (P-MISDP), which changes
the SDP-relaxation (P) to

(P+-P)

inf
(

C 0
0> 0

)
•X ,

s.t.
(

Ai 0
0> 0

)
•X = bi ∀ i ∈ [m] ,

Am+1 •X = bm+1,

X � 0.

The dual problem to (P+-P) can then be written as

(P+-D)

sup b>y+bm+1 ym+1

s.t.
(

C 0
0> 0

)
−

m

∑
i=1

(
Ai 0
0> 0

)
yi−Am+1 ym+1 � 0,

y ∈Rm+1.

In the following, we show that this change has no influence on strong duality and
compactness of the set of optimal solutions, which implies that the supremum is

6 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

attained and there exists an optimal solution. So if strong duality and compactness
of the optimal set hold in the root node, e.g., because of strict feasibility of the root
node relaxation, they will hold for all feasible nodes.

Theorem 1. Let p∗ be the optimal objective of (P) and d∗ the optimal objective
of (D). If p∗ = d∗ >−∞, the optimal set of (P) is compact, and problem (P+-P) is
feasible, then the optimal set of (P+-P) is also compact and p∗+ = d∗+ also holds
for the optimal objective values of (P+-P) and (P+-D), respectively.

Proof. Because of the finiteness of (P) and the feasibility of (P+-P), the value of
(P+-P) is finite. Moreover, assume that there exists an unbounded minimizing
sequence (Xk)⊂ Sn+1 for (P+-P). After restriction of Xk to Sn and possibly selecting
a subsequence, R := limk→∞(Xk)[n]/‖(Xk)[n]‖F satisfies R � 0, Ai •R = 0 for all
i ∈ [m], and C • R = 0. This contradicts the compactness of the optimal set of
(P). Hence, all minimizing sequences are bounded and therefore the optimal set of
(P+-P) is nonempty, bounded and consequently compact.

Clearly, (P+-D) is feasible and by weak duality p∗+ ≥ d∗+. Define the sets G1 :=
{X ∈ Sn+1 : X � 0} and G2 := {X ∈ Sn+1 : Ai•X = bi ∀ i∈ [m+1] ,C•X ≤ p∗+−ε}
for arbitrary ε > 0. These closed convex sets G1 and G2 are disjoint and

inf{‖Y −W‖F : Y ∈ G1,W ∈ G2}> 0

holds. Otherwise there would exist sequences

Wk = Yk +Uk, Yk ∈ G1, Wk ∈ G2, Uk→ 0.

If (Wk) is bounded, we get W := limk→∞Wk feasible for (P+-P) with C•W ≤ p∗+−ε ,
which is impossible. If (Wk) is unbounded, after restriction to Sn and selecting a
subsequence, we obtain R := limk→∞(Wk)[n]/‖(Wk)[n]‖F satisfying R� 0, Ai•R= 0
for all i ∈ [m], and C •R = 0. This contradicts the compactness of the optimal set
of (P). Hence, G1 and G2 have no common direction of recession and thus there
exists a strictly separating hyperplane, i.e., there are S ∈ Sn+1, σ ∈R such that

S•X > σ ∀X ∈ G1, S•X ≤ σ ∀X ∈ G2.

Since G1 is the positive semidefinite cone, we have σ < 0 and S� 0. Hence,

S•X ≤ σ ∀X with Ai •X = bi, i = 1, . . .m+1, C •X ≤ p∗+− ε,

and the optimal value of the LP

max {S•X : Ai •X = bi, i = 1, . . . ,m+1, C •X ≤ p∗+− ε}
is at most σ . The dual of this LP is

min {(p∗+− ε) t−b>z : Ct−
m+1

∑
i=1

Ai zi = S, t ≥ 0}.

By strong LP-duality, there exist y ∈R, η ≥ 0 such that

C η−
m+1

∑
i=1

Ai yi = S, (p∗+− ε)η−b>y≤ σ .

Let X̂ be an optimal solution of (P+-P). We must have η > 0, since for η = 0 we
have −b>y≤ σ < 0 and

−b>y =−(A1 • X̂ , . . . ,Am+1 • X̂)>y = X̂ • (−
m+1

∑
i=1

Ai yi) = X̂ •S≥ 0,

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 7

which is a contradiction. Thus, η > 0 and we can define ŷ = y/η . Then

C−
m+1

∑
i=1

Ai ŷi =
1
η

S� 0, b>ŷ≥ p∗+− ε−σ/η ≥ p∗+− ε.

Thus, ŷ is feasible for (P+-D) with objective function value ≥ p∗+− ε . Since ε > 0
was arbitrary, this shows p∗+ = d∗+. �

By choosing

Am+1 =

(
Ãm+1 0

0> 1

)
, Am+1 =

(
Ãm+1 0

0> −1

)
, or Am+1 =

(
Ãm+1 0

0> 0

)
,

Theorem 1 allows to add inequalities Ãm+1 • X̃ ≤ bm+1, Ãm+1 • X̃ ≥ bm+1, or the
equation Ãm+1 • X̃ = bm+1 for Ãm+1 ∈ Sn:

Corollary 1. Let p∗ be the optimal objective of (P) and d∗ the optimal objective
of (D). If p∗ = d∗ >−∞, the optimal set of (P) is compact, and the problem (P+),
generated by adding a constraint Ãm+1•X ≤ bm+1, Ãm+1•X ≥ bm+1, or Ãm+1•X =
bm+1 for Ãm+1 ∈ Sn to (P), is feasible, then strong duality holds for (P+) and its
dual. Moreover, the optimal set of (P+) is compact.

Remark 2. The compactness of the optimal set of (P) is not only necessary to
ensure compactness of the optimal set after branching, but also to keep strong
duality, as shown by the example given by Friberg [31] for a mixed-integer second
order cone problem, i.e., a special case of MISDP.

Via duality, the above results can also be extended to (D-MISDP), except that
we have to restrict the optimal set to Z := C−∑

m
i=1 Ai yi to obtain compactness.

In this case, we want to show that strong duality still holds after adding a linear
constraint ∑

m
i=1 ai yi ≤ c, ∑

m
i=1 ai yi ≥ c, or ∑

m
i=1 ai yi = c to (D). For example, in the

case of ∑
m
i=1 ai yi ≤ c, we obtain

(D+-D)

sup b>y

s.t. C−
m

∑
i=1

Ai yi � 0,

m

∑
i=1

ai yi ≤ c,

y ∈Rm,

(D+-P)

inf C •X + c xn+1

s.t. Ai •X +ai xn+1 = bi ∀i ∈ [m] ,
X11 . . . X1n x1

...
. . .

...
...

X1n . . . Xnn xn
x1 . . . xn xn+1

� 0,

while for the equality constraint we would have to apply the procedure twice, once
with positive and once with negative sign.

Defining

Âi =

(
Ai 0
0> ai

)
, Ĉ =

(
C 0
0> c

)
,

the dual constraint of (D+-D) can be written as Ĉ−∑
m
i=1 Âi yi � 0.

Theorem 2. Let p∗ be the optimal objective of (P) and d∗ the optimal objective of
(D). If p∗ = d∗ < ∞, the set of optimal Z = C−∑

m
i=1 Ai yi of (D) is compact, and

(D+-D) is feasible, then strong duality holds for (D+-D) and (D+-P). Moreover,
the set of optimal Ẑ = Ĉ−∑

m
i=1 Âi yi of (D+-D) is compact.

8 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

Proof. To apply Theorem 1 to (D) and (D+-D), we need to transform them to
primal form. To do so, we will use the same technique as Todd in [69]. Since (P) is
feasible, choose D∈ Sn such that Ai •D = bi for all i∈ [m], let G1, . . . ,Gk be a basis
of the orthogonal complement of span(A1, . . . , Am) in Sn, and define hi := C •Gi
for all i ∈ [k]. Then (D) is equivalent to

(T-P)

C •D− inf D•Z

s.t. Gi •Z = hi ∀ i ∈ [k] ,
Z � 0,

since

Gi •Z = hi ∀ i ∈ [k] ⇔ Gi • (Z−C) = 0 ∀ i ∈ [k]

⇔ Z−C ∈ span(A1, . . . , Am) .

Thus, Z � 0 is feasible for (T-P) if and only if Z =C−∑
m
i=1 Ai yi for some y ∈Rm

and

C •D−D•
(

C−
m

∑
i=1

Ai yi

)
=C •D−

(
D•C−

m

∑
i=1

D•Ai yi

)
=

m

∑
i=1

bi yi = b>y.

This implies that (T-P) is feasible if and only if (D) is feasible. Furthermore, the
optimal set of (T-P) is compact if and only if the set of optimal Z =C−∑

m
i=1 Ai yi

for (D) is compact and the optimal objective values agree. The dual problem to
(T-P) can be written as

(T-D)

C •D− sup h>w

s.t. D−
k

∑
i=1

Gi wi � 0,

which is equivalent to (P), since

Ai •X = bi ∀ i ∈ [k] ⇔ Ai • (X−D) = 0 ∀ i ∈ [k]

⇔ X−D ∈ span(G1, . . . , Gm) .

Thus, X is feasible for the equality constraint in (P) if and only if X =D−∑
k
i=1 Gi wi

for some w ∈Rm, and

C •X =C •D−
k

∑
i=1

(C •Gi)wi =C •D−h>w.

When adding the linear inequality ∑
m
i=1 ai yi ≤ c to (D), we have Ẑ ∈ Sn+1 in

(D+-D) instead of Z ∈ Sn in (D). Thus, the dimension of span
(
Â1, . . . , Ân

)⊥ ⊆
Sn+1 is larger than the dimension of span(A1, . . . , An)

⊥ ⊆ Sn by at most n + 1.
Furthermore, there exists a basis Ĝ1, . . . , Ĝk̂ of the orthogonal complement of the
span, such that the first k matrices Ĝi equal Gi, except for an added zero row and
column. For this reason, also ĥi = hi for i = 1, . . . ,k. Since b does not change, we
can also choose D̂ as D with added zero row and column. Thus, the new problem
(T-P+) arises by adding at most n+ 1 constraints Ĝi • Ẑ = ĥi, i = k+ 1, . . . , k̂, to
(T-P), while the remaining problem is only extended by zero rows and columns.
Therefore, Theorem 1 can be applied for each added Ĝi. Thus, strong duality holds
for (T-P+) and (T-D+), and the optimal set of (T-P+) is compact, which directly
transfers to (D+-D) if we restrict the optimal set to Ẑ = Ĉ−∑

m
i=1 Âi yi. �

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 9

Remark 3. From Theorem 2 we only get compactness of the set of optimal Ẑ =
Ĉ−∑

m
i=1 Âi yi, but not of the set of optimal yi. To also ensure compactness of this

set, we further need to assume that the Âi are linearly independent, since in this
case the yi are uniquely determined by Ẑ, see Todd [69].

If instead of strong duality and compactness of the set of optimal Z, we require
the stronger condition of strict feasibility for the dual problem, we can also show
that strict feasibility is maintained after adding a linear inequality or equation.

Proposition 2. Assume that (D) is strictly feasible. Then the dual of the problem
obtained by adding a linear constraint Am+1 • X = bm+1, Am+1 • X ≥ bm+1, or
Am+1 •X ≤ bm+1 to (P) is strictly feasible as well.

Proof. After adding an equality constraint to (P), the dual problem reads

(P=-D)

sup b>y

s.t. C−
m+1

∑
i=1

Ai yi � 0,

y ∈Rm+1.

Thus, if ŷ is strictly feasible for (D), then (ŷ,0) is strictly feasible for (P=-D).
Now assume that we w.l.o.g. add an inequality constraint Am+1•X ≥ bm+1. Then

we have to add a slack variable to (P), and the dual problem becomes

(P≥-D)

sup b>y

s.t.
(

C 0
0> 0

)
−

m+1

∑
i=1

(
Ai 0
0> 0

)
yi−

(
0 0

0> −1

)
ym+1 � 0,

y ∈Rm+1.

Let ŷ be a strictly feasible solution of (D). Then a strictly feasible solution to
(P≥-D) is given by (ŷ,δ) for sufficiently small δ > 0, since continuity implies
C−∑

m
i=1 Ai ŷi−Am+1δ � 0 and therefore also(

C−∑
m
i=1 Ai ŷi−Am+1δ 0

0> δ

)
� 0. �

For strict feasibility we cannot extend the results easily via duality. In this case,
we need an additional assumption to prove the corresponding result for the primal
problem:

Proposition 3. Define A : Sn→ Rm, X 7→ (Ai •X)i∈[m]. If (P) is strictly feasible
and a ∈ Range(A), then the primal of the problem formed by adding a linear
constraint ∑

m
i=1 ai yi ≤ c, ∑

m
i=1 ai yi ≥ c, or ∑

m
i=1 ai yi = c to (D) is strictly feasible as

well.

Proof. We will only show the case ∑
m
i=1 ai yi ≤ c; the other cases are obtained by

changing the sign of a and c or by adding both inequalities in the case of the equal-
ity constraint. The modified dual and primal problems are then (D+-D) and (D+-P)
from above, respectively. Let X̂ be a strictly feasible solution for (P). Then a strictly
feasible solution (X̃(δ), x̃(δ)) for (D+-P) is given by x̃(δ)n+1 = δ , x̃(δ)i = 0 for

10 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

i ∈ [n], X̃(δ) = X̂−δY for some Y ∈A −1(a) and sufficiently small δ , since

(Ai • X̃(δ)+ai x̃(δ)n+1)i∈[m] = A (X̃(δ))+ x̃(δ)n+1 ·a = A (X̂−δY)+δ a

= A (X̂)−δA (Y)+δ a = b−δ a+δ a = b,

and by continuity also (
X̂−δY 0

0> δ

)
� 0. �

Remark 4.
(1) The assumption a ∈ Range(A) in Proposition 3 is necessary, even for linear

programs, as the following example shows:

(1-D)
sup 2y1 +4y2

s.t. y1 +2y2 ≤ 1,
(1-P)

inf x1

s.t. x1 = 2,
2x1 = 4,
x1 ≥ 0.

A strictly feasible solution for (1-D) is given by y = (0.1, 0.1). Indeed, we
have 1− y1− 2y2 = 0.7 > 0. Moreover, x1 = 2 > 0 is strictly feasible for
(1-P). But if we add the constraint y1 ≤ 1, we get

(1+-D)

sup 2y1 +4y2

s.t. y1 +2y2 ≤ 1,
y1 ≤ 1,

(1+-P)

inf x1 + x2

s.t. x1 + x2 = 2,
2x1 = 4,
x1, x2 ≥ 0.

The only remaining feasible solution for (1+-P) is x = (2, 0), which is no
longer strictly feasible. In this example, the assumption of Proposition 3 does
not hold, since we have

a =
(

1
0

)
/∈ span

((
1
2

))
= Range(A).

(2) The assumption a ∈ Range(A) is implied by linear independence of the ma-
trices A1, . . . , Am, because then dim(Range(A)) = m, i.e., Range(A) =Rm.
Assuming linear independence of the matrices is a natural assumption in the
context of semidefinite programs, since it is also assumed by interior-point
codes to ensure the existence of unique solutions for the Newton-steps on the
central path.

Remark 5. Proposition 3 (and equivalently Proposition 2) only ensures strict fea-
sibility in the primal problem, not for the dual problem. Therefore, it does not
necessarily ensure the existence of a Karush-Kuhn-Tucker-Point, since the primal
problem might not attain its optimum if the dual problem does not contain a rela-
tive interior point. This is shown by the following example, which is an extension
of a well-known example for SDP-Duality (see, e.g., [37, Example 2.2.8] or [67,
Example 4.1.1]):

(2-D)
sup 2y1− y2

s.t.
(

0.5 −y1
−y1 y2

)
� 0,

(2-P)
inf 0.5X11

s.t.
(

X11 1
1 1

)
� 0,

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 11

where the primal results from the constraints X12 +X21 = 2 and −X22 = −1. In
this case, there exists a strictly feasible point given by X11 = 2 with eigenvalues
0.38 and 2.62 for the primal and y = (0, 0.5) for the dual, i.e., the scaled identity
matrix. Thus, strong duality holds with an optimal objective value of 0.5, which is
obtained for X11 = 1 and y = (0.5, 0.5).

Now assume that y2 should be integral and we therefore want to branch on y2.
Adding the constraint y2 ≤ 0 through a new diagonal entry −y2 in (2-D) changes
the primal constraint corresponding to y2 from −X22 = −1 to −X22 +X33 = −1,
which leads to the dual problem

(2+-D)

sup 2y1− y2

s.t.

 0.5 −y1 0
−y1 y2 0

0 0 −y2

� 0

and the primal problem

(2+-P)

inf 0.5X11

s.t.

X11 1 X13
1 X22 X23

X13 X23 X22−1

� 0.

The two diagonal entries for y2 imply y2 = 0 and therefore also y1 = 0. Thus, the
dual no longer has a strictly feasible solution, and the optimal objective value for
the dual problem becomes 0. The primal problem still has an interior solution, e.g.,
X11 = X22 = 2, X13 = X23 = 0 with eigenvalues 1, 1, and 3. Thus, strong duality
still holds by Proposition 1 and the infimum has to be zero, which is indeed the
case since the sequence X11 = 1/k, X22 = k, X13 = X23 = 0 is feasible for all k ≥ 1
and has objective value 1/(2k)→ 0.

However, an optimal solution with objective 0 would have X11 = 0, which leads
to a principle minor of 0 ·X22−12 =−1 for the index set {1,2}, i.e., such a solution
cannot be positive semidefinite. It follows that after adding a linear constraint to
the above problem with primal and dual strictly feasible solutions, the resulting
problem does not have a KKT-point, since the primal optimal objective is no longer
attained.

To also ensure the dual Slater condition, a penalty formulation can be used as,
for instance, explained by Benson and Ye [14]. In this case, we solve the problems

(Γ-P)

inf C •X

s.t. Ai •X = bi ∀i ∈ [m] ,

In •X ≤ Γ,

X � 0,

(Γ-D)

sup b>y−Γr

s.t. C−
m

∑
i=1

Ai yi + In r � 0,

y ∈Rm, r ≥ 0
for some Γ > 0 instead of (P) and (D). Then (Γ-D) has a strictly feasible solution
y = 0 and r larger than the negative of the smallest eigenvalue of C. The Slater
condition for the primal problem is also preserved, as long as Γ≥ In •X∗ = Tr(X∗),
where X∗ is a strictly feasible primal solution for (P). Such a solution is guaranteed
by Proposition 3, if the root node relaxation is strictly feasible.

Since (Γ-D) and (Γ-P) both satisfy the Slater condition, (Γ-D) can now provably
be solved to optimality by interior-point algorithms. This yields an upper bound on
the value of (D) and therefore also (D-MISDP) for any Γ, since the feasible set of

12 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

(D) is contained in that of (Γ-D) and the objective functions agree on the feasible
set of (D). On the other hand, the feasible set of (Γ-D) includes further solutions
with r > 0, which may lead to a gap between (D) and (Γ-D). If an optimal solution
for (Γ-D) has r = 0, however, then this solution is also feasible for (D), so the
optimal objective values of (Γ-D) and (D) are equal in this case.

6. DUAL FIXING

In mixed-integer linear programming, the good performance of branch-and-cut
algorithms mainly results from many different techniques used for strengthen-
ing the relaxations. One such method is dual (or reduced cost) fixing, see, e.g.,
Nemhauser and Wolsey [53]. In this section, we extend this method to mixed-
integer semidefinite programs. However, since no reduced costs are available in
this context, the transfer is not direct. For linear programs solved by interior-point
methods, Mitchell [51] already extended reduced cost fixing by using the dual
variables corresponding to the variable bounds instead of the reduced costs. Helm-
berg [36] extended dual fixing to primal (mixed-integer) semidefinite programs,
and Vigerske [70] proposed it for general mixed-integer nonlinear programs. In
the following, we apply dual fixing specifically to the mixed-integer dual semidef-
inite problem (D-MISDP).

In this section, variable bounds are handled separately from the linear and semi-
definite constraints in the relaxation of (D-MISDP). Therefore, define the sets

J` := {i ∈ [m] : `i >−∞}, Ju := {i ∈ [m] : ui < ∞}

with m` := |J`|, mu := |Ju|. The primal of the SDP-relaxation of (D-MISDP) is

(B-P)

inf C •X + ∑
i∈Ju

uiVii−∑
i∈J`

`iWii

s.t. Ai •X +1{i∈Ju}Vii−1{i∈J`}Wii = bi ∀i = 1, . . . ,m,X U1 U2
U1 V U3
U2 U3 W

� 0,

using the indicator function and with V ∈ RJu×Ju , W ∈ RJ`×J` . This formulation
results from (P) and (D) via the (n+mu+m`)×(n+mu+m`)-dimensional matrices

Ãi =

Ai
diag

(
(ei)Ju

)
−diag

(
(ei)J`

)
 , C̃ =

C
diag(uJu)

−diag(`J`)

 .

Extending the results on dual fixing in [51] to the SDP case, we can fix bi-
nary variables yi, depending on the values of V or W corresponding to the variable
bounds in the dual problem, and also enhance bounds for non-binary variables,
which gives us the following theorem:

Theorem 3. Let (X , V, W, U1, U2, U3) be primal feasible for (B-P) with corre-
sponding primal objective value f =C •X +∑i∈Ju uiVii−∑i∈J` `iWii and let L be a
lower bound on the optimal objective value of the mixed-integer semidefinite pro-
gram (D-MISDP). Then for every optimal solution y of (D-MISDP) we have that

y j ≤ ` j +
f −L
Wj j

∀ j ∈ J` and y j ≥ u j−
f −L
Vj j

∀ j ∈ Ju.(1)

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 13

If y j is an integer variable and Wj j > f −L, then for every optimal solution y j = ` j;
on the other hand, if Vj j > f −L, then every optimal solution satisfies y j = u j.

Proof. Let y be a dual feasible solution and Z̃ := C̃−∑
m
i=1 Ãi yi � 0. Furthermore,

let

Y :=

X U1 U2
U1 V U3
U2 U3 W


By primal and dual feasibility we get that

Z̃ •Y =
(

C̃−
m

∑
i=1

Ãi yi

)
•Y = C̃ •Y −

m

∑
i=1

yi (Ãi •Y) = C̃ •Y −
m

∑
i=1

yi bi = C̃ •Y −b>y

for Ãi and C̃. Thus,

b>y = C̃ •Y − Z̃ •Y = f − Z̃ •Y

= f −Z •X−∑
i∈Ju

Vii(ui− yi)−∑
i∈J`

Wii(yi− `i)

≤ f −∑
i∈Ju

Vii(ui− yi)−∑
i∈J`

Wii(yi− `i),

where we used that Z •X ≥ 0, since both matrices are positive semidefinite if they
are feasible.

Now assume that

y j > ` j +
f −L
Wj j

.(2)

Using the fact that diagonal entries of positive semidefinite matrices are nonnega-
tive and y is dual feasible, we get

b>y≤ f −∑
i∈Ju

Vii(ui− yi)−∑
i∈J`

Wii(yi− `i)≤ f −Wj j(y j− ` j)< L.

Thus, any solution satisfying (2) cannot be optimal and the first part of (1) follows.
For the lower bound assume

y j < u j−
f −L
Vj j

.(3)

Then we get

b>y≤ f −∑
i∈Ju

Vii(ui− yi)−∑
i∈J`

Wii(yi− `i)≤ f −Vj j(u j− y j)< L.

Thus, any solution satisfying (3) cannot be optimal the second part of (1) follows.
The results for integer variables follow from the fact that Wj j > f −L implies

y j ≤ ` j +
f −L
Wj j

< ` j +1,

and similarly y j > u j−1 for the upper bound. �

7. SOLVER COMPONENTS

In this section, we discuss solver components that help to make a branch-and-
bound algorithm more efficient.

14 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

7.1. Presolving. In the context of mixed-integer linear programs, a collection of
presolving techniques for linear constraints are known, see for instance Savels-
bergh [63]. For MISDPs, one can detect 1×1 SDP-blocks and transform them to
linear constraints. Moreover, since the diagonal entries of a positive semidefinite
matrix are nonnegative, one can add the following linear constraints:

C j j−
m

∑
i=1

(Ai) j j yi ≥ 0 ∀ j ∈ [n] .

These constraints do not strengthen the relaxation, but can be used to apply pre-
solving techniques for linear constraints, e.g., bound tightening, see Mars [49].

7.2. Branching Rules and Node-Selection. The development of branching rules
for general MISDPs is less advanced compared to the mixed-integer linear case. In
the literature, branching rules for MISDPs are often problem-specific. However,
some obvious possibilities are the following:
◦ Integer Infeasibility: Branch on the variable with fractionality closest to 0.5.

Ties can be broken according to the absolute value of the objective function
coefficients.

◦ Objective: Choose a fractional variable with largest absolute value of its objec-
tive coefficient. Ties can then be broken according to integer infeasibility.

◦ Objective & Infeasibility: A combination of the last two branching rules is pos-
sible by multiplying the objective coefficient with the integer infeasibility.
A further general rule is inference branching, see Achterberg [2]. Here historical

information about fixings resulting from previous variable branchings is used to
choose new branching variables. The larger the number of implied fixings, the
higher the impact of the variable and the higher its chance of being selected.

A drawback of inference branching is that at the beginning of the solution pro-
cess, there is little historical information. In principle, this can be alleviated by
using strong branching techniques, in which tentative variable branching steps
are performed and the resulting subproblems are (partially) solved to estimate the
change in the objective. However, such approaches are usually very time consum-
ing. Even if improvements like reliability branching (Achterberg et al. [3]) are
applied, this will likely take too much time to be applied for SDPs.

In contrast, the rules for choosing the next node to be handled are universal for
any branch-and-bound solver. A typical default node-selection rule is best-first
search, in which the node with weakest relaxation value is chosen first. Of course,
breadth- and depth-first search or combinations of these rules are also possible.

7.3. Primal Heuristics. Primal heuristics can help to speed up the solution pro-
cess, since they possibly provide better lower bounds, allowing to cut off nodes of
the tree in which no better solution can be found, see Step 5 of Algorithm 1. In
the mixed-integer programming (MIP) context, many primal heuristics have been
developed, see, e.g., Fischetti and Lodi [30] for a brief survey. Extensions of these
as well as new methods for general mixed-integer nonlinear problems have also
been developed, see, e.g., Berthold [15] for an overview. There are several obvious
extensions/specializations for MISDPs:

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 15

◦ Rounding: Taking a solution of a subproblem relaxation, fractional values of
integer variables can be rounded to the next integer value. The resulting solu-
tion then has to be tested for feasibility. However, this test is relatively time
consuming and arbitrarily rounding a solution will only seldomly be successful.
An improvement is to determine beforehand whether a fractional variable y j
in (D-MISDP) can be rounded up or down without violating feasibility, see,
e.g., [49]. If A j is positive semidefinite, then y j can safely be rounded down,
since we then add the positive semidefinite matrix (y j−by jc)A j to the already
positive semidefinite C−∑

m
i=1 Ai yi. Similarly, if A j is negative semidefinite, y j

can be rounded up. The rounding heuristic then only uses these valid directions.
If both directions are invalid, the heuristic terminates.

◦ Randomized Rounding: The seminal paper of Goemans and Williamson [34]
already contains the idea to obtain a feasible solution for the max cut problem by
rounding the solution of an SDP-relaxation using a random hyperplane. Pilanci
et al. [57] apply randomized rounding for each binary variable, i.e., a binary
variable is rounded to 0 uniformly at random with probability equal to its value
in the relaxation. In several applications, the obtained solutions are always or
often feasible and repeating the process yields high quality solutions.

◦ Diving: Diving sequentially rounds fractional variables and resolves the SDP
until an integral solution is found. The choice of the next variable can be per-
formed similar to the branching rules described in Section 7.2, e.g., by using
integer infeasibility.

◦ Large Neighborhood Search: There are several primal heuristics that exploit the
possibility to recursively use the branch-and-bound algorithm on problems of
smaller size: local branching [29], RINS [22], RENS [16], crossover [62], and
DINS [33]. This idea naturally extends to MISDPs.

As should be apparent from this brief description, primal heuristics for MISDPs are
likely to be time consuming. Thus, one has to carefully decide how often heuristics
are run, i.e., in which nodes of the tree they are applied.

7.4. Cutting Planes. Cutting planes form one of the most important components
of a MIP-solver. In the MISDP setting, research in this direction is only at its
beginnings. An example for a problem-specific approach is the work by Helmberg
and Rendl [38]. Moreover, cutting constraints for general conic problems have
been investigated, see, for example, Çezik and Iyengar [20], Modaresi [52], Drewes
and Pokutta [24], and Atamtürk and Narayanan [8]. But there is still a long way to
go until cutting planes for mixed-integer semidefinite programming reach the same
level as in its linear counterpart. Our implementation currently does not include the
generation of general SDP cutting planes.

7.5. Solving the SDP-Relaxations. A very important task of an MISDP-solver
consists of solving the SDP relaxations. For solving SDPs, multiple approaches
exist in the literature, not all of which are applicable to all kinds of semidefinite
problems.

7.5.1. Interior-Point SDP-Solvers. In most applications, interior-point methods
are used to solve the SDPs. However, most interior-point SDP-solvers are not
tuned for usage in a branch-and-bound process, and several problems might arise:

16 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

It is relatively difficult to set up efficient warm-starting capabilities. Moreover, as
discussed in Section 5, the constraint qualifications under which the solvers guaran-
tee convergence may not be satisfied. One particular problem is that many solvers
do not allow (locally) fixed variables. Thus, these variables have to be eliminated
before the solution process.

Another problem of many SDP-Solvers and interior-point solvers, in particular,
is that they are not tuned to detect infeasibility. Since infeasible problems cannot
satisfy the dual Slater condition by definition, such problems can lead to difficulties
for the SDP-solvers. Therefore, assume that the SDP-solver fails to solve a given
subproblem. In this case, we use an idea in [49] and first solve

(FC)

inf r

s.t. C−
m

∑
i=1

Ai yi + In r � 0,

`i ≤ yi ≤ ui ∀ i ∈ [m] .

If problem (D) has a feasible solution ỹ, then (ỹ,0) is feasible for (FC), so its
optimal objective is nonpositive. On the other hand, if the optimal objective of (FC)
is strictly positive, then no y with C−∑

m
i=1 Ai yi � 0 exists. Thus, (D) is infeasible

and the node can be cut off. Note, however, that the solution of (FC) might fail,
since changing the objective from (D) to (FC) can harm the primal Slater condition.

If (FC) showed that the problem is feasible, or we failed to solve (FC), a new up-
per bound on (D) and preferably even a feasible solution is needed. As mentioned
in Section 5, one way to find such a bound and solution is solving the penalty for-
mulation (Γ-P) and (Γ-D) formed by reentering the objective into (FC) and forc-
ing r to be nonnegative. If this produces a solution for the penalty formulation with
r = 0, then it is also feasible for the original problem (D). If r > 0, by complemen-
tarity Tr(X) = Γ. We therefore increase Γ to force the solutions of (Γ-D) towards
feasibility for (D). This is done until a feasible solution for our original problem is
obtained and therefore the optimal objective values of (D) and (Γ-D) agree. How-
ever, we cannot guarantee this for all relaxations, as the following example shows:

Example 1. The primal and dual optimal objective value of (2+-P) from Section 5

(2+-P)

inf 0.5X11

s.t.

X11 1 X13
1 X22 X23

X13 X23 X22−1

� 0,

with dual problem

(2+-D)

sup 2y1− y2

s.t.

 0.5 −y1 0
−y1 y2 0

0 0 −y2

� 0.

is zero. When solving the problem using the penalty formulation (Γ-P) and (Γ-D),
the linear constraint X11 +X22 +X22− 1 ≤ Γ is added to the primal problem. The
primal (and dual) objective value, however, is 1

4(Γ+ 1)− 1
2

√
(Γ+1)2/4−2 for

Γ >−1+2
√

2, which will never reach zero. Since the computed bound gets better
with increasing Γ, it might still be worthwhile to increase Γ in case of Tr(X∗) = Γ.

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 17

Since Example 1 shows that the described approach is not guaranteed to ter-
minate, a practical implementation will have to stop at a given threshold for the
penalty parameter. In this case, the best solution found so far can still be used as an
upper bound for (D). Even if neither the original problem nor the penalty formu-
lation produced a valid bound, one can still continue if the current node is not the
root node: One can take the bound of the parent node and proceed with branching.
If the problems occur in the root node, the solution process has to terminate.

7.5.2. Alternative Solution Approaches. One alternative approach to handle SDPs
is by outer approximation via linear programs, in which cutting planes are dynam-
ically added. This approach is followed, e.g., by Krishnan and Mitchell [42, 43]
and Mars [49]. The advantage of this approach is that very efficient linear pro-
gramming solvers and, in particular, warm-starting of the dual simplex method can
be used. The disadvantage is that, in general, an exponential number of cutting
planes is needed for an ε-approximation, see Braun et al. [19]. Depending on the
problem type, this is also confirmed by slow performance in practice, see [49].

A second approach is the spectral bundle method of Helmberg and Rendl [39],
which is applicable to semidefinite programs with constant trace, i.e., Tr(X) is
constant for all feasible points X of (P). This method is regularly used for solving
max-cut and partitioning problems that satisfy this condition, see, e.g., [6, 7, 60].
One advantage of this approach is its warm-starting capability. One could therefore
automatically switch to the spectral bundle method, if the constant-trace property
is satisfied.

8. IMPLEMENTATION

We have implemented the branch-and-bound approach for solving MISDPs de-
scribed above in C/C++ using SCIP [2, 65] with pre-release version 3.2.1. The
implementation is freely available as SCIP-SDP [66]. The code is based on the
implementation of Mars and Schewe [49, 50], which we partly reworked and ex-
tended. In this section, we describe several choices made in this implementation.

8.1. Blockstructure. The implementation allows for multiple SDP-constraints or
SDP-blocks in (D-MISDP) instead of one. The theoretical results still hold, be-
cause if C and all Ai have a common blockstructure, then the positive semidefi-
niteness of C−∑

m
i=1 Ai yi is equivalent to the sum being positive semidefinite for

each block. In practice, this has the advantage of smaller matrices being checked
for positive semidefiniteness and appearing in Cholesky factorizations. Multiple
SDP-blocks are also supported by the interfaced SDP-solvers.

8.2. Feasibility Check. The feasibility of a given solution is checked by comput-
ing the smallest eigenvalue of C−∑

m
i=1 Ai yi for each block using LAPACK [5]. If

this eigenvalue is bigger than the negative feasibility tolerance, then the solution is
accepted for the semidefinite constraint. The default value for the feasibility toler-
ance in SCIP-SDP is 10−6, while the default optimality tolerance for solving the
SDPs is 10−4.

8.3. Interface to SDP-Solvers. The implementation contains a generic interface
and solver-specific interfaces. The generic interface takes care of removing locally
fixed variables as well as zero rows and columns in the dual semidefinite matrix C−
∑

m
i=1 Ai yi. These might occur by fixing all variables yi to zero whose matrices Ai

18 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

have entries in these rows and columns. Moreover, if all variables are fixed, then
we check the resulting solution for feasibility by computing the minimal eigenvalue
instead of passing it to the SDP-solver.

We use the penalty formulations described in Section 7.5 in order to increase
the stability of the solution process as follows: After failing to solve an SDP-
relaxation (D) to optimality, we first check the problem for feasibility using (FC).
If (FC) could not prove infeasibility, we then try to solve the problem using (Γ-D)
with a penalty parameter Γ between 105 and 1012. The value is a multiple of
the biggest objective coefficient of the problem, where the multiple depends on
the chosen SDP-Solver. If the SDP-Solver did not converge, we increase Γ at
most two times by a factor of 103, and we do the same if the penalty variable r in
the resulting solution is bigger than the feasibility tolerance and Tr(X) = Γ. This
implies that Γ was too small and the optimal solutions of the original problem were
cut off. On the other hand, if Tr(X)< Γ, then we decrease the optimality tolerance
of the SDP-solver with the aim to force r further towards zero, since we know that
(Γ-D) is exact. After at most two changes to Γ and ε , we stop the solving process
and continue with either the best dual bound computed via the penalty formulation
or the dual bound of the parent node, whichever is better, and then branch on any
variable that is not yet fixed.

There are currently two interfaces to SDP-solvers. The first interface is for
DSDP [14], an implementation of the interior-point dual-scaling algorithm writ-
ten in C and developed by Steve Benson, Yinyu Ye, and Xiong Zhang. In this
interface, we explicitly use the penalty formulation provided by DSDP. By de-
fault, DSDP will start the solving process using the penalty formulation. However,
once r is small enough, it will be fixed to 0 and removed from the formulation.
DSDP can also be set to treat the penalty variable like a usual variable that has to
be kept strictly positive during the interior-point iterations. We use this option after
encountering numerical problems.

The other interfaced SDP-solver is SDPA [72, 73], which is an implementa-
tion of the primal-dual interior-point method in C++ developed by Katsuki Fuji-
sawa, Makoto Yamashita and others. In this case, we implemented the penalty-
formulation inside the interface. Since SDPA offers multiple sets of default pa-
rameter choices, we first try to solve the SDP with the fastest settings. If this does
not work because of numerical difficulties, we switch to the two slower but more
stable settings. Only if all three settings do not lead to stable results, we check for
feasibility and resort to the penalty formulation. For efficiency, successful settings
will be remembered, so that a child node will immediately start with the same set-
tings that proved to be successful for the parent node (but we will never start with
the penalty formulation or the feasibility check without first trying the original for-
mulation with the most stable settings). In SDPA, the initial point X0 is chosen as
λ ∗ · In, with default value λ ∗ = 100. We try to compute a better guess for the initial
point by first computing

λ = max
{

S ·max
i∈[m]
{|ui|, |`i|} ·max

i∈[m]
‖Ai‖∞ +‖C‖∞,

maxi∈[m]|bi|
S ·mini, j,k : |(Ai)k j|6=0|(Ai)k j|

}
,

where S is a sparsity parameter computed by dividing the total number of upper-
triangular nonzero entries of all Ai by the total number of upper triangular entries
of a single matrix. The value of λ ∗ is then set to 1.5 if λ < 10 and to 105 otherwise,
since this produced the best results in our tests.

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 19

8.4. Checking the Slater Condition. In order to evaluate constraint qualifications
in practice, we also implemented the possibility to check every occurring SDP-
relaxation for the primal and dual Slater condition.

To check the dual Slater condition, we solve the auxiliary problem (FC) that we
also use to detect infeasibility. If the optimal objective value of (FC) is strictly neg-
ative, a dual solution y and r < 0 exist such that C−∑

m
i=1 Ai yi � −In r � 0, so the

dual Slater condition is fulfilled. On the other hand, if the optimal objective is non-
negative, no such solution exists and therefore the dual Slater condition cannot be
fulfilled. If it is strictly positive, the problem is infeasible. In our implementation,
we do not check the Slater condition for the variable bounds.

For checking the primal Slater condition we use the formulation

(P-Slater)

sup r

s.t. Ai • (X + In r) = bi, ∀i ∈ [m] ,

X � 0, r ≥ 0,

where we now include all variable bounds in the Ai matrices. If the optimal ob-
jective value of (P-Slater) is strictly positive, there exist X � 0 and r > 0 such
that X + In r fulfills the equality constraints in (P). Therefore, X + In r � In r � 0
is a strictly feasible solution for (P), and the primal Slater condition is fulfilled.
Conversely, if the optimal objective value is zero or the problem is infeasible, the
primal Slater condition cannot be fulfilled, since for any strictly feasible solution
X of (P), there exists r > 0 such that (X − In r, r) is feasible for (P-Slater) with
positive objective value.

Note that if every variable in (D) has finite bounds, (P-Slater) will be unbounded
and the primal Slater condition is satisfied. This can be shown by observing that
every bound on a dual variable leads to a nonnegative primal variable only appear-
ing in the corresponding primal constraint. If every dual variable is bounded from
above and below, these variables allow to generate a feasible solution to (P-Slater)
for any value of r. Therefore, we only have to solve (P-Slater) if at least one dual
variable is unbounded. Note that we cannot be sure whether the auxiliary problem
itself satisfies the Slater condition, so we might not always be able to check the
Slater condition.

8.5. Further Components. The presolving of linear constraints (including the
objective bound) is implemented in SCIP and is described in Achterberg [1]. We
implemented the branching rules described in Section 7.2, which was straight-
forward. Moreover, we implemented dual fixing as described in Section 6. The
diving heuristic mentioned in Section 7.3 was implemented by adapting existing
versions for the MIP case. The rounding heuristic is automatically performed by
SCIP based on “rounding locks” (see [1]), which we set up using the SDP con-
straints. The large neighborhood search heuristics are implemented in SCIP, see
Berthold et al. [17] for a description on the performance for MINLP problems. In
our implementation, we currently do not use these heuristics, because they would
require more tuning effort in order to balance time against solution quality.

9. APPLICATIONS

In the following, we want to demonstrate the usability of the MISDP-framework
with three applications. In the first two applications, truss topology design and car-
dinality constrained least squares, the semidefinite constraints stem from quadratic

20 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

or bilinear constraints or objectives, while the minimum k-partitioning problem
can also be formulated as a MIP, but introducing a semidefinite constraint allows
to reduce the size of the problem and increase the strength of the relaxation.

9.1. Truss Topology Design. Truss topology design determines truss structures
that are both stable and lightweight. Historically, it was first formulated as a nonlin-
ear program, see, e.g., Bendsøe and Sigmund [12]. Ben-Tal and Nemirovskii [11]
introduced a robust SDP-formulation, which was extended by Mars [49] using bi-
nary variables for choosing components; we will follow this latter approach.

The general idea is to start with a ground structure, i.e., a simple directed graph
D = (V,E) with n nodes V = {v1, . . . ,vn} ⊆ Rd . A subset Vf ⊂ V of n f nodes
are free, while the remaining nodes are fixed. The goal is to optimize the cross-
sectional areas x ∈ RE

+ of the possible bars in E such that the total volume of
the truss is minimized, while still keeping it stable when a given force f ∈ Rd f ,
d f = d · n f , is applied. The vector f consists of the d-dimensional forces that are
applied for each of the n f free nodes and causes displacements u ∈Rd f . The node
displacements can be computed from the equilibrium constraint A(x)u= f utilizing
the stiffness matrix A(x) = ∑e∈E Ae xe with Ae = beb>e , be = (be(v))v∈Vf ∈Rd f and

be(v) =


√

κ
vi−v j

‖vi−v j‖3/2
2

, if v = vi,
√

κ
v j−vi

‖vi−v j‖3/2
2

, if v = v j,

0 otherwise,

for e = (vi,v j), v ∈Vf ,

where κ is Young’s modulus of the used material. The stability of the structure is
measured by the compliance 1

2 f>u, which describes the potential energy stored in
the deformed truss and has to be less than a given constant Cmax.

Using a robust optimization approach, the trusses can also be protected against
perturbations of the load by computing a worst-case over all forces within a given
uncertainty set, see, e.g., Ben-Tal et al. [10]. We use an ellipsoidal uncertainty set
{ f ∈Rd f : f = Qg, ‖g‖2 ≤ 1} for a given matrix Q ∈Rd f×k. This approach also
allows to include given load scenarios. Alternatively, we apply multiple external
forces f , which leads to one additional SDP-constraint per applied force.

Moreover, bars may only be available with certain cross-sectional areas from a
given set A ⊂ R+. We introduce binary variables xa

e which model whether bar e
has cross-sectional area a. This finally leads to the volume minimizing MISDP

(TT)

inf ∑
e∈E

`e ∑
a∈A

a xa
e

s.t.
(

2τ Ik Q>

Q A(x)

)
� 0,

∑
a∈A

xa
e ≤ 1 ∀e ∈ E,

τ ≤Cmax,

xa
e ∈ {0,1} ∀e ∈ E, a ∈A ,

where A(x) = ∑
e∈E

∑
a∈A

Ae axa
e , and `e is the length of bar e ∈ E.

One can show that the root node relaxation of Problem (TT) always satisfies the
primal Slater condition. The dual Slater condition depends on the choice of Cmax
and the ground structure, but will be satisfied for all “reasonable” choices.

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 21

9.2. Cardinality Constrained Least Squares. Another application of MISDPs
arises from the problem of cardinality constrained least squares, see Hocking [40].
We use the formulation as an MISDP of Pilanci et al. [57].

Given sample points a1, . . . , am ∈Rd , collected as the rows of matrix A∈Rm×d ,
and corresponding measurements b1, . . . , bm, classical linear regression determines
a vector x ∈Rd such that ‖Ax−b‖2 is minimized. Its solution serves as a predictor
for future measurements. In many applications, its quality can be improved by only
allowing k of the components of x to be nonzero, i.e., the most important k of the d
features are selected. This leads to the cardinality constrained quadratic program

inf
x∈Rd

{1
2
‖Ax−b‖2

2 +
1
2

ρ‖x‖2
2 : ‖x‖0 ≤ k

}
,

where ‖x‖0 is the size of the support of x and 1
2 ρ‖x‖2

2 is a regularization term for
given positive ρ ∈ R. As shown in [57], by introducing binary variables z for
deciding on the support, this can be equivalently transformed to the MISDP

(CLS)

inf τ

s.t.
(

Im + 1
ρ

ADiag(z)A> b
b> τ

)
� 0,

d

∑
j=1

z j ≤ k, z ∈ {0,1}d .

The relaxation of the MISDP (CLS) satisfies the dual Slater condition, since
1
ρ

ADiag(z)A> is positive semidefinite for all z ∈ [0,1]d . Thus, In +
1
ρ

ADiag(z)A>

is positive definite. Therefore, choosing τ large enough, renders the whole matrix
positive definite. The primal Slater condition also holds, since all variables are
bounded, except for τ with a corresponding primal constraint −Xm+1,m+1 = −1,
so that X = Im+1 is a strictly feasible primal solution for a suitable choice of the
primal variables corresponding to the variable bounds.

9.3. Minimum k-Partitioning. In this section, we introduce the problem of find-
ing a minimum k-partitioning of a weighted graph with bounded sizes of the parts.
We first present the version without size constraints. Given an undirected graph
G = (V,E) with n nodes, edge-weights c : E 7→R and a positive integer k ≥ 2, we
want to find a partitioning of V into k disjoint sets V1, . . . ,Vk that minimizes the
total weight of all edges within the parts

k

∑
i=1

∑
e∈E[Vi]

c(e).

This problem has applications in frequency planning, see, e.g., Eisenblätter [26],
and in the layout of electronic circuits, see, e.g., Lengauer [45].

The minimum k-partitioning problem is closely connected to the minimum graph
bisection and max-cut problems, which correspond to k = 2. It is NP-hard and also
difficult to approximate, as shown by Kann et al. [41]. Many different semidefi-
nite relaxations for this problem and the equi-partitioning variant, where all parts
are required to be of the same size, have been proposed, for an overview see, e.g.,
Sotirov [68]. Here we want to use the formulation of Eisenblätter [25, 26], since it
allows an exact formulation as an MISDP.

22 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

Assume w.l.o.g. that V = {1, . . . ,n} and define the cost matrix C with entries
ci j := c({i, j}) for {i, j} ∈ E and ci j = 0 otherwise. Introducing variables Xi j ∈
{ −1

k−1 ,1}, where Xi j = 1 if and only if node i and j are in the same part, the problem
is equivalent to

inf ∑
1≤i< j≤n

ci j
(k−1)Xi j +1

k

s.t. X � 0,
Xii = 1 ∀ i = 1, . . . ,n,

Xi j ∈
{ −1

k−1 ,1
}

∀1≤ i < j ≤ n.

In order to obtain an MISDP, we introduce binary variables Yi j such that Xi j =
−1
k−1 +

k
k−1Yi j. Therefore, Xi j =

−1
k−1 if Yi j = 0 and Xi j = 1 if Yi j = 1. This leads to

(Min-k)

inf ∑
1≤i< j≤n

ci j Yi j

s.t. −1
k−1 J+ k

k−1 Y � 0,

Yii = 1, Y ∈ Sn∩{0,1}n×n,

where J is the all-one matrix.
In the next step, we consider a weight function w for the nodes and add the con-

straint that the sum of weights for the nodes in every part lies in the interval [`,u].
Since the i-th row of Y has a 1 entry for each element in the same part as i (includ-
ing the diagonal entry for i itself), we can enforce this through the linear constraint
`≤∑

n
j=1 w j Yi j ≤ u. When using only upper triangular entries without the diagonal

as variables, we obtain

(4) `−wi ≤∑
j<i

w j Yji +∑
j>i

w j Yi j ≤ u−wi ∀ i = 1, . . . ,n.

The relaxation of (Min-k) satisfies the dual Slater condition for k > 2 with
strictly feasible solution Y = In. For k = 2, it is not fulfilled, since all entries
of the matrix have absolute value 1 and the 2× 2 principal minors have value
1− (±1)2 = 0. Thus, no feasible matrix can be strictly positive definite. For
larger k, the dual Slater condition is also lost after fixing a single variable to 1.
If we fix Xi j to 1, we have Xii = X j j = Xi j = 1, so the principal minor of the corre-
sponding 2×2 matrix is 0. Therefore, X can no longer be strictly positive definite
and the relative interior of the dual problem becomes empty. Moreover, the dual
Slater condition will also get lost when adding (4) for ` = u. The primal Slater
condition holds, however, since all variables are bounded.

Note that several MISDP approaches for minimum partitioning problems have
appeared in the literature. For instance, Ghaddar et al. [32] and Anjos et al. [6] in-
vestigate the problem without restrictions on the size of the parts. Rendl et al. [60]
deal with max cut problems, i.e., k = 2. Moreover, Armbruster et al. [7] investigate
SDP- and LP-approaches for the minimum bisection problem, which also corre-
sponds to k = 2. They bound the weights of the subsets, but minimize the cost of
edges bridging the cut. This is equivalent to minimizing the cost of edges within
the cuts by switching the sign of the weights (and changing the objective value
by a constant). The formulation in Ferreira et al. [27] is closest to ours, but again
minimizing the total weight of edges between the parts. They apply an LP-based

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 23

TABLE 1. Overview over all instances

problem-type # cont-vars bin-vars blocks blocksize LP-conss

truss topology 60 1 27 – 384 1 – 4 10 – 44 85 – 801
colon cancer 20 1 100 1 63 201
random CLS 45 1 32 – 128 1 43 – 367 65 – 256
VLSI 10 0 105 – 1128 1 15 – 48 240 – 2352
random min-k-part 59 0 120 – 2415 1 16 – 70 272 – 4970

total 194 0 – 1 27 – 2415 1 – 4 10 – 367 65 – 4970

branch-and-cut algorithm, including a separation routine for constraints involving
edge-variables and additional cutting planes.

In our experiments, we use an MISDP approach and k ≥ 2. The goal is to
illustrate that one can obtain solutions for such problems using a general purpose
code. Moreover, it is easy to add constraints like individual bounds for the weights
of parts. Of course, our code cannot be competitive with the above mentioned
problem-specific approaches.

10. NUMERICAL RESULTS

In this section, we will investigate the influence of different solver components like
dual fixing, heuristics, and branching rules on the solution process. Furthermore,
we will also consider the behavior of SDP-relaxations not fulfilling the dual Slater
condition during the solution process of mixed-integer semidefinite programs.

10.1. Testset. For testing our implementation, we created a testset of 194 in-
stances arising from the three applications described in the preceding section. An
overview over all instances can be found in Table 1. The first two columns list the
names of the problem set and the number of instances. Moreover, it presents the
range of the following numbers: the number of continuous and binary variables,
the number of SDP blocks, the size of each SDP block, and the number of linear
constraints.

10.1.1. Truss Topology Design. For the truss topology design problem we created
a total of 60 instances. The ground structures consist of 6 to 27 nodes and 12 to
196 bars. For each bar we have a choice between 1 (i.e., a yes/no decision whether
to use the bar) and 16 different sizes. We applied 1 to 4 different primary forces,
and for 52 of the 60 instances we further used an ellipsoidal uncertainty set.

10.1.2. Cardinality Constrained Least Squares. For testing the performance of the
solver on the cardinality constrained least squares problem, we created a testset
of 65 instances of varying difficulty. The testset consists of 20 instances based on
real-world data and 45 randomly generated instances.

The real-world instances are based on the colon cancer data set in [4], consisting
of 62 samples and 2000 features. These data were also used in [57]. Since solving
MISDPs exactly uses considerably more time than solving only a single SDP, we
had to use instances of smaller size in comparison to [57]. After normalizing the
entries, we split the data into 20 instances using 100 features each, resulting in
data A ∈R62×100 and b ∈ {±1}62, distinguishing between tumor tissues (−1) and
normal tissues (+1), like in [57]. The sparsity level k was chosen between 5 and 24.

For creating the randomly generated instances, we used the same technique as
in [57], which was originally proposed by Wainwright [71]. The design matrix

24 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

A ∈ Rm×d was randomly generated with independent and identically distributed
Gaussian N(0,1) entries. For creating the measurement data b ∈ Rm, we gener-
ated k-sparse regression vectors x? with uniformly distributed support and entries
±1/
√

k, where the sign was again chosen uniformly. Then we set b = Ax? + ε ,
where ε ∈Rm with N(0, 0.25) entries as in [71].

We generated three instances each for 15 different choices of the triple (m,d,k).
As in [57], we chose k = d

√
de and m = dαk lnde with α ∈ {2,4,6,8}. Again, we

had to use smaller instances compared to [57], i.e., we use d ∈ {32,64,96,128}
instead of d ∈ {64,128,256}, also omitting the combination of d = 128 and α = 8.

The resulting instances are completely dense, i.e., all matrices Ai are dense,
unless some observations are zero.

10.1.3. Minimum k-Partitioning. The instances for the minimum k-partitioning
problem were generated based on the graphs from Ghaddar et al. [32], which were
in turn generated using the rudy graph-generator [61]. We only used the medium-
sized instances, since our general purpose code is not as fast as the specialized
branch-and-cut algorithm from [32]. We added size constraints with ` = bn/kc,
u = dn/ke as explained in Section 9.3. Furthermore, while the instances were only
solved for k = 2 and k = 3 in [32], we used larger values of k for some of them to
create a more heterogeneous testset.

We generated a total of 69 instances. These consist of 42 instances based on
randomized spin glass graphs for two- and three-dimensional grids. They have
16 to 49 nodes, 32 to 98 edges with Gaussian distributed or ±1 weights, and k
between 2 and n/2; these instances correspond to a physics application of the max-
cut problem described in more detail in Liers et al. [46]. Further 17 instances
are based on clique graphs of size 20 to 70, with edge-weight |i− j| for the edge
between the i-th and j-th node and k again chosen between 2 and n/2.

In addition to the randomly generated instances, we also use ten of the smaller
instances, which first appeared in Ferreira et al. [27] and are now part of a bench-
marking set [28]. These real-world instances treat the clustering of cells on a
chip as a preprocessing step for the layout-problem in very-large-scale integra-
tion (VLSI). We select all VLSI-instances solved in [27] within a time limit of 300
minutes. Since we are minimizing the cost of edges within the parts instead of the
cut, we switched the sign of all edge-weights. The instances consist of 15 to 48
nodes of different weight, four clusters with identical maximum capacities, which
we use as upper bounds on the size of the parts, and 29 to 132 edges.

Note that when written in the dual form (D-MISDP), the minimum k-partitioning
problem yields very sparse SDP-blocks in which every matrix Ai has only a single
nonzero entry.

10.2. Performance of Different Components. In this section, we report on the
performance achieved with our implementation on the described testset using the
different components. The computations were performed on a Linux cluster with
Intel i3 CPUs with 3.2GHz, 4MB cache and 8GB memory running Linux. The
code was compiled with gcc 4.4.5 with -O3 optimization. Each computation was
performed single-threaded with a single process running on each computer and
with a time limit of 3600 seconds. Note that for SDPA it is also possible to run
the linear algebra subroutines multi-threaded, which, however, does not seem to

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 25

TABLE 2. Data columns for presenting the solving times

column name description

solved number of instances solved to optimality within the time limit of 3600 seconds
aborts number of instances aborted by the solver
nodes shifted geometric mean of the number of nodes in the tree, where we only use those instances

that were solved by all settings (shift s = 100)
time shifted geometric mean of the solving time in seconds (shift s = 10, unsolved instances use 3600

seconds)
iters shifted geometric mean of the number of SDP-iterations for all instances solved by all settings

(shift s = 1000)
penalty arithmetic mean of the percentage of nodes that were solved to optimality or infeasibility using

the penalty formulations introduced in Section 7.5
unsucc arithmetic mean of the percentage of nodes that could not be solved successfully by any method
fixings arithmetic mean of the number of fixings performed by the dual fixing technique of Section 6

be worthwhile for instances of the size used in our testset. Detailed results for all
computations can be found in the online supplement.

For reporting some of the aggregated results, we will use the shifted geomet-
ric mean to decrease the influence of easy instances, see Achterberg [2] for more
details. The shifted geometric mean of values x1, . . . , xn is computed as(n

∏
i=1

(xi + s)
)1/n
− s

for a given shift s. The tables below contain data columns as described in Table 2.
We also present performance plots, in which the number of solved instances is
plotted against the solving time factor relative to the fastest solver for each instance,
see Dolan and Moré [23].

Note that in some cases our solver failed to finish and aborted prematurely. The
main reason is that the root node relaxation could not be solved, in which case we
have to terminate the solution process. SDPA can also abort the solving process
in case of errors in the linear algebra subroutines, which sometimes happens for
infeasible subproblems. Many of these problems do not appear for these instances
when using different parameters for the SDP-solvers, e.g., λ ∗ in SDPA. But we
were unable to generate a general rule that works for all instances. Furthermore,
there are some cases where the SDP-solvers exceeded the time or memory limit,
which caused the cluster to abort these processes.

10.2.1. Influence of Solvers and Branching Rules. We begin our presentation of
the results by an investigation of the influence of branching rules and the two dif-
ferent SDP-solvers. We use eight different settings. In each setting, the fractional
diving heuristic is only called in the root node and randomized rounding and dual
fixing are disabled. Either DSDP or SDPA is used to solve the SDP-relaxations
together with one of the following four branching rules, for details see Section 7.2:
◦ infer: inference branching: branch on a variable that historically led to the

highest number of implied fixings;

◦ infobj: objective & infeasibility branching: choose a variable with largest
product of integer infeasibility and absolute value of objective coefficient;

◦ obj: objective branching: branch on a variable with largest absolute value of its
objective coefficient;

◦ inf: infeasibility branching: choose a variable with largest integer infeasibility.

26 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

TABLE 3. Results for DSDP/SDPA and different branching rules for the truss topology testset of 60
instances

settings solved aborts nodes time iters penalty unsucc

DSDP-infer 43 0 4871.1 716.7 145,272.4 0.16 % 0.08 %
DSDP-infobj 48 0 1871.5 455.5 62,209.3 0.11 % 0.22 %
DSDP-obj 41 0 5495.3 815.3 162,678.1 0.76 % 1.81 %
DSDP-inf 42 0 2853.9 620.4 94,125.0 0.69 % 1.50 %
SDPA-infer 40 7 3739.9 480.7 78,858.1 4.29 % 4.75 %
SDPA-infobj 43 9 1926.4 319.9 42,317.8 2.74 % 1.66 %
SDPA-obj 45 2 4220.0 444.8 88,068.3 4.52 % 5.12 %
SDPA-inf 36 9 3229.1 501.8 70,068.3 2.49 % 1.96 %

Table 3 gives an overview of the results for these eight settings for the truss
topology instances. For DSDP, the infobj branching rule clearly outperforms the
rest, while for SDPA it is still the fastest, but cannot solve as many instances as
obj branching, which is mainly caused by the higher number of instances aborted
by SDPA.

When comparing the solvers, SDPA is 20 to 50 % faster than DSDP, but solves
less instances, again because of the relatively high number of aborted instances.
The number of branch-and-bound nodes is similar for both solvers, while the num-
ber of SDP-iterations is significantly higher for DSDP, which is due to the different
choice of algorithms applied by DSDP and SDPA. In contrast to the primal-dual
algorithm used in SDPA, the dual-scaling method in DSDP does not possess super-
linear convergence, but the computational cost of a single iteration is significantly
smaller, see, e.g., [14], therefore a higher number of SDP-iterations per problem is
to be expected. When comparing their numerical stability, SDPA runs into numer-
ical troubles for up to 10 % of the SDP-relaxations, while DSDP can solve at least
97 % of the relaxations using the default formulation.

The results for the cardinality constrained least squares instances are given in
Table 4. For this testset, we get identical results for infobj, obj, and inf branch-
ing, since in the cardinality constrained least squares instances all binary variables
have objective zero and the fallback is infeasibility branching. The infer branch-
ing rule does not perform well on these instances, since the branch-and-bound trees
are much smaller than for truss topology design and less branching history infor-
mation is available.

When looking at the SDP-solvers, SDPA is faster than DSDP by a factor of
two and can solve many more instances, which might be due to the fact that these
instances are completely dense. In such cases, one of the main advantages of the
dual-scaling method implemented in DSDP, namely that it can exploit sparsity in
the dual problem, cannot be exploited. For these instances, there are also no aborts
for SDPA, even though the number of problems where the penalty formulation has
to be used is still much higher than for DSDP.

Results for the minimum k-partitioning instances are given in Table 5. Here,
the branching rules using the objective values perform much better than infer

and inf branching, since the information about the particular instances is solely
contained in the objective coefficients of the variables. The best results, however,
are obtained by the combined infobj rule.

For the minimum k-partitioning instances, DSDP outperforms SDPA, which
might be due to the fact that these instances are very sparse. This fact can be

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 27

TABLE 4. Results for DSDP/SDPA and different branching rules for the cardinality constrained
least squares testset of 65 instances

settings solved aborts nodes time iters penalty unsucc

DSDP-infer 23 0 245.7 1494.7 9997.3 0.06 % 1.52 %
DSDP-infobj 34 0 40.1 1162.5 3932.3 0.00 % 2.11 %
DSDP-obj 34 0 40.1 1163.1 3932.3 0.00 % 2.11 %
DSDP-inf 34 0 40.1 1166.6 3967.5 0.00 % 2.11 %
SDPA-infer 37 0 200.2 835.9 5405.3 15.05 % 0.03 %
SDPA-infobj 47 0 40.2 490.7 1937.7 8.46 % 1.60 %
SDPA-obj 47 0 40.2 490.6 1937.7 8.47 % 1.60 %
SDPA-inf 47 0 40.2 490.7 1937.7 8.46 % 1.60 %

TABLE 5. Results for DSDP/SDPA and different branching rules for the min-k-partitioning testset
of 69 instances

settings solved aborts nodes time iters penalty unsucc

DSDP-infer 54 0 308.6 464.5 13,010.7 0.04 % 1.06 %
DSDP-infobj 56 0 157.0 328.7 7811.8 0.01 % 0.27 %
DSDP-obj 54 0 191.1 377.9 9075.6 0.04 % 1.17 %
DSDP-inf 51 0 303.6 580.3 12,787.2 0.03 % 0.08 %
SDPA-infer 45 4 442.9 494.6 12,676.1 14.72 % 26.29 %
SDPA-infobj 46 3 255.4 384.7 8463.2 15.60 % 27.49 %
SDPA-obj 44 4 288.5 433.8 9308.5 15.08 % 27.82 %
SDPA-inf 37 1 456.1 632.4 14,548.0 14.35 % 33.41 %

exploited better by a dual-scaling than a primal-dual algorithm, which also has to
take care of the potentially dense primal matrix. Another important factor is that
these problems are numerically the most troubling, since the Slater condition fails
after fixing a single variable to one, as we explained in Section 9.3. This can also
be seen in the results, with SDPA failing in more than 40 % of the nodes, while
they do not seem to pose too many problems for DSDP.

Results for the whole testset can be found in Table 6 and Figure 1. The best
overall results are obtained for the infobj branching rule. Inference branching
does not seem to be a good choice for either solver, possibly because the branch-
and-bound trees are too small compared to mixed-integer linear programs, but for
SDPA it at least solves more instances than inf branching.

Between the solvers, SDPA is about 30 % faster than DSDP for each branching
rule. When looking at the number of solved instances, however, the results for
DSDP and SDPA are similar, which is again caused by a number of instances that
get aborted when using SDPA, sometimes because the root node relaxation could
not be solved, others because SDPA aborts inside the linear algebra subroutines.
Recall that these problems can be solved by a certain choice of parameters, but we
could not find a choice that works for all instances simultaneously. The number of
branch-and-bound nodes is in general smaller for DSDP than for SDPA, because of
the smaller number of unsuccessfully solved nodes, which need further branching,
while they might be cut off if solved successfully. The number of SDP-iterations,
however, is bigger for DSDP, because of the slower convergence of the dual-scaling
method.

Over the whole testset, SDPA fails to solve about 20 % of the relaxations with
the default formulation, while for DSDP it is less than 2 %. The penalty formu-
lation does not play a big role for DSDP, since it is also used internally until the
penalty variable can be fixed to 0. For SDPA, it allows to solve about 50 % of the

28 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

TABLE 6. Results for DSDP/SDPA and different rules for the complete testset of 194 instances

settings solved aborts nodes time iters penalty unsucc

DSDP-infer 120 0 522.5 786.9 19,302.1 0.08 % 0.91 %
DSDP-infobj 138 0 173.4 556.5 8565.4 0.04 % 0.87 %
DSDP-obj 129 0 233.2 699.8 10,498.9 0.25 % 1.68 %
DSDP-inf 127 0 234.1 749.1 10,623.8 0.22 % 1.20 %
SDPA-infer 122 11 488.8 584.8 12,170.7 11.82 % 10.73 %
SDPA-infobj 136 12 202.5 394.4 5805.1 9.45 % 11.01 %
SDPA-obj 136 6 248.1 455.6 6795.4 9.54 % 11.75 %
SDPA-inf 120 10 274.3 540.8 7490.0 8.98 % 13.45 %

1 10

0

50

100

150

factor of time of fastest setting

#
so

lv
ed

in
st

an
ce

s

DSDP-infer

DSDP-infobj

DSDP-obj

DSDP-inf

SDPA-infer

SDPA-infobj

SDPA-obj

SDPA-inf

FIGURE 1. Performanceplot for DSDP/SDPA and different branching rules for the complete testset
of 194 instances

problems that failed at first. In the remaining cases, we might still be able to gen-
erate lower bounds by finding optimal solutions for the penalty problem that are
infeasible for the original formulation. This may be enough to cut these nodes off
instead of generating a whole subtree that needs to be enumerated.

10.2.2. Influence of Dual Fixing and the Heuristics. We next investigate the in-
fluence of dual fixing as well as the fractional diving and randomized rounding
heuristics on the performance of the solution process. These tests are performed
for the fastest combination of solver and branching rule according to the tests in
the last section, which is SDPA with infobj branching. In case of randomized
rounding, we performed five rounds for different random seeds in every node in
which the heuristic was called. We compare the following ten settings, with the
first one being the default setting from the last section:
◦ rootdive: fractional diving in the root node; dual fixing disabled;

◦ rootdive-dualfix: fractional diving in the root node; dual fixing enabled;

◦ dive10: fractional diving with depth frequency 10; dual fixing disabled;

◦ dive10-dualfix: fractional diving, depth frequency 10; dual fixing enabled;

◦ nodive: fractional diving disabled; dual fixing disabled;

◦ nodive-dualfix: fractional diving disabled; dual fixing enabled.

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 29

TABLE 7. Results for SDPA with combined infeasibility/objective branching with and without frac-
tional diving, randomized rounding, and dual fixing for the complete testset of 194 instances

settings solved aborts nodes time iters penalty unsucc fixings

rootdive 136 12 243.7 394.4 7095.6 9.45 % 11.01 % 0.0
rootdive-dualfix 144 11 232.9 339.8 7237.2 8.98 % 11.32 % 6293.4
dive10 125 17 240.7 537.6 10,515.4 10.62 % 11.79 % 0.0
dive10-dualfix 139 19 197.6 395.3 9096.9 11.22 % 12.19 % 5629.4
nodive 141 13 261.6 350.3 5401.8 7.09 % 10.89 % 0.0
nodive-dualfix 148 12 261.0 319.9 5463.6 7.55 % 10.54 % 3346.5
rootrand 142 13 254.8 339.5 5284.2 9.99 % 11.10 % 0.0
rootrand-dualfix 149 12 247.4 261.9 5219.3 9.67 % 10.58 % 3998.5
rand10 146 15 252.1 316.2 5077.1 12.00 % 11.37 % 0.0
rand10-dualfix 156 15 218.3 228.5 4755.0 12.23 % 11.20 % 10,083.0

1 10

0

50

100

150

factor of time of fastest setting

#
so

lv
ed

in
st

an
ce

s

rootdive

rootdive-dualfix

dive10

dive10-dualfix

nodive

nodive-dualfix

rootrand

rootrand-dualfix

rand10

rand10-dualfix

FIGURE 2. Performanceplot for SDPA with combined infeasibility/objective branching with and
without fractional diving, randomized rounding, and dual fixing for the complete testset of 194 in-
stances

◦ randroot: randomized rounding in the root node; dual fixing disabled;

◦ randroot-dualfix: randomized rounding in root node; dual fixing enabled;

◦ rand10: randomized rounding with depth frequency 10; dual fixing disabled;

◦ rand10-dualfix: randomized rounding with depth frequency 10; dual fixing
enabled.
Results for the whole testset can be found in Table 7 and Figure 2. Dual fixing

shows to be a worthwhile technique, reducing solving times by 7 to 28 %, depend-
ing on the quality of the primal solutions, and in all cases increases the number of
solved instances significantly.

Fractional diving is less successful, since it is too time consuming when used
frequently. But it helps dual fixing by supplying good primal bounds. Further-
more, there are three instances that can only be solved using fractional diving and
four more that need either fractional diving or randomized rounding. Randomized
rounding performs very well by producing good primal solutions for propagation
without taking too much time. With enabled dual fixing, a frequent use of the
randomized rounding heuristic can reduce solving times by almost 30 %.

30 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

TABLE 8. Data columns for presenting the results of the randomized rounding heuristic

column name description

success number of instances with at least one generated feasible solution
optimal number of instances where the optimal solution could be found
aborts number of instances aborted by the solver
found arithmetic mean of number of improving solutions found by randomized rounding
root-gap arithmetic mean of duality gap |primalbound−dualbound| / |dualbound| after the root node

over all instances where at least one solution was found
optimal-gap arithmetic mean of gap between best solution found by heuristic and optimal solution, given by

|bestsolval−optsolval| / |optsolval|, over all instances with at least one solution found
time shifted geometric mean of the solving time in seconds (shift s = 10)
iters shifted geometric mean of the number of SDP-iterations (shift s = 1000)

The results do not vary much with respect to the different testsets, but dual fixing
seems to perform best for cardinality constrained least squares, while randomized
rounding has largest impact for minimum k-partitioning.

The results are very similar when using DSDP instead of SDPA. The only no-
table difference is that for DSDP, the frequent use of the diving heuristic increases
the number of unsolved relaxations significantly, but this does not seem to have a
big influence on solving times.

10.3. Randomized Rounding in the Root Node. Pilanci et al. [57] used repeated
randomized rounding to generate solutions for the cardinality constrained least
squares problem. Using our MISDP-solver, we can now provide an empirical
estimation of the quality of the produced solutions. We will also investigate the
influence of the number of rounds of the randomized rounding heuristic, using 1,
10, 100, and 1000 rounds ([57] used 1000).

The results for the cardinality constrained least squares testset are given in Ta-
ble 9, using column data as described in Table 8. When applying randomized
rounding at least ten times, very good results can be achieved. The generated solu-
tions are feasible most of the time (they are only infeasible if more than k variables
are rounded up), and we could even find an optimal solution for two thirds of the
instances. With 100 or 1000 rounds, the best solution value found was less than
one percent worse than the optimal solution value on average. In this case, how-
ever, the time needed is already approaching the levels of our branch-and-bound
solver. Note that for this specific application, the solving times could be reduced
by computing τ directly instead of solving an SDP with a single variable in every
round of the randomized rounding heuristic, which is not possible for general MIS-
DPs. Between DSDP and SDPA, the quality of the solutions does not differ, while
the solving times are slower for DSDP by the same factor of two as for solving the
problems to optimality.

We also tested the same approach for the other two applications. The results,
however, are much worse. In case of minimum k-partitioning, feasible solutions
were generated for up to four instances, which were, however, always optimal. For
the truss topology instances, solutions for up to eight instances with an average
optimality gap of around 15 % were found. Since we do not have to solve a final
SDP in these cases, the running time of the randomized rounding heuristic is very
small for these instances.

10.4. Slater Condition. In Section 5, we discussed under which theoretical con-
ditions strong duality and the Slater constraint qualification are preserved in the

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 31

TABLE 9. Results after the root node using only randomized rounding for the cardinality constrained
least squares testset of 65 instances

settings success optimal aborts found root-gap optimal-gap time iters

DSDP-1rand 59 17 0 0.9 48.58 % 44.61 % 50.7 144.6
DSDP-10rand 65 42 0 5.1 5.34 % 3.03 % 55.6 300.5
DSDP-100rand 65 46 0 31.2 2.84 % 0.85 % 69.5 1600.6
DSDP-1000rand 65 47 0 134.3 2.46 % 0.54 % 194.9 14,859.3
SDPA-1rand 49 9 0 0.8 50.90 % 46.63 % 15.2 79.1
SDPA-10rand 65 43 0 5.2 4.93 % 2.75 % 17.8 180.2
SDPA-100rand 65 46 0 32.8 2.80 % 0.83 % 26.3 978.4
SDPA-1000rand 65 48 0 133.6 2.54 % 0.63 % 101.5 8952.5

subproblems of the tree. The Slater condition is of particular practical importance,
since it is often required for convergence analyses of SDP-solvers. This motivates
the experiments in the following, in which we estimate the proportion of subprob-
lems in the tree for which the Slater condition holds.

For the results in this section, we solved all instances in the three testsets again,
but tested every SDP-relaxation for the primal and dual Slater condition using the
auxiliary problems explained in Section 8.4. These tests were carried out on a
server with Intel Xeon CPUs with 2.7GHz, 20MB cache, and 8GB memory running
Linux, with each computation performed single-threaded. The code was compiled
with gcc 4.4.5 with -O3 optimization. A time limit of one hour was used for each
instance. Since the last section showed that dual fixing and the different heuristics
can have significant influence on the amount of numerical problems encountered
during solving the relaxations, we tested both DSDP and SDPA with the following
three settings:
◦ nodive: objective & infeasibility branching with randomized rounding, diving

heuristic, and dual fixing disabled;

◦ frac10-fix: objective & infeasibility branching with a diving heuristic fre-
quency of 10; randomized rounding is disabled; dual fixing is enabled;

◦ nodive-rand10-fix: objective & infeasibility branching with a randomized
rounding frequency of 10; fractional diving is disabled; dual fixing is enabled.

10.4.1. Fulfillment of the Slater Condition. In this section, we investigate how of-
ten the primal and dual Slater condition hold in practice when applying a branch-
and-bound approach to the MISDP applications explained in Section 9. The tables
give percentages of how often we could show that the primal and dual Slater con-
dition holds (3) for each subproblem, respectively, how often we could show that
it does not hold (7), and the percentage of SDP-relaxations where we either failed
to solve the auxiliary problems (P-Slater) or (FC), or already found the subproblem
to be infeasible in presolving, given in the column labeled “?”. For the dual Slater
condition we also indicate the amount of infeasible subproblems. All numbers are
presented as arithmetic means.

The results for the truss topology testset are given in Table 10. The first thing
to observe is that, as expected by our theoretical results, the primal Slater condi-
tion holds in all branch-and-bound nodes (not cut off in presolving and with the
SDP-solver successfully solving the auxiliary problem (P-Slater)). The dual Slater
condition holds in the root node, but can get lost after specific branchings for up
to 15 % of the SDP-relaxations. When enabling the heuristics and dual fixing, the

32 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

TABLE 10. Statistics of Slater condition for the truss topology testset of 60 instances

Dual Slater Primal Slater

problem 3 7 inf ? 3 7 ?

DSDP-nodive 97.24 % 1.24 % 1.52 % 0.00 % 99.93 % 0.00 % 0.07 %
DSDP-frac10-fix 86.31 % 5.87 % 7.78 % 0.03 % 98.57 % 0.00 % 1.43 %
DSDP-nodive-rand10-fix 91.04 % 4.57 % 4.38 % 0.01 % 98.91 % 0.00 % 1.09 %
SDPA-nodive 95.69 % 0.86 % 1.83 % 1.62 % 98.32 % 0.00 % 1.68 %
SDPA-frac10-fix 85.64 % 4.53 % 6.86 % 2.98 % 94.50 % 0.00 % 5.50 %
SDPA-nodive-rand10-fix 89.04 % 3.58 % 4.39 % 2.99 % 96.28 % 0.00 % 3.72 %

TABLE 11. Statistics of Slater condition for the cardinality constrained least squares testset of 65
instances

Dual Slater Primal Slater

problem 3 7 inf ? 3 7 ?

DSDP-nodive 95.57 % 0.01 % 3.49 % 0.93 % 100.00 % 0.00 % 0.00 %
DSDP-frac10-fix 92.19 % 0.60 % 6.77 % 0.44 % 100.00 % 0.00 % 0.00 %
DSDP-nodive-rand10-fix 80.32 % 1.24 % 17.83 % 0.61 % 100.00 % 0.00 % 0.00 %
SDPA-nodive 94.01 % 0.03 % 5.68 % 0.29 % 96.99 % 0.00 % 3.01 %
SDPA-frac10-fix 85.80 % 1.43 % 11.86 % 0.91 % 93.59 % 0.00 % 6.41 %
SDPA-nodive-rand10-fix 79.88 % 1.93 % 18.19 % 0.00 % 90.32 % 0.00 % 9.68 %

TABLE 12. Statistics of Slater condition for the min-k-partitioning testset of 69 instances

Dual Slater Primal Slater

problem 3 7 inf ? 3 7 ?

DSDP-nodive 2.32 % 94.84 % 1.65 % 1.18 % 100.00 % 0.00 % 0.00 %
DSDP-frac10-fix 2.37 % 96.02 % 0.85 % 0.76 % 100.00 % 0.00 % 0.00 %
DSDP-nodive-rand10-fix 2.56 % 94.39 % 1.09 % 1.96 % 100.00 % 0.00 % 0.00 %
SDPA-nodive 1.91 % 91.43 % 4.51 % 2.15 % 98.35 % 0.00 % 1.65 %
SDPA-frac10-fix 2.15 % 91.30 % 1.59 % 4.96 % 99.46 % 0.00 % 0.54 %
SDPA-nodive-rand10-fix 2.02 % 92.56 % 3.62 % 1.80 % 98.30 % 0.00 % 1.70 %

number of infeasible subproblems is increased: On the one hand, subproblems are
pruned earlier, since the primal solutions are better and dual fixing generates tighter
bounds. On the other hand, diving heuristics tend to produce a higher number of
infeasible subproblems, by construction. However, also the number of feasible
subproblems failing the dual Slater condition is increased to up to 5 %.

Results for the cardinality constrained least squares testset are given in Table 11.
As we have seen in Section 9.2, the dual Slater condition theoretically holds for all
SDP-relaxations. In our implementation, however, an upper bound on τ is inferred
automatically, using the best known solution. But this might introduce subprob-
lems that do not satisfy the Slater condition. This regularly happened in our nu-
merical results, most often when applying the randomized rounding heuristic to
generate tight primal bounds. However, the above mentioned upper bound has the
benefit of early cutting off subtrees without optimal solutions.

The results for the minimum k-partitioning testset are given in Table 12. In
this case, as explained in Section 9.3, the number of subproblems for which the
dual Slater condition holds is very small, since fixing a single binary variable to 1
already causes it to fail.

Results for the whole testset are given in Table 13. The primal Slater condition
holds for all of our problems, as expected from the theoretical results, while the

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 33

TABLE 13. Statistics of Slater condition for the complete testset of 194 instances

Dual Slater Primal Slater

problem 3 7 inf ? 3 7 ?

DSDP-nodive 62.92 % 34.12 % 2.23 % 0.73 % 99.98 % 0.00 % 0.02 %
DSDP-frac10-fix 58.43 % 36.17 % 4.98 % 0.43 % 99.56 % 0.00 % 0.44 %
DSDP-nodive-rand10-fix 55.98 % 35.40 % 7.71 % 0.91 % 99.66 % 0.00 % 0.34 %
SDPA-nodive 60.95 % 33.54 % 4.16 % 1.34 % 97.86 % 0.00 % 2.14 %
SDPA-frac10-fix 54.16 % 36.21 % 6.65 % 2.99 % 96.05 % 0.00 % 3.95 %
SDPA-nodive-rand10-fix 53.14 % 36.29 % 9.11 % 1.46 % 94.87 % 0.00 % 5.13 %

TABLE 14. Data columns for presenting the solver behavior

column name description

number the number of SDP relaxations with Slater condition holding in both subproblems / holding in at
most one subproblem / showing infeasibility

default the subproblem could be solved by the original formulation
penalty the subproblem could be solved to optimality or infeasibility using the penalty formulations

introduced in Section 7.5
bound the penalty subproblem could be solved to generate a lower bound for the original, but the solu-

tion was not feasible in the original formulation
unsucc even with the penalty formulation the problem could not be solved

TABLE 15. Statistics of solver fails when the primal and dual Slater condition holds for the complete
testset of 194 instances

settings number default penalty bound unsucc

DSDP-nodive 939,227 99.86 % 0.10 % 0.00 % 0.04 %
DSDP-frac10-fix 1,648,399 99.55 % 0.32 % 0.00 % 0.13 %
DSDP-nodive-rand10-fix 976,547 99.16 % 0.39 % 0.00 % 0.46 %
SDPA-nodive 872,872 99.97 % 0.01 % 0.00 % 0.02 %
SDPA-frac10-fix 1,397,142 99.88 % 0.04 % 0.00 % 0.08 %
SDPA-nodive-rand10-fix 749,151 99.96 % 0.01 % 0.00 % 0.03 %

dual Slater condition holds for slightly more than half the nodes overall, with one
third failing it and the rest being infeasible.

10.4.2. Influence of the Slater Condition on the Solver Behavior. In the following,
we investigate the influence of the Slater condition on the behavior of the solvers.
We will use the same settings as in the last section and report the arithmetic means
of the percentages of SDP-relaxations solved to the different outcomes given in
Table 14. The results are split into subproblems in which both the primal and dual
Slater condition holds, subproblems in which one fails, and subproblems which
are infeasible. Note that we take averages over all SDP-relaxations occurring in all
instances. Thus, the statistics will be dominated by the truss topology instances,
since they usually require a significantly larger number of branch-and-bound nodes
than the other types of problems.

Table 15 shows that for the whole testset, both solvers are very stable for sub-
problems in which the Slater condition holds, with over 99 % of the problems
solved to optimality.

In Table 16 the same statistics are given for those problems that do not satisfy
the primal or dual Slater condition. Here, the number of problems solved with
the original formulation drops below 90 % for all settings, even as low as 60 %
for SDPA with some settings. DSDP usually cannot solve these problems even

34 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

TABLE 16. Statistics of solver fails when either the primal or dual Slater condition does not hold for
the complete testset of 194 instances

settings number default penalty bound unsucc

DSDP-nodive 27,176 87.51 % 0.10 % 0.00 % 12.36 %
DSDP-frac10-fix 119,671 75.65 % 0.03 % 0.01 % 24.31 %
DSDP-nodive-rand10-fix 55,791 67.72 % 0.11 % 0.01 % 32.15 %
SDPA-nodive 38,197 59.74 % 2.67 % 23.30 % 14.30 %
SDPA-frac10-fix 69,965 74.18 % 3.06 % 15.46 % 7.29 %
SDPA-nodive-rand10-fix 32,616 60.19 % 1.66 % 29.05 % 9.10 %

TABLE 17. Statistics of solver fails for infeasible subproblems for the complete testset of 194 in-
stances

settings number default penalty bound unsucc

DSDP-nodive 17,047 88.94 % 11.05 % 0.00 % 0.00 %
DSDP-frac10-fix 162,536 84.16 % 15.84 % 0.00 % 0.00 %
DSDP-nodive-rand10-fix 51,508 58.14 % 41.85 % 0.00 % 0.00 %
SDPA-nodive 20,928 12.15 % 87.85 % 0.00 % 0.00 %
SDPA-frac10-fix 124,991 18.97 % 81.03 % 0.00 % 0.00 %
SDPA-nodive-rand10-fix 53,088 30.75 % 69.25 % 0.00 % 0.00 %

with the penalty formulation, since it is already based on a penalty formulation.
For SDPA on the other hand, the penalty formulation is helpful, even though it
can only generate a feasible solution for our original formulation about 10 % of
the time. But in two out of three cases it at least enables us to compute an upper
bound on the optimal objective value for the subtree, which in some cases will be
enough to cut the subtree off. The penalty formulation leads to a lower number of
unsolved problems for SDPA than DSDP in this case, even though with the original
formulation DSDP manages to solve more problems than SDPA.

For the infeasible subproblems given in Table 17, the difference between DSDP
and SDPA is much larger. For DSDP, the performance is similar to the case of the
Slater condition not holding, with a success rate between 60 and 90 % depending
on the used settings. This is due to the fact that the penalty formulation handles
infeasibility in the same way as the Slater condition and also allows to detect infea-
sibility using the value of the penalty variable. Note that after failing to solve the
problems at first, our usage of the penalty formulation varies from that of DSDP in
this case, since we will first solve the auxiliary Problem (FC) to detect infeasibility,
which allows us to cut these problems off early before proceeding with the penalty
formulation used in DSDP. For SDPA, however, the success rate drops from 60–
75 % in the case of problems without the Slater condition to 10–30 % for infeasible
subproblems. However, using the penalty formulation resolves all infeasibilities.
This shows the importance of a dedicated handling of infeasibility detection within
a branch-and-bound approach for mixed-integer semidefinite programming, such
as our usage of Problem (FC).

11. CONCLUSIONS

The goal of this paper was to investigate generic solution approaches for mixed-
integer semidefinite programs both in theory and practice. On the theoretical side,
strong duality and the Slater condition are inherited to the subproblems, under
certain conditions. These conditions are often naturally fulfilled in applications.

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 35

On the negative side, there is a significant number of examples in which strict
feasibility may get lost after branching.

A generic mixed-integer semidefinite solver should take these theoretical results
into account by implementing several safe-guards against failures to solve the SDP-
relaxation, including removing fixed variables, using a penalty formulation, and
varying solver settings. Moreover, among the solver components, we discussed
dual fixing, branching rules, and primal heuristics. We introduced basic methods
for each of these areas, yielding a very positive impact on the solution process.

The computational results show that these techniques lead to a relatively stable
behavior, allowing to solve small to medium sized instances of various applications
within reasonable time. Nevertheless, more research and software development is
necessary to further improve the performance, stability, and sizes of successfully
solved instances. In fact, the sizes of the instances are still quite a bit away from
what would be needed to use these techniques in most practical applications.

Future research should continue with improvements of the discussed solver
components and implement interfaces to further SDP-solvers, e.g., MOSEK. More-
over, cutting planes should be exploited, see Section 7.4. Furthermore, we plan to
investigate warm-starting techniques for the interior-point solvers in the implemen-
tation, for example, along proposals by Gondzio [35] and Benson and Shanno [13].

A viable alternative to using the penalty formulation might be facial reduction,
see Borwein and Wolkowicz [18]. When using a homogeneous embedding al-
gorithm for solving the SDP-relaxations as proposed by Ye et al. [75] and imple-
mented in MOSEK, the needed facial reduction certificates could even be extracted
from the results of the SDP-solver, as mentioned by Permenter et al. [55].

ACKNOWLEDGMENTS

The authors would like to thank the German Research Foundation (DFG) for fund-
ing, since parts of this research have been carried out within the Collaborative
Research Center 805. Moreover, they thank Sonja Mars and Lars Schewe for initi-
ating and preparing the first version of SCIP-SDP.

REFERENCES

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, TU Berlin, 2007.
[2] T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Programming Com-

putation, 1(1):1–41, 2009.
[3] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research Letters,

33:42–54, 2004.
[4] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine. Broad

patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues
probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences of the
United States of America, 96:6745–6750, 1999.

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. SIAM,
Philadelphia, Philadelphia, PA, third edition, 1999.

[6] M. F. Anjos, B. Ghaddar, L. Hupp, F. Liers, and A. Wiegele. Solving k-way graph partition-
ing problems to optimality: The impact of semidefinite relaxations and the bundle method.
In M. Jünger and G. Reinelt, editors, Facets of Combinatorial Optimization – Festschrift for
Martin Grötschel, pages 355–386. Springer, Berlin Heidelberg, 2013.

[7] M. Armbruster, M. Fügenschuh, C. Helmberg, and A. Martin. LP and SDP branch-and-cut algo-
rithms for the minimum graph bisection problem: a computational comparison. Mathematical
Programming Computation, 4(3):275–306, 2012.

36 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

[8] A. Atamtürk and V. Narayanan. Conic mixed-integer rounding cuts. Mathematical Program-
ming, 122(1):1–20, 2010.

[9] R. Bellman and K. Fan. On systems of linear inequalities in Hermitian matrix variables. In
Convexity, volume 7 of Proceedings of Symposia in Pure Mathematics, pages 1–11. American
Mathematical Society, Providence, RI, 1963.

[10] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University Press,
2009.

[11] A. Ben-Tal and A. Nemirovski. Robust truss topology design via semidefinite programming.
SIAM Journal on Optimization, 7(4):991–1016, 1997.

[12] M. P. Bendsøe and O. Sigmund. Topology Optimization: Theory, Methods and Applications.
Springer, Berlin and Heidelberg, 2003.

[13] H. Y. Benson and D. F. Shanno. An exact primal-dual penalty method approach to warmstarting
interior-point methods for linear programming. Computational Optimization and Applications,
38(8):371–399, 2007.

[14] S. J. Benson and Y. Ye. Algorithm 875: DSDP5–software for semidefinite programming. ACM
Transactions on Mathematical Software, 34(4):Article 16, 20 pages, 2008.

[15] T. Berthold. Heuristic algorithms in global MINLP solvers. PhD thesis, TU Berlin, 2014.
[16] T. Berthold. RENS – the optimal rounding. Mathematical Programming Computation, 6(1):33–

54, 2014.
[17] T. Berthold, S. Heinz, M. E. Pfetsch, and S. Vigerske. Large neighborhood search beyond MIP.

In L. D. Gaspero, A. Schaerf, and T. Stützle, editors, Proceedings of the 9th Metaheuristics
International Conference (MIC 2011), pages 51–60, 2011.

[18] J. Borwein and H. Wolkowicz. Regularizing the abstract convex program. Journal of Mathe-
matical Analysis and Applications, 83(2):495–530, 1981.

[19] G. Braun, S. Fiorini, S. Pokutta, and D. Steurer. Approximation limits of linear programs (be-
yond hierarchies). Mathematics of Operations Research, 40(3):756–772, 2015.

[20] M. T. Çezik and G. Iyengar. Cutting planes for mixed 0-1 semidefinite programming. Mathe-
matical Programming, 104:179–202, 2005.

[21] R. J. Dakin. A tree-search algorithm for mixed integer programming problems. The Computer
Journal, 8(3):250–255, 1965.

[22] E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced neighborhoods to improve
MIP solutions. Mathematical Programming, 102(1):71–90, 2004.

[23] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.
Mathematical Programming, 91(2):201–213, 2002.

[24] S. Drewes and S. Pokutta. Symmetry-exploiting cuts for a class of mixed-0/1 second-order cone
programs. Discrete Optimization, 13:23–35, 2014.

[25] A. Eisenblätter. Frequency Assignment in GSM Networks: Models, Heuristics, and Lower
Bounds. PhD thesis, TU Berlin, 2001.

[26] A. Eisenblätter. The semidefinite relaxation of the k-partition polytope is strong. In W. J. Cook
and A. S. Schulz, editors, Proceedings of the 9th International IPCO Conference on Integer
Programming and Combinatorial Optimization, volume 2337 of Lecture Notes in Computer
Science, pages 273–290. Springer, Berlin Heidelberg, 2002.

[27] C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and L. A. Wolsey. The node capaci-
tated graph partitioning problem: A computational study. Mathematical Programming, 81:229–
256, 1998.

[28] C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and L. A. Wolsey. The node capac-
itated graph partitioning problem – benchmark instances. Available at www.ic.unicamp.br/
~cid/Problem-instances/Graph-Partition, visited 03/2016.

[29] M. Fischetti and A. Lodi. Local branching. Mathematical Programming Series B, 98(1-3):23–
47, 2003.

[30] M. Fischetti and A. Lodi. Heuristics in mixed integer programming. In J. J. Cochran, L. A. Cox,
P. Keskinocak, J. P. Kharoufeh, and J. C. Smith, editors, Wiley Encyclopedia of Operations
Research and Management Science. John Wiley & Sons, Inc., 2010.

[31] H. A. Friberg. Facial reduction heuristics and the motivational example of mixed-integer conic
optimization. Technical report, Optimization-Online, 2016.

[32] B. Ghaddar, M. F. Anjos, and F. Liers. A semidefinite programming branch-and-cut algorithm
for the minimum k-partition problem. Annals of Operations Research, 188(1):155–174, 2011.

www.ic.unicamp.br/~cid/Problem-instances/Graph-Partition
www.ic.unicamp.br/~cid/Problem-instances/Graph-Partition

A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS 37

[33] S. Ghosh. DINS, a MIP improvement heuristic. In M. Fischetti and D. P. Williamson, editors,
Integer Programming and Combinatorial Optimization (IPCO 2007), volume 4513 of Lecture
Notes in Computer Science, pages 310–323. Springer, 2007.

[34] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the Association for
Computing Machinery, 42:1115–1145, 1995.

[35] J. Gondzio. Warm start of the primal-dual method applied in the cutting plane scheme. Mathe-
matical Programming, 83(1):125–143, 1998.

[36] C. Helmberg. Fixing variables in semidefinite relaxations. SIAM Journal on Matrix Analysis
and Applications, 21(3):952–969, 2000.

[37] C. Helmberg. Semidefinite programming for combinatorial optimization. Habilitationsschrift,
TU Berlin, ZIB-Report ZR-00-34, Zuse-Institue Berlin, January 2000.

[38] C. Helmberg and F. Rendl. Solving quadratic (0,1)-problems by semidefinite programs and
cutting planes. Mathematical Programming, 82:291–315, 1998.

[39] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming. SIAM
Journal on Optimization, 10(3):673–696, 2000.

[40] R. R. Hocking. The analysis and selection of variables in linear regression. Biometrics, 32(1):1–
49, 1976.

[41] V. Kann, S. Khanna, J. Lagergren, and A. Panconesi. On the hardness of approximating MAX
k-CUT and its dual. Chicago Journal of Theoretical Computer Science, 1997(2):1–18, 1997.

[42] K. Krishnan and J. E. Mitchell. A linear programming approach to semidefinite programming
problems. Technical report, Dept. of Mathematical Sciences, RPI, Troy, 2001.

[43] K. Krishnan and J. E. Mitchell. A unifying framework for several cutting plane methods for
semidefinite programming. Optimization Methods and Software, 21(1):57–74, 2006.

[44] A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems.
Econometrica, 28(3):497–520, 1960.

[45] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley & Sons,
Chichester, 1990.

[46] F. Liers, M. Jünger, G. Reinelt, and G. Rinaldi. Computing exact ground states of hard Ising spin
glass problems by branch-and-cut. In A. Hartmann and H. Rieger, editors, New Optimization
Algorithms in Physics, pages 47–68. Wiley, 2004.

[47] J. Löfberg. YALMIP: a toolbox for modeling and optimization in MATLAB. In IEEE Interna-
tional Symposium on Computer Aided Control Systems Design, pages 284–289, 2004.

[48] J. Löfberg. YALMIP. Available at http://users.isy.liu.se/johanl/yalmip/, visited
02/2016.

[49] S. Mars. Mixed-Integer Semidefinite Programming with an Application to Truss Topology De-
sign. PhD thesis, FAU Erlangen-Nürnberg, 2013.

[50] S. Mars and L. Schewe. An SDP-package for SCIP. Technical report, TU Darmstadt and FAU
Erlangen-Nürnberg, August 2012.

[51] J. E. Mitchell. Fixing variables and generating classical cutting planes when using an interior
point branch and cut method to solve integer programming problems. European Journal of
Operational Research, 97:139–148, 1997.

[52] S. Modaresi, M. R. Kılınç, and J. P. Vielma. Split cuts and extended formulations for mixed
integer conic quadratic programming. Operations Research Letters, 43(1):10–15, 2015.

[53] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley Inter-
science Series in Discrete Mathematics and Optimization. John Wiley & Sons, New York, 1988.

[54] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Program-
ming. Studies in Applied and Numerical Mathematics. SIAM, Philadelphia, 1994.

[55] F. Permenter, H. A. Friberg, and E. D. Andersen. Solving conic optimization problems via
self-dual embedding and facial reduction: a unified approach. Technical report, Optimization-
Online, 2015.

[56] A. Philipp, S. Ulbrich, Y. Cheng, and M. Pesavento. Multiuser downlink beamforming with
interference cancellation using a SDP-based branch-and-bound algorithm. In Proc. IEEE Int.
Conf. on Acoustics, Speech and Signal Process (ICASSP), pages 7724–7728, 2014.

[57] M. Pilanci, M. J. Wainwright, and L. El Ghaoui. Sparse learning via Boolean relaxations. Math-
ematical Programming Series B, 151(1):62–87, 2015.

http://users.isy.liu.se/johanl/yalmip/

38 T. GALLY, M. E. PFETSCH, AND S. ULBRICH

[58] L. Porkolab and L. Khachiyan. On the complexity of semidefinite programs. Journal of Global
Optimization, 10:351–365, 1997.

[59] F. Rendl. Semidefinite relaxations for integer programming. In M. Jünger, T. M. Liebling,
D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey,
editors, 50 Years of Integer Programming 1958–2008, pages 687–726. Springer, 2009.

[60] F. Rendl, G. Rinaldi, and A. Wiegele. Solving Max-Cut to optimality by intersecting semidefi-
nite and polyhedral relaxations. Mathematical Programming, 121(2):307–335, 2010.

[61] G. Rinaldi. Rudy. Available at http://www-user.tu-chemnitz.de/~helmberg/rudy.

tar.gz, visited 03/2016.
[62] E. Rothberg. An evolutionary algorithm for polishing mixed integer programming solutions.

INFORMS Journal on Computing, 19(4):534–541, 2007.
[63] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer programming

problems. ORSA Journal of Computing, 6(4):445–454, 1994.
[64] A. Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester, 1986.
[65] SCIP–Solving Constraint Integer Programs. Available at http://scip.zib.de, visited

03/2016.
[66] SCIP-SDP. Available at http://www.opt.tu-darmstadt.de/scipsdp/, visited 03/2016.
[67] A. Shapiro and K. Scheinberg. Duality and optimality conditions. In H. Wolkowicz, R. Saigal,

and L. Vandenberghe, editors, Handbook of Semidefinite Programming, pages 67–110. Kluwer
Academic Publishers, 2000.

[68] R. Sotirov. SDP relaxations for some combinatorial optimization problems. In M. Anjos and
J. Lasserre, editors, Handbook of Semidefinite, Conic and Polynomial Optimization: Theory,
Algorithms, Software and Applications, volume 166 of International Series in Operational Re-
search and Management Science, pages 795–820. Springer, 2012.

[69] M. J. Todd. Semidefinite optimization. Acta Numerica, 10:515–560, 2001.
[70] S. Vigerske. Decomposition in Multistage Stochastic Programming and a Constraint Integer

Programming Approach to Mixed-Integer Nonlinear Programming. PhD thesis, HU Berlin,
2012.

[71] M. J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using
`1-constrained quadratic programming (Lasso). IEEE Transactions on Information Theory,
55(5):2183–2202, 2009.

[72] M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evaluation of SDPA 6.0 (Semi-
Definite Programming Algorithm 6.0). Optimization Methods and Software, 18:491–505, 2003.

[73] M. Yamashita, K. Fujisawa, K. Nakata, M. Nakata, M. Fukuda, K. Kobayashi, and K. Goto. A
high-performance software package for semidefinite programs: SDPA 7. Research Report B-
460, Dept. of Mathematical and Computing Science, Tokyo Institute of Technology, September
2010.

[74] Y. Ye. Interior Point Algorithms: Theory and Analysis. Wiley-Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons, New York, 1997.

[75] Y. Ye, M. J. Todd, and S. Mizuno. An O(
√

nl)-iteration homogeneous and self-dual linear
programming algorithm. Mathematics of Operations Research, 19:53–67, 1994.

TRISTAN GALLY, TECHNISCHE UNIVERSITÄT DARMSTADT, DEPARTMENT OF MATHEMAT-
ICS, DOLIVOSTRASSE 15, 64293 DARMSTADT, GERMANY

E-mail address: gally@mathematik.tu-darmstadt.de

MARC E. PFETSCH, TECHNISCHE UNIVERSITÄT DARMSTADT, DEPARTMENT OF MATHE-
MATICS, DOLIVOSTRASSE 15, 64293 DARMSTADT, GERMANY

E-mail address: pfetsch@mathematik.tu-darmstadt.de

STEFAN ULBRICH, TECHNISCHE UNIVERSITÄT DARMSTADT, DEPARTMENT OF MATHEMAT-
ICS, DOLIVOSTRASSE 15, 64293 DARMSTADT, GERMANY

E-mail address: ulbrich@mathematik.tu-darmstadt.de

http://www-user.tu-chemnitz.de/~helmberg/rudy.tar.gz
http://www-user.tu-chemnitz.de/~helmberg/rudy.tar.gz
http://scip.zib.de
http://www.opt.tu-darmstadt.de/scipsdp/

