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ABSTRACT. One of the fundamental tasks in compressed sensing is find-
ing the sparsest solution to an underdetermined system of linear equa-
tions. It is well known that although this problem is NP-hard, under
certain conditions it can be solved by using a linear program which min-
imizes the 1-norm. The restricted isometry property has been one of
the key conditions in this context. However, computing the best con-
stants for this condition is itself NP-hard. In this paper we propose a
mixed-integer semidefinite programming approach for computing these
optimal constants. This also subsumes sparse principal component anal-
ysis. Computational results with this approach allow to evaluate earlier
semidefinite relaxations and show that the quality that can be obtained
in reasonable time is limited.

Keywords. Compressed Sensing, Restricted Isometry Property, Mixed-
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1. INTRODUCTION

Finding a sparsest solution of an underdetermined system of linear equations
is one key problem in compressed sensing and has been thoroughly investi-
gated in recent years. Given a matrix A € R™*™ with m < n and right-hand
side b € R™, the core problem is

(o) min ||zl
s.t. Ax =0,

where ||z|lo denotes the number of nonzero components of . This problem
is NP-hard, see Garey and Johnson [16]. One key observation in compressed
sensing is that a solution of (Py) can be found by solving the following convex
optimization problem, if certain conditions are fulfilled:

(P1) min ||z
s.t. Az =b.

In fact, this so-called basis pursuit problem can be reformulated as a linear
program (LP) and efficient specialized solution algorithms are available both
in theory and practice: as an extremely selected list consider the articles
[3, 7, 22, 28] and the practical comparison in [18].

2. THE RESTRICTED ISOMETRY PROPERTY

Several conditions in compressed sensing imply that a solution of (FPy) can be

recovered by solving (Py), in which case one speaks of {y-£1-equivalence. First

results in this direction were established by Chen, Donoho, and Saunders 7]

and Donoho and Huo [11], with many articles following. We therefore refer
1
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the reader to the excellent book by Foucart and Rauhut [14] for further
information.

One important condition is the restricted isometry property (RIP), which
was first introduced by Candés and Tao [6].

Definition 1. The restricted isometry property (RIP) of order k holds for
a matrix A € R™*™ with constant § > 0, if

(1) (1 =)zl < [ Az]3 < (1 + 8)]l=[13
forallz € ¥y .= {z € R" : ||z]jo < k}.

Since the following results depend on the constant § in (1) being small
enough, one is generally interested in the smallest constant satisfying (1).

Definition 2. For a matrix A € R™*"™ and order k, the smallest constant
in (1),

oy, = argmin { (1 — §)||z[3 < || Az|]3 < (L +6)||z|3  for allz € S},
0>0

is called restricted isometry constant (RIC) of order k.

If the restricted isometry property holds for a sufficiently small restricted
isometry constant, the optimal solutions of (FPp) and (P;) coincide. The
best-known result of this type is probably the following:

Theorem 1 (Candés [5]). Let the RIC of order 2k of A satisfy the condition
Sor, < V2 — 1~ 0.4142. If there exists & € R"™ with ||Z||o < k and A% = b,
then the optimal solutions of (Py) and (P1) coincide.

Many results similar to Theorem 1 exist: For example, Foucart [12] relaxed
the condition to dgx < 0.4652 and Foucart and Rauhut [14] to dox < 0.6246.
Moreover, Cai et al. [4] showed the condition d; < 0.307 for Theorem 1 to
hold.

For this paper, it is useful to take an asymmetric viewpoint and distinguish
between the lower and upper bounds in (1), as proposed by Foucart and
Lai [13]:

Definition 3. The lower and upper restricted isometry constant are defined

as

(2) Q) = argmax {a2 lz||3 < ||Az||3, for all x € Sk}
a>0

(3) By, == argmin {||Az|3 < B%||z|]3, for allxz € Si},
B=0

respectively. The restricted isometry ratio (RIR) is defined as vy, == B2/as
for ay. # 0.

Definition 3 is a generalization of Definition 1 in the following sense: if
the matrix A satisfies the RIP of order & with RIC d, then it has a RIR
of at most (1 + 0x)/(1 — d). Conversely, if A has lower/upper RICs ay
and g, respectively, then this implies a restricted isometry constant of §; =
max{l—a3, z—1}in (1). So A has a small RIC if and only if it has a large
lower and a small upper RIC. But since in (1) usually only one of the two



COMPUTING RESTRICTED ISOMETRY CONSTANTS VIA MISDP 3

inequalities will be sharp, the asymmetric version yields more information
about A.

For the asymmetric version of the RIP in Definition 3, one can again show
£o-f1-equivalence:

Theorem 2 (Foucart and Lai [13]). Let the RIR of order 2k of A satisfy
Yor < 42 — 3 & 2.6569. If there exists & € R™ with ||||o < k such that
AZ = b, then the optimal solutions of (Pp) and (P1) coincide.

One advantage of Definition 3 and Theorem 2 is that they are invariant
under scaling of Ax = b. In fact, the condition of Theorem 1 holding for
Az = b does not imply the same for the scaled equation AAzr = Ab with
A € R\ {0}. In Definition 3, however, we can use aj = Aag, Or = ABk, and
therefore 7, = A3 /(A*32) = .

Furthermore, we note that the recovery results given in this section can
also be derived for the denoising case, where instead of (FPp) one considers

min ||z||o
st [JAx — blj2 <6,

for some & > 0; the ¢;-problem (P;) is changed similarly. For more details
we refer the reader to [14].

(F9)

3. CONTRIBUTION OF THIS WORK

There are several types of matrices A for which it is possible to show analyti-
cally that the RIP holds, for instance random matrices with high probability,
see, e.g., Baraniuk et al. [2]. However, it turns out that computing the re-
stricted isometry constants for a given matrix A and k is NP-hard, see [27].
Note the unfortunate implication that it is hard to check for a concrete ran-
dom matrix whether it satisfies the RIP, since the theoretical results hold
asymptotically and with respect to high probability.

This motivated d’Aspremont et al. [8, 10| to propose several relaxations
based on semidefinite programming (SDP) to compute upper bounds on the
restricted isometry constants; small upper bounds suffice to guarantee £y-£1-
equivalence between (Fp) and (P;), but there exist cases in which the bounds
are too weak to give a guarantee.

The relaxations in [8, 10] were originally derived for the connected sparse
principal component analysis (SPCA). Principal component analysis (PCA)
finds orthogonal directions maximizing the variance given in matrix A, solv-
ing problems

max {||Az[3 : [lz]2 < 1)

along the way. For SPCA, one further adds the condition that ||z]jo < k
with the goal to reduce the dependency on small components. Note that
this is then equivalent to computing the upper RIC and it is NP-hard in
the strong sense [27]. SPCA was originally proposed by Zuo et al. [31].
Other authors like Moghaddam et al. [21] also proposed computing a sparse
maximal eigenvalue for SPCA.

The goal of this paper is to compute optimal restricted isometry constants
via mixed-integer semidefinite programming (MISDP). To this end, we will
introduce an MISDP with a rank-1 constraint. In order to utilize this MISDP,
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we will show that the rank constraint can be relaxed without changing the
optimal value. We can then apply an MISDP solver.

Our computational results show that the resulting problems are quite hard
to solve, even for matrices of smaller size. However, this is true for the SDP
relaxations of d’Aspremont et al. as well, and it allows for an evaluation
of the quality of these bounds. In fact, these bounds turn out to be quite
tight or weak, depending on the instance. This complements the theoretical
approximation guarantees developed by d’Aspremont et al. in [9].

In the following, we start by reviewing the SDP-relaxations of 8] and [10]
in Section 4. Afterwards, in Section 5, we construct a mixed-integer semidef-
inite program and show that it produces exact restricted isometry constants.
Finally, in Section 6, we present numerical results and comparisons with the
SDP relaxations in [8] and [10].

4. SDP RELAXATIONS

In this section, we will introduce two known SDP relaxations to compute
an upper bound on the restricted isometry constant J; in (1), since they
have some ideas in common with the mixed-integer semidefinite program we
want to propose and will also be checked against in the section on numerical
results.

The idea is that the optimal constant oz% in (2) can be computed by the
non-convex quadratic optimization problem with a cardinality constraint

min HAxH%

(QP) st il =1,
lello < .

The corresponding maximization problem allows to compute the constant B,%
in (3). D’Aspremont et al. [10] tackled the non-convex quadratic equality
constraint ||z||3 = 1 by the technique of semidefinite lifting, see, e.g., Goe-
mans and Williamson [17]. The idea is to use new matrix variables X = 2z "
for the quadratic terms, where the condition X = zz ' is enforced by the
equivalent constraints X > 0 and Rank(X) = 1, where, as usual, X > 0
means that X is symmetric (shortly written X € S,,) and positive semidefi-
nite. The objective and the normalization-constraint can then be expressed
as |[Az||3 = 2T AT Az = Tr(ATAX) and [|z])3 =Y, 22 = Tr(X) = 1.

In the next step, the inequality ||z||o < k is substituted by the weaker con-
straint 17| X |1 < k, which follows from the fact that 17| X|1 = [|vec(X)||; <

VIvee(X)]o [[vec(X) |2 and [|vec(X)|lo = ||=||2 in the rank-1 case, where
vec(X) is a vector in R™ consisting of all entries of X. Relaxing the non-

convex rank constraint finally leads to the following SDP:
min Tr(ATAX)
st. Tr(X) =1,

17X|1 <k,

X ~ 0.

(A1)
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Another SDP relaxation was proposed by d’Aspremont et al. in [8]. Here,
(4) 6(2,p) = max {2 — pllalo : alls < 1},

originally stemming from sparse principal component analysis, is approxi-
mately solved for a symmetric positive semidefinite matrix . For ¥ = AT A
we can use this to compute an upper bound on (5, via Lagrangian Relaxation
as

B2 = max{xTATA:n el <1, Jzllo < K}

< iggmax{xTATAx —p(lzllo—k) : flzll <1}
p>

— inf ¢(AT A, p) + pk.
p=0

As one way to solve (4), the semidefinite lifting technique is used again to
compute an upper bound on ¢ via

n
max Z Tr(P; By)
i=1

(A2-Primal)
st. Tr(X) =1,

X>=FP =0 fori=1,...,n,
for B; = b; b;-r — p I, where b; is the i-th column of the square-root of ¥. For

details, we refer the reader to [8]. The corresponding dual problem can then
be written as

n
min Amax(ZE)
=1
st. Y;=B; fori=1,...,n,
Y; =0 fori=1,...,n,

(A2-Dual)

which has only half as many variables as (A2-Primal) and one fewer lin-
ear and semidefinite constraint. Then (A2-Dual) can be solved for non-
negative p, which should be smaller than ¥, because otherwise the optimal
solution for (4) will always be z = 0.

As shown in [8], a lower bound for aj, can be computed via

A2 a? >sup W(ATA, p) —pk,
k
p=>0

with
$(8,p) = min {z" S+ pllafo ¢ [z]s <1}
In this case problem (A2-Primal) or equivalently (A2-Dual) has to be solved
for ¥ = MI — AT A, where M € R has to be big enough to make ¥ positive
semidefinite. This implies the following lower bound:
ap > sup (M — (M — AT A, p)) — pk.
p=0

In [9] explicit bounds on the gap between (A2-Primal) and the penalized
problem (4) were derived using randomization arguments.
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5. AN MISDP FORMULATION FOR THE RIP

In this section we propose an MISDP formulation to compute the optimal
constants oy, and S in (2) and (3), respectively. We will again start with the
problem (QP). For the non-convex quadratic equality constraint ||z]|3 = 1,
we again use semidefinite lifting, introducing the new variable X = zz ' like
in the last section. The cardinality-constraint in (QP) can equivalently be
written using binary variables z; as —z; < z; < z; and Z?:l zi < k. We can
thus equivalently rewrite (QP) as

min Tr(ATAX)

st Tr(X) =1,

—Zj SXZJ SZ]' fOI"j: 1,...,n,

n

Rank(X) =1,

We then relax the non-convex rank constraint to arrive at the following
MISDP formulation:

min Tr(ATAX)
st. Tr(X) =1,
-2 < X;; <z forj=1,...,n,
(MISDP) »

In the following, we will show that (MISDP) actually produces the exact
value of a. We will use the following result about the relationship between
the rank of solutions of semidefinite programs and the dimension of corre-
sponding faces of the feasible set S, i.e., subsets F' C .S such that %(p—kq) eFr
for p,q € S implies p,q € F"

Theorem 3 (Pataki [24]). Let X € F, where F is a face of
S={XeS,: X0, Tr(A;X)=0b; fori=1,...,m}
for symmetric matrices A; € S, i =1,...,m. Then
$Rank(X) - (Rank(X) + 1) < m + dim(F).

Using this result on the projection of (MISDP) onto the X variables, yields
the following.

Theorem 4. For every A € R™*" and k € Z~g, there exists an optimal
solution (X*, z*) of (MISDP) with Rank(X™*) = 1.
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Proof. First note that because of the constraint Tr(X) = 1, (MISDP) is
bounded. Moreover, X1; = 1, X;; = 0 for all 4,5 # 1, 21 = 1, z; = 0 for
all i = 2,...,n is feasible for k£ > 0. Thus, an optimal solution to (MISDP)
exists.

Let (X*,2*) be an optimal solution to (MISDP) with ¢ := """ | 2¥ < k.
Let T = {i1,i2,...,4¢} be the support of z*, and A = (A;,, As,, ..., A;,) the
submatrix of A formed by the columns indexed by T'. Then consider

min Tr(ATAX),

(6) st Tr(X) =1,
X >0, X e Sp.

Let X be the £ x ¢ submatrix of X* with all rows and columns outside
of T removed. Then X is feasible for (6) with the same objective value, since
we only removed zero rows and columns of X* and (AT A)X*, which do not
influence the trace or the positive semidefiniteness.

On the other hand, we can lift any solution X of (6) to a point X e S, by
extending with zeros. Defining Z; to be 1 if and only if 4 € T, yields a feasible
point (X, 2) for (MISDP) with identical objective value, since Tr(X) = 1 and
X € S, imply 0 < ij = Xz‘jij <1for j=1,...,¢ Therefore, Xij < Z; by
diagonal dominance of semidefinite matrices.

Thus, the optimal objective values of (6) and (MISDP) agree, and, fur-
thermore, Rank(X) = Rank(X). Therefore, it suffices to show that (6) has
an optimal solution of rank one.

Let X be an extreme point of (6) (since the set of optimal points of (6)
is nonempty, convex, and compact, such a point exists, see |25, Corollary
18.5.1]). Defining the face F' = {X} and applying Theorem 3 on (6) gives

tRank(X) - (Rank(X) + 1) <m+dim(F) =1+0=1,

since there are m = 1 linear consvtraints. Since X = 0 is infeasible for
Tr(X) = 1, it follows that Rank(X) = 1, which can then be lifted to an
optimal solution of (MISDP) of rank one. O

Theorem 4 guarantees that (MISDP) always has a solution of rank one.
Therefore, the optimal values of (MISDP) and (QP) agree. We can therefore
compute the optimal constant «y for the RIP by solving (MISDP). Since
the same argumentation also holds for the maximization problem for g,
this allows us to compute the restricted isometry constant and the restricted
isometry ratio by mixed-integer semidefinite programming.

Theorem 4 does not guarantee that any found solution will have rank one,
only that the optimal objective values agree. This suffices for our application
of computing the restricted isometry constants aj and Si. For other appli-
cations like SPCA, an extreme solution can be generated with an algorithm
proposed by Pataki [23].

For efficient application of branch-and-bound to (MISDP), it is important
to use strong semidefinite relaxations for fractional z variables. To this end,
we can use the following strengthening of the constraints —z; < Xj; < z;.
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Lemma 1. The inequalities
(7) — 32 < Xij < 57,
fori#j5€{1,...,n}, are valid for (MISDP).

Proof. Let X = 0 satisfy Tr(X) = 1. Then X;; + X;; < 1 and nonnegativity
of the diagonal entries imply X;;X;; < i for i # j. Since all minors of X
need to be nonnegative, it follows that

2
X5 < XuXj; < g

< X;j < %, which shows validity of (7). O

Therefore —%

6. NUMERICAL RESULTS

In this section we demonstrate the applicability of the proposed MISDP-
formulation and use it to assess the quality of the relaxations proposed in [§]
and [10]. For solving the mixed-integer semidefinite programs, we use the
MISDP solver SCIP-SDP |26, 15], originally developed in [19] and [20]. It
combines the branch-and-bound framework SCIP 3.2.1 [1] with interior-point
SDP-solvers, in our case SDPA 7.3.8 [29, 30].

For solving the continuous SDPs, the command-line version of SDPA 7.3.8
is used. We compute the left- and right-hand restricted isometry constant
o and Py either exactly using (MISDP) or produce corresponding bounds
via (A1) and (A2). In the latter case, we solve the SDP (A2-Dual) 15 times
for p between 0 and the maximum diagonal entry of AT A. This is the same
approach as in [8], except that we reduced the number from 25 to 15, as
this did not significantly seem to influence the quality of the solutions, but
reduced the solving times.

We use a testset consisting of 63 matrices of the following seven differ-
ent types: band matrices, with band size three or five with entries within
the band chosen uniformly in {0, 1}, binary matrices with all entries chosen
uniformly in {0, 1}, Gaussian-distributed matrices, and rank one matrices
A = aa' with N(0,1)-distributed entries of a. In addition to these four
types, we also use three types of matrices with scaled parameters. These
include matrices with N (0, 1/m)-distributed entries, with entries chosen uni-
formly in +1/4/m, and finally with distribution

++v/3/m  with probability %,
Aij =<0 with probability %,
—+/3/m  with probability ¢.

For each type we used MATLAB 8.3.0 to randomly generate nine matrices of
three different sizes with the number of rows ranging from 15 to 30, number
of columns from 25 to 40, and order k between three and five, see Table 1.

For the latter three kinds of matrices, it was shown by Baraniuk et al. [2]
that for n — oo, sufficiently small k, and given §, they satisfy the restricted
isometry property of order k and constant § with probability converging
exponentially to one. The needed proportion between n and k is so small,
however, that we cannot expect the generated matrices in small dimensions
to satisfy the RIP.
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Table 1. Sizes of the used matrices; three matrices were randomly gen-
erated for each size

A B C
type m n k m n k m n k
N(0,1) 15 30 5 25 35 4 30 40 3
binary 15 30 5 25 35 4 30 40 3
band matrix 30 30 5 35 35 4 40 40 3
rank 1 30 30 5 35 35 4 40 40 3
N(0,1/m) 15 30 5 25 35 4 30 40 3
+1/v/m 15 30 5 25 35 4 30 40 3
0,+£4/3/m 15 30 5 25 35 4 30 40 3

The tests were performed on a Linux cluster with Intel i3 CPUs with
3.2GHz, 4MB cache, and 8GB memory running Linux. Each computation
was performed single-threaded with a single process running on each com-
puter and with a time limit of four hours. The code was compiled with gcc
4.4.5 with -03 optimization. For 39 matrices, the evaluation of (A2-Dual)
was aborted for all 15 choices of p, because of the memory limit of 8GB. We
also failed to solve (MISDP) for the left-hand side of the three medium sized
rank one matrices with default parameters, because SDPA failed to solve the
root node relaxation. With different settings or a different SDP-solver, how-
ever, we could verify that ay is zero for these instances. These are counted
with the maximum allowed time of four hours.

In Table 2, we compare the relative gap between the bounds on ay and S
produced by the two heuristics and the exact values given by (MISDP), com-
puted as their difference divided by the exact value. We present arithmetic
means over all of the nine matrices for the given type that could be solved
within the time- and memory-limit. Note that for the left-hand side we also
omitted all instances with ap = 0, since we cannot compute a relative gap
in that case. This included all rank one matrices. The number of instances
used to compute the average is given in parentheses.

For the left-hand-side aj of the RIP, the quality of both relaxations is
bad: Especially (A2) regularly returned worse solutions than the trivial
lower bound of zero. Relaxation (A1) performed slightly better, but the
bounds were still not nearly good enough to have any chance of proving £g-
f1-equivalence. The relatively bad performance of both relaxations for the
left-hand side might not be too surprising though, since both relaxations
were originally designed for sparse principal component analysis, which cor-
responds to the right-hand side of the RIP.

In fact, for the right-hand side i, both relaxations perform much better.
Problem (A1) constantly produces bounds within 10 to 30 % of the optimal
solution, with only slightly worse results for binary and rank one matrices.
The formulation (A2) shows bigger fluctuations, but produces better results
for five of the seven matrix types, while performing even worse for binary
and rank one matrices. For band matrices, however, the average gap was
below 2 %, the best result for any matrix type among both relaxations.

The restricted isometry constants of all matrices can be found in the ap-
pendix. Note that for the unscaled matrices (the first 36 instances until
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Table 2. Average gap of relaxations for RICs

(0% Bk
matrices (A1) (A2) (A1) (A2)
N(0,1) 90.57 % (9) 384.11% (6) 26.78 % (9) 12.26 % (6)
binary 87.68% (8) 958.80 % (5) 55.31% (9) 143.00% (6)
band matrix 100.00 % (1) 435.18% (1) 12.90% (9) 1.90% (6)
rank 1 - (0) - (0) 47.14% (9) 85.07 % (6)
N(0,1/m) 90.04 % (9) 1107.69% (6) 23.78 % (9) 12.68% (6)
+1//m 88.39% (9) 876.21% (6) 29.20% (9) 19.67% (6)
0,++/3/m 89.30% (8) 1678.80% (5) 25.49% (9) 14.61 % (6)
total 89.48 % (44) 959.70 % (29) 31.51% (63) 41.31% (42)
Table 3. Shifted geometric mean of solving times for RICs
ag Br
matrices (MISDP) (A1) (A2) (MISDP) (A1) (A2)
N(0,1) 470.3 2.6 5163.8 137.7 2.5 6568.0
binary 428.1 2.4 5464.8 658.2 3.1 5614.9
band matrix 13.9 2.4 4885.3 12.2 2.8 5380.0
rank 1 — - — 102.7 1.5 4145.7
N(0,1/m) 324.2 3.8 5667.4 96.3 3.2 7013.3
+1//m 319.3 3.2 5763.8 171.4 2.9 6322.9
0,++/3/m 229.0 3.6 5534.0 106.3 3.1 6942.2
total 215.7 3.0 5404.6 117.7 2.7 5914.8

instance rnk140403C), we expect the restricted isometry constants to be
much larger than for the scaled ones. Even for the scaled matrices, the re-
stricted isometry property never holds for the matrices in the testset, since
the instances are too small to satisfy the needed relation between n and k.
For reporting the solving times, we will use the shifted geometric mean to
decrease the influence of easy instances, see Achterberg [1]| for more details.

The shifted geometric mean of values 1, ..., x, is computed as
n 1/n
(H(ZL‘Z + 5)) — s,
i=1

where we used a shift of s = 10.

The solving times in seconds for the left- and right-hand side of the RIP
are given in Table 3, again excluding the left-hand sides for the rank one ma-
trices, but including all others. The relaxation (A1) is very fast, taking only
a few seconds for all instances. The mixed-integer semidefinite program obvi-
ously cannot compete with these solving times, although for band-matrices,
the difference is relatively small. The Lagrangian Relaxation (A2), however,
takes more time to produce bounds than is needed by (MISDP) to compute
exact solutions. This is mainly caused by the fact that (A2-Dual) involves
n~+1 matrix variables of dimension n xn with corresponding SDP-constraints
instead of a single one each in (MISDP) and (Al). Furthermore, the big dif-
ference is also caused by the instances running into the memory limit, but
even without those, the algorithm still takes slightly longer than (MISDP).
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7. CONCLUSION

This paper shows that exact values of restricted isometry constants can
be computed via mixed-integer semidefinite programming. The computed
bounds significantly improve the bounds computed by the semidefinite re-
laxations (A1) and (A2) proposed in [10] and [8], respectively. In conclusion,
the relaxation (A1) is fast to compute, but produces a gap of around 90 %
for ay and 30% for Bi. If successfully solved, (A2) provides better bounds
for B for most types of matrices, but its running time is too large to be used
in practice. Moreover, directly solving (MISDP) is often faster and produces
the exact value!

Still, the matrices currently handable by (MISDP) are small. For the fu-
ture, the hope is that with the advancement of solving techniques for mixed-
integer semidefinite programs, the sizes of the matrices can be significantly
increased. The components to be improved include cutting planes, primal
heuristics, and branching rules.
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APPENDIX

Table 4. List of all matrices in the testset

matrix m n k ai ,6’,% 'yf 6%
norm15305A 30 30 5 0.32 59.29 182.61 58.29
norm15305B 30 30 5 0.45 53.97 121.03 52.97
norm15305C 30 30 5 0.44 58.88 133.86 57.88
norm25354A 35 35 4 3.16 71.25 22.54 70.25
norm25354B 35 35 4 3.54 65.82 18.57 64.82
norm25354C 35 35 4 3.82 79.48 20.78 78.48
norm30403A 40 40 3 8.11 66.99 8.26 65.99
norm30403B 40 40 3 6.46 71.20 11.03 70.20
norm30403C 40 40 3 5.63 67.78 12.05 66.78
binal5305A 15 30 5 0.00 41.90 - 40.90
binal5305B 15 30 5 0.16 39.43 252.02 38.43
binal5305C 15 30 5 0.15 40.73 277.19 39.73
bina25354A 25 35 4 0.89 48.21 54.06 47.21
bina25354B 25 35 4 0.94 55.17 58.97 54.17
bina25354C 25 35 4 1.04 45.62 44.07 44.62
bina30403A 30 40 3 2.29 46.70 20.41 45.70
bina30403B 30 40 3 2.85 43.74 15.34 42.74
bina30403C 30 40 3 1.84 49.40 26.83 48.40
band30305A 15 30 5 0.00 5.19 — 4.19
band30305B 15 30 5 0.00 4.46 — 3.46
band30305C 15 30 5 0.00 6.12 - 5.12
band35354A 25 35 4 0.00 8.53 7.53
band35354B 25 35 4 0.00 9.58 - 8.58
band35354C 25 35 4 0.09 10.88 125.97 9.88
band40403A 30 40 3 0.00 13.06 - 12.06
band40403B 30 40 3 0.00 14.15 - 13.15
band40403C 30 40 3 0.00 12.07 11.07
rnk130305A 15 30 5 0.00 408.40 - 407.40
rnk130305B 15 30 5 0.00 515.61 — 514.61
rnk130305C 15 30 5 0.00 260.21 - 259.21
rnk135354A 25 35 4 0.00 1095.61 - 1094.61
rnk135354B 25 35 4 0.00 566.16 - 565.16
rnk135354C 25 35 4 0.00 678.58 - 677.58
rnk140403A 30 40 3 0.00 508.41 - 507.41
rnk140403B 30 40 3 0.00 652.89 - 651.89
rnk140403C 30 40 3 0.00 718.17 - 717.17
wish15305A 15 30 5 0.03 3.66 141.77 2.66
wish15305B 15 30 5 0.03 3.11 123.06 2.11
wish15305C 15 30 5 0.04 3.29 87.16 2.29
wish25354A 25 35 4 0.15 2.25 14.74 1.25
wish25354B 25 35 4 0.15 2.43 16.06 1.43
wish25354C 25 35 4 0.18 2.87 15.80 1.87
wish30403A 30 40 3 0.19 2.27 12.21 1.27
wish30403B 30 40 3 0.22 2.33 10.84 1.33
wish30403C 30 40 3 0.21 2.37 11.24 1.37
bern15305A 30 30 5 0.03 3.20 96.84 2.20
bern15305B 30 30 5 0.04 2.79 73.25 1.79
bern15305C 30 30 5 0.04 3.22 83.90 2.22
bern25354A 35 35 4 0.17 2.41 14.11 1.41
bern25354B 35 35 4 0.17 2.36 14.25 1.36
bern25354C 35 35 4 0.13 2.55 20.10 1.55
bern30403A 40 40 3 0.29 1.94 6.66 0.94
bern30403B 40 40 3 0.26 2.12 8.23 1.12
bern30403C 40 40 3 0.30 1.85 6.16 0.85
0+-115305A 15 30 5 0.00 4.16 - 3.16
0+4-115305B 15 30 5 0.01 3.25 218.58 2.25
0+-115305C 15 30 5 0.01 2.95 198.23 1.95
0+4-125354A 25 35 4 0.14 2.92 20.91 1.92
0+4-125354B 25 35 4 0.10 2.58 25.94 1.58
0+-125354C 25 35 4 0.16 2.52 15.49 1.52
0+-130403A 30 40 3 0.26 2.24 8.46 1.24
0+-130403B 30 40 3 0.25 2.34 9.40 1.34
0+-130403C 30 40 3 0.07 2.54 35.50 1.54




