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Abstract

This paper discusses geometric programs with joint probabilistic constraints.
When the stochastic parameters are normally distributed and independent
of each other, we approximate the problem by using piecewise polynomial
functions with non-negative coefficients, and transform the approximation
problem into a convex geometric program. We prove that this approxima-
tion method provides a lower bound. Then, we use an improved Bonferroni
approximation method to find an upper bound. Finally, numerical tests are
carried out with a shape optimization problem.
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1. Introduction

Geometric programs are a type of optimization problems characterized by
an objective and constraints functions which have a special form. A number
of practical problems, such as electrical circuit design problems [1], mechan-
ical engineering problems [12], economic and managerial problems [8] and
nonlinear network problems [7], can be formulated by geometric programs.
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A geometric program can be formulated as
mtingo(t) st.gr(t) <1, k=1,--- K, t€ Rﬂ\rﬂ (1)

with

M
get) => a7 k=0, K. (2)
icl,  j=1
Usually, ¢; H]Ail t;” is called a monomial, and gi(t) is called posynomial. We
denote @ the number of monomials in (1), and {l;, £ = 0,---, K} is the
disjoint index sets of {1,---,Q}.

Geometric programs are not convex with respect to ¢t whilst they are
convex with respect to {z : z; = log t;, j = 1,---,M}. Hence, interior
point method can be efficiently used to solve geometric programs.

In real world applications, some of the coefficients in (1) may not be
known precisely when the optimization is made. Hence, the stochastic geo-
metric programming is proposed to model geometric problems with random
parameters. Individual probabilistic constraints have been used to control
the uncertainty level of the constraints in (1):

M
PO a][tP<n=1-ea k=1 K, (3)
i€ly  j=1
where ¢, is the tolerance probability for the k-th constraint in (2). It is
shown in [3, 6, 11] that when the coefficients a;;,7 € I),,Vk,j =1,..., M, are
deterministic and ¢;,7 € I, Vk are normally distributed and independent of
each other, the probabilistic constraint (3) is equivalent to two constraints
involving posynomials and common additional slack variables.

2. Stochastic geometric programs with joint probabilistic constraints

In this paper, we consider the following joint probabilistic constrained
stochastic geometric programs

M

min £ Zcth;“] (4)
! iely j=1
M

s.t. P(ZciﬂtjﬁgLk:1,---,K>z1—e. (5)
iel, j=1



Unlike [3, 6, 11], we require that the overall probability of meeting the K
geometric constraints is above a certain probability level 1 — ¢, where ¢ €
(0,0.5].

Stochastic geometric programs with joint probabilistic constraints are a
special case of joint probabilistic constrained problems. The latter were first
considered by Miller and Wagner [9]. Under some independence assumptions,
they show that joint probabilistic constrained problems are equivalent to con-
cave deterministic problems. For some specific cases, such as the right hand
side random vector is multivariate normally distributed, Prekopa [10] showed
that the joint probabilistic constraint problems are convex. Moreover, some
approaches are proposed for linear programs with joint probabilistic con-
straints in [2| and the references therein. However, as far as we know, there
is no in-depth research works on the stochastic geometric programs with joint
probabilistic constraints. Hence, in this paper, we propose new approaches
for solving this problem under normal distribution with independent compo-
nents.

2.1. Stochastic geometric optimization under Gaussian distribution

We suppose that the coefficients a;;,7 € Iy, Vk,j = 1,..., M, are deter-
ministic and the parameters ¢;, 7 € I, Vk are normally distributed and inde-
pendent of each other, i.e., ¢; ~ N(E.,, 02) [3]. Moreover, we assume that
E., > 0. As ¢; are independent of each other, constraint (5) is equivalent to

IO ]t < >1-- (6)

k=1 i€l j=1

By introducing auxiliary variables y, € Ry, k=1,--- | K, (6) can be equiv-
alently transformed into
M ,aqj
P(Zielkcinjzltjjgl)zyk: kZl,"',K, (7)
and
I >1l—€12>2y,>0 k=1, K. 8)

It is easy to see that for independent normally distributed ¢; ~ N(E.,, 0?)
3], constraint (7) is equivalent to

M aij - M ,2a;;
Zie]k Eci H]:l t] +¢ l(yk)\/ZiEIk 0’L2 H]:l t_] S 17 k = 17.'. 7K‘ (9)
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Here, ®~1(y;) is the quantile of the standard normal distribution N(0,1).
However, biconvex inequalities (9) are still very hard to solve within an op-
timization problem [4].

2.2. Approximation of ®1(-)

d~1(-) is also called the probit function, and it can be expressed in terms
of the inverse error function:

O Hyp) = V2erf 12y, — 1), wi € (0,1).

The inverse error function is a nonelementary function which can be rep-
resented by the Maclaurin series:

0o 2p+1
erf ™! (ﬁ ) ,

0

where A\g = 1 and

DV
(i+1)(20+1)

>0, p=1,2,--.
=0

Thus, we know that ®~!(y;) is convex for 1 > 3, > 0.5, and concave for
0 <y <0.5.

From constraint (8), we have 0.5 < 1 —¢€ < y, < 1. Hence, we can
only focus on the right tail part of ® !(y;). For the right tail part, we
use polynomial functions with non-negative coefficients to construct convex
approximations of ®~!(y;).

In detail, we choose S polynomials:

’C) = Zﬂs,pyz—’_ﬁsﬁv s = 17 787
p=1

such that
ﬁs,pZO,5:17"'75717:0717"'7”& (10>
and

Foye) <@ Yuyp), Vp €1 —¢,1), s=1,---,5, (11)



where n, is the degree of the s polynomial. ®~1(y,) is then approximated
by a piecewise polynomial function

F(y,) = maXSFs(yk)- (12)

s=1,--,

Constraints (11) guarantee that F(yz) provides a lower bound of ®~!(yy).
Moreover, constraints (10) are used to keep the geometric programming struc-
ture of the approximation problem.

In order to guarantee the strength of the approximation, we use an opti-
mization model to compute the optimal coefficients 3, such that the bias of
the polynomial F(yy) from ®~!(y;) is minimal. For given s, we first choose
M points, &1, &, - -+ , &y, in the interval [1—¢, 1), randomly or uniformly. We
then minimize the sum of the differences between Fy(&,,) and ®71(&,,) on the
M points such that (10) and (11) hold:

M
min 3 (27(&n) = Fil&m)) (13)
P m=1
st Folyr) < @7 (yw), Yur € [1—¢,1), (14)
BS,pZO, pzoalu y Nis. (15>

The optimization problem (13)-(15) is a semi-infinite programming prob-
lem, which is very hard to solve directly. In order to guarantee the feasibility
of constraints (14), we can not approximate the semi-infinite constraint by
finite constraints on the M points.

An important property of ®~!(y;) is that its derivative of any order ¢,
(@1 (y,), is larger than or equal to 0 for y, € [0.5,1), and (=)@ (1) =
+o00, for ¢ = 0,1,---. From this property, we propose an approximation for
the semi-infinite constraint (14).

Proposition 1. A sufficient condition for constraints (14) is
Fs(q)(l_e) S ((D*l)(q)(1_€)7 q:0717 s Mg,y (16>
where FXY and (@)@ are the the ¢t derivative function of Fy and (®71).

Proof. Let f(z) = ® '(z) — Fy(x). From (16), we have f{@(1 —¢) > 0,
q=0,1,--- ,n, We first consider the ¢ derivative of f(z) for z € [1 —¢, 1).
From the Maclaurin series of ®~*(z), we know that (®~1)*+1(z) > 0, Vz €
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[1—€,1) whilst F\™)(2) = B,,.p! and F™ ™ (2) =0, Vo € [1 — ¢, 1). Then,
we have f(s*1(x) > 0, Vo € [1 —¢,1). This means f)(x) is monotone
increasing in [1 — ¢, 1). Moreover, we have f")(x) > f")(1 —¢) >0, Vz €
[1 —¢,1). Furthermore, the non-negativeness of f(™)(z) in [I — ¢, 1) implies
the monotonicity and non- negatlveness of "=V (z). By doing the above
argument recursively from f")(z) to f(z), we have f(x) >0, Vo € [1—¢, 1),
which is the conclusion of the proposition. O

Using (16) instead of (14), we find a feasible approximation for the semi-
infinite problem (13-15). It can be formulated as the following linear pro-
gramming problem

M ns
Ig)lin <(I)1(§m) - Z ggzﬁs,p) (17>
PP m=1 p=0

st Y (1, < ()10, =01, (18)

—(p—q)

5s,p20, p:071; y Mg,y (19>

2.3. Convex geometric approximation
After obtaining the piecewise polynomial approximation of ®~1(-), we can
replace @~ !(yx) by F(yx) in (9), and then we have

Theorem 1. Using the piecewise polynomial function F(yy), we have the fol-
lowing approximation of the stochastic geometric program with a joint prob-
abilistic constraint (4)-(5):

mm E., Hta” (20)
i€lp
N M
st. Y E, Ht“” (Z 55,py7,j> e[t <1,
i€l p=0 icl,  j=1
s=1,---,8 k=1,--- K, (21)
K
[[n=t-¢1>2p>0 k=1 K (22)
k=1

The optimal value of the approximation problem (20)-(22) is a lower bound
of the problem (4)-(5).



We call this approximation as polynomial approximation.

Proof. From (7) and (8), we know 0 <y, < 1. Moreover, we have from (8)
that for any k, y, > H?:l yr > 1 —¢€>0.5. Then, from (11), we have

(I)il(yk) > Zﬁs,pyi, Vyk € [1 — €, 1)7 s = 17 A 75.

p=0

Furthermore, constraint (21) is equivalent to

M . "
> B L6+ Jmax (Z ﬂs,py£> Y]] <t k=1, K
J=1 p=0

i€l icl,  j=1

As 370 Bspyr < 71 (yk), Vs, any feasible solution for (9) is feasible for (21).
From the equivalence between (5) and (9) under the Guassian distribution
assumption, the optimal solution of problem (4)-(5) is feasible for problem
(20)-(22). This means that the approximation problem (20)-(22) provides a

lower bound for the original problem (4)-(5).
[

Although problem (20)-(22) is biconvex with respect to t and y, we
can transform it into the following optimization problem by letting r; =
log(t;), j=1,---,M and z), = log(y), k=1,--- , K:

M
ngimn Z E., exp {Z aijrj} (23)

i€lp j=1

Ns M
s.t. Z Bs.p Z o? exp {Z(Qaijrj + 2pxk)}
p=0

i€l j=1
M
—i—ZEciexp{Zaijrj} <1, s=1,--+,8 k=1,--- | K, (24)
i€l j=1
K
Zxkzlog(l—e), . <0, k=1,--- | K. (25)
k=1

As E,, > 0and f,, > 0, problem (23)-(25) is a convex programming problem.
Hence, interior point methods can be efficiently used to solve it and to provide
a lower bound for the joint probabilistic constrained problem (4)-(5).
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2.4. Bonferroni approximation

In order to come up with an upper bound of the joint probabilistic con-
strained problem (4)-(5), we adopt the popular Bonferroni approximation,
which gives probabilistic measures to individual constraints. We give an es-
timation yQ for each yy, k = 1,--- , K, such that [J/_, 2 = 1 — ¢ and 3 > 0.
We then use the following individual probabilistic constraint

M
PO e[t <D= k=1, K (26)

i€l,  j=1
to approximate the joint probabilistic constraint (5), and we have

Theorem 2. With the estimation y?, we have the following approzimation of
the stochastic geometric program with a joint probabilistic constraint (4)-(5):

mln Z E.. H £ (27)

i€lp
t. Y E, Ht“” + () | D o H#“” <lk=1--- K, (28)
i€l 1€l j=1

The optimal value of the approximation problem (27)-(28) is an upper bound
of problem (4)-(5).

Proof. We know from [3] that, when the parameters ¢;,7 € I}, VK are nor-
mally distributed and independent of each other, the probabilistic constraints
(26) are equivalent to the constraints (28). Moreover, the chosen y9 is one
possible allocation of the total tolerance probability, hence the optimal so-
lution of problem (27)-(28) is a feasible solution for the original problem
(4)-(5). Hence, it provides an upper bound. O

As &7 1(y?) > 0, problem (27)-(28) is a geometric program, hence it can
be transformed into a convex programming problem and solved by interior
point methods.

In order to improve the performance of Bonferroni approximation, we

randomly generate several groups of the sample ¢, k = 1,--- | K such that
[T,%) = 1—¢and y, > 0. We solve the problem (27)-(28) with each
group of y¥, k=1,--- | K, and find its optimal value. Then we compare the

obtained optimal values and find the minimal one. With larger sample size,
we can find a better upper bound than Bonferroni approximation.
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3. Numerical experiments

We consider a shape optimization problem with a joint probabilistic con-
straint as an example to test the performances of our approximations
}ILnul)Ié h~twtd? (29)

st. P((2/Awan)hw + (2/Apan)hd < 1, (1/Ap)wd < 1) > 1 — €,(30)
ah™tw <1, (1/B8)hw™! <1, (31)

(32)

ywd™t <1, (1/8)wtd < 1. 32

Weset a =v=0.5,0=0=2,¢=>5%, and assume 1/A,q; ~ N(0.005,0.01)
and 1/A, ~ N(0.01,0.01).

We use the polynomial approximation (20)-(22) and Bonferroni approxi-
mation (27)-(28) to estimate the lower bound and the upper bound for prob-
lem (29)-(32), respectively.

We carry out nine polynomial approximations, by setting the degrees of
the polynomial functions to be from one to nine. For each of the polynomial
functions, we use the problem (17)-(19) to estimate the coefficients. Then we
carry out Bonferroni approximation with 1 group, 5 groups, 10 groups, 20
groups and 100 groups of y{ and y5. For each group, we randomly generate 3°
by an uniform distribution on (1—e¢, 1), and compute 39 = (1—¢)/y). By using
Sedumi solver? from CVX package [5], we solve the approximation problems
with Matlab R2010b, on a PC with a 3.0 Ghz Intel Core2 Duo CPU and 4.0
GB RAM. Table 1 (Table 2) shows the degrees of the polynomials (the sam-
ple sizes), the variable numbers, the constraint numbers, the optimal values
and the CPU time of the polynomial (Bonferroni) approximation problems.
For better illustration, we compute the gaps of polynomial approximation
bounds, which are the percentage differences between the bounds and the
best Bonferroni approximation bound, and show them in the sixth column
of Table 1. Correspondingly, Table 2 shows the gaps of Bonferroni approxi-
mation bounds, which are the percentage differences between them and the
best polynomial approximation bound.

2The Variable Number account both the original variables and the slater variables,
which are added to the programming to match the solver data input requirements. The
Constraint Number account all the original constraints, the added constraints and the
exponential constraints.



Table 1: Computational results of polynomial approximation with e = 5%

Num. Degree Var. Num.* Con. Num.** Opt. Val. Gap(%) Cpu time(s)
1 1 175 87 0.211 17.606 1.420
2 2 265 138 0.230 10.324 2.195
3 3 376 204 0.233 9.098 2.163
4 4 490 273 0.233 8.990 2.434
5 5 601 339 0.234 8.879 2.645
6 6 714 407 0.234 8.766 2.553
7 7 825 473 0.234 8.647 2.756
8 8 936 539 0.235 8.499 3.684

Table 2: Computational results of Bonferroni approximation with € = 5%

Num. Sample size Var. Num. Con. Num. Opt. Val. Gap(%) Cpu time(s)
1 1 129 69 0.271 15.699 2.126
2 5 129 69 0.257 9.611 7.456
3 10 129 69 0.256 9.358 14.168
4 20 129 69 0.256 9.342 25.273
5 100 129 69 0.256 9.288 127.389

From Table 1, we can see that as the degree of the polynomial function
increases, the gap of the corresponding polynomial approximation bound be-
comes smaller. Meanwhile, although the problem size is obviously increasing
with the degree of the polynomial function, the CPU time is not increasing
sharply. This illustrates that the polynomial approximation problem is not
hard to be solved by the interior point method. However, when the degree of
the polynomial function is very large (larger than 8), the solver meets some
very large numbers during the solution process. Therefore, it can not find
an optimal solution. Due to this restriction on the degree, the gap of the
polynomial approximation bound can not decrease to zero.

On the other hand, we can see from Table 2 that as the sample size
increases, the gap of the corresponding Bonferroni approximation bound
becomes smaller. This means that, adopting more samples can efficiently
improve the performance of Bonferroni approximation method.

Although the size of Bonferroni approximation problem is fixed, we need
to heuristically solve the problem many times to find a better 32 k =
1, K.

Moreover, we set € = 2% and € = 1%, and test the polynomial approxi-
mation method and the Bonferroni approximation method for the two cases,
respectively. The other parameters and the used methods are the same as
the case with € = 5%. The corresponding results are given in Table 3 and
Table 4.
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Table 3: Computational results of polynomial approximation with e = 2%

and € = 1%
2% 1%

Num Degree Obj. Gap(%) Cpu time(s) Opt. Val. Gap(%) Cpu time(s)
1 1 0.249 17.794 1.705 0.274 18.090 1.400
2 2 0.275 9.152 1.486 0.307 8.329 2.141
3 3 0.277 8.524 1.838 0.308 8.004 2.076
4 4 0.279 7.884 1.879 0.309 7.677 2.193
5 5 0.280 7.285 2.684 0.310 7.348 2.142
6 6 0.280 7.254 2.704 0.312 7.016 2.435
7 7 0.290 4.268 3.016 0.319 4.730 2.809
8 8 0.290 4.268 3.487 NaN

Table 4: Computational results of Bonferroni approximation with e = 2%

and € = 1%
2% 1%
Num times Obj. Gap(%) Cpu time(s) Opt. Val. Gap(%) Cpu time(s)
1 1 0.313 7.978 1.597 0.364 14.114 1.925
2 5 0.304 4.991 6.290 0.336 5.187 6.376
3 10 0.302 4.464 11.525 0.336 5.187 13.592
4 20 0.302 4.458 22.127 0.335 4.976 26.336
5 100 0.302 4.458 107.023 0.335 4.965 118.748

From Table 3 and Table 4, we can see that the observations from the
two former tables are still valid. Moreover, as the tolerance probability e
becomes smaller, the gaps between the polynomial approximation bound and
the Bonferroni approximation bounds are smaller than when larger values of
€ are considered.
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