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considered. Possible applications are suggested and an in-depth experimental analysis is reported.        

 

Keywords: resource constrained project scheduling problem (RCPSP), non-constant resource capacity, non-constant resource 

request, irregular job/activity/cycle profile, multi-resource, time-indexed scheduling, mixed integer linear programming (MILP), 

global optimization (GO)      

 

1 Introduction  

This work is inspired by the logistic context in space activities. It is notorious that, in this framework, the 

exploitation of the resources available (e.g. on orbit or on the exploration surface) is usually an extremely challenging 

issue. Complex scheduling problems arise, presenting the experts with the necessity of optimizing the sequencing of 

what is usually a significant number of jobs, requiring contemporarily the utilization of different resources, such as, 

electrical power, data handling capacity and crew time. As a further non-trivial difficulty, the operational cycles (jobs) 

are frequently associated with an irregular activity, i.e. they are characterized by a variable resource request profile. 

Similarly, the overall capacities of the relevant resources vary. Fig. 1 provides, as an illustrative example, the case of a 

single (non-constant) resource and three different (non-constant) request cycle types.  

 

 

Fig. 1 Irregular cycles and non-constant resource 

 

         
The specialist literature on scheduling is vast [1,3,5,6,11,8-20,22,26,28,31], covering several specific problems and 

methodologies. This chapter focuses on a non-standard resource constrained project scheduling problem (RCPSP). For 

the classical RCPSP see [4,8-10,13,15,17,23,25,29,30,32]. In the author’s previous work [12], an approximate MILP 

(Mixed Integer Linear Programming) time-continuous approach, was proposed. A novel approximate MILP formulation 

of the problem, based on a time-indexed approach, is discussed here. This latter option was motivated by the efficiency 

of discretized models for scheduling problems [2]. As in the previous work, the approach proposed in this chapter 

provides a global optimization (GO) perspective on the problem in question. The discussed formulation is suitable for 

tackling a number of different variants of the RCPSP, involving either single or multiple resources and characterized by 

the specific objective functions adopted.  

The remainder of the chapter is organized as follows. The first part of Section 2 provides an MILP model for the case 

of a single resource, namely electrical power [11,21,24]. Afterwards, the presence of possible additional conditions is 

outlined and an extended formulation, addressing the multi-resource scenario is introduced. Section 3 is devoted to the 

computational study.      

 

                                                           
1 This is a draft version of the chapter ‘Resource-constrained scheduling with non-constant capacity and non-regular  

  activities’ to appear in: Giorgio Fasano and János D. Pintér, Eds. Space Engineering: Modeling and Optimization  

  with Case Studies. Springer Science + Business Media, New York, 2016. Some parts of the text / figures have been  

  removed.  
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2 Time-indexed formulation 

The problem considered in this section, concerns the electrical power consumption, by a number of devices (e.g. 

payloads, in the case of the space framework), in a pre-specified time period. Each device may be requested to execute a 

sequence of cycles, between a given minimum and maximum limit, i.e. 
N and N , respectively. Assuming, for the 

sake of simplicity, that the value associated with each device cycle is the same (this assumption could be generalized by 

introducing appropriate weights), the optimization objective consists of maximizing the exploitation of the energy 

available during the entire time period  ],0[ fT , where 
fT denotes the final time.      

Some additional conditions (e.g. of time-precedence), might be imposed on the execution of the cycles (relevant 

examples shall be provided). The (electrical) power available at each instant ],0[ fTt  is represented by a given 

function of time )(tw  (e.g. step-wise or continuous, see Fig. 1). Similarly, each cycle type Τ (Τ indicates the set of 

all cycle types) is associated with a given function of time (cycle type profile) )(tw
, defined (conventionally) over 

],0[ D , where 


D corresponds to cycle type   duration. All activated cycles must obviously be entirely executed 

within the given overall time period. This means that, denoting the initial instant of cycle i of type  with it 0 ,  , i  

],0[0  DTt fi   (in the following I shall indicate the generic set of cycle indices).  

For each cycle of each type  , the  binary variables }1,0{i are introduced with the following meaning: 

      

1i  if cycle i of type   is activated; 

0i  otherwise.  

 

For each cycle i of type  , the function  of time )(tw i
 is defined as follows: 

 

   ],[ 00  Dttt ii  ,     (1-1) 

   )()( 0 ii ttwtw   , 

 

],[ 00  Dttt ii       (1-2) 

      0)( tw i
. 

 

More precisely, this means that each ],0[0  DTt fi   generates a specific )(tw i
, belonging to the set of functions with 

compact support (such that ],[ fTot  0)( tw i
 and ],[ fTot  0)( tw i

). In the following, only their restrictions 

to the intervals ],0[ fT  will be considered.  

The optimization task, in a normalized form, can be expressed as follows:   
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Were parallel processes (for the same cycle types) indeed to be considered, it would be sufficient to extend the set Τ  

appropriately.  

For any selection ),...,,...,( ||||00011 ITi ttt 
, where ||Τ and || I represent the cardinalities of Τ and I  respectively, the 

following conditions are imposed upon the corresponding functions of time )(tw i
: 
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If a minimum and a maximum limit are specified on the number of cycles, the following constraints are added τ  

  NN
Ii

i 


. (If a proper set of indices 
I  were defined for each cycle type, all variables 

i  outside the 

corresponding index ranges could be eliminated from the model, together with the previous upper limit conditions).   

The continuous-time model outlined above, although quite simple to formulate, is extremely difficult to solve by an 

exact approach. A very simple time-indexed reformulation is therefore put forward hereinafter, in order to provide 

approximate solutions, useful in practice. To this purpose, a discretization of the entire period ],0[ fT  (from now on, it 

is assumed fT ℕ) is carried out, by utilizing an appropriate time unit, i.e.: 

],1[...]1,[...]1,0[],0[ ff TTT
f
  . The power function associated with each corresponding sub-

interval ]1,[  is now assumed to be constant. This gives rise to an approximating step-function, whose values 
W  

are defined as follows:  
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Analogously, the activity period associated with each cycle type is discretized. To this purpose, each duration


D is 

substituted with a new one, consisting of the shortest integer interval
D , in terms the above mentioned time unit, 

containing


D (i.e.   DD  ). The sub-intervals ]1,0[ ,…, ]1,[  , …, ],1[  DD   are subsequently associated to 

each 
D . Also in this case, for each cycle type, the power consumption, corresponding to each sub-interval ]1,[  , 

is assumed to be constant and the function )(tw
 is therefore approximated by a step-function, whose values are now 

expressed as: 
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Remark 1 The adopted approximations for the functions )(tw and )(tw
guarantee that every solution of the discretized 

model is a feasible solution of the time-continuous one.       

 

For each cycle type  , the time limit  DTT ff  is stated. It represents the maximum time breakpoint at which 

such a cycle type can be activated, in order to be entirely executed within the interval ],0[ fT . The binary 

variables }1,0{  are then defined, with the following meaning: 

 

1  if a cycle of type  is activated at instant  , such that  fT0 ;    

0 otherwise. 

 

A basic formulation of the approximated MILP model reads as follows. Firstly, objective function (2) is transformed 

into: 
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The constraints below are introduced:  
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The variables 
u (defined a priori as continuous) express, through equations (8), the power consumption associated 

with a cycle of type  , during the sub-interval ]1,[   , if activated at instant   (in such a case the power 

consumption equals 
W ). If no cycle of type  is activated at instant  , the relative variables 

u are zero.            

Inequalities (8) and (9) state that during each time sub-interval ]1,[   the power request cannot exceed what is 

available. Conditions (10) prevent the (total or partial) simultaneity of two (or more) cycles of the same type. The 

minimum and maximum limits for each cycle type are respected in virtue of inequalities (11).     

As a first consideration, conditions (8) and (9) could be rewritten in a single one, getting rid of the variables 
u , 

i.e.:   
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Remark 2 Once (8) and (9) are substituted with (12), all the variables are of the binary type only (binary integer 

programming, BIP, model).  

 

Hereinafter, extensions of the basic discretized model shall be outlined, considering firstly the possibility of including 

additional conditions. Two relevant examples are illustrated. The first refers to the case where the total number of 

cycles of type '  is a multiple of the one of '' . This is expressed by the following equations: 
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(  ''' R ℕ). A second example contemplates the case where the execution of each cycle of type  ''  must be preceded 

by (at least)
'''P cycles of type ' . It is understood, in particular, that each activated '' -cycle can always be associated 

(through an injective function) with a set of 
'''P preceding ' -cycles and all these sets are disjoint. The conditions below 

serve the scope: 
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As mentioned previously, the approach proposed in this work is extendible to the cases where a number of different 

resources have to be allowed for. The relevant formulation is briefly reported in the following. The symbolism adopted 

hitherto is adapted to the extended context, in order to stress the analogies with the basic model. To this purpose, the 

functions associated with the resources available, whose set is denoted by R, are now simply indicated with )(twr , 

where Rr is the corresponding index. With an obvious meaning of the symbols, the extended version of the basic 

model is reformulated as follows, keeping inequalities (10) and (11) unaltered (and corresponding to (17) and (18) 

below), i.e.: 
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Different versions of objective function (15) could also be conceived, if necessary, introducing proper weights, 

depending on the relevance of each single resource. Additional conditions such as those represented by constraints (13) 

and (14) could moreover be introduced. 

The basic MILP model, when expressed by (7) (10), (11) and (12), contains: 

 

)|(| fTΤO binary variables  ; 

)|(| fTΤO cycle non-simultaneity constraints;  

|)|2( ΤO  cycle minimum and maximum number constraints;  

)( fTO  power capacity constraints.  

 

In the multiple-resource case, the relative number of capacity constrains becomes: 

 

)|(| fTRO . 

 

Remark 3 Differently from the usual indexed-packing-like formulations for scheduling, in the models presented here, 

the generation of binary variables depends solely on the time discretization adopted and the total number of cycle types 

involved.  

3 Applications and computational results 

Time-indexed methods for scheduling problems are well known for their efficiency both in terms of solution quality 

and computational time. This is essentially due to the fact that their LP-relaxations provide, in general, strong bounds. 

The corresponding matrix size/density, nonetheless, usually represents a major difficulty and, as a consequence, the 

computer’s memory capacity often becomes the actual stumbling block.    

The approach proposed in this chapter is addressed to the previously discussed non-standard scheduling problems, 

bearing in mind a ‘reasonable’ limitation for the sizes of the instances to cope with. As a rule of thumb, problems with 

fewer than 250 sub-intervals (time units) and 35 cycle types, involving 3 different resources, are expected to be solved 

quite easily, as well as equivalent instances, in terms of matrix size.    

Obviously, from a practical point of view, a large-scale problem could be subdivided into a number of sub-

problems, by partitioning the total time period appropriately. Moreover, the author’s time-continuous model [12] may 



 

 

be utilized within a heuristic procedure, to refine the approximated solutions obtained with the time-indexed approach. 

To this purpose, when a single resource is involved, it is opportune to interpret each discretized cycle as if it were 

composed of a number of components corresponding to successive sub-periods (whose duration is not necessarily 

integer) having constant consumption (extensions to the multiple resource case can be considered). Precedence 

constraints, deriving from the solution found through the time-indexed model, are hence imposed. They assume the 

form  khkh DDtt  , where ht  and kt are the (time) coordinates (with respect to the given time-resource 

reference  frame) of the centers of components h and k of cycles   and   respectively, while hD  and kD  are the 

corresponding durations. This way, further cycles can tentatively be added by following an overall hole-filling logic 

[12].  

Analogies between some classes of scheduling and packing problems (e.g. [14]) are well known. Applications of the 

approach proposed in this chapter to two-dimensional rectangular packing, when an MILP-based formulation is adopted 

(e.g. [27]) are quite straightforward. Similarly to the above mentioned time-precedence constraints, relative positions, 

derived from the discretized model, indeed, can be imposed with respect to one of the axes, in order to solve the overall 

packing model. This (heuristic) approach is expected to prove quite advantageous as a support strategy to solve hybrid 

packing models (e.g. [7]).    

Hereinafter, a significant number of tests concerning the class of non-standard scheduling problems discussed in the 

previous section are reported. They are grouped in the following sets: Basic, A, B, C, D, E, F and G. Additionally, 

considering the analogies between scheduling and packing problems, a set of two-dimensional rectangular packing 

instances from literature (Fekete and Shepers,  see www.or.deis.unibo.it/research_pages/ORinstances/ORinstances; 

www.fe.up.pt/esicup) have been taken into account. These are denoted as FS.  The Basic test set is considered firstly. 

All other test sets (except for FS) have been constructed as extensions of the Basic set. These test sets are introduced, in 

this section, step by step.  

All the case studies considered have been solved by utilizing IBM ILOG CPLEX 12.3 [16], supported by a personal 

computer, equipped with: Core 2 Duo P8600, 2.40 GHz processor; 1.93 GB RAM; MS Windows XP Professional, 

Service Pack 2.  

3.1 Basic test set  

In all tests of the Basic set, the (electrical) power is chosen (with reference to the formulation of Section 2) as the 

only resource considered, with a constant capacity of 25 (power) units. Fifty types of cycles have been defined. They 

are reported in Table 1. For each cycle  , the term  hh LK   is associated with its component h  (see above). 

hK indicates the (constant) consumption and hL the duration of the corresponding sub-period, i.e. the number of sub-

intervals covered by component h , expressed in time units. It is understood that the duration of each sub-interval is one 

time unit and hL  is integer (
ii LK  is the energy requested by component h ). In the table, all the terms  hh LK   of 

the same cycle are separated by a comma. If, for a component h  of a cycle  , the relative duration is one single time 

unit (i.e. 1hL ), the term  hh LK  is substituted with hK . If a component has zero consumption, the 

corresponding term is denoted explicitly by hL0  (or 0, if the duration of the relative sub-period is one single time 

unit). An example of the notation adopted is reported here below.      

  

 

Cycle type  :  5544221 ,,0,, LKLKLKK  .    

 

This reads, for cycle type  , as follows: 

 

the cycle starts with one sub-interval (i.e. one time unit) with a (constant) power consumption of 1K   units  

(component/sub-period 1); 

2L  sub-intervals (i.e. 12 L  time units) follow, with a (constant) power consumption of 2K units 

(component/sub-period 2); 

one sub-interval (i.e. one time unit) follows with a (constant) zero power consumption   

(component/sub-period 3); 

4L sub-intervals(i.e. 14 L  time units) follow with a (constant) power consumption of 4K units  

(component/sub-period 4); 

5L sub-intervals(i.e. 15 L  time units)  follow with a (constant) power consumption of 5K units  



 

 

(component/sub-period 5); 

the cycle total duration is  542 11 LLL   time units. 

 

The fifty types of cycles reported in Table 1 are utilized in test sets A, B, C, D, E and G. In test set G, where three 

generic resources are considered, the electrical power is replaced by the first (generic) resource. In this case, the 

consumptions (per cycle type) appearing in Table 1 are interpreted in terms of the first generic resource units. This table 

also reports the maximum number of cycles admissible and these limits shall hold for all test sets from A to G 

(including F).  

 

  

Cycle 

type 

Power 

consumption 

Max. 

No.   
Cycle 

type 

Power 

consumption 

Max. 

No. 

 (units) of cycles 
 

 (units) of cycles 

1 1,2,1 700 
 

26 2x23 100 

2 2,1,1 700 
 

27 2x10,3x13 50 

3 1,5,3 300 
 

28 1,2x9,7x3,1x12 50 

4 1x2,5,7,1 500 
 

29 2x27 100 

5 1,2,5x2,2 200 
 

30 1x25,5x3,1x2 70 

6 1,3,4,7,3 150 
 

31 2x30 50 

7 2,3x4,4x2 150 
 

32 1x30 100 

8 2,3x2,4x2,6,5 100 
 

33 2x10,1x21 70 

9 1,3,5x2,7x2,5 100 
 

34 2x11,0,1x19 70 

10 1x2,2,3,7,9x2,1x3 100 
 

35 1x30,2x2 100 

11 2x3,3x8 100 
 

36 3x3,1x30 70 

12 3x3,4x8 100 
 

37 1x30,3x3 70 

13 5x5,11x6 30 
 

38 1x25,2x5,3x3 70 

14 3x5,11x6,2x4 30 
 

39 1x30,7,1x3 70 

15 4x5,13x6,2x4 30 
 

40 1x31,5x4 50 

16 1x5,15x3,2x9 50 
 

41 2,1x34 70 

17 1x5,15x5,2x7 30 
 

42 5,1x34 70 

18 1x5,17x12 30 
 

43 1x33,5x2 70 

19 1x10,5x5,1x4 70 
 

44 2x35,3 50 

20 1x7,5x7,1x5 70 
 

45 3x15,2x15,1x6 30 

21 1x9,5x7,1x3 70 
 

46 2x30,1x7 50 

22 1x9,13x7,1x3 30 
 

47 2x30,3x7 30 

23 1x3,21x3,1x15 50 
 

48 2x30,15,3x6 30 

24 1x7,21x3,1x11 50 
 

49 1x20,3x18 50 

25 1x13,25x3,1x5 30 
 

50 3x9,1x30 50 

 

      Table 1 Basic cycle characterization by their duration / power consumption 

 

 



 

 

 
 

  Fig. 2 Graphical representation of cycle types 1 to 10  

 

 
 

Fig. 3 Graphical representation of cycle types 11 to 20  

 
 

Fig. 4 Graphical representation cycle types 21 to 30  

 

 

Fig. 5 Graphical representation of cycle types 31 to 40  

 

 

Fig. 6 Graphical representation of cycle types 41 to 50  

 

Figs. 2,3,4,5 and 6 provide a graphical representation of the cycle types considered. Each figure includes (in sequence) 

ten cycle types (some have been shifted to the right, in order to make the picture clearer). 

The Basic test set consists of 25 instances, corresponding to a total time elapse of 100 units (i.e. 100 sub-intervals). 

Table 2 reports their sequential number in the first column. The second column indicates, for each test, the cycle types 

(from Table 1) that are available. The third column of the table shows the minimum number of cycles requested for 

each type. The last two columns report the results obtained, in terms of solution quality and computational effort. 

 

  

 

Test 

 

Cycle type  Min. No. 

of cycles 

Energy 

exploitation (%) 

CPU time 

(sec) 

1 1-10 1-10: >0 95.6 298 

2 11-20 1-20: >0 84.27 8 

3 1-10; 

21-30 

1-10: > 0; 

21-30: >0 95.12 299 

4 1-10; 

31-40 

1-10: > 0; 

31-40: > 0 96.03 13* 

5 1-10; 

41-50 

1-10: > 0; 

41-50: >0 96.39 4* 

6 1-30 1-30: >0 95.48 269 

7 1-10; 

21-40 

1-10: >0; 

21-40: >0 95.08 283 

8 1-10; 

31-50 

1-10: >0; 

31-50: >0 96.23 44* 

9 11-40 11-40: >0 92.0 190 

10 11-20; 

31-50 

11-20: >0; 

31-50: >0 96.39 296 

11 1-20; 

31-40 

1-20: >0; 

31-40: >0 96.95 117 

12 11-30; 

41-50 

11-30: >0; 

41-50: >0 93.42 299 

13 11-30; 

41-50 

41-50: >0 

94.09 153 



 

 

14 1-40 11-20: >0 97.26 114* 

15 1-40 11-30: >0 95.72 180* 

16 1-40 11-40: >0 96.11 292 

17 11-50 11-20: >0 96.31 276 

18 11-50 11-30: >0 91.2 143 

19 11-50 11-40: >0 89.34 141 

20 11-50 21-50: >0 91.59 299 

21 1-50 11-20: >0 95.28 190 

22 1-50 11-30: >0 94.81 144 

23 1-50 11-40: >0 95.56 225 

24 1-50 21-50: >0 95.4 287 

25 1-50 1-10: >6; 

11-20: >0 95.72 299 

 

Table 2 Basic test set instances and performance results 

 

3.2 Test sets A, B, C, D, E and F  

Test set A, similarly to the Basic one, considers a constant power capacity of 25 units. It consists of subsets A1, A2, 

A3 and A4. Subset A1 coincides with the Basic test set. Subsets A2, A3 and A4 differ from the Basic set only for the 

total time availability. The following time periods have been considered: 

 

 A1: [0,100] time units 

 A2: [0,150] time units 

 A3: [0,200] time units 

 A4: [0,250] time units 

 

Similarly, subsets B1, B2, B3, B4, … , F1, F2, F3 and F4 are defined over the same time periods (i.e. [0,100], [0,150], 

[0,200] and [0,250] time units). Tests B, C, D and E are derived from test set A by changing the power capacity only.           

Four different power functions, not constant any longer, were hence introduced. They are represented in Figs. 7, 8, 9 

and 10 respectively (and reported in detail in the Appendix). 

 

 

 
 

                   Fig. 7 Test set B power function 

 
 

             Fig. 8 Test set C power function 

 

 

 

 



 

 

                            Fig. 9 Test set D power function 

 

 

 

                                       Fig. 10 Test set E power function  

 

 

For test sets A, B, C, D and E, the constants 
W (associated with the power step-functions, see (5)) are integer, as well 

as 
hK (representing, for each component h  of each cycle , the power consumption, see Section 3.1). Test set F was 

purposely introduced to consider the case where both 
W  and 

hK  may take, instead, any (non-negative) real values. 

Test set F was obtained from test set B by adding/subtracting fractional quantities, between 0 and 1, to/from the values 

corresponding both to the power function and the power consumption (see the Appendix for more details).  It is 

understood that for all test sets from A to F, all data relevant to the cycles (as reported in Tables 1) are considered, as 

well as the additional conditions introduced in Section 3.1.  

The relative computational results, in terms of energy exploitation percentage and CPU time (seconds) are reported 

in Table 3. There, each test set (i.e. A, B, C, D, E and F) is partitioned into the corresponding subsets of 25 tests each 

(i.e. A1, A2, A3, A4, … , F1, F2, F3 and F4). For each subset, the average of the energy exploitation percentage and 

CPU time (seconds) is reported.  

  

  

 

Test  
Energy 

exploitation 

(%) 

average 

CPU time 

(sec) 
 

Test  
Energy 

exploitation 

(%) 

average 

CPU time 

Subset 
 

Subset (sec) 

A1 94.45 195 
 

D1 93.98 204 

A2 94.18 245 
 

D2 93.87 259 

A3 94.17 233 
 

D3 93.07 196 

A4 92.4 221 
 

D4 91.7 219 

B1 94.81 225 
 

E1 93.33 245 

B2 94.28 253 
 

E2 91.99 254 

B3 93.05 242 
 

E3 91.51 194 

B4 90.19 159 
 

E4 89.63 217 

C1 94.3 210 
 

F1 92.07 201 

C2 94.2 254 
 

F2 91.31 220 

C3 93.04 216 
 

F3 88.94 186 

C4 90.71 190 
 

F4 87.73 168 

 

   Table 3 Performance results of test sets A, B, C, D, E and F 

 

Table 4 shows, for test subsets A4, B4, C4, D4, E4 and F4, the MILP model matrix dimension, in terms of number 

of rows, non-zero elements and 0-1 variables after the (MIP) pre-processing carried out by the solver.    

 

 

Test 

A4-F4  

No. of 

rows 

No. of  

(0-1) variables 

No. of  

non-zero 

elements 

1 2664  2450   29010 

2 2471   2342   72581 

3 4741  4733  130388 

4 4556  4643  161840 

5 4470  4600   174796 

6 6968  7094  202078 

7 7004  6765   379560 

8 6356  6788   307563 



 

 

9 6433  6816  305470 

10 6162   6691   350098 

11 6782  7001   233448 

12 6328  6784   314225 

13 6331   6784   315448 

14 8824  9282   327921 

15 8834  9282  330202 

16 8844  9282  332390 

17 8204  8972  444881 

18 8214  8972  447162 

19 8224  8972  449350 

20 8225  8972  449369 

21 11334  11321  656327 

22 10624  11427  473780 

23 10634  11427  475968 

24 10637  11427  477183 

25 10624  11427  473954 

 

  Table 4 Test subsets A4 to F4 matrix size/density 

3.3 Test set G  

This group of tests contains instances with three different resources each. It was derived from the previous, by 

substituting the power function with a generic one and adding resources 2 and 3. The power consumption values 

corresponding to each cycle type (as reported in Table 1) were kept unaltered and associated with resource 1 (no longer  

necessarily representing the power), 2 and 3 (the same cycle profiles were in fact assumed for the three resources). 

Three new functions were defined for resource 1, 2 and 3, respectively. These are represented in Fig. 11 (relevant 

details are reported in the Appendix). 

As is gathered, when more than one resource is involved, their total exploitation is generally expected to decrease 

markedly. The MILP model matrix, on the other hand, increases significantly. The overall performance results obtained 

for subsets G1, G2, G3 and G4 (corresponding, as in the previous cases, to the time periods [0,100], [0,150], [0,200] 

and [0,250] time units) are summarized in Table 5.  

 

 
 

                Fig. 11 Test G set resource 1-2-3 functions 

 

3.4 Tests extracted from Fekete’s and Shepers’ set  

 The case studies reported in this Section refer to the sets ‘2D constrained non-guillotine NGCUTFS, file 

ngcutfs1, provided by Fekete and Shepers (see www.or.deis.unibo.it/research_pages/ORinstances/ORinstances; 

www.fe.up.pt/esicup) that are expressed in terms of classical two-dimensional knapsack problems, without 

rotations.  



 

 

 

4 Conclusions  

This work is inspired by very challenging issues arising in space logistics, where, quite often, the activity requested 

has to be carried out in extremely limited conditions, both in terms of time and resource capacity. The necessity of 

optimizing the scheduling of activities, subject to a number of tight constraints, is nonetheless becoming, day after day, 

ever more demanding in several contexts apart from space. 

The problem tackled in this chapter, addresses the cases where the resource capacities, in a given time elapse, are 

not constant. The activities themselves are characterized by non-constant resource request profiles. The case of a single 

resource, identified with electrical power, is discussed firstly, pointing out the relevant modelling aspects. An MILP 

formulation, based on a time-indexed approximation approach is provided. Extensions of the basic model to multiple-

resource scenarios are discussed, as well as the introduction of additional conditions. Hints on possible applications of 

the methodology adopted are put forward and an in-depth experimental analysis is provided. The investigation of ad-

hoc computational strategies to solve the relevant models ever more efficiently might represent the objective of future 

research.   
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