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Abstract This chapter examines the problem of packing tetris-like items, 

orthogonally, with the possibility of rotations, into a convex domain, in the 

presence of additional conditions. An MILP (Mixed Integer Linear Programming) 

and an MINLP (Mixed Integer Nonlinear Programming) models, previously 

studied by the author (Fasano [8]), are surveyed. An efficient formulation of the 

objective function, aimed at maximizing the loaded cargo, is pointed out for the 

MILP model. The MINLP one, addressed to the relevant feasibility sub-problem, 

has been conceived to improve approximate solutions, as an intermediate step of a 

heuristic process. A space-indexed model is further introduced and the problem of 

approximating polygons by means of tetris-like items investigated. In both cases 

an MILP formulation has been adopted. An overall heuristic approach is proposed 

to provide effective solutions in practice. One chapter of this book focuses on the 

relevant computational aspects (Gliozzi et al. [9]).           
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1 Introduction 

This chapter summarizes and extends results descending from a long-lasting 

research effort aimed at solving complex three-dimensional packing problems 

arising in the space industry (Fasano [8]). In this challenging context, the relevant 

                                                 

1 This is an incomplete version of the chapter ‘A Modeling-based Approach for Non-standard 

Packing Problems’ by Giorgio Fasano. In: Fasano and János D. Pintér, Eds. Optimized 

Packings and Their Applications. Springer Optimization and its Applications, 2015. 

   



 

 

issues could hardly be considered applying a standard typology. Quite often, 

indeed, the operational scenarios to deal with are characterized by the presence of 

tricky geometries and complex additional conditions that can even be of global 

impact, such as in the case of balancing.  

Often irregularly-shaped and of non-negligible dimensions, the objects 

involved cannot be realistically approximated in terms of single cuboids (i.e. 

rectangular parallelepipeds). Significant effort has therefore been addressed to 

allow for tetris-like items, i.e. objects consisting of clusters of mutually orthogonal 

(rectangular) parallelepipeds. Similarly, the domains (containers) to take account 

of are generally not box-shaped and often several internal volumes are not 

exploitable, since these correspond either to clearance/forbidden zones or actual 

holes. Additionally, separation planes (with no fixed position specified a priori) 

can partition the domain into sub-domains. Some items may be requested to 

assume pre-defined positions/orientations or are subject to placement restrictions, 

such as, for instance, the requirement of having a given side parallel or orthogonal 

to a specified direction.    

In order to cope with overall conditions such as balancing, when necessary in 

addition to those mentioned above, a Global Optimization (GO) based view is 

highly desirable. This is essentially based on a modeling philosophy, as opposed 

to a pure algorithmic one, consisting of sequential procedures limited to local 

search.  

A number of modeling-based works are present in the literature, although these 

are usually restricted to the case of box-shaped items (e.g. Cassioli and Locatelli 

[4], Chen et al. [6], Padberg [12], Pisinger and Sigurd [13]). 

On the other hand, very interesting studies consider strongly irregularly-shaped 

objects, even though the adopted philosophy is mainly focused on local 

optimization (Stoyan and Chugay [14], Stoyan et al. 2012 [15], Egeblad et al. [7]).           

This chapter emphasizes the solution of non-standard packing issues, in the 

context outlined above, by a GO approach. Mixed Integer Linear/Non-linear 

(MILP/MINLP) formulations have been conceived and a library of mathematical 

models set up. This supports ad hoc heuristics, implemented to obtain satisfactory, 

albeit probably sub-optimal (or at least non-optimal proven), solutions to a wide 

collection of real-world instances (Fasano [8]).  

The general problem of placing tetris-like items orthogonally into a convex 

domain, without pair-wise intersection, so that the total volume loaded is 

maximized, is the main topic of this chapter.  

Section 2 investigates a dedicated MILP model (Fasano [8]), specifically 

constructed to overcome the challenging computational difficulties that are 

typically associated with the problem in question, when formulated in terms of 

Mathematical Programming. It is, indeed, well known that, even when single 

parallelepipeds are involved (i.e. tetris-like items consisting of one component 

only), the relevant MILP models available in the specialist literature (e.g. Chen et 

al. [6], Padberg [12]) are very hard to solve. This holds also if a number of valid 

inequalities are purposely added. The model discussed in this section can be used 

to solve small-size instances, tout court. In addition, it can advantageously be 



 

 

adopted as a basic element of the above-mentioned heuristics that act recursively, 

following an overall greedy approach.  

MINLP models (e.g. Cassioli and Locatelli [4]) have been built up for the 

feasibility sub-problem, derived from the general one, when a set of items need to 

be loaded (without any possibility of rejection, provided that the instance is 

feasible) and no objective function is assigned. Moreover, they can be adopted 

(Fasano [8]) to improve approximate solutions where intersections between items 

are admitted, ‘minimizing’ the overall overlap (actually this optimization target is 

attained only partially, through surrogate functions). An MINLP version, 

implemented for this specific case is summarized in Section 3. 

An alternative formulation of the model reported in Section 2 (currently being 

looked into) is presented in Section 4. The relevant MILP model extends, in the 

case of tetris-like items and convex domains, previous formulations available in 

the literature, based on the discretization of the domain and often referred to as 

space-indexed or grid-based-position paradigms (e.g. Beasley [1], 

Hadjiconstantinou and Christofides [10]). All models presented in Sections 2, 3 

and 4 are suitable for considering additional conditions, such as, for instance, 

specific loading requirements or balancing. Nevertheless, these aspects, albeit 

frequent in a number of real-world applications, are not considered in this chapter 

and the reader is referred to (Fasano [8]) for an extensive discussion (except the 

space-indexed formulation). Section 5 introduces the generation of (two-

dimensional) covering tetris-like items, providing outer approximation of 

polygons. The issue of simplifying the representation of complex objects in such a 

way is a very interesting optimization problem per se, especially considering its 

potential applications. The three-dimensional extension is not surveyed in this 

chapter (since it is quite straightforward). Section 6 proposes a novel heuristic 

approach, mainly based on the MILP model presented in Section 2.  

An extensive experimental analysis has recently been carried out, concerning 

the MILP model presented in Section 2. One  chapter of this book (Gliozzi et al. 

[9]) reports and examine the computational results available to date, in depth, 

highlighting the advantages of the overall methodology suggested. Since this 

chapter is restricted to the computational aspects (assuming the relevant model as 

known) the present work serves also the scope of providing a topical framework. 

Fasano [8] offers an extensive bibliography, both on packing problems in general 

and on the more specific subjects considered here.    

In order to state the general problem discussed in this chapter, the following 

definition is introduced. 

 

A tetris-like item is a set of rectangular parallelepipeds positioned orthogonally, 

with respect to an (orthogonal) reference frame. This frame is called ‘local’ and 

each parallelepiped is a ‘component’. 

 

Hereinafter, ‘tetris-like item’ will usually be simply referred to as ‘item’, if no 

ambiguity occurs; similarly, ‘rectangular parallelepipeds’ are referred to as 

‘parallelepipeds’. 



 

 

A set I of N items, together with a domain D, consisting of a (bounded) convex 

polyhedron, is considered (see Fig. 1). This is associated with a given orthogonal 

reference frame, indicated in the following as the main frame. The general 

problem is to place items into D, maximizing the loaded volume, considering the 

following positioning rules:   

 

 each local reference frame has to be positioned orthogonally, with respect 

to the main one  (orthogonality conditions); 

 for each item, each component has to be contained within D (domain 

conditions); 

 the components of different items cannot overlap (non-intersection 

conditions). 

 

 

 
 

Fig. 1 Tetris-like item packing into a convex domain  

2 Direct MILP Formulation 

An MILP model for the general problem stated in Section 1 is described next, 

expanding on some aspects not pointed out in its previous discussion (Fasano [8]). 

Recalling the basic concepts introduced there, the main orthogonal reference 

frame has origin O and axes w , B }3,2,1{ . It is assumed, without loss of 

generality, that the whole domain D is entirely contained inside its first octant. 

Similarly, each local reference frame, associated to every item, is chosen so that 

all item components lie within its first octant. Its origin coordinates, with respect 

to the main reference frame, are denoted by io . The set Ω of all (24 possible) 

orthogonal rotations, admissible for any local reference frame, with respect to the 

main one, is introduced.  



 

 

The set of components of a generic item i is denoted by iC . For each item i, the 

set hiE of all (8) vertices associated with each of its components h is defined. An 

extension of this set is obtained by adding to hiE the geometrical center of 

component h. This extended set is denoted by hiE


. For each item i and each 

possible orthogonal orientation  , the following binary (0-1) variables are 

introduced: 

}1,0{i , with 1i if item i  is chosen; 0i  otherwise; 

}1,0{i , with 1i if item i is chosen and it has the orthogonal  

orientation  ; 0i  otherwise. 

The orthogonality conditions can be expressed as follows: 
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Here 
hiw

(
hiE


 ) are the vertex coordinates of component h, with respect to 

the main reference frame, or its geometrical center ( 0 ), relative to item i; 

hiW  are the projections on the axes w  of the coordinate differences between 

points 
hiE


 and the origin of the local reference frame, corresponding to 

orientation  of item i. 

The domain conditions are expressed as follows. 
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(4)  

Here V is the set of vertices delimiting D, 
V are their coordinates (with respect 

to the main reference frame) and hi are non-negative variables. These 

conditions correspond to the well-known necessary and sufficient conditions for a 

point to belong to a convex domain.

 



 

 

The non-intersection conditions are represented by the constraints shown 

below, see (Fasano [8]) for more details:  
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Here the constants D are the sides (respectively parallel to the main reference 

frame axes) of the parallelepiped, of minimum dimensions, containing D; hiw 0

and kjw 0  are the center coordinates, with respect to the main reference frame, of 

components h and k of items i and j respectively; hiL and 
kjL are their side 

projections on the w axes, corresponding to the orientation  ; 

hkij and 

}1,0{

hkij .  

The constraints (7-1) and (7-2) have been introduced with the purpose of 

tightening the model (they are not taken account of in the following). It is worth 

noticing that, in some particular situations, the above non-intersection constraints 

((5-1), (5-2) and (6)) should be properly complemented, in order to avoid solutions 



 

 

that could hardly be considered as appropriate in practice (see Fasano [8]). 

Nonetheless, these aspects will be omitted here.      

The most straightforward formulation relevant to the objective function, to 

maximize the volume loaded, is the following:  

 

          
Ii

ii χVmax ,    (8)

      

where iV  represents the volume of item i.  

The formulation represented by expressions (1) to (8) (with possible variants 

regarding the constraints) is notoriously inefficient, even when restricted to single 

parallelepipeds only, and the situation tends to become even worse when tetris-

like items are involved.     

The following expression has thus been suggested (Fasano [8]) as a promising 

alternative to (8): 
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where hiL , A }3,2,1{ , are the sides of the generic component h of item i . 

It is assumed, without loss of generality, that hihihi LLL 321  . 

As easily seen, the functions (8) and (9) are equivalent for any integer-feasible 

solution. Indeed, the following implications hold: 
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Both derive from (1), the second, in particular, is true in virtue of the fact that, in 

any integer-feasible solution: 1/  iIi  , 1/!  i . 

Since objective functions (8) and (9) are equivalent, they give rise to the same 

optimal (or sub-optimal) integer solutions. Nonetheless, quite different behaviours 

occur when dealing with (partial or total) LP-relaxations of the MILP model (as 



 

 

usually utilized by the solvers), making the choice for the second one highly 

preferable. Some considerations follow, in support of this point […] 

4 Grid-based Position MILP Model 

The space-indexed approach (e.g. Beasley [1], Hadjiconstantinou and 

Christofides [10]) can be advantageously reconsidered to include operational 

scenarios that are quite frequent in practice. Relevant extensions, albeit still 

addressed to box-shaped items and domains, are aimed at allowing for additional 

conditions, such as stability and load bearing (cf. Junqueira et al. [11]). This 

section focuses instead on a grid-based-position MILP model, conceived as an 

alternative to the one discussed in Section 2, focusing on the orthogonal packing 

of tetris-like items, inside a convex region.    

The given domain (of Section 1) is discretized, so that it is associated with a set 

of internal points whose coordinates are supposed to be integer. The main 

reference frame, still defined as in Section 1, thus becomes a unit-cube grid, 

whose node coordinates are indicated as Dnnn ),,( 321
. Tetris-like items are 

grouped on a typology basis. The set of all types τ is denoted byT .  

The following assumptions relevant to each tetris-like item are made: 

 

 the local reference frame  has a pre-fixed orientation (orthogonal with 

respect to the main one);  

 the local reference frame origin can only be positioned on grid points; 

all component vertices have integer coordinates.     

 

Remark 4.1 It should be observed that the prefixed orientation assumption does 

not represent an actual limitation. Orthogonal rotations of the same object can, 

indeed, simply be considered by introducing a set of pre-oriented items (one for 

each possible orthogonal orientation).      

 

For each type τ , the sub-set of grid points in which the local frame origin can 

be positioned (so that the corresponding item is entirely inside the domain D) is 

introduced. It is denoted hereinafter by
D .       

The binary variables }1,0{
321
nnn  are then defined, with the following meaning:   

 

1
321
nnn  if one item of type τ  is positioned with its local reference origin 

in the grid node of coordinates ),,( 321 nnn ; 

0
321
nnn  otherwise. 

 



 

 

A possible modeling of the general problem (of Section 1) is shown next, 

considering the orthogonality, domain and non-intersection conditions.  

 

[…] 

 

As for the model discussed in Section 2, also in this case additional conditions, 

such as balancing, could quite easily be introduced. They are, however, not taken 

into account here. It should, moreover, be observed, that the grid-based position 

model, as formulated in this section is (at least) theoretically susceptible to 

extensions contemplating any irregularly-shaped item type. In such cases, the 

above mentioned pre-processing phase should be carried out appropriately.  

5 An MILP Approach for the Tetris-like Approximation of 

Irregular Items 

6 Heuristics 

An overall modeling-based heuristic methodology has been developed to 

tackle real-world scenarios, generally consisting of large-scale instances, 

characterized by tricky geometries dealt with by tetris-like approximations, in the 

presence of additional conditions such as balancing. In (Fasano [8]) a range of 

models and procedures were discussed in a general framework, providing the basis 

to build alternative solution strategies. A novel and promising approach, 

representing the objective of ongoing research, is, instead, discussed here (see 

Gliozzi et al. [9] for experimental results). Prior to proceeding with the topical 

discussion, the basic concept of abstract configuration (Fasano [8]) is recalled, 

providing the following two definitions. 

  

Constraints of the types 
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corresponding to either 1

hkij  or 1

hkij  in (5-1) and (5-2) , respectively, are 

called relative position constraints.      

  



 

 

Given a set of N items and the corresponding 
CN

 
pairs of components 

belonging to different items, an abstract configuration consists of 
CN relative 

position constraints, exactly one for each pair, giving rise to a feasible solution in 

any unbounded domain. 

 

A method to extract an abstract configuration from any approximate solution, 

with intersections between items, has been shown (Fasano [8]): this subject is not 

discussed here, referring to the cited work. As previously, the whole process 

discussed in this section is essentially based on the following modules: 

Initialization, Packing, Item-exchange and Hole-filling. In the versions 

investigated here, they are based on the MILP model presented in Section 2. In the 

following, the heuristic overall logic is outlined first and then the basic modules 

are considered.   

 

6.1 Overall Logic 

As in the heuristics looked into in the previous work, the search algorithm 

consists of a recursive procedure that, at each step, activates one of the above 

mentioned modules. An abstract configuration is generated at each step 

tentatively improving the previous one; the best-so-far solution is retrieved when 

the current step does not meet its objective. The search process is terminated when 

a satisfactory, albeit non-optimal proven solution (in terms of loaded volume) is 

found. Since for real-world instances the computational task is quite demanding, 

at each step, only sub-optimal solutions are sought, interrupting the optimization 

on the basis of suitable stopping rules.   

 

[…] 

6.2 Use of the General MILP Model 

The Initialization module, in the version considered here, focuses on the use 

of a specific LP-relaxation of the general MILP model of Section 2. As the 

relevant sub-problem is expressed in terms of feasibility, all variables 
i ( Ii ) 

are set to 1. The
hil variables, introduced in Section 2, are reconsidered instead. 

These are not defined any longer as 





  ihihi Ll , but simply as continuous 

variables subject to the following bounds: 

 

          iChIiB  ,,
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Here, as previously specified, hiL1  and hiL3  
represent the sides associated with h, 

of minimum and maximum length respectively. The non-intersection conditions 

(5-1) and (5-2) and the objective function (9) are rewritten as follows: 
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[…] 

7 Conclusion 

Non-standard packing problems that involve non-box-shaped items and 

domains, in the presence of additional constraints, are usually very tough to solve. 

This chapter, extending the author’s previous work, discusses the issue of placing 

tetris-like items orthogonally into a convex domain. A Global Optimization point 

of view, focused on MILP/MINLP formulations, is looked into for the purpose of 

providing models that are suitable for treating additional loading restriction rules 

and global conditions such as balancing.  

An efficient heuristic procedure, aimed at finding satisfactory solutions to real-

world instances, is proposed. This approach will be the objective of future 

investigation, focused on the MILP/MINLP search strategies. 

The issue of covering irregularly-shaped objects with tetris-like items 

consisting of a given number of components of minimum total volume, itself, 

leads to a non-trivial optimization problem. Insights on its two-dimensional 

version, relevant to the optimal outer approximation of polygons, are provided. A 

further contribution appearing in this book is dedicated to the computational 

aspects relevant to the MILP model discussed in this chapter.   
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