
Noname manuscript No.
(will be inserted by the editor)

Accelerated first-order methods for large-scale convex minimization

Masoud Ahookhosh

the date of receipt and acceptance should be inserted later

Abstract This paper discusses several (sub)gradient methods attaining the optimal complexity for
smooth problems with Lipschitz continuous gradients, nonsmooth problems with bounded variation of
subgradients, weakly smooth problems with Hölder continuous gradients. The proposed schemes are op-
timal for smooth strongly convex problems with Lipschitz continuous gradients and optimal up to a
logarithmic factor for nonsmooth problems with bounded variation of subgradients. More specifically,
we propose two estimation sequences of the objective and give two iterative schemes for each of them.
In both cases, the first scheme requires the smoothness parameter and the Hölder constant, while the
second scheme is parameter-free (except for the strong convexity parameter which we set zero if it is
not available) at the price of applying a nonmonotone backtracking line search. A complexity analysis
for all the proposed schemes is given. Numerical results for some applications in sparse optimization and
machine learning are reported, which confirm the theoretical foundations.

Keywords Structured convex optimization · Strong convexity · Nonsmooth optimization · First-order
black-box oracle · Optimal complexity · High-dimensional data

Mathematics Subject Classification (2000) 90C25 · 90C60 · 49M37 · 65K05

1 Introduction

Let V be a finite-dimensional linear vector space with the dual space V ∗ as the space of all linear function
on V . We assume f : V → R := R ∪ {+∞} is a proper, µf -strongly convex (µf > 0 for strongly convex
case and µf = 0 for convex case), and lower semicontinuous function satisfying

‖∇f(x)−∇f(y)‖∗ ≤ Lν‖x− y‖ν ∀ x, y ∈ V, (1)

where ∇f(x) denotes the gradient of f at x for ν ∈ (0, 1] or any subgradient of f at x (∇f(x) ∈ ∂f(x))
for v = 0. Let the function ψ : V → R be simple, proper, µp-strongly convex (µp ≥ 0), and lower
semicontinuous function. We consider the structured convex minimization problem

min h(x) := f(x) + ψ(x)
s.t. x ∈ C, (2)

where C is a simple, nonempty, closed, and convex set. By (1), we have f ∈ C1,νµf ,Lν (V), i.e., f can be

smooth with Lipschitz continuous gradients (ν = 1), weakly smooth problems with Hölder continuous
gradients (ν ∈]0, 1[), or nonsmooth with bounded variation of subgradients (ν = 0). Hence the objective
h is µ-strongly convex with µ := µf + µp ≥ 0. We assume that the first-order black-box oracle of the
objective h is available.

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
E-mail: masoud.ahookhosh@univie.ac.at

2 Masoud Ahookhosh

1.1 Motivation & history

Over the past few decades, due to the dramatic increase in the size of data for many applications, first-
order methods have been received much attention thanks to their simple structures and low memory
requirements. The efficiency of first-order methods can be poor (a large number of function values and
subgradients is needed) for solving the general convex problems if the structure of the problem is not
available. As a result, to develop practically appealing schemes, it is necessary to make an additional
restriction on problem classes. In particular, developing efficient methods for solving large-scale convex
optimization problems is possible if the underlying objective has a suitable structure and the domain
is simple enough. Convexity and level of smoothness are two important factors playing key roles in
construction of efficient schemes for such structured optimization problems.

Let x∗ be an optimizer of (2) and xk be an approximate solution given by a first-order method. We
call xk an ε-solution of (2) if h(xk) − h(x∗) ≤ ε, for a prescribed accuracy parameter ε > 0. In 1983,
Nemirovski & Yudin in [32] derived optimal worst-case complexities for first-order methods to achieve
an ε-solution for several classes of convex problems (see Table 1). If a first-order scheme attains the
worst-case complexity of a class of problems, it is called optimal. A special feature of these methods is
that the corresponding complexity does not depend explicitly on the problem dimension. From practical
point of view, studying the effect of an uniform boundedness of the complexity is very attractive and such
methods are highly recommended when the prescribed accuracy ε is not too small, whereas the dimension
of problem is considerably large.

Table 1: List of the best known complexities of first-order methods for several classes of problems with
respect to levels of smoothness and convexity (cf. [31, 32, 33])

Problem’s class Convex problems Strongly convex problems

Smooth problems (ν = 1) O(ε−1/2) O(ln(1/ε))

Weakly smooth problems (ν ∈]0, 1[) O(ε−2/(1+3ν)) ≤ O(ε−(1−ν)/(1+3ν)) ln
(
1/ε(3+ν)/(1+3ν)

)
Nonsmooth problems (ν = 0) O(ε−2) O(1/ε)

In [32], it was proved that subgradient, subgradient projection, and mirror descent methods possess
the optimal complexity O(ε−2) for Lipschitz continuous nonsmooth problems, where the mirror decent
method is a generalization of the subgradient projection method, cf. [8]. In 1983, the pioneering optimal
method by Nesterov [34] was introduced for smooth problems with Lipschitz continuous gradients. He
later in [33] proposed some more gradient methods for this class of problems. Nesterov in [37] proposed
a gradient-type method for minimizing the composite problem (2) with the complexity O(ε−1/2), where
f has Lipschitz continuous gradients and ψ is a simple convex function. Since 1983 many researchers
have developed the idea of optimal schemes, see, e.g., Auslander & Teboulle [5], Baes [6], Baes
& Bürgisser [7], Beck & Teboulle [9], Chen et al. [13, 14], Gonzaga et al. [23, 24], Juditsky &
Nesterov [25], Lan [28, 29], Lan et al. [30], Nesterov [33], Neumaier [39] and Tseng [44]. Com-
putational experiments for problems of the form (2) have shown that Nesterov-type optimal first-order
methods are substantially superior to the gradient descent and subgradient methods, cf. Ahookhosh
[1] and Becker et al. [10]. Nesterov also in [35, 36] proposed some smoothing methods for a class of
structured nonsmooth problems attaining the complexity O(ε−1/2).

In 1985, the first optimal method for weakly smooth objectives with Hölder continuous gradients
was given by Nemirovski & Nesterov [31]; however, to implement this scheme, one needs to know
about ν, Lν , an estimate of the distance of starting point to the optimizer, and the total number of
iterations, which makes the algorithm to some extent impractical. Lan [29] proposed an accelerated
bundle-level method attaining the optimal complexity for all the convex classes considered. This scheme
does not need to know about the global parameters such as Lipschitz or Hölder constants and the level
of smoothness parameter ν; on the other hand, as the scheme proceeds, the associated auxiliary problem
becomes more difficult to solve, i.e., even the limited memory version of this scheme involves solving
a computationally costly auxiliary problems. Devolder et al. [15, 16] also proposed some first-order
methods for minimization of objectives with Hölder continuous gradients in inexact oracle. The proposed
fast gradient method attains the optimal complexities for convex problems; however, for implementation
it needs to know about ν, Lν , an estimate of the distance of starting point to the optimizer, and the
total number of iterations. Recently, Nesterov [38] proposed a so-called universal gradient method for
convex problem classes attaining the optimal complexities and requiring no global parameters at the

Accelerated first-order methods for large-scale convex minimization 3

price of applying a backtracking line search. More recently, Nesterov proposed a conditional gradient
method involving a simple subproblem, which possesses the complexity O(ε−1/2ν). Moreover, Ghadimi
[19] and Ghadimi et al. [20] developed some first-order methods for unconstrained nonconvex problems
of the form (2) where f is an arbitrary nonconvex function.

1.2 Contribution

This paper describes four accelerated (sub)gradient algorithms (ASGA) attaining optimal complexities
for solving several classes of convex optimization problems with high-dimensional data (see Table 1).

We firstly construct an estimation sequence using available local or global information of f and then
give two iterative schemes for solving (2). The first scheme (ASGA-1) requires the level of smoothness ν
and the Hölder constant Lν . Afterwards, we develop a parameter-free variant of this scheme (ASGA-2)
that is not requiring ν and Lν at the price of applying a backtracking line search. Apart from an initial
point x0 and the strong convexity parameter µ (µ = 0 if it is not available), ASGA-2 requires no more
parameters. We here emphasize that parameter-free methods are useful for black-box optimization when
no information about ν and Lν is available.

We secondly generalize the estimation sequence of Nesterov [38], by adding a quadratic term including
the strong convexity information of h and develop two (sub)gradient methods. The first one (ASGA-3)
needs the smoothness parameters ν and Lν ; on the other hand, the second one (ASGA-4) is parameter-free
at the price of carrying out a backtracking line search.

The estimation sequence used in ASGA-1 and ASGA-2 shares some similarities with the estimation
sequence used in ASGA-3 and ASGA-4; however, the iteration sequences used in construction of them
are different. Whereas ASGA-1 requires a single solution of an auxiliary problem, ASGA-3 needs to solve
two auxiliary problems. ASGA-2 requires at least a single solution of an auxiliary problem; in contrast,
ASGA-4 needs to solve at least two auxiliary problems. As apposed to ASGA-1 and ASGA-3, the schemes
NESUN, ASGA-2, and ASGA-4 are parameter-free (except for strong convexity parameter µ which we
set µ = 0 if it is not available) by applying a backtracking line search. NESUN treats strongly convex
problems by the same way as convex ones; on the other hand, ASGA-1, ASGA-2, ASGA-3, and ASGA-4
possess a much better complexity for strongly convex problems. It is worth mentioning that, for µ = 0,
ASGA-4 almost reduces to NESUN except for some parameters.

Apart from some constants, ASGA-1, ASGA-2, ASGA-3, and ASGA-4 possess the same complexity
for finding an ε-solution of the problem (2), i.e.,

O
(
µ−

1+ν
1+3ν L

2
1+3ν
ν ε−

1−ν
1+3ν ln(ε−

2
1+ν)

)
,

for µ > 0, and

O
(
ε−

2
1+3ν

)
,

for µ = 0. Therefore, ASGA-1, ASGA-2, ASGA-3, and ASGA-4 are optimal for smooth, weakly smooth,
and nonsmooth convex objectives. On the other hand, they are optimal for smooth strongly convex
problems and optimal up to a logarithmic factor for nonsmooth strongly convex objectives. For weakly
smooth strongly convex problems, they attain a complexity better than the known complexity for weakly
smooth convex problems.

We finally study the solution of auxiliary problems appearing in ASGA-1, ASGA-2, ASGA-3, and
ASGA-4. The considered auxiliary problems are strongly convex; however, finding their unique solutions
efficiently is highly related to the structure involved in ψ and C. It is shown that these auxiliary problems
can be solved either in a closed form or by a simple iterative scheme for several functions ψ and domain
C appearing in applications. Some computational experiments show that the performance of ASGA-2,
ASGA-4, and NESUN are sensitive to large regularization parameters and small ε > 0 (because of the
associated line searches); whereas, ASGA-1 and ASGA-3 are less sensitive. In addition, there are many
applications with available smoothness parameters ν and Lν motivating the quest for designing ASGA-1
and ASGA-3. It is worth noting that the proposed schemes are able to handle sum of nonsmooth functions,
where they behave much better than the traditional subgradient methods in spite of attaining the same
complexity (see Section 5.3). Some encouraging numerical results are reported confirming the achieved
theoretical foundations.

The remainder of the paper is organized as follows. In the next section we give two single-subproblem
accelerated (sub)gradient schemes with their complexity analysis. In Section 3 we generalize the estimation

4 Masoud Ahookhosh

sequence of Nesterov [38] and propose two double-subproblem accelerated (sub)gradient schemes and the
related complexity analysis. In Section 4 we discuss the solution of the auxiliary problems appearing in
the proposed methods. In Section 5 we reports some numerical experiments and comparisons showing
the performance of the proposed methods. Finally, some conclusions are delivered in Section 6.

1.3 Preliminaries & notation

Let the primal space V be endowed with a norm ‖ · ‖, and let the associated dual norm be defined by

‖s‖∗ = max
x∈V
{〈s, x〉 | ‖x‖ ≤ 1},

where 〈s, x〉 denotes the value of the linear function s ∈ V ∗ at x ∈ V . If V = Rn, then, for 1 ≤ p ≤ ∞,

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

.

For a function f̃ : V → R = R∪{±∞}, dom f̃ = {x ∈ V | f̃(x) < +∞} denotes its effective domain, and

f̃ is called proper if dom f̃ 6= ∅ and f̃(x) > −∞ for all x ∈ V . Let C be a subset of V . In particular, if C
is a box, we denote it by x = [x, x], where in which x and x are the vectors of lower and upper bounds on

the components of x, respectively. The vector ∇f̃(x) ∈ V ∗ is called a subgradient of f̃ at x if f̃(x) ∈ R
and

f̃(y) ≥ f̃(x) + 〈∇f̃(x), y − x〉 ∀y ∈ V.
The set of all subgradients is called the subdifferential of f̃ at x, which is denoted by ∂f̃(x).

If f̃ is nonsmooth and convex, then Fermat-type optimality condition for the nonsmooth convex
optimization problem

min f̃(x)
s.t. x ∈ C

is given by
0 ∈ ∂f̃(x) +NC(x), (3)

where NC(x) is the normal cone of C at x, i.e.,

NC(x) := {p ∈ V | 〈p, x− z〉 ≥ 0 ∀z ∈ C}. (4)

For C ⊆ V and y ∈ V , the orthogonal projection is given by

PC(y) := argmin
x∈C

1

2
‖x− y‖2. (5)

The proximal-like operator proxC
λf̃

(y) is the unique optimizer of the optimization problem

proxC
λf̃

(y) := argmin
x∈C

1

2
‖x− y‖22 + λf̃(x), (6)

where λ > 0. From (3), the first-order optimality condition for the problem (6) is given by

0 ∈ x− y + λ∂f̃(x) +NC(x). (7)

If C = V , then (7) is simplified to

0 ∈ x− y + λ∂f̃(x), (8)

giving the classical proximity operator.
Let ω : V → R be a differentiable 1-strongly convex function, i.e.,

ω(y) ≥ ω(x) + 〈∇ω(x), y − x〉+
1

2
‖y − x‖2. (9)

It is assumed that ω(x) attains its unique minimizer at x0 and ω(x0) = 0. The function ω satisfied these
conditions is called a prox-function. The corresponding Bregman distance is defined by

Bω(x, y) := ω(x)− ω(y)− 〈∇ω(y), x− y〉, (10)

where, from (9), it is straightforward to show

Bω(x, y) ≥ 1

2
‖x− y‖2. (11)

Accelerated first-order methods for large-scale convex minimization 5

2 Single-subproblem accelerated (sub)gradient methods

In this section we first give two schemes for solving structured problems of the form (2) attaining the op-
timal complexity for smooth, nonsmooth, weakly smooth, and smooth strongly problems. These schemes
are optimal up to a logarithmic factor for nonsmooth strongly convex objectives. We then investigate the
complexity analysis of these schemes.

To guarantee the existence of a solution of a problem of the form (2), we assume:

(H1) The upper level set Nh(x0) := {x ∈ C | h(x) ≤ h(x0)} is bounded, for a starting point x0 ∈ C.

Since h is convex and Nh(x0) is closed, (H1) implies that Nh(x0) is convex and compact. It therefore
follows from the continuity and properness of the objective function h that it attains its global minimizer
on Nh(x0). This guarantees that there is at least one minimizer x∗.

Motivated by Nesterov [38], we define

Lν := sup
x,y∈C, x6=y

‖∇f(x)−∇f(y)‖
‖x− y‖ν

, (12)

for the level of smoothness parameter ν ∈ [0, 1]. If Lν < +∞, then (12) implies that (1) holds resulting
to

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
Lν

1 + ν
‖x− y‖1+ν ∀x, y ∈ C. (13)

The following proposition is crucial for constructing our accelerated (sub)gradient schemes, where for

the sake of simplicity for ν = 1, we suppose 00 = 1 in which L̃ = Lν is a Lipschitz constant.

Proposition 1 [38, Lemma 2] Let function f satisfies the condition (1). Then, for δ > 0 and

L̂ ≥
(

1− ν
δ(1 + ν)

) 1−ν
1+ν

L
2

1+ν
ν := L̃, (14)

we have

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
1

2
L̂‖x− y‖2 +

δ

2
x, y ∈ C. (15)

The idea is to generate a sequence of estimation functions {φk(x)}k≥0 of h in such a way that, at each
iteration k ≥ 0, the inequality

Sk

(
h(xk)− ε

2

)
≤ φ∗k := min

x∈C
φk(x) (16)

holds for xk ∈ V , where Sk is a scaling parameter. We consider the sequence of scaling parameters
{Sk}k≥0, which is generated by

Sk := Sk−1 + sk, (17)

where S0 = 0 and sk > 0. We consider the estimation sequence

φk+1(x) :=

{
Bω(x, x0) if k = 0,

φk(x) + sk+1 [qk+1(x, yk) + ψ(x)] if k ∈ N,

qk+1(x, yk) := f(yk) + 〈∇f(yk), x− yk〉+
µf
2
‖x− yk‖2.

(18)

Let us define {zk}k≥0 as the sequence of minimizers of the estimation sequence {φk}k≥0, i.e.,

zk+1 := argmin
x∈C

φk+1(x). (19)

The next result is crucial for the complexity analysis and for providing a stopping criterion for schemes
will be presented in Section 2.1.

6 Masoud Ahookhosh

Proposition 2 Let the sequence {φk}k≥0 be generated by (18). Then

φk(x) ≤ Sk h(x) +Bω(x, x0) ∀k ≥ 0. (20)

If in addition (16) holds, then

h(xk)− h(x∗) ≤ Bω(x∗, x0)

Sk
+
ε

2
. (21)

Proof The proof is given by induction on k. Since S0 = 0 and φ0(x) = Bω(x, x0), the result is valid for
k = 0. We assume it is true for k and prove it for k + 1. By this assumption and (18), we get

φk+1(x) = φk(x) + sk+1

(
f(yk) + 〈∇f(yk), x− yk〉+

µf
2
‖x− yk‖2 + ψ(x)

)
≤ Skh(x) +Bω(x, x0) + sk+1

(
f(yk) + 〈∇f(yk), x− yk〉+

µf
2
‖x− yk‖2 + ψ(x)

)
≤ Skh(x) +Bω(x, x0) + sk+1h(x) = Sk+1h(x) +Bω(x, x0).

From (16) and (20), we obtain

h(xk) ≤ ε

2
+

1

Sk
φ∗k ≤

ε

2
+

1

Sk
min
x∈C

(Sk h(x) +Bω(x, x0)) =
ε

2
+ h(x∗) +

Bω(x∗, x0)

Sk
,

completing the proof. ut

2.1 Novel single-subproblem algorithms

We here give two new algorithms using the estimation sequence (18) and investigate the related conver-
gence analysis.

The following result shows that how (18) can be used to construct the sequence {xk}k≥0 guaranteeing
the condition (16).

Theorem. 3 Let f satisfies (1) with Lν < +∞ and αk := (sk+1/Sk+1) ∈]0, 1] for sk+1 > 0. Let also
the sequence {zk}k≥0 be generated by (19),

yk := (1− αk)xk + αkzk, (22)

xk+1 := (1− αk)xk + αkzk+1, (23)

and (15) holds for x = xk+1, y = yk, δ := εαk with ε > 0. We set

L̂k+1 :=

(
1− ν

εαk(1 + ν)

) 1−ν
1+ν

L
2

1+ν
ν . (24)

Then we have
φ∗k+1 ≥ Sk+1

(
h(xk+1)− ε

2

)
, (25)

if s2k+1L̂k+1 = (1 + Skµ)Sk+1 with µ = µf + µp.

Proof The proof is given by induction. Since S0 = 0, the result for k = 0 is evident. Assume that (25)
holds for some k, and we show that is valid for k + 1.

Let us expand φk, i.e.,

φk(x) = Bω(x, x0) +

k∑
i=1

siqi(x, yi−1) + Skψ(x). (26)

Since ψ is µp-strongly convex, (26) implies that φk is (1+Skµ)-strongly convex. This and (18) at zk yield

φk(x) ≥ φ∗k +
1 + Skµ

2
‖x− zk‖2 ∀x ∈ C. (27)

From the induction assumption and the convexity of f , we obtain

φ∗k ≥ Sk
(
h(xk)− ε

2

)
≥ Sk

(
f(yk) + 〈∇f(yk), xk − yk〉+ ψ(xk)− ε

2

)
. (28)

Accelerated first-order methods for large-scale convex minimization 7

The definition of yk given in (22) leads to

Sk(xk − yk) + sk+1(zk+1 − yk) = Skxk − Sk+1yk + sk+1zk+1

= Skxk − Sk+1((1− αk)xk + αkzk) + sk+1zk+1 = sk+1(zk+1 − zk).
(29)

By this, (18), (27), (28), and (29), one can write

φ∗k+1 ≥ φk(zk+1) + sk+1 (f(yk) + 〈∇f(yk), zk+1 − yk〉+ ψ(zk+1))

≥ φ∗k +
1 + Skµ

2
‖zk+1 − zk‖2 + sk+1 (f(yk) + 〈∇f(yk), zk+1 − yk〉+ ψ(zk+1))

≥ Sk
(
f(yk) + 〈∇f(yk), xk − yk〉+ ψ(xk)− ε

2

)
+

1 + Skµ

2
‖zk+1 − zk‖2

+ sk+1 [f(yk) + 〈∇f(yk), zk+1 − yk〉+ ψ(zk+1)]

= Sk+1f(yk) + Skψ(xk) + sk+1ψ(zk+1)− Sk
ε

2
+

1 + Skµ

2
‖zk+1 − zk‖2

+ 〈∇f(yk), Sk(xk − yk) + sk+1(zk+1 − yk)〉

= Sk+1f(yk) + Skψ(xk) + sk+1ψ(zk+1)− Sk
ε

2
+

1 + Skµ

2
‖zk+1 − zk‖2

+ sk+1〈∇f(yk), zk+1 − zk〉.

(30)

By the convexity of ψ and (23), we get

Skψ(xk) + sk+1ψ(zk+1) = Sk+1(αkψ(zk+1) + (1− αk)ψ(xk)) ≥ Sk+1ψ(xk+1). (31)

The definitions of yk and xk+1 yield

xk+1 − yk = (1− αk)xk + αkzk+1 − (1− αk)xk − αkzk = αk(zk+1 − zk).

From this, (30), and (31), we obtain

φ∗k+1 ≥ Sk+1f(yk) + Sk+1ψ(xk+1) + Sk+1〈∇f(yk), xk+1 − yk〉 − Sk
ε

2
+

1 + Skµ

2
‖zk+1 − zk‖2. (32)

By (15) for δ = αkε, we get

f(yk) + 〈∇f(yk), xk+1 − yk〉 ≥ f(xk+1)− L̂k+1

2
‖xk+1 − yk‖2 −

αkε

2
.

It follows from this, (11), and (32) that

φ∗k+1 ≥ Sk+1 (f(yk) + 〈∇f(yk), xk+1 − yk〉) + Sk+1ψ(xk+1)− Sk
ε

2
+

1 + Skµ

2
‖zk+1 − zk‖2

≥ Sk+1

(
f(xk+1)− L̂k+1

2
‖xk+1 − yk‖2 −

αkε

2

)
+ Sk+1ψ(xk+1)− Sk

ε

2
+

1 + Skµ

2α2
k

‖xk+1 − yk‖2

= Sk+1

(
h(xk+1)− ε

2

)
+

1

2

Sk+1

s2k+1

(
(1 + Skµ)Sk+1 − s2k+1L̂k+1

)
‖xk+1 − yk‖2.

Therefore, s2k+1L̂k+1 = (1 + Skµ)Sk+1 implies that (25) holds. ut

Let us assume that L̂k+1 is given. Then sk+1 is given by the positive solution of the equation

s2k+1L̂k+1 = (1 + Skµ)Sk+1, i.e.,

sk+1 =
1 + Skµ+ ((1 + Skµ)2 + 4L̂k+1Sk(1 + Skµ))1/2

2L̂k+1

> 0. (33)

Indeed, Theorem 3 leads to a simple scheme for solving problems of the form (2). We summarize this
scheme in the following.

8 Masoud Ahookhosh

Algorithm 1: ASGA-1 (single-subproblem ASGA)

Input: initial point x0 ∈ C, ν, Lν , µ ≥ 0; ε > 0;
Output: xk, hk;

1 begin
2 while stopping criteria do not hold do

3 compute L̂k+1; compute sk+1 by (33); Sk+1 = Sk + sk+1; αk = sk+1/Sk+1;
4 yk = αkzk + (1− αk)xk; compute zk+1 from (19); xk+1 = (1− αk)xk + αkzk+1; k = k + 1;

5 end
6 hk = h(xk);

7 end

ASGA-1 has a simple structure and each iteration needs only a solution of the auxiliary problem (19)
(Line 4), i.e., only one call of the oracle is needed per each iteration. Let us denote by N(k) the total
number of calls of the first-order oracle after k iterations. Therefore, we have that N(k) = k for ASGA-1.

For implementation of ASGA-1 one needs to know about L̂k+1 in each step. The next result shows

how to compute L̂k+1 if the parameters ν and Lν are available.

Proposition 4 Let {yk}k≥0, {zk}k≥0, and {xk}k≥0 be generated by ASGA-1 and s2k+1L̂k+1 = (1 +

Skµ)Sk+1. Then L̂k+1 can be computed by solving the one-dimensional nonlinear equation

L̂k+1 −
(

1 + Skµ+ ((1 + Skµ)2 + 4L̂k+1Sk(1 + Skµ))1/2
) 1−ν

1+ν

L̃k+1 = 0, (34)

where

L̃k+1 :=

(
1− ν

2(1 + Skµ)ε(1 + ν)

) 1−ν
1+ν

L
2

1+ν
ν . (35)

Proof The solution of s2k+1L̂k+1 = (1+Skµ)Sk+1 is given by (33). The definition of αk and dividing both

sides of s2k+1L̂k+1 = (1 + Skµ)Sk+1 by Sk+1 yield αk = (1 + Skµ)/sk+1L̂k+1. Substituting (33) into this
equation gives

αk = 2(1 + Skµ)/
(

1 + Skµ+ ((1 + Skµ)2 + 4L̂k+1Sk(1 + Skµ))1/2
)
.

By substituting this into (24) with δ = αkε, we get

L̂k+1 =
(

1 + Skµ+ ((1 + Skµ)2 + 4L̂k+1Sk(1 + Skµ))1/2
) 1−ν

1+ν

(
1− ν

2(1 + Skµ)ε(1 + ν)

) 1−ν
1+ν

L
2

1+ν
ν ,

giving (34) where L̃k+1 is given by (35). It remains to show that the equation (34) has a solution. Let us
define ζ : R→ R by

ζ(θ) := θ −
(

1 + Skµ+ ((1 + Skµ)2 + 4θSk(1 + Skµ))1/2
) 1−ν

1+ν

L̃k+1.

Since L̃k+1 > 0, we get ζ(0) < 0. We also have

lim
θ→∞

θ/
(

1 + Skµ+ ((1 + Skµ)2 + 4θSk(1 + Skµ))1/2
) 1−ν

1+ν

L̃k+1 = +∞,

implying there exists θ1 > 0 such that for θ > θ1 we have

θ >
(

1 + Skµ+ ((1 + Skµ)2 + 4θSk(1 + Skµ))1/2
) 1−ν

1+ν

L̃k+1.

This implies that for θ > θ1 we have ζ(θ) > 0. Therefore, the equation (34) has a solution. ut

Accelerated first-order methods for large-scale convex minimization 9

In view of Proposition 4, if ν and Lν are available, one can compute L̂k+1 by solving the one-
dimensional nonlinear equation (34). If one solves the equation ζ(θ) = 0 approximately, and an initial
interval [a, b] is available such that ϕ(a)ϕ(b) < 0, then a solution can be computed to ε-accuracy using
the bisection scheme in O(log2((b − a)/ε)) iterations, see, e.g., [40]. However, it is preferable to use a
more sophisticated zero finder like the secant bisection scheme (Algorithm 5.2.6, [40]). For solving this
nonlinear equation, one can also take advantage of MATLAB fzero function combining the bisection
scheme, the inverse quadratic interpolation, and the secant method. On the other hand, if ν and Lν
are not available, ASGA-1 cannot be used directly, which is the case in many black-box optimization
problems.

The subsequent result gives the complexity of ASGA-1 for attaining an ε-solution of (2).

Theorem. 5 Let {xk}k≥0 be generated by ASGA-1. Then

(i) If µ > 0, we have

h(xk)− h(x∗) ≤ L̂1

(
1 +

µ
1+ν
1+3ν ε

1−ν
1+3ν

2L
2

1+3ν
ν

)− 1+3ν
1+ν (k−1)

Bω(x∗, x0) +
ε

2
, (36)

where

L̂1 =

(
1− ν
ε(1 + ν)

) 1−ν
1+ν

L
2

1+ν
ν . (37)

(ii) If µ = 0, we have

h(xk)− h(x∗) ≤

2
1+3ν
1+ν L

2
1+ν
ν

ε
1−ν
1+ν k

1+3ν
1+ν

Bω(x∗, x0) +
ε

2
. (38)

Proof (i) By (24), s2kL̂k = (1 + Sk−1µ)Sk, αk−1 = sk/Sk, we get

s2k
Sk

=
1 + Sk−1µ

L̂k
≥ (1 + Sk−1µ)(εαk−1)

1−ν
1+ν L

− 2
1+ν

ν ,

leading to

s2k ≥ (1 + Sk−1µ)L
− 2

1+ν
ν (εsk)

1−ν
1+ν S

2ν
1+ν

k .

This implies

skS
− 2ν

1+3ν

k ≥ (1 + Sk−1µ)
1+ν
1+3ν ε

1−ν
1+3ν L

− 2
1+3ν

ν . (39)

It follows from Sk+1 ≥ Sk and (39) that

S
1+ν
1+3ν

k − S
1+ν
1+3ν

k−1 ≥ (Sk − Sk−1)/

(
S
1− 1+ν

1+3ν

k − S1− 1+ν
1+3ν

k−1

)
≥ 1

2
skS

− 2ν
1+3ν

k

≥ 2−1(1 + Sk−1µ)
1+ν
1+3ν ε

1−ν
1+3ν L

− 2
1+3ν

ν ≥ 2−1(Sk−1µ)
1+ν
1+3ν ε

1−ν
1+3ν L

− 2
1+3ν

ν .

By S0 = 0 and (34), we have S1 = L̂−11 , where L0 is given by (37). Hence we have

S
1+ν
1+3ν

k ≥
(

1 + 2−1µ
1+ν
1+3ν ε

1−ν
1+3ν L

− 2
1+3ν

ν

)
S

1+ν
1+3ν

k−1 ≥ · · · ≥
(

1 + 2−1µ
1+ν
1+3ν ε

1−ν
1+3ν L

− 2
1+3ν

ν

)k−1
S

1+ν
1+3ν

1 ,

leading to

Sk ≥ L̂−11

(
1 + 2−1µ

1+ν
1+3ν ε

1−ν
1+3ν L

− 2
1+3ν

ν

) 1+3ν
1+ν (k−1)

.

This inequality and (21) give (36).
(ii) Substituting µ = 0 into (39) yields

skS
− 2ν

1+3ν

k ≥ ε
1−ν
1+3ν L

− 2
1+3ν

ν .

10 Masoud Ahookhosh

It follows from Sk ≥ Sk−1 and (39) that

S
1+ν
1+3ν

k − S
1+ν
1+3ν

k−1 ≥ (Sk − Sk−1)/

(
S
1− 1+ν

1+3ν

k − S1− 1+ν
1+3ν

k−1

)
≥ 1

2
skS

− 2ν
1+3ν

k ≥ 2−1ε
1−ν
1+3ν L

− 2
1+3ν

ν .

Let us sum up this inequality for i = 0, . . . , k, giving

S
1+ν
1+3ν

k ≥ k2−1ε
1−ν
1+3ν L

− 2
1+3ν

ν ,

leading to

Sk ≥ k
1+3ν
1+ν ε

1−ν
1+ν 2−

1+3ν
1+ν L

− 2
1+ν

ν .

This inequality and (21) give (38). ut

The next result gives the complexity of ASGA-1 for giving an ε-solution of the problem (2).

Corollary. 6 Let {xk}k≥0 be generated by ASGA-1. Then

(i) If µ > 0, then an ε-solution of the problem (2) is given by the complexity

O
(
µ−

1+ν
1+3ν L

2
1+3ν
ν ε−

1−ν
1+3ν ln(ε−

2
1+ν)

)
. (40)

(ii) If µ = 0, then an ε-solution of the problem (2) is given by the complexity

O
(
ε−

2
1+3ν

)
. (41)

Proof From the right hand side of (36), we obtain

2

(
1− ν
1 + ν

) 1−ν
1+ν

L
2

1+ν
ν

(
1 +

µ
1+ν
1+3ν ε

1−ν
1+3ν

2L
2

1+3ν
ν

)− 1+3ν
1+ν (k−1)

Bω(x∗, x0) ≤ ε
2

1+ν ,

leading to

ln(A1)− ln(ε
2

1+ν) ≤ 1 + 3ν

1 + ν
(k−1) ln

(
1 + 2−1µ

1+ν
1+3ν ε

1−ν
1+3ν L

− 2
1+3ν

ν

)
≤ 1 + 3ν

2(1 + ν)
µ

1+ν
1+3ν ε

1−ν
1+3ν L

− 2
1+3ν

ν (k−1),

where

A1 := 2

(
1− ν
1 + ν

) 1−ν
1+ν

L
2

1+ν
ν Bω(x∗, x0).

This yields

k ≥ 2(1 + ν)

1 + 3ν
µ−

1+ν
1+3ν ε−

1−ν
1+3ν L

2
1+3ν
ν

(
ln(A1) + ln(ε−

2
1+ν)

)
,

implying that (40) is valid.
By (38), we get

2
1+3ν
1+ν L

2
1+ν
ν k−

1+3ν
1+ν ε−

1−ν
1+νBω(x∗, x0) +

ε

2
≤ ε,

leading to

k ≥ 2
2+4ν
1+3ν L

2
1+3ν
ν ε−

2
1+3νBω(x∗, x0)

1+ν
1+3ν ,

implying that (41) is valid. ut

In the remainder of this section we give a way to get rid of needing the parameters ν and Lν using
a backtracking line search guaranteeing (15). This leads to a parameter-free version of ASGA-1 given in
the next result (see Algorithm 2, ASGA-2).

Theorem. 7 Let f satisfies (1) with Lν < +∞. Let αk := (sk+1/Sk+1) ∈]0, 1] for sk+1 > 0, the sequence
{zk}k≥0, {yk}k≥0, and {xk}k≥0 be generated by (19), (22), and (23), respectively, such that

f(xk+1) ≤ f(yk) + 〈∇f(yk), xk+1 − yk〉+
Lk+1

2
‖xk+1 − yk‖2 +

αkε

2
, (42)

for Lk+1 ≥ L̃ > 0. Then (25) holds if s2k+1Lk+1 = (1 + Skµ)Sk+1.

Accelerated first-order methods for large-scale convex minimization 11

Proof Following the proof of Theorem 3, the inequality (32) is valid. From (42), for δ = αkε, we obtain

f(yk) + 〈∇f(yk), xk+1 − yk〉 ≥ f(xk+1)− Lk+1

2
‖xk+1 − yk‖2 −

αkε

2
.

By this, (11), and (32), we can write

φ∗k+1 ≥ Sk+1f(yk) + Sk+1ψ(xk+1) + Sk+1〈∇f(yk), xk+1 − yk〉 − Sk
ε

2
+

1 + Skµ

2
‖zk+1 − zk‖2

≥ Sk+1 (f(yk) + 〈∇f(yk), xk+1 − yk〉) + Sk+1ψ(xk+1)− Sk
ε

2
+

1 + Skµ

2
‖zk+1 − zk‖2

≥ Sk+1

(
f(xk+1)− Lk+1

2
‖xk+1 − yk‖2 −

ε

2
αk

)
+ Sk+1ψ(xk+1)− Sk

ε

2
+

1 + Skµ

2α2
k

‖xk+1 − yk‖2

= Sk+1

(
h(xk+1)− ε

2

)
+

1

2

Sk+1

s2k+1

(
(1 + Skµ)Sk+1 − s2k+1Lk+1

)
‖xk+1 − yk‖2.

Therefore, setting s2k+1Lk+1 = (1 + Skµ)Sk+1 yields that (25) holds. ut

To guarantee the inequality (42), we assume L0 > 0 and set Lk+1 := γ2γ
pk
1 Lk, for pk ≥ 0, γ1 > 1 and

γ2 < 1, such that Lk+1 ≥ L̃ guaranteeing that (15) holds for δ = εαk. We give the detailed results in the
next proposition.

Proposition 8 Let {zk}k≥0, {yk}k≥0, and {xk}k≥0 be generated by (19), (22), and (23), respectively.
Let also L0 > 0 and

Lk+1 := γpk1 Lk, s2k+1Lk+1 = (1 + Skµ)Sk+1,

for pk ≥ 0. Then sk+1 > 0 and for

pk ≥
1− ν
1 + ν

logγ1

(
1− ν

αkε(1 + ν)

)
+

2

1 + ν
logγ1 Lν − logγ1 Lk (43)

the inequality (42) is satisfied.

Proof By L0 > 0 and Lk+1 = γpk1 Lk, we have Lk+1 > 0. The solution of the equation

Lk+1s
2
k+1 − (1 + Skµ)sk+1 − (1 + Skµ)Sk = 0

is given by

sk+1 =
1 + Skµ+ ((1 + Skµ)2 + 4Lk+1Sk(1 + Skµ))1/2

2Lk+1

> 0. (44)

By setting δ := αkε, Proposition 1 suggests that if Lk+1 = γpk1 Lk ≥ L̃, then (42) is valid leading to

Lk+1 = γpk1 Lk ≥
(

1− ν
δ(1 + ν)

) 1−ν
1+ν

L
2

1+ν
ν .

This implies

pk ln γ1 ≥ ln

(
1− ν

αkε(1 + ν)

) 1−ν
1+ν

+ ln

L 2
1+ν
ν

Lk

 ,

giving (43). ut

Theorem 7 leads to a simple iterative scheme for solving the problem (2), where the sequences {zk}k≥0,
{yk}k≥0, and {xk}k≥0 are generated by (19), (22), and (23), respectively. Proposition 8 shows that the
condition (42) holds in finite iterations of a backtracking line search. We summarize the above-mentioned
discussion in the following algorithm:

12 Masoud Ahookhosh

Algorithm 2: ASGA-2 (parameter-free single-subproblem ASGA)

Input: initial point x0 ∈ C, L0 > 0, γ1 > 1, γ2 < 1 p = 0, µ ≥ 0; ε > 0;
Output: xk, hk;

1 begin
2 while stopping criteria do not hold do
3 repeat

4 Lk+1 = γp1Lk; compute sk+1 by (44); Ŝk+1 = Sk + sk+1; αk = sk+1/Ŝk+1;
5 yk = αkzk + (1−αk)xk; compute ẑk+1 from (19); x̂k+1 = αkẑk+1 + (1−αk)xk; p = p+ 1;

6 until f(x̂k+1) ≤ f(yk) + 〈∇f(yk), x̂k+1 − yk〉+ 1
2Lk+1‖x̂k+1 − yk‖2 + 1

2αkε

7 xk+1 = x̂k+1; zk+1 = ẑk+1; Sk+1 = Ŝk+1; Lk+1 = γ2Lk+1; k = k + 1; p = 0;

8 end
9 hk = h(xk);

10 end

ASGA-2 in each iteration needs at least a solution of the auxiliary problem (19) until (42) holds. The
loop between Line 3 and Line 6 of ASGA-2 is called the inner cycle, and the loop between Line 2 and
Line 8 of ASGA-2 is called the outer cycle. Hence Proposition 8 shows that the inner cycle is terminated
in a finite number of inner iterations. Since it is not assumed to have

〈∇f(yk), xk+1 − yk〉+
Lk+1

2
‖xk+1 − yk‖2 +

ε

2
αk ≤ 0,

one cannot guarantee the descent condition f(xk+1) ≤ f(xk), i.e., h(xk+1) ≤ h(xk) is not guaranteed.
Therefore, the line search (42) is nonmonotone (see more about nonmonotone line searches in [3, 4] and
references therein).

We compute the total number of calls of the first-order oracle after k iteration (N(k)) for ASGA-2 in
the subsequent result.

Proposition 9 Let {xk}k≥0 be generated by ASGA-2. Then

N(k) ≤ 2

(
1− ln γ2

ln γ1

)
(k + 1) +

2

ln γ1
ln
γ1γ2L̃

L0
. (45)

Proof From Li+1 = γ2γ
pi
1 Li, i = 0, . . . , k, we obtain

pi =
1

ln γ1
(lnLi+1 − lnLi − ln γ2).

By this and Lk+1 ≤ γ1γ2L̃, we get

N(k) =

k∑
i=0

(2pi + 2) =

k∑
i=0

(
1

ln γ1
(lnLi+1 − lnLi − ln γ2) + 2

)

= 2

(
1− ln γ2

ln γ1

)
(k + 1) +

2

ln γ1
ln
Lk+1

L0
≤ 2

(
1− ln γ2

ln γ1

)
(k + 1) +

2

ln γ1
ln
γ1γ2L̃

L0
,

giving the result. ut

Proposition 9 implies that ASGA-2 on average requires at least two calls of the first-order oracle per
iteration, whereas ASGA-1 needs a single call of the first-order oracle per iteration.

We derive the complexity of ASGA-2 in the next result that is slightly modification of Theorem 5.

Theorem. 10 Let {xk}k≥0 be generated by ASGA-2. Then

(i) If µ > 0, we have

h(xk)− h(x∗) ≤ L1

1 +
µ

1+ν
1+3ν ε

1−ν
1+3ν

2γ
1+ν
1+3ν

1 L
2

1+3ν
ν

−
1+3ν
1+ν (k−1)

Bω(x∗, x0) +
ε

2
, (46)

Accelerated first-order methods for large-scale convex minimization 13

where L1 = γ2γ
p1
1 L0.

(ii) If µ = 0, we have

h(xk)− h(x∗) ≤

γ12
1+3ν
1+ν L

2
1+ν
ν

ε
1−ν
1+ν k

1+3ν
1+ν

Bω(x∗, x0) +
ε

2
. (47)

Proof (i) From Propositions 1 and 8, we obtain

1

γ1
Lk = γpk−11 Lk−1 ≤

(
1− ν

εαk−1(1 + ν)

) 1−ν
1+ν

L
2

1+ν
ν ≤ (εαk−1)

− 1−ν
1+ν L

2
1+ν
ν .

By this, s2kLk = (1 + Sk−1µ)Sk, and αk−1 = sk/Sk, we get

s2k
Sk

=
1 + Sk−1µ

Lk
≥ γ−11 (1 + Sk−1µ)(εαk−1)

1−ν
1+ν L

− 2
1+ν

ν ,

leading to

s2k ≥ γ−11 (1 + Sk−1µ)L
− 2

1+ν
ν (εsk)

1−ν
1+ν S

2ν
1+ν

k .

This implies

skS
− 2ν

1+3ν

k ≥ (1 + Sk−1µ)
1+ν
1+3ν ε

1−ν
1+3ν γ

− 1+ν
1+3ν

1 L
− 2

1+3ν
ν . (48)

It follows from Sk+1 ≥ Sk and (39) that

S
1+ν
1+3ν

k − S
1+ν
1+3ν

k−1 ≥ (Sk − Sk−1)/

(
S
1− 1+ν

1+3ν

k − S1− 1+ν
1+3ν

k−1

)
≥ 1

2
skS

− 2ν
1+3ν

k

≥ 2−1(1 + Sk−1µ)
1+ν
1+3ν ε

1−ν
1+3ν γ

− 1+ν
1+3ν

1 L
− 2

1+3ν
ν ≥ 2−1(Sk−1µ)

1+ν
1+3ν ε

1−ν
1+3ν γ

− 1+ν
1+3ν

1 L
− 2

1+3ν
ν .

Then we have

S
1+ν
1+3ν

k ≥
(

1 + 2−1µ
1+ν
1+3ν ε

1−ν
1+3ν γ

− 1+ν
1+3ν

1 L
− 2

1+3ν
ν

)
S

1+ν
1+3ν

k−1 .

Since S0 = 0, we have S1 = L−11 leading to

Sk ≥
(

1 + 2−1µ
1+ν
1+3ν ε

1−ν
1+3ν γ

− 1+ν
1+3ν

1 L
− 2

1+3ν
ν

) 1+3ν
1+ν (k−1)

L−11 .

This inequality and (21) give (46).
(ii) Substituting µ = 0 into (48) yields

skS
− 2ν

1+3ν

k ≥ ε
1−ν
1+3ν γ

− 1+ν
1+3ν

1 L
− 2

1+3ν
ν .

It follows from Sk ≥ Sk−1 and (39) that

S
1+ν
1+3ν

k − S
1+ν
1+3ν

k−1 ≥ (Sk − Sk−1)/

(
S
1− 1+ν

1+3ν

k − S1− 1+ν
1+3ν

k−1

)
≥ 1

2
skS

− 2ν
1+3ν

k ≥ 2−1ε
1−ν
1+3ν γ

− 1+ν
1+3ν

1 L
− 2

1+3ν
ν .

Let us sum up this inequality for i = 0, . . . , k, giving

S
1+ν
1+3ν

k ≥ k2−1ε
1−ν
1+3ν γ

− 1+ν
1+3ν

1 L
− 2

1+3ν
ν .

leading to

Sk ≥ γ−11 k
1+3ν
1+ν 2−

1+3ν
1+ν ε

1−ν
1+ν L

− 2
1+ν

ν .

This inequality and (21) give (47). ut

The next corollary gives the complexity of ASGA-2 for attaining an ε-solution of the problem (2).

Corollary. 11 Let {xk}k≥0 be generated by ASGA-2. Then
(i) If µ > 0, an ε-solution of the problem (2) is attained by the complexity given in (40) apart from some
constants.
(ii) If µ = 0, an ε-solution of the problem (2) is attained by the complexity given in (41) apart from some
constants.

14 Masoud Ahookhosh

Proof From L1 ≥ L̃, α0 = 1, and the right hand side of (46), we obtain

2

(
1− ν
1 + ν

) 1−ν
1+ν

L
2

1+ν
ν

1 +
µ

1+ν
1+3ν ε

1−ν
1+3ν

2γ
1+ν
1+3ν

1 L
2

1+3ν
ν

−
1+3ν
1+ν (k−1)

Bω(x∗, x0) ≤ ε
2

1+ν ,

implying

ln(A2)− ln(ε
2

1+ν) ≤ 1 + 3ν

1 + ν
(k − 1) ln

(
1 + 2−1γ

− 1+ν
1+3ν

1 µ
1+ν
1+3ν ε

1−ν
1+3ν L

− 2
1+3ν

ν

)
≤ 1 + 3ν

2(1 + ν)
γ
− 1+ν

1+3ν

1 µ
1+ν
1+3ν ε

1−ν
1+3ν L

− 2
1+3ν

ν (k − 1),

where

A2 := 2

(
1− ν
1 + ν

) 1−ν
1+ν

L
2

1+ν
ν Bω(x∗, x0).

This leads to

k ≥ 2(1 + ν)

1 + 3ν
γ

1+ν
1+3ν

1 µ−
1+ν
1+3ν ε−

1−ν
1+3ν L

+ 2
1+3ν

ν

(
ln(A2) + ln(ε−

2
1+ν)

)
,

implying that (40) is valid.
From (47), we obtain

γ12
1+3ν
1+ν L

2
1+ν
ν k−

1+3ν
1+ν ε−

1−ν
1+νBω(x∗, x0) +

ε

2
≤ ε,

leading to

k ≥ γ
1+ν
1+3ν

1 2
2+4ν
1+3ν L

2
1+3ν
ν ε−

2
1+3νBω(x∗, x0)

1+ν
1+3ν ,

implying that (41) is valid. ut

Theorems 5 and 10 provide the complexity of ASGA-1 and ASGA-2 for problems satisfying (1), where
the same complexity is attained apart from some constants.

3 Double-subproblem accelerated (sub)gradient methods

In this section we give two schemes for solving structured problems of the form (2) and investigate their
complexity analysis, where the second one is a generalization of Nesterov’s universal gradient method
[38].

We generate a sequence of estimation functions {φk(x)}k≥0 that approximate h such that, for each
iteration k ≥ 0,

Sk

(
h(yk)− ε

2

)
≤ φ∗k = min

x∈C
φk(x), (49)

where yk ∈ V and Sk is a scaling parameter given by (17). Let us consider the estimation sequence

φk+1(x) :=

{
Bω(x, x0) if k = 0,

φk(x) + sk+1 [qk+1(x, xk+1) + ψ(x)] if k ∈ N,

qk+1(x, xk+1) := f(xk+1) + 〈∇f(xk+1), x− xk+1〉+
µf
2
‖x− xk+1‖2.

(50)

Let us define {vk}k≥0 as the sequence of minimizers of the estimation sequence {φk}k≥0, i.e.,

vk+1 := argmin
x∈C

φk+1(x). (51)

The following result is necessary for providing the complexity of schemes will be given in Section 3.1.

Proposition 12 Let {φk}k≥0 be generated by (50). Then (20) holds, and also if (49) is satisfied, we have

h(yk)− h(x∗) ≤ Bω(x∗, x0)

Sk
+
ε

2
. (52)

Accelerated first-order methods for large-scale convex minimization 15

Proof The proof is given by induction on k. Since S0 = 0 and φ0(x) = Bω(x, x0), the result is valid for
k = 0. We assume that is true for k and prove it for k + 1. Then (50) yields

φk+1(x) = φk(x) + sk+1

(
f(xk+1) + 〈∇f(xk+1), x− xk+1〉+

µf
2
‖x− xk+1‖2 + ψ(x)

)
≤ Skh(x) +Bω(x, x0) + sk+1

(
f(xk+1) + 〈∇f(xk+1), x− xk+1〉+

µf
2
‖x− xk+1‖2 + ψ(x)

)
≤ Skh(x) +Bω(x, x0) + sk+1h(x) = Sk+1h(x) +Bω(x, x0).

From (49) and (20), we obtain

h(yk) ≤ ε

2
+

1

Sk
φ∗k ≤

ε

2
+

1

Sk
min
x∈C

(Sk h(x) +Bω(x, x0)) =
ε

2
+ h(x∗) +

Bω(x∗, x0)

Sk
,

implying (52) holds. ut

3.1 Novel double-subproblem algorithms

Here we give two new algorithms using the estimation sequence (50) and investigate the related conver-
gence analysis.

The following theorem shows that how the estimation sequence (50) can be used to construct the
sequence {xk}k≥0 guaranteeing (49).

Theorem. 13 Let f satisfies (1) with Lν < +∞, αk := (sk+1/Sk+1) for sk+1 > 0, the sequence {vk}k≥0
be generated by (51), and

xk+1 := (1− αk)yk + αkvk. (53)

Let us also define

uk+1 := argmin
x∈C

{
B(x, vk) + sk+1

(
〈∇f(xk+1), x〉+

µf
2
‖x− xk+1‖2 + ψ(x)

)}
, (54)

yk+1 := (1− αk)yk + αkuk+1. (55)

We assume that (15) holds for y = yk+1, z = xk+1, δ := εαk with ε > 0, and (24) holds. Then we have

φ∗k+1 ≥ Sk+1

(
h(yk+1)− ε

2

)
, (56)

if s2k+1L̂k+1 = (1 + Skµ)Sk+1.

Proof The proof is given by induction. Since S0 = 0, the result for k = 0 is evident. We assume that (56)
holds for some k and show it for k + 1.

Let us expand φk as

φk(x) = Bω(x, x0) +

k∑
i=1

siqi(x, xi) + Skψ(x). (57)

Since ψ is µp-strongly convex, (57) implies that φk is (1+Skµ)-strongly convex. This and (50) at vk yield

φk(x) ≥ φ∗k +
1

2
(1 + Skµ)‖x− vk‖2 ∀x ∈ C. (58)

From the induction assumption and the convexity of f , we obtain

φ∗k ≥ Sk
(
h(yk)− ε

2

)
≥ Sk

(
f(xk+1) + 〈∇f(xk+1), yk − xk+1〉+ ψ(yk)− ε

2

)
. (59)

It follows from (53) that

Sk(yk − xk+1) + sk+1(x− xk+1) = Skyk − Sk+1xk+1 + sk+1x

= Skyk − Sk+1(αkvk + (1− αk)yk) + sk+1x = sk+1(x− vk).
(60)

16 Masoud Ahookhosh

Using this, (50), (54), (58), (59), and (60), one can write

φk+1(x) = φk(x) + sk+1

(
f(xk+1) + 〈∇f(xk+1), x− xk+1〉+

µf
2
‖x− xk+1‖2 + ψ(x)

)
≥ φ∗k +

1 + Skµ

2
‖x− vk‖2 + sk+1 [f(xk+1) + 〈∇f(xk+1), x− xk+1〉+ ψ(x)]

≥ Sk
(
f(xk+1) + 〈∇f(xk+1), yk − xk+1〉+ ψ(yk)− ε

2

)
+

1 + Skµ

2
‖x− vk‖2

+ sk+1 (f(xk+1) + 〈∇f(xk+1), x− xk+1〉+ ψ(x))

= Sk+1f(xk+1) + Skψ(yk) + sk+1ψ(x)− Sk
ε

2
+

1 + Skµ

2
‖x− vk‖2

+ 〈∇f(xk+1), Sk(yk − xk+1) + sk+1(x− xk+1)〉

≥ Sk+1f(xk+1) + sk+1〈∇f(xk+1), x− vk〉+ Skψ(yk) + sk+1ψ(x)− Sk
ε

2
+

1 + Skµ

2
‖x− vk‖2.

(61)

By the convexity of ψ and (53), we get

Skψ(yk) + sk+1ψ(uk+1) = Sk+1(αkψ(uk+1) + (1− αk)ψ(yk)) ≥ Sk+1ψ(yk+1). (62)

The definition of yk and xk+1 yield

yk+1 − xk+1 = αkuk+1 + (1− αk)yk − αkvk − (1− αk)yk = αk(uk+1 − vk).

From this, (61), and (62), we obtain

φ∗k+1 ≥ Sk+1f(xk+1) + sk+1〈∇f(xk+1), uk+1 − vk〉+ Skψ(yk) + sk+1ψ(uk+1)

− Sk
ε

2
+

1 + Skµ

2
‖uk+1 − vk‖2

≥ Sk+1 (f(xk+1) + 〈∇f(xk+1), yk+1 − xk+1〉+ ψ(yk+1))− Sk
ε

2
+

1 + Skµ

2α2
k

‖yk+1 − xk+1‖2.

(63)

By (15) for δ = αkε, we get

f(xk+1) + 〈∇f(xk+1), yk+1 − xk+1〉 ≥ f(yk+1)− L̂k+1

2
‖yk+1 − xk+1‖2 −

αkε

2
.

This and (63) give

φ∗k+1 ≥ Sk+1 (f(xk+1) + 〈∇f(xk+1), yk+1 − xk+1〉+ ψ(yk+1))− Sk
ε

2
+

1 + Skµ

2α2
k

‖yk+1 − xk+1‖2

≥ Sk+1

(
f(yk+1)− L̂k+1

2
‖yk+1 − xk+1‖2 −

αkε

2

)
+ Sk+1ψ(yk+1)− Sk

ε

2
+

1 + Skµ

2α2
k

‖yk+1 − xk+1‖2

= Sk+1

(
h(yk+1)− ε

2

)
+

1

2

Sk+1

s2k+1

(
(1 + Skµ)Sk+1 − s2k+1L̂k+1

)
‖yk+1 − xk+1‖2.

Therefore, setting s2k+1L̂k+1 = (1 + Skµ)Sk+1 implies (56). ut
Theorem 13 leads to a simple scheme for solving problems of the form (2), which is summarized in

the following.

Algorithm 3: ASGA-3 (double-subproblem ASGA)

Input: initial point x0 ∈ C, ν, Lν , µ ≥ 0; ε > 0;
Output: yk, hk;

1 begin
2 while stopping criteria do not hold do

3 compute L̂k+1; compute sk+1 by (33); Sk+1 = Sk + sk+1; αk = sk+1/Sk+1;
4 xk+1 = αkvk + (1− αk)yk; compute uk+1 from (54); yk+1 = αkuk+1 + (1− αk)yk;
5 compute vk+1 from (51); k = k + 1;

6 end
7 hk = h(yk);

8 end

Accelerated first-order methods for large-scale convex minimization 17

ASGA-3 is a simple scheme which needs only two calls of the oracle per each iteration. Therefore,
we have that N(k) = 2k for ASGA-3. The same as ASGA-1, in ASGA-3 it is required to compute L̂k+1

in each step. If the parameters ν and Lν are available, then Proposition 4 shows how to compute L̂k+1.
Although ASGA-1 and ASGA-3 share some similarities, they have some basic differences: (i) they use
different estimation sequences; (ii) while ASGA-1 needs a single solution of (19), ASGA-3 requires one
solution of (51) (Line 4) and a single solution of (54) (Line 5).

The subsequent two results give the complexity of ASGA-3. In view of Theorem 13, the proofs are
the same as Theorem 5 and Corollary 6.

Theorem. 14 Let {yk}k≥0 be generated by ASGA-3. Then

(i) If µ > 0, we have

h(yk)− h(x∗) ≤ L̂1

(
1 +

µ
1+ν
1+3ν ε

1−ν
1+3ν

2L
2

1+3ν
ν

)− 1+3ν
1+ν (k−1)

Bω(x∗, x0) +
ε

2
,

where

L̂1 =

(
1− ν
ε(1 + ν)

) 1−ν
1+ν

L
2

1+ν
ν .

(ii) If µ = 0, we have

h(yk)− h(x∗) ≤

2
1+3ν
1+ν L

2
1+ν
ν

ε
1−ν
1+ν k

1+3ν
1+ν

Bω(x∗, x0) +
ε

2
.

Corollary. 15 Let {yk}k≥0 be generated by ASGA-3. Then
(i) If µ > 0, an ε-solution of the problem (2) is attained by the complexity given in (40) apart from some
constants.
(ii) If µ = 0, an ε-solution of the problem (2) is attained by the complexity given in (41) apart from some
constants.

In the following we give a version ASGA-3 which does not need to know about the parameters ν and
Lν using a backtracking line search guaranteeing (15). We describe the new scheme in the next result.

Theorem. 16 Let f satisfies (1) with Lν < +∞, αk := (sk+1/Sk+1) for sk+1 > 0, the sequences {vk}k≥0,
{xk}k≥0, {uk}k≥0, and {yk}k≥0 be generated by (51), (53), (54), and (55), respectively, such that

f(yk+1) ≤ f(xk+1) + 〈∇f(xk+1), yk+1 − xk+1〉+
Lk+1

2
‖yk+1 − xk+1‖2 +

αkε

2
, (64)

for Lk+1 ≥ L̃ > 0. Then (56) is valid if s2k+1Lk+1 = (1 + Skµ)Sk+1.

Proof Following the proof of Theorem 13, the inequality (63) is valid. By (64), for δ = αkε, we get

f(xk+1) + 〈∇f(xk+1), yk+1 − xk+1〉 ≥ f(yk+1)− Lk+1

2
‖yk+1 − xk+1‖2 −

αkε

2
.

By this and (63), we can write

φ∗k+1 ≥ Sk+1 (f(xk+1) + 〈∇f(xk+1), yk+1 − xk+1〉+ Sk+1ψ(yk+1))− Sk
ε

2
+

1 + Skµ

2α2
k

‖yk+1 − xk+1‖2

≥ Sk+1

(
f(yk+1)− Lk+1

2
‖yk+1 − xk+1‖2 −

αkε

2

)
+ Sk+1ψ(yk+1)− Sk

ε

2
+

1 + Skµ

2α2
k

‖yk+1 − xk+1‖2

= Sk+1

(
h(yk+1)− ε

2

)
+

1

2

Sk+1

s2k+1

(
(1 + Skµ)Sk+1 − s2k+1Lk+1

)
‖yk+1 − xk+1‖2.

Therefore, setting s2k+1Lk+1 = (1 + Skµ)Sk+1 yields that (25) is valid. ut

18 Masoud Ahookhosh

In the light of Theorem 16 we give a simple iterative scheme for solving the problem (2), where
the sequences {vk}k≥0, {xk}k≥0, {uk}k≥0, and {yk}k≥0 are generated by (51), (53), (54), and (55),
respectively. Proposition 8 shows that the condition (64) holds if finite iterations of a backtracking line
search is applied. We summarize the above-mentioned discussion in the subsequent algorithm:

Algorithm 4: ASGA-4 (parameter-free double-subproblem ASGA)

Input: initial point x0 ∈ C, L0 > 0, γ1 > 1, γ2 < 1, p = 0, µ ≥ 0; ε > 0;
Output: yk, hk;

1 begin
2 while stopping criteria do not hold do
3 repeat

4 Lk+1 = γp1Lk; compute sk+1 by (44); Ŝk+1 = Sk + sk+1; αk = sk+1/Ŝk+1;
5 x̂k+1 = αkvk + (1−αk)yk; compute uk+1 by (54); ŷk+1 = αkuk+1 + (1−αk)yk; p = p+ 1;

6 until f(yk+1) ≤ f(xk+1) + 〈∇f(xk+1), yk+1 − xk+1〉+ 1
2Lk+1‖yk+1 − xk+1‖2 + 1

2αkε

7 xk+1 = x̂k+1; yk+1 = ŷk+1; uk+1 = ûk+1; Sk+1 = Ŝk+1; Lk+1 = γ2Lk+1;
8 compute vk+1 by (51); k = k + 1; p = 0;

9 end
10 hk = h(yk);

11 end

The loop between Line 3 and Line 6 of ASGA-4 is called the inner cycle and the loop between Line
2 and Line 9 of ASGA-4 is called the outer cycle. Hence Proposition 8 shows that the inner cycle is
terminated in a finite number of iterations. ASGA-4 ans ASGA-2 share some similarities; however, they
use different estimation sequences; in each iteration ASGA-2 needs some solutions of (19), while ASGA-4
requires a single solution of (51) (Line 8 in the outer cycle) and some solutions of (54) (Line 5 in the
inner cycle).

The following result gives the number of oracles N(k) needed after k iterations of ASGA-4.

Proposition 17 Let {yk}k≥0 be generated by ASGA-4. Then

N(k) ≤ 2

(
1− ln γ2

ln γ1

)
(k + 1) +

2

ln γ1
ln
γ1γ2L̃

L0
.

Proposition 9 implies that ASGA-4 on average requires at most two calls of the first-order oracle per
iteration, while ASGA-3 needs exactly a single call of the first-order oracle per iteration. The proofs of
the following two results are the same as Theorem 10 and Corollary 11.

Theorem. 18 Let {yk}k≥0 be generated by ASGA-4. Then

(i) If µ > 0, we have

h(yk)− h(x∗) ≤ L1

1 +
µ

1+ν
1+3ν ε

1−ν
1+3ν

2γ
1+ν
1+3ν

1 L
2

1+3ν
ν

−
1+3ν
1+ν (k−1)

Bω(x∗, x0) +
ε

2
,

where L1 = 2p1L0.
(ii) If µ = 0, we have

h(yk)− h(x∗) ≤

γ12
1+3ν
1+ν L

2
1+ν
ν

ε
1−ν
1+ν k

1+3ν
1+ν

Bω(x∗, x0) +
ε

2
.

Corollary. 19 Let {xk}k≥0 be generated by ASGA-4. Then
(i) If µ > 0, an ε-solution of the problem (2) is attained by the complexity given in (40) apart from some
constants.
(ii) If µ = 0, an ε-solution of the problem (2) is attained by the complexity given in (41) apart from some
constants.

Accelerated first-order methods for large-scale convex minimization 19

We here emphasis that the Nesterov-type optimal methods do not guarantee the convergence of
the sequence of iteration points in general; however, the next result shows that the sequence {xk}k≥0
generated by ASGA-1 or ASGA-2 (the sequence {yk}k≥0 generated by ASGA-3 or ASGA-2) is convergent
to x∗ if the objective h is strictly convex and x∗ ∈ int C, where int C denotes the interior of C.

Proposition 20 Let h be strictly convex. Then the sequence {xk}k≥0 generated by ASGA-1 or ASGA-2
is convergent to x∗ if x∗ ∈ int C.

Proof Strict convexity of h implies that (2) has the unique minimizer x∗. Since x∗ ∈ int C, there exists
a small δ > 0 such that the convex and compact neighborhood

N(x∗) := {x ∈ C | ‖x− x∗‖ ≤ δ}

is included in C. We set xδ as a minimizer of the problem

min h(x)
s.t. x ∈ ∂N(x∗),

(65)

where ∂N(x∗) denotes the boundary of N(x∗). Let us define εδ := h(xδ) − h∗ and consider the upper
level set

Nh(xδ) := {x ∈ C | h(x) ≤ h(xδ) = h∗ + εδ}.
For given εδ, Theorems 5 and 10 show that ASGA-1 and ASGA-2 attain an εδ-solution of (2) in a
finite number of iterations, say κ. Hence after κ iterations the best point xb satisfies h(xb) ≤ h∗ + εδ,
i.e., xb ∈ Nh(xδ). It remains to show Nh(xδ) ⊆ N(x∗). By contradiction, we suppose that there exists
x̃ ∈ Nh(xδ) \N(x∗). Since x̃ 6∈ N(x∗), we have ‖x̃− x∗‖ > δ. Therefore, there exists λ0 ∈]0, 1[such that

‖λ0x̃+ (1− λ0)x∗‖ = δ.

From λ0x̃+ (1− λ0)x∗ ∈ ∂N(x∗), (65), h(x̃) ≤ h(xδ), and the strictly convex property of h, we obtain

h(xδ) ≤ h(λ0x̃+ (1− λ0)x∗) < λ0h(x̃) + (1− λ0)h(x∗) ≤ λ0h(xδ) + (1− λ0)h(xδ) = h(xδ),

which is a contradiction, i.e., Nh(xδ) ⊆ N(x∗) implying xb ∈ N(x∗) giving the results. ut

Note that the same proposition can be proved for ASGA-3 or ASGA-4 if we replace the sequence
{xk}k≥0 by the sequence {yk}k≥0. It is also valid for other Nesterov-type optimal methods.

4 Applicability of accelerated (sub)gradient methods

In this section we discuss some important aspects of efficient implementation of ASGA-1, ASGA-2,
ASGA-3, and ASGA-4 for solving the problem (2).

4.1 Solving the auxiliary problems

To apply ASGA-1, ASGA-2, ASGA-3, and ASGA-4 to large problems of the form (2), we need to solve
the auxiliary problems (19), (51), and (54) efficiently. In general, these problems cannot be solved in a
closed form; on the other hand, they can be handled efficiently if ψ and C are simple enough and ω is
selected appropriately. In this section we show that they can be solved in a closed form for several ψ and
C appearing in applications. Let us emphasis that the following results can be used in other Nesterov-type
optimal methods either by the same solution or by slightly modifications.

In the following two results we give a simplification of the auxiliary problem (19) for the special case
µf = 0 and ψ ≡ 0.

Proposition 21 Let f be convex (µf = 0) and ψ ≡ 0 in (2). Then the estimation sequence φk(z) (18)
satisfies

φk(x) = φ∗k +Bω(x, zk). (66)

Moreover, the auxiliary problem (19) is simplified to

zk+1 = argmin
x∈C

Bω(x, zk) + sk+1〈∇f(yk), x〉. (67)

20 Masoud Ahookhosh

Proof We first show (66) by induction. For k = 0, since x0 ∈ C, we have

φ∗0 = min
x∈C

φ0(x) = min
x∈C

Bω(x, z0) = 0,

leading to φ0(x) = φ∗0 + Bω(x, z0). We assume that is true for k − 1 and prove it for k. By substituting
(66) into (18), we get

φk(x) = φ∗k−1 +Bω(x, zk−1) + sk(f(yk−1) + 〈∇f(yk−1), x− yk−1〉). (68)

The first-order optimality condition of this identity gives

∇Bω(·, zk−1)(zk) + sk∇f(yk−1) = 0,

leading to

〈∇Bω(·, zk−1)(zk), x− zk〉 = −sk〈∇f(yk−1), x− zk〉. (69)

Setting x = zk in (68) yields

φ∗k = φ∗k−1 +Bω(zk, zk−1) + sk(f(yk−1) + 〈∇f(yk−1), zk − yk−1〉). (70)

By subtracting (70) from (68), we get

φk(x) = φ∗k +Bω(x, zk−1)−Bω(zk, zk−1) + sk〈∇f(yk−1), x− zk〉.

From this and (69), we obtain

φk(x) = φ∗k +Bω(x, zk−1)−Bω(zk, zk−1)− 〈∇Bω(·, zk−1)(zk), x− zk〉
= φ∗k + ω(x)− ω(zk−1)− 〈∇ω(zk−1), x− zk−1〉 − ω(zk) + ω(zk−1)

+ 〈∇ω(zk−1), zk − zk−1〉 − 〈∇ω(zk)−∇ω(zk−1), x− zk〉
= φ∗k + ω(x)− ω(zk)− 〈∇ω(zk), x− zk〉 = φ∗k +Bω(x, zk),

giving (66).
It follows from (67) and (66) that

zk+1 = argmin
x∈C

φk+1(x) = argmin
x∈C

φ∗k +Bω(x, zk) + sk+1(f(yk) + 〈∇f(yk), x− yk〉)

= argmin
x∈C

Bω(x, zk) + sk+1〈∇f(yk), x〉,

giving the result. ut

Let us consider the prox-function

ω(x) :=
1

2
‖x− x0‖22. (71)

From the definition of the Bregman distance Bω(x, y), we obtain

Bω(x, y) =
1

2
‖x− x0‖22 +

1

2
‖y − x0‖22 − 〈x− x0, y − x+ x− x0〉 =

1

2
‖x− y‖22,

which is the Euclidean distance. We note that using (26) the auxiliary problem (19) with ω defined by
(71) is strongly convex and then has an unique solution.

We are in a position to give the solution of (67) for convex problems with ψ ≡ 0.

Proposition 22 Let f be convex (µf = 0) and ψ ≡ 0 in (2). Then the global minimizer zk+1 of (67)
satisfies

∇ω(zk)−∇ω(zk+1)− sk+1∇f(yk) ∈ sk+1∂ψ(zk+1) +NC(zk+1). (72)

Moreover, if ω is given by (71), the solution zk+1 of (67) is given by

zk+1 = PC(zk − sk+1∇f(yk)). (73)

Accelerated first-order methods for large-scale convex minimization 21

Proof From (3) for (67), we obtain

0 ∈ ∇Bω(·, zk)(zk+1) + sk+1∇f(yk) + sk+1∂ψ(zk+1) +NC(zk+1)

= ∇ω(zk+1)−∇ω(zk) + sk+1∇f(yk) + sk+1∂ψ(zk+1) +NC(zk+1),

implying (72) is valid.
By ψ ≡ 0 and (7), we get

zk − zk+1 − sk+1∇f(yk) ∈ NC(zk+1).

This is the optimality condition of the problem

min
z∈C

1

2
‖z − (zk − sk+1∇f(yk))‖22,

which is the orthogonal projection of zk − sk+1∇f(yk) onto C, giving the result. ut

For µf = 0, ψ ≡ 0, and ω given by (71), Proposition 22 implies that the auxiliary problem (19) can be
solved efficiently if the orthogonal projection onto the convex domain C is cheaply available. There are
many important convex domains that the orthogonal projection onto them is efficiently available either
in a closed form or by a simple iterative scheme (see Table 5.1 in [2]).

The auxiliary problems (19) and (51) have the same structure; in contrast, (19) involves {yk}k≥0 while
(51) includes {xk}k≥0. Therefore, we only consider (51) in the remainder of this section. The next result
gives optimality conditions for (51) and (54).

Proposition 23 Let vk+1 and uk+1 be the global minimizer of (51) and (54), respectively. Then

∇ω(x0)−∇ω(vk+1)−
k+1∑
i=1

si(∇f(xi) + µf (vk+1 − xi)) ∈ Sk+1∂ψ(vk+1) +NC(vk+1), (74)

∇ω(vk)−∇ω(uk+1)− sk+1(∇f(xk+1) + µf (uk+1 − xk+1)) ∈ sk+1∂ψ(zk+1) +NC(uk+1). (75)

Proof From (10), we obtain ∇Bω(·, x0)(x) = ∇ω(x) − ∇ω(x0). By this, (3), and (57) for the auxiliary
problem (51), we get

0 ∈ ∇Bω(·, x0)(vk+1) +

k+1∑
i=1

si(∇f(xi) + µf (vk+1 − xi)) + Sk+1∂ψ(vk+1) +NC(vk+1)

= ∇ω(vk+1)−∇ω(x0) +

k+1∑
i=1

si(∇f(xi) + µf (vk+1 − xi)) + Sk+1∂ψ(vk+1) +NC(vk+1),

implying (74) is valid.
It follows from (3) and (54) that

0 ∈ ∇ω(uk+1)−∇ω(vk) + sk+1(∇f(xk+1) + µf (uk+1 − xk+1)) + sk+1∂ψ(uk+1) +NC(uk+1),

giving (75). ut

We now consider a simple case of (2) with C = V . We verify the solution of the auxiliary problems
(51) and (54) in the following result.

Proposition 24 Let C = V and ω be given by (71). Then the solution vk+1 of the auxiliary problem
(51) is given by

vk+1 = proxλ̃ψ(ỹ), (76)

where

λ̃ :=
Sk+1

1 + µfSk+1
, ỹ :=

1

1 + µfSk+1

(
x0 −

k+1∑
i=1

si (∇f(xi)− µfxi)

)
. (77)

Moreover, the solution uk+1 of the auxiliary problem (54) is given by

uk+1 = proxλ̂ψ(ŷ), (78)

where

λ̂ :=
sk+1

1 + µfsk+1
, ŷ :=

1

1 + µfsk+1
(vk − sk+1 (∇f(xk+1)− µfxk+1)) . (79)

22 Masoud Ahookhosh

Proof By (74) for (51) with C = V , we get

x0 − vk+1 −
k+1∑
i=1

si(∇f(xi) + µf (vk+1 − xi)) ∈ Sk+1∂ψ(vk+1),

or equivalently

0 ∈ (1 + µfSk+1)vk+1 − x0 +

k+1∑
i=1

si(∇f(xi) + µf (vk+1 − xi)) + Sk+1∂ψ(vk+1).

This is the optimality condition (8) of the problem

min
z∈V

1

2
‖z − ỹ‖22 + Sk+1(1 + µfSk+1)−1ψ(z),

where zk+1 is the unique minimizer of this problem with λ̃ and ỹ given by (77).

By (74) for (54) with C = V , we get

0 ∈ (1 + µfsk+1)uk+1 − (vk − sk+1(∇f(xk+1) + µfxk+1)) + sk+1∂ψ(uk+1).

This is the optimality condition (8) of the problem

min
z∈V

1

2
‖z − ŷ‖22 + sk+1(1 + µfsk+1)−1ψ(z),

where zk+1 is the unique minimizer of this problem with λ̂ and ŷ given by (79). ut

Proposition 24 implies that if C = V , then the auxiliary problems (51) and (54) are reduced to
proximal problems which is a well-studied subject in convex optimization. More precisely, the proximal
problems (76) and (78) can be solved for many simple convex functions ψ appearing in applications either
in a closed form or by a simple iterative scheme (see, e.g., Table 6.1 in [2]).

In the reminder of this section we consider cases that both ψ and C are simple enough such that
the auxiliary problems (51) and (54) can be solved in a closed form. In particular we discuss the box
constraints C = {x ∈ Rn | x ∈ x = [x, x]}.

Proposition 25 Let C = {x ∈ Rn | x ∈ x = [x, x]} and ω be given by (71). There exists g ∈ ∂ψ(vk+1)
such that the solution vk+1 of the auxiliary problem (51) satisfies

∀j = 1, . . . , n, vjk+1 =

xj if (1 + µfSk+1)xj − xj0 +

∑k+1
i=1 si (∇f(xi)− µfxi)j + Sk+1g

j ≥ 0,

xj if (1 + µfSk+1)xj − xj0 +
∑k+1
i=1 si (∇f(xi)− µfxi)j + Sk+1g

j ≤ 0,

tj1 if xj < tj1 < xj ,

(80)

where

t1 :=
1

1 + µfSk+1

(
xj0 −

k+1∑
i=1

si(∇f(xi)
j − µfxi)− Sk+1g

j

)
.

There exists g ∈ ∂ψ(uk+1) such that the solution uk+1 of the auxiliary problem (54) satisfies

∀j = 1, . . . , n, ujk+1 =

xj if (1 + µfsk+1)xj − vjk + sk+1 (∇f(xk+1)− µfxk+1)

j
+ sk+1g

j ≥ 0,

xj if (1 + µfsk+1)xj − vjk + sk+1 (∇f(xk+1)− µfxk+1)
j

+ sk+1g
j ≤ 0,

tj2 if xj < tj2 < xj ,
(81)

where

t2 :=
1

1 + µfsk+1

(
vjk − sk+1(∇f(xk+1)j − µfxk+1)− sk+1g

j
)
.

Accelerated first-order methods for large-scale convex minimization 23

Proof From (74) and the definition of Nx(vk+1), there exists g ∈ ∂ψ(vk+1) such that

0 ∈

{
(1 + µfSk+1)vk+1 − x0 +

k+1∑
i=1

si (∇f(xi)− µfxi) + Sk+1g + q
∣∣∣ 〈q, vk+1 − z〉 ≥ 0 ∀z ∈ x

}
. (82)

Deriving the jth component of vk+1 involves three possibilities: (i) vjk+1 = xj ; (ii) vjk+1 = xj ; (iii)

xj < vjk+1 < xj . In Case (i), vjk+1 − zj ≤ 0 for all z ∈ x implying qj ≤ 0. Then (82) implies that

(1 + µfSk+1)vjk+1 − x
j
0 +

k+1∑
i=1

si (∇f(xi)− µfxi)j + Sk+1g
j ≥ 0,

for vjk+1 = xj . In Case (ii), vjk+1 − zj ≥ 0 for all z ∈ x so that qj ≥ 0. Hence (82) yields

(1 + µfSk+1)vjk+1 − x
j
0 +

k+1∑
i=1

si (∇f(xi)− µfxi)j + Sk+1g
j ≤ 0,

for vjk+1 = xj . In Case (iii), we have vjk+1 − zj ≥ 0 for some z ∈ x and vjk+1 − zj ≤ 0 for some other

z ∈ x. This leads to qj = 0 implying

(1 + µfSk+1)vjk+1 − x
j
0 +

k+1∑
i=1

si (∇f(xi)− µfxi)j + Sk+1g
j = 0.

These three cases lead to

(1 + µfSk+1)vjk+1 − x
j
0 +

k+1∑
i=1

si (∇f(xi)− µfxi)j + Sk+1g
j

≥ 0 if vjk+1 = xj ,

≤ 0 if vjk+1 = xj ,

= 0 if xj < vjk+1 < xj .

Computing vk+1 from this equation implies (80).
By (75) and the definition of Nx(uk+1), there exists g ∈ ∂ψ(uk+1) such that

0 ∈ {(1 + µfsk+1)uk+1 − vk + sk+1 (∇f(xk+1)− µfxk+1) + sk+1g + q | 〈q, uk+1 − z〉 ≥ 0 ∀z ∈ x} .
(83)

To compute ujk+1 we consider three possibilities: (i) ujk+1 = xj ; (ii) ujk+1 = xj ; (iii) xj < ujk+1 < xj . In

Case (i), ujk+1 − zj ≤ 0 for all z ∈ x implying qj ≤ 0. Then (83) leads to

(1 + µfsk+1)ujk+1 − v
j
k + sk+1 (∇f(xk+1)− µfxk+1)

j
+ sk+1g

j ≥ 0,

for vjk+1 = xj . In Case (ii), vjk+1 − zj ≥ 0 for all z ∈ x so that qj ≥ 0. This, together with (83), implies

(1 + µfsk+1)ujk+1 − v
j
k + sk+1 (∇f(xk+1)− µfxk+1)

j
+ sk+1g

j ≤ 0,

for vjk+1 = xj . In Case (iii), we have ujk+1 − zj ≥ 0 for some z ∈ x and ujk+1 − zj ≤ 0 for some other

z ∈ x, i.e., qj = 0 leading to

(1 + µfsk+1)ujk+1 − x
j
0 + sk+1 (∇f(xk+1)− µfxk+1)

j
+ sk+1g

j = 0.

These three cases leads to

(1 + µfsk+1)ujk+1 − v
j
k + sk+1 (∇f(xk+1)− µfxk+1)

j
+ sk+1g

j

≥ 0 if ujk+1 = xj ,

≤ 0 if ujk+1 = xj ,

= 0 if xj < ujk+1 < xj ,

giving (81). ut

To show the applicability of Proposition 25, we consider a special case ψ(·) = ‖ · ‖1, which has been
widely used in the fields of sparse optimization and compressed sensing, see, e.g., [12, 17]. We first need
the following proposition. We use this result in Section 5.2.

24 Masoud Ahookhosh

Proposition 26 [2, Proposition 2.3] Let φ : V → R, φ(x) = ‖x‖. Then

∂φ(x) =

{
{g ∈ V ∗ | ‖g‖∗ ≤ 1} if x = 0,

{g ∈ V ∗ | ‖g‖∗ = 1, 〈g, x〉 = ‖x‖} if x 6= 0.

Proposition 27 Let C = {x ∈ Rn | x ∈ x = [x, x]} and ω be given by (71). Let also

κ(p̂) :=
∑
p̂i<0

p̂ix+
∑
p̂i>0

p̂ix, (84)

where p̂ = x0 −
∑k+1
i=1 si(∇f(xi) + µfxi) − Sk+11 (1 is the vector of all ones) for (51) and p̂ = vk −

sk+1(∇f(xk+1) + µfxk+1)− sk+11 for (54). Then the global minimizer of the auxiliary problem (51) for
ψ(x) = ‖x‖1 is given by

∀j = 1, . . . , n, vjk+1 =

xj if κ(q̃) > 0, cj1 ≥ 0,

xj if κ(q̃) > 0, cj2 ≤ 0,

cj3 if κ(q̃) > 0, cj3 > 0,

cj4 if κ(q̃) > 0, cj4 < 0,
0 otherwise,

(85)

where

c1 := (1 + µfSk+1)x− x0 +

k+1∑
i=1

si(∇f(xi) + µfxi) + Sk+1sign(x),

c2 := (1 + µfSk+1)x− x0 +

k+1∑
i=1

si(∇f(xi) + µfxi) + Sk+1sign(x),

c3 :=
1

1 + µfSk+1

(
x0 −

k+1∑
i=1

si(∇f(xi) + µfxi)− Sk+11

)
,

c4 :=
1

1 + µfSk+1

(
x0 −

k+1∑
i=1

si(∇f(xi) + µfxi) + Sk+11

)
.

The global minimizer of the auxiliary problem (54) for ψ(x) = ‖x‖1 is given by

∀j = 1, . . . , n, ujk+1 =

xj if κ(q̃) > 0, cj5 ≥ 0,

xj if κ(q̃) > 0, cj6 ≤ 0,

cj7 if κ(q̃) > 0, cj7 > 0,

cj8 if κ(q̃) > 0, cj8 < 0,
0 otherwise,

(86)

where
c5 := (1 + µfsk+1)x− vk + sk+1(∇f(xk+1) + µfxk+1) + sk+1sign(x),
c6 := (1 + µfsk+1)x− vk + sk+1(∇f(xk+1) + µfxk+1) + sk+1sign(x),

c7 :=
1

1 + µfsk+1
(vk − sk+1(∇f(xk+1) + µfxk+1)− sk+11) ,

c8 :=
1

1 + µfsk+1
(vk − sk+1(∇f(xk+1) + µfxk+1) + sk+11) .

Proof Proposition 26 for ψ(x) = ‖x‖1 leads to

∂‖x‖1 =

{
{g ∈ Rn | ‖g‖∞ ≤ 1} if x = 0,

{g ∈ Rn | ‖g‖∞ = 1, 〈g, x〉 = ‖x‖1} if x 6= 0.
(87)

We first show vk+1 = 0 if and only if κ(p̂) ≤ 0. By the definition of the normal cone of x at 0, we have

Nx(0) = {p ∈ V | ∀z ∈ [x, x], 〈p, z〉 ≤ 0} =

{
p ∈ V

∣∣∣ ∑
pi<0

pix+
∑
pi>0

pix ≤ 0

}
.

Accelerated first-order methods for large-scale convex minimization 25

From (82), zk+1 = 0 if and only if there exists

p ∈ Nx(0)
⋂(

x0 −
k+1∑
i=1

si(∇f(xi) + µfxi)− Sk+1∂ψ(0)

)
.

By (87), this is possible if and only if

min

{∑
pi<0

pix+
∑
pi>0

pix
∣∣∣ p = x0 −

k+1∑
i=1

si(∇f(xi) + µfxi)− Sk+1g, ‖g‖∞ ≤ 1

}
≤ 0.

The solution of this problem is p̂ = x0 −
∑k+1
i=1 si(∇f(xi) + µfxi) − Sk+11. Hence the minimum of this

problem is given by (84). This implies vk+1 = 0 if and only if κ(p̂) ≤ 0.
Let us assume vk+1 6= 0, i.e., κ(q̃) > 0. From (87), we obtain

∂‖vk+1‖1 = {g ∈ Rn | ‖g‖∞ = 1, 〈g, vk+1〉 = ‖vk+1‖1},

leading to
n∑
j=1

(gjvjk+1 − |v
j
k+1|) = 0.

By induction on nonzero elements of vk+1, we get givik+1 = |vik+1|, for i = 1, . . . , n. This implies that
gi = sign(ẑi) if vik+1 6= 0. This implies

(1 + µfSk+1)vjk+1 − x
j
0 +

k+1∑
i=1

si(∇f(xi) + µfxi) + Sk+1(∂‖vk+1‖1)j

≥ 0 if vjk+1 = xj ,

≤ 0 if vjk+1 = xj ,

= 0 if xj < vjk+1 < xj ,

for j = 1, . . . , n, leading to

(1 + µfSk+1)vjk+1 − x
j
0 +

k+1∑
i=1

si(∇f(xi) + µfxi) + Sk+1sign(vjk+1)

≥ 0 if vjk+1 = xj ,

≤ 0 if vjk+1 = xj ,

= 0 if xj < vjk+1 < xj .

(88)

Substituting vjk+1 = xj in (88) implies cj1 ≥ 0. If vjk+1 = xj , we have cj1 ≤ 0. If xj < vjk+1 < xj , there are

three possibilities: (i) vjk+1 > 0; (ii) vjk+1 < 0; (iii) vjk+1 = 0. In Case (i), sign(vjk+1) = 1 and (88) lead to

vjk+1 = cj2 > 0. In Case (ii), sign(ẑi) = −1 and (88) imply vjk+1 = cj3 < 0. In Case (c), we get vjk+1 = 0.
Now let us consider the solution of the auxiliary problem (54). By (83), we get uk+1 = 0 if and only

if there exists p ∈ NC(0) ∩ (vk − sk+1∇f(xk+1)− sk+1∂ψ(0)). From (87), this is possible if and only if

min

{∑
pi<0

pix+
∑
pi>0

pix
∣∣∣ p = vk − sk+1(∇f(xk+1) + µfxk+1)− sk+1g, ‖g‖∞ ≤ 1

}
≤ 0.

The solution of this problem is p̂ = vk − sk+1(∇f(xk+1) + µfxk+1) − sk+11. Thus the minimum of this
problem is given by (84). This suggests uk+1 = 0 if and only if κ(p̂) ≤ 0.

The definition of NC(uk+1) and (83) imply

(1 + µfsk+1)ujk+1 − v
j
k + sk+1(∇f(xk+1) + µfxk+1) + sk+1(∂‖uk+1‖1)j

≥ 0 if ujk+1 = xj ,

≤ 0 if ujk+1 = xj ,

= 0 if xj < ujk+1 < xj ,

for j = 1, . . . , n. Equivalently for uk+1 6= 0, we get

(1 + µfsk+1)ujk+1 − v
j
k + sk+1(∇f(xk+1) + µfxk+1) + sk+1sign(ujk+1)

≥ 0 if ujk+1 = xj ,

≤ 0 if ujk+1 = xj ,

= 0 if xj < ujk+1 < xj .

(89)

If ujk+1 = xj , we have cj4 ≥ 0. Substituting ujk+1 = xj in (89) implies cj4 ≤ 0. If xj < ujk+1 < xj , there

are three possibilities: (i) ujk+1 > 0; (ii) ujk+1 < 0; (iii) ujk+1 = 0. In Case (i), sign(ujk+1) = 1 and (89)

imply ujk+1 = cj5 > 0. In Case (ii), sign(ẑi) = −1 and (89) lead to ujk+1 = cj6 < 0. In Case (c), we get

ujk+1 = 0. ut

26 Masoud Ahookhosh

A particular case of box constraints is the nonnegativity constraints (x ≥ 0) appearing in many
applications because x describes some physical quantities, see, e.g., [18, 26]. Propositions 25 and 27 can
be simplified for nonnegativity constraints.

5 Numerical experiments

In this section we report some numerical results to compare the performance of ASGA-1, ASGA-2,
ASGA-3, and ASGA-4 with some state-of-the-art solvers. More precisely, we compare them with NSDSG
(nonsummable diminishing subgradient algorithm [11]), PGA (proximal gradient algorithm [42]), FISTA
(Beck and Teboulle’s fast proximal gradient algorithm [9]), NESCO (Nesterov’s composite gradient algo-
rithm [37]), NESUN (Nesterov’s universal gradient algorithm [38]).

The codes of all algorithms are written in MATLAB, where the codes of ASGA-1, ASGA-2, ASGA-3,
and ASGA-4 are available at

http://homepage.univie.ac.at/masoud.ahookhosh/.

For `1 and elastic net minimization (Sections 5.1 and 5.2), ASGA-2 and ASGA-4 use γ1 = 4 and γ2 = 0.9,
while for support vector machine (Section 5.3) ASGA-2 uses γ1 = 4 and γ2 = 0.9 and ASGA-4 uses γ1 = 4
and γ2 = 0.6. The other considered algorithms use the parameters proposed in the associated literature.
In our implementation, NSDSG uses the step-sizes αk := α0/

√
k, where we set α0 = 10−1 in Sections 5.1

and 5.2 and α0 = 5 × 10−11 in Section 5.3. All numerical experiments are executed on a PC Intel Core
i7-3770 CPU 3.40GHz 8 GB RAM.

5.1 `1 minimization

We consider solving the underdetermined system

Ax = y, (90)

where A ∈ Rm×n (m ≤ n) and y ∈ Rm. Underdetermined system of linear equations is frequently
appeared in many applications of linear inverse problem such as those in the fields signal and image
processing, geophysics, economics, machine learning, and statistics. The objective is to recover x from
the observed vector y and matrix A by some optimization models. Due to the ill-conditioned feature of the
problem, a regularized version of the problem is minimized, cf. [41]. We here consider the `1 minimization

min
x∈Rn

1

2
‖y −Ax‖22 + λ‖x‖1, (91)

where λ > 0 is a regularization parameter. This is a nonsmooth convex problem of the form (2) with
f(x) = 1

2‖y − Ax‖
2
2 and ψ(x) = λ‖x‖1. It is straightforward to see that f is Lipschitz continuous with

ν = 1 and Lν = ‖A‖22 implying that ASGA-1 and ASGA-3 can be applied to this problem.
The problem is generated by

[A, z, x] = i laplace(n), y = z + 0.1 ∗ rand, (92)

where n = 5000 is the problem dimension and i laplace.m is an ill-posed problem generator using the
inverse Laplace transformation from Regularization Tools package (cf. [27]), which is available at

http://www.imm.dtu.dk/~pcha/Regutools/.

We here run NESUN, ASGA-1, ASGA-2, ASGA-3, and ASGA-4 to solve this `1 minimization problem.
The algorithms are stopped after 30 seconds of the running time. The results are summarized Table 2,
where fb and fN denote the best function value and the number function evaluations, respectively.

From the results of Table 2 we will see that NESUN, ASGA-2, and ASGA-4 are more sensitive to
regularization parameters than ASGA-1 and ASGA-3; however, ASGA-1 is much less sensitive than
NESUN and ASGA-2. It can also be seen that NESUN attains the worst results for λ = 10 and λ = 1.
For λ ≤ 10−1, we see that ASGA-2 and ASGA-4 outperform the others, while NESUN, ASGA-1 and
ASGA-3 perform to some extent comparable. During our experiments we spot a disadvantage of NESUN,
ASGA-2, and ASGA-4 which is the sensitivity to the small accuracy parameter ε. In this case we found
out that the associated line search does not terminate because of the possible round-off error that is a
usual problem in Armijo-type line searches (cf. [3]). For λ = 10−1, we show this in Subfigures (a) and
(b) of Figure 1 with ε = 10−1 and ε = 10−4, respectively. Therefore, it would be much more reliable to
apply ASGA-1 and ASGA-3 for the accuracy parameter smaller than ε = 10−2 if ν and Lν are available.

Accelerated first-order methods for large-scale convex minimization 27

Table 2: Best function values fb and the number of function evaluations Nf for NESUN, ASGA-1,
ASGA-2, ASGA-3, and ASGA-4 for solving the `1 minimization problem (91) with several regularization
parameters

Reg.par. NESUN ASGA-1 ASGA-2 ASGA-3 ASGA-4

fb fN fb fN fb fN fb fN fb fN

λ = 10 3134.81 622 357.39 612 363.34 611 356.77 605 3051.31 605

λ = 1 284.88 618 60.94 623 68.46 617 60.86 605 59.76 608

λ = 10−1 7.89 621 7.73 627 7.59 603 7.80 606 6.16 601

λ = 10−2 1.78 656 2.64 588 0.98 597 2.57 595 0.98 588

λ = 10−3 1.80 619 1.42 609 0.92 600 1.46 587 0.97 616

λ = 10−4 0.21 635 0.20 614 0.20 639 0.20 632 0.20 613

λ = 10−5 0.04 641 0.03 606 0.02 610 0.03 615 0.02 616

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

iterations

fu
n
c
ti
o
n
 v

a
lu

e
s

NESUN

ASGA-1

ASGA-2

ASGA-3

ASGA-4

(a) λ = 10−1, ε = 10−1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

iterations

fu
n
c
ti
o
n
 v

a
lu

e
s

NESUN

ASGA-1

ASGA-2

ASGA-3

ASGA-4

(b) λ = 10−1, ε = 10−4

Fig. 1: A comparison among NESUN, ASGA-1, ASGA-2, ASGA-3, and ASGA-4 for solving the `1 min-
imization problem (91). For λ = 10−1, Subfigures (a) and (b) display the results for ε = 10−1 and
ε = 10−4, respectively. The algorithms stopped after 30 seconds.

5.2 Elastic net minimization

Let us consider the underdetermined system (90), where the data is generated by (92). Since this problem
is ill-conditioned, we apply a regularized least-squares with the elastic net regularizer, i.e.,

min
x∈Rn

1

2
‖y −Ax‖22 +

1

2
λ1‖x‖22 + λ2‖x‖1 (93)

or

min
1

2
‖y −Ax‖22 +

1

2
λ1‖x‖22 + λ2‖x‖1

s.t. x ∈ x = [x, x],
(94)

where λ1, λ2 > 0 are regularization parameters. This problem is nonsmooth and strongly convex. By
setting f(x) = 1

2‖y −Ax‖
2
2 + 1

2λ1‖x‖
2
2 and ψ(x) = λ2‖x‖1, we have that f is λ1-strongly convex and has

Lipschitz continuous gradients with ν = 1 and Lν = ‖A‖22 + λ1.
We now run NSDSG, PGA, FISTA, NESCO, NESUN, ASGA-1, ASGA-2, ASGA-3, and ASGA-4 for

solving the elastic net minimization problem (93) and NSDSG, NESCO, NESUN, ASGA-1, ASGA-2,
ASGA-3, and ASGA-4 for solving the box-constrained version (94). The auxiliary problems of NESCO,
NESUN, ASGA-1, ASGA-2, ASGA-3, and ASGA-4 are solved using the statements of Proposition 27. For
(94), we set x = [−ones(5000, 1), ones(5000, 1)]. We stop the algorithms after 20 seconds of the running
time. The results are summarized in Table 3.

28 Masoud Ahookhosh
T

ab
le

3:
N

u
m

er
ic

al
re

su
lt

s
of

N
S
D

S
G

,
P

G
A

,
F

IS
T

A
,

N
E

S
C

O
,

N
E

S
U

N
,

A
S

G
A

-1
,

A
S

G
A

-2
,

A
S

G
A

-3
,

a
n

d
A

S
G

A
-4

fo
r

th
e

el
a
st

ic
n

et
m

in
im

iz
a
ti

o
n

p
ro

b
le

m
s

(9
3)

an
d

(9
4)

.
T

h
e

fi
rs

t
10

p
ro

b
le

m
s

st
an

d
s

fo
r

(9
3)

an
d

th
e

re
m

a
in

d
er

fo
r

(9
4
).

T
h

e
a
lg

o
ri

th
m

s
w

er
e

st
o
p

p
ed

a
ft

er
2
0

se
co

n
d

s
o
f

th
e

ru
n

n
in

g
ti

m
e.
P

,
f b

,
an

d
N
f

d
en

ot
e

th
e

p
ro

b
le

m
n
u

m
b

er
,

th
e

b
es

t
fu

n
ct

io
n

va
lu

e,
a
n

d
th

e
n
u

m
b

er
o
f

th
e

fu
n

ct
io

n
ev

a
lu

a
ti

o
n

s
a
ch

ie
ve

d
b
y

th
e

a
lg

o
ri

th
m

s,
re

sp
ec

ti
ve

ly
.

P
λ
1

λ
2

N
S

D
S

G
P

G
A

F
IS

T
A

N
E

S
C

O
N

E
S

U
N

A
S

G
A

-1
A

S
G

A
-2

A
S

G
A

-3
A

S
G

A
-4

f
b

N
f

f
b

N
f

f
b

N
f

f
b

N
f

f
b

N
f

f
b

N
f

f
b

N
f

f
b

N
f

f
b

N
f

1
1
0
−
3

1
3
6
4
.2

4
8
5
4

5
5
.7

9
6
9
1

5
3
.9

1
4
3
4

5
8
.1

7
4
9
7

3
3
5
.5

8
4
5
5

5
7
.8

1
4
2
8

7
1
.0

8
4
2
4

5
7
.3

3
4
3
4

5
9
.8

1
4
2
0

2
1
0
−
3

1
0
−
1

1
9
2
.8

5
7
1
9

1
1
4
.3

9
6
7
3

6
.4

6
4
5
2

1
8
.3

8
5
5
5

1
4
.3

4
4
8
0

9
.5

4
4
6
4

8
.2

9
4
5
9

9
.1

3
4
8
8

7
.1

4
4
5
5

3
1
0
−
3

1
0
−
2

2
6
.9

8
6
3
7

2
1
.4

7
6
5
5

2
.3

1
4
7
2

1
8
.6

0
5
1
5

4
.3

9
4
4
4

4
.0

3
4
4
0

1
.1

3
4
8
4

3
.4

7
4
7
8

1
.4

3
4
3
6

4
1
0
−
3

1
0
−
3

6
.4

0
6
9
6

3
.4

0
6
.3

8
1
.9

9
4
3
0

2
.8

1
6
1
1

2
.5

0
4
1
5

2
.1

4
3
9
1

1
.8

7
4
1
6

1
.9

9
4
4
0

1
.8

2
4
2
7

5
1
0
−
3

1
0
−
4

3
.9

6
6
5
3

1
.3

4
6
7
1

0
.6

6
5
4
1

0
.9

8
6
1
5

0
.8

1
4
5
0

0
.7

3
4
2
8

0
.6

9
4
6
4

0
.7

2
4
4
3

0
.7

0
4
3
5

6
1
0
−
4

1
4
9
9
.5

9
6
6
4

6
1
.7

3
7
1
0

5
9
.2

9
4
3
0

6
5
.1

7
5
5
9

4
0
8
.8

5
4
3
1

6
2
.9

6
4
5
9

7
9
.1

1
4
2
2

6
2
.6

5
4
6
7

6
5
.2

2
5
2
1

7
1
0
−
4

1
0
−
1

1
9
4
.5

7
6
5
4

1
1
4
.5

4
6
7
7

6
.3

5
5
1
1

1
9
.8

2
5
5
5

1
0
.2

1
4
4
8

1
0
.0

0
4
4
2

9
.1

4
4
3
3

9
.3

5
4
6
5

6
.8

3
4
4
6

8
1
0
−
4

1
0
−
2

2
4
.4

9
7
5
7

2
0
.5

6
6
7
4

1
.6

7
5
9
3

1
6
.8

1
6
0
3

4
.1

0
4
5
6

4
.2

7
4
3
1

1
.3

1
4
4
0

3
.5

7
4
7
6

1
.2

5
4
6
3

9
1
0
−
4

1
0
−
3

5
.2

6
6
6
0

4
.7

6
6
5
7

1
.7

3
4
4
6

2
.3

3
5
.8

5
2
.0

4
4
2
5

1
.7

4
4
4
8

1
.6

3
4
3
3

1
.6

4
5
0
0

1
.5

9
4
4
2

1
0

1
0
−
4

1
0
−
4

4
.8

6
6
.4

9
1
.1

6
6
0
5

0
.2

8
4
2
0

0
.6

7
5
1
1

0
.3

1
4
1
5

0
.2

8
4
1
2

0
.2

8
4
0
8

0
.2

8
4
0
5

0
.2

8
4
1
0

1
1

1
0
−
3

1
3
4
3
.0

3
9
0
9

—
—

—
—

5
6
.0

5
6
4
3

1
0
4
.1

6
5
2
8

5
4
.5

1
5
0
9

6
5
.6

0
5
5
7

5
3
.9

8
5
3
6

5
2
.8

7
5
1
9

1
2

1
0
−
3

1
0
−
1

1
9
0
.7

3
8
9
9

—
—

—
—

1
0
.9

4
6
7
9

9
.4

4
5
7
2

8
.9

0
5
2
5

8
.1

7
5
1
6

8
.5

6
5
3
4

7
.0

3
4
7
2

1
3

1
0
−
3

1
0
−
2

3
5
.4

9
8
2
9

—
—

—
—

1
5
.7

0
6
9
1

3
.3

8
4
9
7

3
.2

7
4
9
9

1
.0

7
5
1
3

2
.8

2
5
4
0

1
.0

9
5
4
2

1
4

1
0
−
3

1
0
−
3

1
7
.6

3
6
4
9

—
—

—
—

3
.0

8
5
8
3

2
.4

7
5
0
9

2
.0

1
4
6
7

1
.2

9
5
4
0

1
.8

8
5
0
6

1
.4

2
5
4
7

1
5

1
0
−
3

1
0
−
4

1
0
.1

1
9
0
3

—
—

—
—

0
.9

7
6
8
9

0
.8

1
5
4
1

0
.7

3
4
7
2

0
.6

4
5
6
1

0
.7

2
4
7
5

0
.6

4
5
4
2

1
6

1
0
−
4

1
3
5
3
.7

3
9
0
0

—
—

—
—

6
4
.3

1
6
2
9

3
3
6
.1

9
5
1
0

6
1
.0

4
5
5
6

7
0
.6

3
5
3
2

6
1
.2

6
5
0
9

5
9
.8

9
5
2
2

1
7

1
0
−
4

1
0
−
1

1
7
6
.4

4
8
9
2

—
—

—
—

1
5
.5

9
5
6
7

7
.6

7
4
9
8

7
.7

9
5
3
9

6
.9

9
5
4
0

8
.3

7
4
7
7

6
.2

0
4
3
9

1
8

1
0
−
4

1
0
−
2

2
3
.3

7
8
2
1

—
—

—
—

1
5
.5

8
6
9
5

2
.4

2
5
6
6

3
.4

6
4
9
1

1
.0

6
5
2
1

3
.0

2
5
2
9

1
.2

5
4
6
3

1
9

1
0
−
4

1
0
−
3

8
.2

0
9
0
6

—
—

—
—

2
.3

2
6
0
3

1
.9

2
5
2
5

1
.6

6
4
8
1

1
.1

8
5
4
8

1
.5

7
5
3
0

1
.4

2
4
9
2

2
0

1
0
−
4

1
0
−
4

1
2
.7

0
8
5
8

—
—

—
—

0
.4

9
6
6
3

0
.2

9
5
4
9

0
.2

8
5
0
4

0
.2

7
5
6
4

0
.2

8
5
1
7

0
.2

7
5
3
9

Accelerated first-order methods for large-scale convex minimization 29

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

iterations

fu
n
c
ti
o
n
 v

a
lu

e
s

NSDSG

PGA

FISTA

NESCO

NESUN

ASGA-1

ASGA-2

ASGA-3

ASGA-4

(a) λ1 = 10−3, λ2 = 10−2

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

iterations

fu
n
c
ti
o
n
 v

a
lu

e
s

NSDSG

PGA

FISTA

NESCO

NESUN

ASGA-1

ASGA-2

ASGA-3

ASGA-4

(b) λ1 = 10−3, λ2 = 10−3

Fig. 2: A comparison among NSDSG, PGA, FISTA, NESCO, NESUN, ASGA-1, ASGA-2, ASGA-3, and
ASGA-4 for solving elastic net minimization problems (93): Subfigures (a) and (b) display comparisons
of function values versus iterations for λ1 = 10−3, λ2 = 10−2 and λ1 = 10−3, λ2 = 10−3, respectively. The
algorithms stopped after 20 seconds.

The results of Table 3 shows that the optimal methods FISTA, NESCO, NESUN, ASGA-1, ASGA-
2, ASGA-3, and ASGA-4 outperforms NSDSG and PGA significantly as confirmed by their complexity
analyses. It can also be seen that in many cases ASGA-2 and ASGA-4 performs better than NSDSG,
PGA, FISTA, NESCO, NESUN, ASGA-1, and ASGA-2; however, in several cases they are comparable
with FISTA, where FISTA is not generally applicable for constrained version (94). In addition, it is
observable that ASGA-1 and ASGA-3 stay reasonable for a wide range of regularization parameters
in contrast to ASGA-2 and ASGA-4. We therefore draw your attention to the Subfigures (a) and (b)
of Figure 2 which give the function values versus iterations for (93) with two levels of regularization
parameters λ1 = 10−3, λ2 = 10−2 and λ1 = 10−3, λ2 = 10−3.

5.3 Support vector machine

Let us consider learning with support vector machines (SVM) leading to a convex optimization problem
with large data sets. In particular, we consider a binary classification, where the set of training data
(x1, y1), . . . , (xm, ym) with xi ∈ Rn and yi ∈ {−1, 1}, for i = 1, . . . ,m, are given. The aim is to find
a classification rule from the training data, so that when given a new input x, we can assign a class
y ∈ {−1, 1} to it. As SVM uses a classification rule that decides the class of x based on the sign of
〈x,w〉+w0, we need to choose the vector w and the scalar w0. These may be determined by solving the
penalized problem

min

m∑
i=1

[1− yi(〈xi, w〉+ w0)]+ + λφ(w)

s.t. w ∈ Rn, w0 ∈ R,
(95)

where [z]+ = max{z, 0}, and φ can be ‖·‖1 (SVML1R), ‖·‖22 (SVML22R), and 1
2‖·‖

2
2+‖·‖1 (SVML22L1R)

(see, e.g., [43, 45] and references therein). For 〈x,w〉 = wTx, let us define

X :=

 y1x
T
1

...
ymx

T
m

 ∈ Rm×n, A := (X, y) ∈ Rm×(n+1), w̃ :=

(
w
w0

)
∈ Rn+1.

The problem (95) can be rewritten in the form

min 〈1, [1−Aw̃]+〉+ λφ(w)
s.t. w̃ ∈ Rn+1,

(96)

30 Masoud Ahookhosh

where [1−Aw̃]+ = sup{1 − Aw̃, 0} and 1 ∈ Rm is the vector of all ones. Typically A is a dense
matrix constructed by data points xi and yi for i = 1, . . . ,m. By setting f(w̃) = 〈1, [1−Aw̃]+〉 and
ψ(x) = λφ(w), it is clear that (96) is of the form (2), where f is nonsmooth and its corresponding
subgradient at w̃ is given by

∇f(w̃) = −AT δ,

with

∀i = 1, . . . ,m, δi :=

{
1 if Ai:w̃ < 1,
0 if Ai:w̃ ≥ 1,

For all w1, w2 ∈ Rn, we have

‖∇f(w1)−∇f(w2)‖2 = ‖AT (δ1 − δ2)‖2 ≤ ‖AT ‖2‖δ1 − δ2‖2 ≤
√
m‖AT ‖2 := L0,

where Ai: denotes the ith row of A, for i = 1, . . . ,m. Therefore, f satisfies (1) with ν = 0 and Lν = L0.
Let us consider the problems SVML1R, SVML22R, and SVML22L1R for the leukemia data given by

Golub et al. in [21], available at the website [22]. This dataset comes from a study of gene expression in
two types of acute leukemias (acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL))
and it consists of 38 training data points and 34 test data points. We apply SVML1R, SVML22R,
and SVML22L1R to the training data points (q = 38 and n = 7129) with six levels of regularization
parameters for each of SVML1R, SVML22R, and SVML22L1R. Since for SVML1R and SVML22L1R
both f and ψ are nonsmooth functions, the algorithms PGA, FISTA, and NESCO cannot be applied to
theses problems. Therefore, we only consider NSDSG, NESUN, ASGA-1, ASGA-2, ASGA-3, and ASGA-
4 for solving these 3 problems with six levels of regularization parameters. In our implementation, the
algorithms are stopped after 3 seconds of the running time. The associated results are given in Table 4
and Figure 3.

In spite of the fact that all the considered algorithms attain the complexity O(ε−2) for the problem
(96), the results of Table 4 show that NESUN, ASGA-1, ASGA-2, ASGA-3, and ASGA-4 outperform
NSDSG significantly, for all three problems (SVML1R, SVML22R, and SVML22L1R). For cases λ ∈
{10, 1}, NESUN and ASGA-4 attain the better results than the others. For λ ∈ {10−1, 10−2, 10−3, 10−4}
and for all three problems, NESUN, ASGA-2, and ASGA-4 perform comparable but better than ASGA-1
and ASGA-3. However, ASGA-2 outperforms NESUN and ASGA-4 in the later case. We display the
function values versus iterations of the considered algorithms in Subfigures (a) and (b) of Figure 3 for
SVML22L1R with λ = 1 and λ = 10−1, respectively. In Subfigure (a), NESUN and ASGA-4 outperform
the others, while in Subfigure (b) ASGA-2 possesses the best result.

10
0

10
1

10
2

10
3

10
4

10
3

10
2

10
1

10
0

10
1

10
2

iterations

fu
n
c
ti
o
n
 v

a
lu

e
s

NSDSG

NESUN

ASGA-1

ASGA-2

ASGA-3

ASGA-4

(a) SVML22L1R, λ = 1

10
0

10
1

10
2

10
3

10
4

10
4

10
3

10
2

10
1

10
0

10
1

10
2

iterations

fu
n
c
ti
o
n
 v

a
lu

e
s

NSDSG

NESUN

ASGA-1

ASGA-2

ASGA-3

ASGA-4

(b) SVML22L1R, λ = 10−1

Fig. 3: A comparison among NSDSG, NESUN, ASGA-1, ASGA-2, ASGA-3, and ASGA-4 for a binary
classification with linear support vector machines (SVML22L1R) with λ = 1 and λ = 10−1. The algo-
rithms were stopped after 3 seconds.

Accelerated first-order methods for large-scale convex minimization 31
T

ab
le

4:
N

u
m

er
ic

al
re

su
lt

s
of

N
S

D
S

G
,

N
E

S
U

N
,

A
S

G
A

-1
,

A
S

G
A

-2
,

A
S

G
A

-3
,

a
n

d
A

S
G

A
-4

fo
r

th
e

b
in

a
ry

cl
a
ss

ifi
ca

ti
o
n

w
it

h
li

n
ea

r
su

p
p

o
rt

ve
ct

o
r

m
a
ch

in
es

(9
6)

.
T

h
e

al
go

ri
th

m
s

w
er

e
st

op
p

ed
af

te
r

3
se

co
n

d
s

of
th

e
ru

n
n

in
g

ti
m

e.
f b

a
n

d
N
f

d
en

o
te

th
e

b
es

t
fu

n
ct

io
n

va
lu

e
a
n

d
th

e
n
u

m
b

er
o
f

fu
n

ct
io

n
ev

a
lu

a
ti

o
n

s.

P
ro

b
.

n
a
m

e
R

eg
.

p
a
r.

N
S

D
S

G
N

E
S

U
N

A
S

G
A

-1
A

S
G

A
-2

A
S

G
A

-3
A

S
G

A
-4

f
b

N
f

f
b

N
f

f
b

N
f

f
b

N
f

f
b

N
f

f
b

N
f

S
V

M
L

1
R

λ
=

1
0

3
.6

3
×

1
0
−
2

3
6
4
1

9
.9

7
×

1
0
−
3

1
4
8
2

2
.4

3
×

1
0
−
2

1
6
8
2

1
.5

1
×

1
0
−
2

1
5
2
4

2
.3

7
×

1
0
−
2

1
2
4
7

1
.2

1
×

1
0
−
2

1
2
3
9

S
V

M
L

1
R

λ
=

1
3
.9

5
×

1
0
−
3

3
3
8
9

1
.0

7
×

1
0
−
3

1
3
4
7

2
.3

8
×

1
0
−
3

1
5
4
7

1
.6

8
×

1
0
−
3

1
4
8
3

2
.4

5
×

1
0
−
3

1
1
7
7

1
.1

3
×

1
0
−
3

1
1
7
9

S
V

M
L

1
R

λ
=

1
0
−
1

3
.9

9
×

1
0
−
4

3
4
0
1

1
.9

2
×

1
0
−
4

1
4
7
2

2
.4

5
×

1
0
−
4

1
4
9
8

1
.6

8
×

1
0
−
4

1
4
3
9

2
.4

5
×

1
0
−
4

1
2
2
3

2
.2

1
×

1
0
−
4

1
3
0
2

S
V

M
L

1
R

λ
=

1
0
−
2

3
.9

9
×

1
0
−
5

3
4
0
8

1
.6

6
×

1
0
−
5

1
3
5
7

2
.3

8
×

1
0
−
5

1
5
4
3

1
.6

8
×

1
0
−
5

1
3
8
5

2
.3

8
×

1
0
−
5

1
2
9
5

1
.8

1
×

1
0
−
5

1
2
6
4

S
V

M
L

1
R

λ
=

1
0
−
3

3
.9

9
×

1
0
−
6

3
3
2
6

1
.9

4
×

1
0
−
6

1
3
5
3

2
.4

5
×

1
0
−
6

1
5
3
0

1
.6

7
×

1
0
−
6

1
4
0
4

2
.4

5
×

1
0
−
6

1
3
0
4

1
.7

7
×

1
0
−
6

1
2
5
4

S
V

M
L

1
R

λ
=

1
0
−
4

3
.9

9
×

1
0
−
7

3
3
6
2

1
.8

4
×

1
0
−
7

1
3
9
6

2
.4

5
×

1
0
−
7

1
5
4
2

1
.6

6
×

1
0
−
7

1
4
7
5

2
.4

5
×

1
0
−
7

1
2
6
3

1
.8

1
×

1
0
−
7

1
2
6
9

S
V

M
L

2
2
R

λ
=

1
0

7
.9

6
×

1
0
−
8

3
4
4
2

2
.7

5
×

1
0
−
8

1
4
5
4

2
.9

1
×

1
0
−
8

1
5
9
8

3
.0

1
×

1
0
−
8

1
4
9
0

2
.9

1
×

1
0
−
8

1
2
3
6

2
.7

6
×

1
0
−
8

1
2
7
6

S
V

M
L

2
2
R

λ
=

1
7
.9

6
×

1
0
−
9

3
4
4
5

2
.7

5
×

1
0
−
9

1
4
5
4

2
.9

1
×

1
0
−
9

1
6
0
9

3
.0

1
×

1
0
−
9

1
5
0
6

2
.9

1
×

1
0
−
9

1
3
8
4

2
.7

6
×

1
0
−
9

1
3
9
8

S
V

M
L

2
2
R

λ
=

1
0
−
1

7
.9

6
×

1
0
−
1
0

3
4
3
8

2
.7

5
×

1
0
−
1
0

1
4
1
7

2
.9

1
×

1
0
−
1
0

1
5
6
5

3
.0

1
×

1
0
−
1
0

1
4
7
9

2
.9

1
×

1
0
−
1
0

1
3
7
3

2
.7

6
×

1
0
−
1
0

1
3
8
6

S
V

M
L

2
2
R

λ
=

1
0
−
2

7
.9

6
×

1
0
−
1
1

3
4
0
7

2
.7

5
×

1
0
−
1
1

1
4
3
4

2
.9

1
×

1
0
−
1
1

1
5
1
2

3
.0

1
×

1
0
−
1
1

1
4
5
2

2
.9

1
×

1
0
−
1
1

1
3
0
7

2
.7

6
×

1
0
−
1
1

1
3
1
5

S
V

M
L

2
2
R

λ
=

1
0
−
1
2

7
.9

6
×

1
0
−
1
2

3
4
9
8

2
.7

5
×

1
0
−
1
2

1
4
4
3

2
.9

1
×

1
0
−
1
2

1
5
9
0

3
.0

1
×

1
0
−
1
2

1
5
6
4

2
.9

1
×

1
0
−
1
2

1
3
2
8

2
.7

6
×

1
0
−
1
2

1
2
5
7

S
V

M
L

2
2
R

λ
=

1
0
−
1
3

7
.9

6
×

1
0
−
1
3

3
5
3
6

2
.7

5
×

1
0
−
1
3

1
3
7
3

2
.9

1
×

1
0
−
1
3

1
5
2
1

3
.0

1
×

1
0
−
1
3

1
4
7
9

2
.9

1
×

1
0
−
1
3

1
3
1
5

2
.7

6
×

1
0
−
1
3

1
3
4
3

S
V

M
L

2
2
L

1
R

λ
=

1
0

3
.6

5
×

1
0
−
2

3
1
7
9

1
.0

1
×

1
0
−
2

1
2
4
7

2
.4

3
×

1
0
−
2

1
3
9
3

1
.5

1
×

1
0
−
2

1
1
9
2

2
.3

7
×

1
0
−
2

1
1
5
6

1
.2

3
×

1
0
−
2

1
1
6
6

S
V

M
L

2
2
L

1
R

λ
=

1
3
.9

5
×

1
0
−
3

3
1
4
5

1
.0

5
×

1
0
−
3

1
2
8
6

2
.3

8
×

1
0
−
3

1
4
3
1

1
.6

8
×

1
0
−
3

1
3
9
5

2
.4

5
×

1
0
−
3

1
2
1
9

1
.0

3
×

1
0
−
3

1
2
0
7

S
V

M
L

2
2
L

1
R

λ
=

1
0
−
1

3
.9

9
×

1
0
−
4

3
1
2
7

1
.9

2
×

1
0
−
4

1
2
8
5

2
.4

5
×

1
0
−
4

1
4
1
4

1
.6

8
×

1
0
−
4

1
4
0
3

2
.4

5
×

1
0
−
4

1
2
1
9

2
.2

1
×

1
0
−
4

1
1
7
2

S
V

M
L

2
2
L

1
R

λ
=

1
0
−
2

3
.9

9
×

1
0
−
5

3
1
8
0

1
.6

1
×

1
0
−
5

1
2
7
3

2
.3

8
×

1
0
−
5

1
4
2
5

1
.6

8
×

1
0
−
5

1
3
6
4

2
.3

8
×

1
0
−
5

1
1
7
1

1
.8

1
×

1
0
−
5

1
1
1
1

S
V

M
L

2
2
L

1
R

λ
=

1
0
−
3

3
.9

9
×

1
0
−
6

3
1
5
6

1
.9

4
×

1
0
−
6

1
3
2
5

2
.4

5
×

1
0
−
6

1
4
7
2

1
.6

7
×

1
0
−
6

1
3
8
2

2
.4

5
×

1
0
−
6

1
1
4
4

1
.7

7
×

1
0
−
6

1
2
4
8

S
V

M
L

2
2
L

1
R

λ
=

1
0
−
4

3
.9

9
×

1
0
−
7

3
1
8
0

1
.8

4
×

1
0
−
7

1
2
8
7

2
.4

5
×

1
0
−
7

1
4
2
0

1
.6

6
×

1
0
−
7

1
2
9
5

2
.4

5
×

1
0
−
7

1
1
7
4

1
.8

2
×

1
0
−
7

1
1
9
7

32 Masoud Ahookhosh

6 Final remarks

In this paper, we propose several novel (sub)gradient methods for solving large-scale convex composite
minimization. More precisely, we give two estimation sequences approximating the objective function with
some local and global information of the objective. For each of the estimation sequences, we give two
iterative schemes attaining the optimal complexities for smooth, nonsmooth, weakly smooth, and smooth
strongly convex problems. These schemes are optimal up to a logarithmic factors for nonsmooth strongly
convex problems, and for weakly smooth strongly convex problems they attain a much better complexity
than the complexity for weakly smooth convex problems. For each estimation sequence, the first scheme
needs to know about the level of smoothness and the Hölder constant, while the second one is parameter-
free (except for the strong convexity parameter which we set zero if it is not available) at the price of
applying a backtracking line search. We then consider solutions of the auxiliary problems appearing in
these four schemes and study the important cases appearing in applications that can be solved efficiently
either in a closed form or by a simple iterative scheme. Considering some applicationsin the fields of
sparse optimization and machine learning, we report numerical results showing the encouraging behavior
of the proposed schemes.

Acknowledgement. I would like to thank Arnold Neumaier for his useful comments on this paper.

References

1. Ahookhosh, M.: Optimal subgradient algorithms with application to large-scale linear inverse problems, Submitted
(2015), http://arxiv.org/abs/1402.7291. [2]

2. M. Ahookhosh, High-dimensional nonsmooth convex optimization via optimal subgradient methods, PhD Thesis,
University of Vienna, (2015) [21, 22, 24]

3. Ahookhosh, M., Ghederi, S.: On efficiency of nonmonotone Armijo-type line searches, Submitted, (2015) http://arxiv.
org/pdf/1408.2675.pdf [12, 26]

4. Amini, K., Ahookhosh, M., Nosratipour, H.: An inexact line search approach using modified nonmonotone strategy for
unconstrained optimization, Numerical Algorithms, 66, 49–78 (2014) [12]

5. Auslender, A., Teboulle, M.: Interior gradient and proximal methods for convex and conic optimization, SIAM Journal
on Optimization, 16, 697–725 (2006) [2]

6. Baes, M.: Estimate sequence methods: extensions and approximations, IFOR Internal report, ETH, Zurich, Switzerland,
(2009) [2]

7. Baes, M., Bürgisser, M.: An acceleration procedure for optimal first-order methods, Optimization Methods & Software,
9(3), 610–628, (2014) [2]

8. Beck, A., Teboulle, M.: Mirror descent and nonlinear projected subgradient methods for convex optimization, Operations
Research Letters, 31, 167–175 (2003) [2]

9. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on
Imaging Sciences, 2, 183–202 (2009) [2, 26]

10. Becker, S.R., Candès, E.J., Grant, M.C.: Templates for convex cone problems with applications to sparse signal recovery,
Mathematical Programming Computation, 3, 165–218 (2011) [2]

11. Boyd, S., Xiao, L., Mutapcic, A.: Subgradient methods, (2003). http://www.stanford.edu/class/ee392o/subgrad_

method.pdf [26]
12. Candés, E.: Compressive sampling, in Proceedings of International Congress of Mathematics, Vol. 3, Madrid, Spain,

1433–1452 (2006) [23]
13. Chen, Y., Lan, G., Ouyang, Y.: Optimal primal-dual methods for a class of saddle point problems, SIAM Journal on

Optimization, 24(4), 1779–1814 (2014) [2]
14. Chen, Y., Lan, G., Ouyang, Y.: An accelerated linearized alternating direction method of multipliers, SIAM Journal

on Imaging Sciences, 8(1), 644–681 (2015) [2]
15. Devolder, O., Glineur, F., Nesterov, Y.: First-order methods of smooth convex optimization with inexact oracle, Math-

ematical Programming, 146, 37–75 (2014) [2]
16. Devolder, O., Glineur, F., Nesterov, Y.: First-order methods with inexact oracle: the strongly convex case, CORE

Discussion Paper 2013/16, (2013) [2]
17. Donoho, D.L.: Compressed sensing, IEEE Transactions of Information Theory, 52(4), 1289–1306 (2006) [23]
18. Esser, E., Lou, Y., Xin, J.: A method for finding structured sparse solutions to nonnegative least squares problems with

applications, SIAM Journal on Imaging Science, 6(4), 2010–2046 (2013) [26]
19. Ghadimi, S.: Conditional gradient type methods for composite nonlinear and stochastic optimization, (2016)

arXivpreprintarXiv:1602.00961 [3]
20. Ghadimi, S., Lan, G., Zhang, H.: Generalized uniformly optimal methods for nonlinear programming, (2015) http:

//arxiv.org/abs/1508.07384 [3]
21. Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri,

M.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science 286,
531–536 (1999) [30]

22. http://www.broad.mit.edu/cgi-bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=43 [30]
23. Gonzaga, C.C., Karas, E.W.: Fine tuning Nesterov’s steepest descent algorithm for differentiable convex programming,

Mathematical Programming, 138, 141–166 (2013) [2]

Accelerated first-order methods for large-scale convex minimization 33

24. Gonzaga, C.C., Karas, E.W., Rossetto, D.R.: An optimal algorithm for constrained differentiable convex optimization,
SIAM Journal on Optimization, 23(4), 1939–1955 (2013) [2]

25. Juditsky, A., Nesterov, Y.: Deterministic and stochastic primal-dual subgradient algorithms for uniformly convex min-
imization, Stochastic Systems, 4(1), 44–80 (2014) [2]

26. Kaufman, L., Neumaier, A.: Regularization of ill-posed problems by envelope guided conjugate gradients, Journal of
Computational and Graphical Statistics, 6(4), 451–463 (1997) [26]

27. Hansen, P.: Regularization Tools Version 4.0 for Matlab 7.3, Numerical Algorithms, 46, 189–194 (2007) [26]
28. Lan, G.: An optimal method for stochastic composite optimization, Mathematical Programming, 133, 365–397 (2010)

[2]
29. Lan, G.: Bundle-level type methods uniformly optimal for smooth and nonsmooth convex optimization, Mathematical

Programming, 149, 1–45, (2015) [2]
30. Lan, G., Lu, Z., Monteiro, R.D.C.: Primal-dual first-order methods with O(1/ε) iteration-complexity for cone program-

ming, Mathematical Programming, 126, 1–29 (2011) [2]
31. Nemirovsky, A.S., Nesterov, Y.: Optimal methods for smooth convex minimization, Zh. Vichisl. Mat. Fiz. (In Russian),

25(3), 356–369 (1985) [2]
32. Nemirovsky, A.S., Yudin, D.B.: Problem Complexity and Method Efficiency in Optimization, Wiley, New York (1983)

[2]
33. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, Kluwer, Dordrecht, (2004) [2]
34. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(1/k2), Doklady AN SSSR

(In Russian), 269 (1983), 543–547. English translation: Soviet Math. Dokl., 27, 372–376 (1983) [2]
35. Nesterov, Y.: Smooth minimization of non-smooth functions, Mathematical Programming, 103, 127–152 (2005) [2]
36. Nesterov, Y.: Excessive gap technique in nonsmooth convex minimization, SIAM Journal on Optimization, 16, 235–249

(2005) [2]
37. Nesterov, Y.: Gradient methods for minimizing composite objective function, Mathematical Programming, 140, 125–161

(2013) [2, 26]
38. Nesterov, Y.: Universal gradient methods for convex optimization problems, Mathematical Programming, 152, 381–404

(2015) [2, 3, 4, 5, 14, 26]
39. Neumaier, A.: OSGA: a fast subgradient algorithm with optimal complexity, Mathematical Programming, DOI

10.1007/s10107-015-0911-4, (2015) [2]
40. Neumaier, A.: Introduction to Numerical Analysis, Cambridge University Press, Cambridge, (2001) [9]
41. Neumaier, A.: Solving ill-conditioned and singular linear systems: a tutorial on regularization, SIAM Review, 40(3),

636–666 (1998) [26]
42. Parikh, N., Boyd, S.: Proximal Algorithms, Foundations and Trends in Optimization, 1(3), 123–231 (2013) [26]
43. Shawe-Taylor, J., Sun, S.: A review of optimization methodologies in support vector machines, Neurocomputing, 74,

3609–3618 (2011) [29]
44. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization, Manuscript (2008) http://

pages.cs.wisc.edu/~brecht/cs726docs/Tseng.APG.pdf [2]
45. Zhu, J., Rosset, S., Hastie, T., Tibshirani, R.: 1-norm support vector machines, Advances in Neural Information Pro-

cessing Systems, 16, 49–56 (2004) [29]

