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Abstract

Mathematical programs with equilibrium (or complementarity) constraints, MPECs for short, are a dif-
ficult class of constrained optimization problems. The feasible set has a very special structure and violates
most of the standard constraint qualifications (CQs). Thus, the Karush-Kuhn-Tucker (KKT) conditions
are not necessarily satisfied by minimizers and the convergence assumptions of many methods for solving
constrained optimization problems are not fulfilled. Therefore it is necessary, both from a theoretical and
numerical point of view, to consider suitable optimality conditions, tailored CQs and specially designed al-
gorithms for solving MPECs. In this paper, we present a new sequential optimality condition useful for the
convergence analysis for several methods of solving MPECs, such as relaxations schemes, complementarity-
penalty methods and interior-relaxation methods. We also introduce a variant of the augmented Lagrangian
method for solving MPEC whose stopping criterion is based on this sequential condition and it has strong
convergence properties. Furthermore, a new CQ for M-stationary which is weaker than the recently intro-
duced MPEC relaxed constant positive linear dependence (MPEC-RCPLD) associated to such sequential
condition is presented. Relations between the old and new CQs as well as the algorithmic consequences will
be discussed.

1 Introduction

In this paper we study sequential optimality conditions and constraint qualifications for mathematical programs
with equilibrium constraints. We consider mathematical programs with complementarity (or equilibrium) con-
straints given by

minimize f(x)
subject to g(x) ≤ 0, h(x) = 0

0 ≤ H(x) ⊥ G(x) ≥ 0
(1)

where f : Rn → R, h : Rn → Rq, g : Rn → Rp, H,G : Rn → Rm are continuously differentiable functions. The
notation 0 ≤ u ⊥ v ≥ 0 for u and v in Rn is a shortcut for u ≥ 0, v ≥ 0 and 〈u, v〉 = 0.

MPECs form an important class of optimization problems. MPEC has its origin in bilevel programming [22]
and appears naturally in various applications of the Stackelberg game in economic sciences. It also plays an
important role in many others fields, such as engineering design, robotics, multilevel game and transportation
science, [48]. For further details, see [22, 40, 45, 20].

MPECs are known to be difficult constrained optimization problems. The main problem, both from a
theoretical and a numerical point of view, comes from the complementarity constraints. In fact, many of the
standard CQs as the linear independence CQ (LICQ) and the Mangasarian Fromovitz CQ (MFCQ) are violated
at any feasible point. The only known standard CQ applicable in the context of MPECs is the Guignard CQ, see
[24], which is the weakest CQ for nonlinear mathematical programming (NLP) problems; see [25]. In the failure
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of CQs, the Karush-Kuhn-Tucker (KKT) conditions may not hold at minimizer (even in the case, where all
constraint functions are linear) and the convergence assumptions for most all standard methods for the solution
of constrained optimization problems are not satisfied.

For this reason, several notions of stationarity designed for MPECs have emerged over the years. The strong
stationarity and the Clarke-stationarity (C-stationarity) are introduced in [51]. It is known that the notion of
strong stationarity is equivalent to the KKT conditions of (1) seen as NLP, e.g. [24]. As a consequence, the
strong stationarity is a necessary optimality condition only under strong assumptions. C-stationarity, by the
other hand, is weaker than strong stationarity and a necessary optimality condition under very mild conditions.
Using Mordukhovich’s limiting calculus, [42], another stationarity concept emerged, called M-stationarity, see
[43, 44, 57]. M-stationarity is stronger than C-stationarity and it can be shown that it is a necessary optimality
condition under the same assumptions as C-stationarity.

In order to ensure that a local minimizer of the MPEC (1) is stationary in one of the above senses, we need the
CQs. In view of the fact that many standard CQs do not hold for MPECs, a variety of tailored MPEC-CQs have
been developed over the years, most of them analogues to standard CQs for NLPs, c.f. [56, 37, 35, 28, 16]. In the
other hand, since standard CQs fail, we may search for strong optimality conditions that are valid independently
of any CQ. For NLPs, a useful concept is the notion of sequential optimality conditions, [2, 4, 6, 12]. Sequential
optimality conditions are genuine optimality conditions that do not depend of the fulfillment of any CQ. There
are strong optimality conditions in the sense that they imply the KKT conditions, under weaker CQs, and more
important, they provide theoretical tools to justify a stopping criteria for several NLP solvers. This property
makes the sequential optimality conditions a useful tool for the improvement of global convergence analysis of
several NLP methods under weak assumptions, [6, 7].

In this paper we introduce a new sequential optimality condition suitable for MPECs, called MPEC-AKKT.
We will show that MPEC-AKKT is a proper optimality condition, strong in the sense that it implies the
M-stationarity under weaker assumption and under mild assumptions several relaxation methods generate se-
quences whose limit points satisfy that condition. We also introduce a companion CQ for M-stationarity, based
on the cone-continuity property (CCP) introduced in [6], called MPEC-CCP. Such CQ is strictly weaker than the
recently introduced MPEC-RCPLD [27] and can be used in the global convergence analysis of certain methods
for solving MPECs.

The paper is organized in the following way: In section 2 we set our standard notation, the basic definitions
and stationarity concepts for MPECs. In section 3 we will introduce a new sequential optimality condition
and a companion CQ. We also discuss the relation of this sequential optimality condition with the standard
sequential optimality condition for NLPs, the AKKT condition, [2, 47]. Relationship between old and new CQs
for M-stationarity will be discussed in the section 4. We will pay special attention for the MPEC-RCPLD,
MPEC-Abadie CQ and MPEC-quasinormality (see the section 4 for definitions). Finally in section 5 we will
present a simple scheme inspired on the augmented Lagrangian method whose stopping criterion is based on the
sequential condition MPEC-AKKT. Additionally, we will use the MPEC-AKKT to improve the convergence
analysis of several algorithms under standard assumptions. Conclusions will be given in the section 6.

2 Preliminaries and basic assumptions

Our notation is standard in optimization and variational analysis; cf. [50, 15]. Rn stands for the n-dimensional
real Euclidean space, n ∈ N. R+ is the set of positive scalars and R− the set of negative numbers. Set
a+ = max{0, a}, the positive part of a ∈ R and put a− := −min{0, a} = (−a)+. We use 〈·, ·〉 to denote
the Euclidean inner product, ‖ · ‖ the associated norm. Given a differentiable mapping Γ : Rs → Rd, we use
∇Γ(x) to denote the Jacobian matrix of Γ at x when d > 1 and the gradient vector when d = 1. For every
a ∈ Rs, the support of a is supp(a) := {i : ai 6= 0}. Given a set-valued mapping Γ : Rs ⇒ Rd, the sequential
Painlevé-Kuratowski outer limit of Γ (z) as z → z∗ is denoted by

lim sup
z→z∗

Γ (z) := {w∗ ∈ Rd : ∃ (zk, wk)→ (z∗, w∗) with wk ∈ Γ (zk)}. (2)

2



We say that Γ is outer semicontinuous (osc) at z∗ if lim supz→z∗ Γ (z) ⊂ Γ (z∗). The sequential Painlevé-
Kuratowski inner limit of Γ (z) as z → z∗ is given by

lim inf
z→z∗

Γ (z) := {w∗ ∈ Rd : ∀zk → z∗, ∃wk → w∗ with wk ∈ Γ (zk)} (3)

and Γ is inner semicontinuous (isc) at z∗ iff Γ (z∗) ⊂ lim infz→z∗ Γ (z). We denote by cl X the closure of X,
and for conv X the convex hull of X. For a cone K ⊂ Rs, its polar is K◦ := {v ∈ Rs|〈v, k〉 ≤ 0 for all k ∈ K}.
In this case, we always have K◦◦ = cl conv K. The notation o(t) means any real function φ(t) such that
lim supt→0+

t−1φ(t) = 0. Given X ⊂ Rn and z∗ ∈ X, we define the tangent/contingent cone to X at z∗ by

TX(z∗) := lim sup
t↓0

X − z∗

t
= {d ∈ Rn : ∃ tk ↓ 0, dk → d with z∗ + tkd

k ∈ X}. (4)

The regular normal cone to X at z∗ ∈ X is

N̂X(z∗) := {w ∈ Rn : 〈w, z − z∗〉 ≤ o(‖z − z∗‖) for z ∈ X}. (5)

The (Mordukhovich) limiting normal cone to X at z∗ ∈ X is defined by

NX(z∗) := lim sup
z→z∗,z∈X

N̂X(z). (6)

The Clarke’s normal cone to X at z∗ ∈ X is NC
X (z∗) := cl convNX(z∗). From the definitions, we always have

N̂X(z) ⊂ NX(z) ⊂ NC
X (z), ∀z ∈ X. When X is a closed convex set, all these normal cones coincide to the

classical normal cone of convex analysis, [50].
In order to describe geometrically the complementary constraints, we define

C := {(c1, c2) ∈ R2 : 0 ≤ −c1 ⊥ −c2 ≥ 0}. (7)

Observe that ((−H1(x),−G1(x)), . . . , (−Hm(x),−Gm(x))) ∈ Cm is equivalent to the complementary constraints
0 ≤ H(x) ⊥ G(x) ≥ 0. The minus signs are used only for convenience of our analysis.

Proposition 2.1. [26, Proposition 2.1] For every (c1, c2) ∈ C, we have

a). The tangent cone

TC((c1, c2)) =

d = (d1, d2) :
d1 = 0, d2 ∈ R if c1 = 0, c2 < 0
d1 ∈ R, d2 = 0 if c1 < 0, c2 = 0
(d1, d2) ∈ C if c1 = 0, c2 = 0

 ; (8)

b). The regular normal cone

N̂C((c1, c2)) =

d = (d1, d2) :
d1 ∈ R, d2 = 0 if c1 = 0, c2 < 0
d1 = 0, d2 ∈ R if c1 < 0, c2 = 0
d1 ≥ 0, d2 ≥ 0 if c1 = 0, c2 = 0

 ; (9)

c). The limiting normal cone

NC((c1, c2)) =

d = (d1, d2) :

d1 ∈ R, d2 = 0 if c1 = 0, c2 < 0
d1 = 0, d2 ∈ R if c1 < 0, c2 = 0
either d1d2 = 0 if c1 = 0, c2 = 0
or d1 > 0, d2 > 0

 ; (10)

d). The Clarke’s normal cone

NC
C ((c1, c2)) =

d = (d1, d2) :
d1 ∈ R, d2 = 0 if c1 = 0, c2 < 0
d1 = 0, d2 ∈ R if c1 < 0, c2 = 0
d1 ∈ R, d2 ∈ R if c1 = 0, c2 = 0

 . (11)

3



By [50, Proposition 6.41], we obtain

Lemma 2.2. Let Λ := Rp− × {0}q × Cm and z := (a, b, (c11, c
1
2), . . . , (cm1 , c

m
2 )) ∈ Λ. We may write the limiting

normal cone as

NΛ(z) =

p∏
j=1

NR−(aj)×
p∏
j=1

N{0}(bj)×
m∏
i=1

NC((c
i
1, c

i
2)). (12)

Similar formula holds for the Clarke’s normal cone [19, Exercise 10.33]. We end with the following lemma,
which is a variation of Caratheódory’s lemma.

Lemma 2.3. [3, Lemma 1] Let v =
∑
i∈B αipi+

∑
j∈D βjqj with pi, qj ∈ Rn, i ∈ B, j ∈ D, such that {pi : i ∈ B}

is a linearly independent set and βj 6= 0, ∀j ∈ D. Then, there is a subset D′ ⊂ D and scalars α̂i, β̂j, i ∈ B,

j ∈ D′ with βj β̂j > 0, j ∈ D′ such that v =
∑
i∈B α̂ipi +

∑
j∈D′ β̂jqj and the set {pi, qj : i ∈ B, j ∈ D′} is

linearly independent.

2.1 Mathematical programs with equilibrium constraints.

For NLPs, the KKT conditions are the most common notion of stationarity. In contrast to MPECs, several
different stationarity concepts have emerged over the years. Before continuing, in order to exploit the very special
structure of the complementary constraints, we rewrite the MPEC problem (1) as a optimization problem with
geometric constraints:

Minimize f(x) subject to F (x) ∈ Λ, (13)

where

F (x) := (g(x), h(x),Ψ(x)) (14)

Ψ(x) := ((−H1(x),−G1(x)), . . . , (−Hm(x),−Gm(x)))

Λ := Rp− × {0}q × Cm

The feasible region of the optimization problem with geometric constraints (13) is Ω := {x ∈ Rn : F (x) ∈ Λ}.
Now, we will define some crucial index sets that will occur frequently in the subsequent analysis. Since,
we will deal with several MPECs, these index sets must be explicitly dependent of the feasible constraint
sets. Consider a set of the form, Λ = Rp− × {0}q × Cm for some p, q,m ∈ N. Now, for every point, z :=
(a, b,−(c11, c

1
2), . . . ,−(cm1 , c

m
2 )) in Λ = Rp− × {0}q × Cm, we use the notation

I(z,Λ) := {i ∈ {1, . . . ,m} : ci1 = 0, ci2 > 0},
J (z,Λ) := {i ∈ {1, . . . ,m} : ci1 = 0, ci2 = 0},
K(z,Λ) := {i ∈ {1, . . . ,m} : ci1 > 0, ci2 = 0}.

(15)

When, Λ is clear for the context, we write I(z), J (z) and K(z) instead of I(z,Λ), J (z,Λ) and K(z,Λ) respec-
tively. For x∗ ∈ Ω = {x ∈ Rn : F (x) ∈ Λ}, we let

A(x∗,Ω) := {j ∈ {1, . . . , p} : gj(x
∗) = 0},

I(x∗,Ω) := I(F (x∗),Λ) = {i ∈ {1, . . . ,m} : Hi(x
∗) = 0, Gi(x

∗) > 0},
J (x∗,Ω) := J (F (x∗),Λ) = {i ∈ {1, . . . ,m} : Hi(x

∗) = 0, Gi(x
∗) = 0},

K(x∗,Ω) := K(F (x∗),Λ) = {i ∈ {1, . . . ,m} : Hi(x
∗) > 0, Gi(x

∗) = 0}.

(16)

Similarly, when Ω is clear in the context, we write A(x∗), I(x∗), J (x∗) and K(x∗) instead of A(x∗,Ω), I(x∗,Ω),
J (x∗,Ω) and K(x∗,Ω) respectively. There is no risk of confusion, between I(x) and I(z) since we reserve the
letter z for elements of Λ. The same considerations for the other index sets.

The set A(x∗) is index set of active inequalities and the index sets I(x∗), J (x∗) and K(x∗) form a partition
of {1, . . . ,m} for every x∗ ∈ Ω. The set J (x∗) is called the bi-active set. Now, we are now able to define the
next stationarity concepts.
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Definition 2.1. Let x∗ be a feasible point for the MPEC (1). Suppose that there are multipliers µ ∈ Rp+,
λ ∈ Rq, u ∈ Rm and v ∈ Rm with supp(µ) ⊂ A(x∗) such that

∇f(x∗) +

p∑
j=1

µj∇gj(x∗) +

q∑
i=1

λi∇hi(x∗)−
m∑
ı=1

uı∇Hı(x
∗)−

m∑
=1

v∇G(x∗) = 0. (17)

Then, x∗ is said to be

1. Strongly stationary (S-stationary), if ui = 0, i ∈ K(x∗), vj = 0, i ∈ I(x∗) and ui ≥ 0, vi ≥ 0 for all
i ∈ J (x∗);

2. M-stationary, if ui = 0, i ∈ K(x∗), vj = 0, i ∈ I(x∗) and either ui > 0, vi > 0 or uivi = 0 for all
i ∈ J (x∗);

3. C-stationary, if ui = 0, i ∈ K(x∗), vj = 0, i ∈ I(x∗) and uivi ≥ 0 for all i ∈ J (x∗);

4. weakly stationary, if ui = 0, i ∈ K(x∗) and vj = 0, i ∈ I(x∗).

The different notions differ, basically, in how the multipliers ui and vi act over the bi-active set J (x∗). All
these stationary concepts coincide when the bi-active set is an empty set. From the definitions the following
chain of implications holds: S-stationary⇒ M-stationary⇒ C-stationary⇒ weak stationary. These stationary
concepts can be state in a geometric way, using Proposition 2.1 and Lemma 2.2. See [26, Proposition 2.2]

Proposition 2.4. Let x∗ be a feasible point for the MPEC 1. We have the following statements:

1. S-stationary is equivalent to 0 ∈ ∇f(x∗) +∇F (x∗)>N̂Λ(F (x∗));

2. M-stationary is equivalent to 0 ∈ ∇f(x∗) +∇F (x∗)>NΛ(F (x∗));

3. C-stationary is equivalent to 0 ∈ ∇f(x∗) +∇F (x∗)>ÑΛ(F (x∗)), where ÑΛ(z) := NRp
−

(a)×N{0}q (b)×∏m
i=1(N̂C((c

i
1, c

i
2)) ∪ −N̂C((ci1, ci2))), for z = (a, b, c) ∈ Rp− × {0}q × Cm;

4. weakly stationary is equivalent to 0 ∈ ∇f(x∗) +∇F (x∗)>NC
Λ (F (x∗)).

3 Sequential optimality condition and a new CQ

This section is devoted to the study of sequential optimality conditions suitable for MPECs. We will introduce
a new sequential optimality condition called MPEC-AKKT. Relations with the AKKT condition (a standard
sequential optimality condition for NLPs) will be discussed. We also present a new CQ for M-stationarity.

First, we consider the role of sequential optimality condition for NLPs. Consider the NLP: minimize f(x)
subject to x ∈ X, where

X := {x ∈ Rn : gj(x) ≤ 0, j ∈ {1, . . . , p}, hi(x) = 0, i ∈ {1, . . . , q}}. (18)

Since, it is usually not possible to “solve” the NLPs exactly; most of the standard NLPs method stops when the
KKT conditions are satisfied approximately, although KKT conditions are not necessary satisfied by minimizers.
The Approximate KKT (AKKT) condition justifies this practice [2, 47].

Definition 3.1. The Approximate-Karush-Kuhn-Tucker (AKKT) condition holds at x∗ ∈ Rn if there are
sequences {xk} ⊂ Rn, {λk} ⊂ Rq, {µk} ⊂ Rp+ and {εk} ⊂ R+, such that xk → x∗, εk → 0+,

‖h(xk)‖ ≤ εk, ‖max{0, g(xk)}‖ ≤ εk, (19)

‖∇f(xk) +

p∑
j=1

µkj∇gj(xk) +

q∑
i=1

λki∇hi(xk)‖ ≤ εk, and (20)

µkj = 0 if gj(x
k) < −εk. (21)
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Certainly, we can used different εk for the each different parts of the definition of AKKT. To keep, the
notation simple, we decided to take the same εk. The notion of AKKT condition is independent of this choice,
in fact, the AKKT condition is equivalent to say that there are sequence {xk} ⊂ Rn, {λk} ⊂ Rq and {µk} ⊂ Rp+
with xk → x∗, supp(µk) ⊂ A(x∗) such that ∇f(xk) +

∑
j∈A(x∗) µ

k
j∇gj(xk) +

∑q
i=1 λ

k
i∇hi(xk)→ 0.

Remark 1. Each point xk is called of εk-stationarity point. Several variants of the AKKT condition have been
proposed in the literature. They basically differ in the way the complementarity conditions are treated. For
instance, if additionally to (19), (20) and (21) we require

∑p
i=1 |λki hi(xk)|+

∑q
j=1 |µkj gj(xk)| ≤ εk, we have the

complementary AKKT condition (CAKKT) introduced in [8]. If instead of
∑p
i=1 |λki hi(xk)|+

∑q
j=1 |µkj gj(xk)| ≤

εk we only require
∑q
j=1 |µkj gj(xk)| ≤ εk we get the notion of ε-stationarity considered in [37].

The AKKT condition justifies the stopping criteria for several NLP methods. In fact, it attempts to catch a
property of several NLPs solvers: NLPs solvers are devised to find a primal sequence and approximate multipliers
They basically differ in the way the complementarity conditions are treated for which the KKT residual goes to
zero. The AKKT condition, as other sequential optimality conditions, shares three important properties. First,
it is a true necessary optimality condition independently of the fulfillment of any CQ [2]. Second, it is strong,
in the sense that it implies necessary optimality conditions as “KKT or not CQ” for weak CQs as MFCQ,
RCPLD or CPG, see [3, 4, 6]. Third, there are many algorithms that generate sequences whose limit points
satisfy it. In the case of AKKT, we have that some augmented Lagrangian methods [1, 12], some Sequential
Quadratic Programming (SQP) algorithms [47], interior point methods [17] and inexact restoration methods
generate primal sequences {xk} with approximate multipliers {µk, λk} for a given error tolerance {εk} for which
(19), (20) and (21) are fulfilled, see [4]. This makes possible improve the global converge analysis of those
methods under weaker assumptions, [4, 6, 7]. The sequence {xk} is called an AKKT sequence and we say that
these methods generate AKKT sequences.

Motivated by AKKT, we propose a sequential optimality condition suitable for optimization problems with
geometric constraints (13).

Definition 3.2. We say the Approximate stationarity condition holds for the feasible point x∗ for the problem
(13), if there are sequences {xk}, {zk} and {γk} such that xk → x∗, zk → F (x∗), zk ∈ Λ

∇f(xk) +∇F (xk)>γk → 0 and γk ∈ NΛ(zk). (22)

If γk = (µk, λk, uk, vk) ∈ Rp+ × Rq × Rm × Rm. Then, using the explicit form of NΛ(zk), Lemma 2.2, (22)
can be written, for k sufficiently large, as

∇f(xk) +

p∑
j=1

µkj∇gj(xk) +

q∑
i=1

λki∇hi(xk)−
m∑
ı=1

ukı∇Hı(x
k)−

m∑
=1

vk∇G(xk)→ 0 (23)

where supp(µk) ⊂ A(x∗), supp(uk) ⊂ I(zk) ∪ J (zk), supp(vk) ⊂ K(zk) ∪ J (zk) and either uk` v
k
` = 0 or

uk` > 0, vk` > 0 for each ` ∈ J (zk).
In the absence of complementary constraints, the definition above reduces to the AKKT condition. For that

motive, we call every feasible x∗ that conforms the Definition 3.2 of a MPEC-AKKT point and each sequence
{xk} of a MPEC-AKKT sequence.

A small variations of this definition have appeared implicitly stated in the literature, for example in [56,
10, 33] or even in [35] in the proof that each local minimizer of (1) satisfies a MPEC-tailored Fritz-John point.
However, we will use the version described above as it is better suited for our purposes. Note that MPEC-AKKT
is a property of the optimization problem, rather than a property of the constraint set, since it depends on the
objective function f . As we will see in section 5, MPEC-AKKT will be an useful theoretical tool in the analysis
of convergence of some algorithms for solving MPECs.

Remark 2. In the definition of MPEC-AKKT, there is no loss of generality if we choose γk in N̂Λ(zk) (maybe
for another zk with zk → F (x∗)). This is a consequence of the definition of NΛ as outer limit of regular normal
cones. Thus, each MPEC-AKKT point can be approximated by a sequence of approximate M-stationary points
and also by a sequence of approximate S-stationary points. Note that if 0 ∈ ∇f(xk)+∇F (xk)>γk, γk ∈ NΛ(zk)

for k ∈ N, {xk} is a sequence of M-stationary points and if 0 ∈ ∇f(xk) +∇F (xk)>γk, γk ∈ N̂Λ(zk) for k ∈ N,
{xk} is a sequence of S-stationary points.
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MPEC-AKKT is a proper optimality condition and independent of any assumption over the constraints as
Theorem 3.1 will shows. The proof use classical penalty approach and it can be derived from the proofs of
[56, 35] or [50, Theorem 6.14]. We state it here for sake of completeness.

Theorem 3.1. Every local minimizer is a MPEC-AKKT point.

Proof Let δ > 0 such that f(x∗) ≤ f(x), ∀x ∈ Ω ∩ B(x∗, δ) and ρk ↑ ∞. For each k, consider the problem

Min f(x) +
1

2
‖(x− x∗, z − F (x∗))‖2 +

1

2
ρk‖F (x)− z‖2 s.t. (x, z) ∈ U, (24)

where U := {(x, z) ∈ Rn × Λ : ‖(x, z) − (x∗, F (x∗))‖ ≤ δ}. Let (xk, zk) be a global solution of (24), which is
well-defined by the compactness of U and continuity of the functions. We will show that the sequence {(xk, zk)}
converges to (x∗, F (x∗)). In fact, due to the optimality, we have

f(xk) +
1

2
‖(xk − x∗, zk − F (x∗))‖2 +

1

2
ρk‖F (xk)− zk‖2 ≤ f(x∗) (25)

Let (x̂, ẑ) be a limit point of {(xk, zk)}. From (25) follows that ‖F (xk) − zk‖ → 0 and so F (x̂) = ẑ. As
consequence x̂ is a feasible point. Evenmore, by (25), we have ‖(x̂− x∗, ẑ − F (x∗))‖2 ≤ 2(f(x∗)− f(x̂)). But,
since f(x∗) ≤ f(x̂) we get that x̂ = x∗ and that {(xk, zk)} converge since it has a unique limit point, namely,
(x∗, F (x∗)). Now, for k sufficiently large, ‖(x, z)− (x∗, F (x∗))‖ < δ and then, by the optimality of (xk, zk), [50,
Theorem 6.12], we obtain

0 = rk +∇f(xk) +∇F (xk)>γk with γk ∈ NΛ(zk), (26)

where rk := −∇F (xk)>(F (x∗)− zk) + (xk−x∗) and γk := ρk(F (xk)− zk) + (F (x∗)− zk). From the continuity,
we get rk → 0. Thus, from (26), x∗ is a MPEC-AKKT point.

Remark 3. Note that the AKKT condition holds at x∗ for (1) seen as NLP iff there is a sequence xk ∈ Rn with
xk → x∗ such that

∇f(xk) +
∑
j∈A(x∗) µ

k
j∇gj(xk) +

∑q
i=1 λ

k
i∇hi(xk)

−
∑m
i=1 u

k
i∇Hi(x

k)−
∑m
j=1 v

k
j∇Gj(xk) +

∑m
i=1 ρ

k
i∇(Gi(x

k)Hi(x
k))→ 0

(27)

for some approximate multipliers (µk, λk, uk, vk, ρk) ∈ Rp+ × Rq × Rm+ × Rm+ × Rm with supp(µk) ⊂ A(x∗),
supp(uk) ⊂ {i ∈ {1, . . . ,m} : Hi(x

∗) = 0} and supp(vk) ⊂ {i ∈ {1, . . . ,m} : Gi(x
∗) = 0}. We observe that (27)

and (23) differ in the way how we deal with the complementarity constraints.

The problem (1) can be view as a optimization problem with geometrical constraints (13). Thus, each local
minimizer of (1) is a MPEC-AKKT point. In the other hand, (1) can be also see as a NLP. So, a local minimizer
is also an AKKT point. Now, if we try to solve (1) by using NLP algorithms (as augmented lagrangian methods
or some SQP methods), we get a sequence of iterates such that every feasible limit point satisfies the AKKT
condition (a nontrivial optimality condition). We can consider this fact as a possible reason why, in general, NLP
algorithms are successful when they are applied to MPECs, [5]. Thus, since AKKT and MPEC-AKKT are both
optimality conditions, one with clear algorithmically implications, the exact relation between MPEC-AKKT
and AKKT becomes relevant.

First, MPEC-AKKT does not imply AKKT as the following example shows.

Example 3.1 (MPEC-AKKT does not imply AKKT). In R2, consider the point x∗ := (0, 0), the func-
tion f(x1, x2) := x1 and the complementary constraints given by H1(x1, x2) := x2 exp(−x1x2), G1(x1, x2) :=
exp(x1x2), H2(x1, x2) := −x2 exp(x1x2) and G2(x1, x2) := exp(−x1x2). Clearly, x∗ is a feasible point. Now,
we will show that x∗ is not an AKKT point. Indeed, from the AKKT condition, ∇f(xk1 , x

k
2)−uk1∇H1(xk1 , x

k
2)−

uk2∇H2(xk1 , x
k
2) + ρk1∇(H1G1)(xk1 , x

k
2) + ρk2∇(H2G2)(xk1 , x

k
2) → (0, 0) for some sequence xk = (xk1 , x

k
2) → (0, 0)

and multipliers uk1 , u
k
2 ≥ 0, ρk1 , ρ

k
2 ∈ R, see Remark 3. Since (H1G1)(x1, x2) = x2 and (H2G2)(x1, x2) = −x2,

from the AKKT condition, we must get 1 + uk1(xk2)2 exp(−xk1xk2) + uk2(xk2)2 exp(xk1x
k
2) → 0 which is impossi-

ble because uk1 , u
k
2 ≥ 0. Now, we will show that MPEC-AKKT holds at x∗. Take xk1 := 0, xk2 := 1/k and

zk := (−(0, 1),−(0, 1)). Then, (xk1 , x
k
2) → (0, 0), zk → F (x∗) = (−(0, 1),−(0, 1)), I(zk) = {1, 2}, K(zk) = ∅
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and J (zk) = ∅. Put uk1 := −((xk2)2 exp(−xk1xk2) + (xk2)2 exp(xk1x
k
2))−1, uk2 := uk1 , vk2 := vk1 = 0. By calculations,

∇f(xk1 , x
k
2)−uk1∇H1(xk1 , x

k
2)−uk2∇H2(xk1 , x

k
2) = (0, 0). Thus, (23) holds at x∗ and hence x∗ is a MPEC-AKKT

point.

Under additional assumptions, MPEC-AKKT implies AKKT

Theorem 3.2. Let x∗ be a MPEC-AKKT point and {(xk, zk, γk)} be a MPEC-AKKT sequence associated to
x∗ with γk = (µk, λk, (uk1 , v

k
1 ), . . . , (ukm, v

k
m)) and zk := (ak, bk,−ck) ∈ Λ. If, we assume that

1. ukj ≥ 0, vkj ≥ 0 for all j ∈ J (zk) and;

2. The sequence {max{0,maxj∈I(zk)(−ukj /ck2j),maxj∈K(zk)(−vkj /ck1j)} : k ∈ N} has a subsequence bounded.

Then, x∗ is an AKKT point for the problem 1 considered as a NLP.

Proof. Define ρk := max{0,maxj∈I(zk)(−ukj /ck2j),maxj∈K(zk)(−vkj /ck1j)}. We assume without loss of generality
(after take an adequate subsequence) that {ρk} itself is bounded. To show, that under the boundedness of {ρk},
MPEC-AKKT implies AKKT, we only focus on the complementary part of (23). Define

ωk := −
∑

ı∈I(zk)∪J (zk)

ukı∇Hı(x
k)−

∑
∈K(zk)∪J (zk)

vk∇G(xk). (28)

Let us recall that the sets I(zk), K(zk) and J (zk) are a partition of {1, . . . ,m}. Take ûkj := ukj + ρkc
k
2j ≥ 0,

j ∈ I(zk), ûkj := ukj , j ∈ J (zk)∪K(zk) and v̂kj := vkj + ρkc
k
1j ≥ 0, j ∈ K(zk), v̂kj := vkj , j ∈ J (zk)∪ I(zk). Note

that I(zk) ∪ J (zk) = {i : ck1i = 0} and K(zk) ∪ J (zk) = {j : ck2j = 0}. Substituting ūk and v̄k into (28), we

obtain that ωk is equal to

−
∑

i:ck1i=0

ûki∇Hi(x
k)−

∑
j:ck2j=0

v̂kj∇Gj(xk) +

m∑
i=1

ρk∇(Gi(x
k)Hi(x

k)) +∆k (29)

where ∆k :=
∑m
i=1 ρk(ck2i −Gi(xk))∇Hi(x

k) + ρk(ck1i −Hi(x
k))∇Gi(xk).

Put ρki := ρk, ∀i ∈ {1, . . . ,m}. Since {ρk} is bounded and (ck1i, c
k
2i) → (Hi(x

∗), Gi(x
∗)), ∀i, we get ∆k →

0. To show that x∗ is an AKKT point, we only rest to show that ûki ≥ 0, ∀i : Hi(x
∗) = 0 and v̂ki ≥ 0,

∀i : Gi(x
∗) = 0. But, it holds, since {i ∈ {1, . . . ,m} : ck1i = 0} ⊂ {i ∈ {1, . . . ,m} : Hi(x

∗) = 0} and
{i ∈ {1, . . . ,m} : ck2i = 0} ⊂ {i ∈ {1, . . . ,m} : Gi(x

∗) = 0}, for k large enough.

By the other hand, it is not true, that AKKT always implies MPEC-AKKT.

Example 3.2 (AKKT does not imply MPEC-AKKT). In R2, take f(x1, x2) := −x2, 0 ≤ H1(x1, x2) :=
x1 ⊥ G1(x1, x2) := x2 ≥ 0 and x∗ := (0, 1). Clearly, x∗ is a feasible point. Now, we will see that AKKT
holds at x∗. Take xk = (xk1 , x

k
2) := (1/k, 1), ρk := k, λ1 := k and λ2 := 0. By straightforward calculations,

∇f(xk) − λ1∇H1(xk) − λ2∇G1(xk) + ρk∇(H1(xk)G1(xk)) = 0. Thus, AKKT holds at x∗. However, MPEC-
AKKT fails at x∗. In fact, since there is only one complementary constraint and I(x∗) = {1}, expression (23)
holds iff ∇f(xk) − uk∇H1(xk) = (0,−1) − uk(1, 0) = −(uk, 1) → (0, 0) for some uk ∈ R, which is impossible.
Thus, MPEC-AKKT fails.

Under some assumptions, AKKT implies MPEC-AKKT as Theorem 3.3 shows

Theorem 3.3. Let x∗ be an AKKT point. If there exists an AKKT sequence {xk} with xk ∈ Ω, k ∈ N such
that ukjHj(x

k) = 0 and vki Gi(x
k) = 0 hold for every k ∈ N and for every i ∈ {1, . . . ,m}. Then, x∗ is a

MPEC-AKKT point.

Proof. Let {xk} be the feasible sequence satisfying the hypothesis. Denote by (µk, λk, uk, vk, ρk) the approximate
multipliers associated with {xk}. Now, we focus on the complementarity part. Denote by ωk the next expression

−
∑

{i:Hi(x∗)=0}

uki∇Hi(x
k)−

∑
{i:Gi(x∗)=0}

vki∇Gi(xk) +

m∑
i=1

ρki∇(Hi(x
k)Gi(x

k)) (30)
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with (uk, vk, ρk) ∈ Rm+ × Rm+ × Rm, supp(uk) ⊂ {i : Hi(x
∗) = 0}, supp(vk) ⊂ {i : Gi(x

∗) = 0}, 〈uk, H(xk)〉 = 0
and 〈vk, G(xk)〉 = 0. Put zk := F (xk), k ∈ N. Clearly, zk ∈ Λ, ∀k and

∑
i∈I(zk) ρ

k
iGi(x

k)∇Hi(x
k) +∑

i∈K(zk) ρ
k
iHi(x

k)∇Gi(xk) is equal to
∑m
i=1 ρ

k
i∇(Hi(x

k)Gi(x
k)). Since ukiHi(x

k) = 0, vki Gi(x
k) = 0, ∀i, we

have that uki = 0, i ∈ K(zk) and vki = 0, i ∈ I(zk). Moreover, for k large enough, I(zk) = I(zk)∩{i : Hi(x
∗) =

0} and K(zk) = K(zk) ∩ {i : Gi(x
∗) = 0}. Then, (30) can be written as

ωk = −
∑

{i:Hi(x∗)=0}

ūki∇Hi(x
k)−

∑
{i:Gi(x∗)=0}

v̄ki∇Gi(xk) (31)

where (ūk, v̄k) ∈ Rm × Rm is defined as follows

ūki :=

{
uki − ρkiGi(xk) if i ∈ {i : Hi(x

∗) = 0} ∩ I(zk)
uki if i ∈ {i : Hi(x

∗) = 0} ∩ J (zk)
(32)

v̄ki :=

{
vki − ρkiHi(x

k) if i ∈ {i : Gi(x
∗) = 0} ∩ K(zk)

vki if i ∈ {i : Gi(x
∗) = 0} ∩ J (zk)

(33)

with supp(ūk) ⊂ {i : Hi(x
∗) = 0} and supp(v̄k) ⊂ {i : Gi(x

∗) = 0}. Note that ūk` ≥ 0, v̄k` ≥ 0 for ` ∈ J (zk).
Thus, {xk} is a MPEC-AKKT sequence.

Recently, in [6] the authors introduced a new CQ intimately related with the AKKT condition, called CCP.
This CQ is the most accurate measure of strength of the sequential optimality condition AKKT, in fact, under
CCP, every AKKT point is actually a KKT point and when CCP fails, it is possible to find an AKKT point
which is not a KKT point as the proof of the [6, Theorem 3.2] shows. Unfortunately, as others standard CQs,
CCP may not hold for MPECs. So, when we try to solve MPECs problems using NLPs methods, such methods
(as the augmented lagrangian methods) can generate an AKKT point, accepted as possible solution, but which
is not a stationary KKT-point. Motivated by CCP, we define the next MPEC-type CCP condition.

Definition 3.3. Let x∗ be a feasible point. We say that the MPEC-Cone Continuity Property (MPEC-CCP)
holds at x∗ if set-valued mapping Rn × Λ 3 (x, z) ⇒ ∇F (x)>NΛ(z) is outer semicontinuous at the point
(x∗, F (x∗)), i.e.

lim sup
(x,z)→(x∗,F (x∗))

∇F (x)>NΛ(z) ⊂ ∇F (x∗)>NΛ(F (x∗)). (34)

From lim supz→z∗ N̂Λ(z) = NΛ(z∗), the next lemma easily follows.

Lemma 3.4. We always have

lim sup
(x,z)→(x∗,F (x∗))

∇F (x)>NΛ(z) = lim sup
(x,z)→(x∗,F (x∗))

∇F (x)>N̂Λ(z). (35)

From [6], CCP is equivalent to state that every AKKT point is a KKT point. A similar result holds for
MPEC-CCP. The precise statement is given in the next theorem.

Theorem 3.5. Let x∗ be a feasible point. Then, MPEC-CCP holds at x∗ iff x∗ is a M-stationary point whenever
x∗ is a MPEC-AKKT point.

Proof. Let us show first that, if MPEC-CCP holds, the sequential MPEC-AKKT condition implies the M-
stationarity condition independently of the objective function. Let f be an objective function such that the
MPEC-AKKT condition holds at x∗. Then, there are sequences {xk} → x∗, zk → F (x∗) and {γk} ∈ NΛ(zk)
such that rk := ∇f(xk) +∇F (xk)>γk → 0. Define ωk := ∇F (xk)>γk, we see that ωk ∈ ∇F (xk)>NΛ(zk) and
ωk = rk −∇f(xk). By the continuity of ∇f(x) and rk → 0, we get

−∇f(x∗) = limωk ∈ lim sup
(x,z)→(x∗,F (x∗)

∇F (x)>NΛ(z) ⊂ ∇F (x∗)>NΛ(F (x∗)), (36)

where the last inclusion follows from the MPEC-CCP. Thus, −∇f(x∗) belongs to ∇F (x∗)>NΛ(F (x∗)), which
is equivalent, by Proposition 2.4(2), to say that x∗ is a M-stationary point.
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Now, let us prove that, if the MPEC-AKKT condition implies the M-stationarity for every objective func-
tion, then MPEC-CCP holds. Let ω∗ be an element of lim sup(x,z)→(x∗,F (x∗))∇F (x)>NΛ(z). Thus, there are

sequences {xk}, {zk}, {γk} and {ωk} such that xk → x∗, zk → F (x∗), ωk → ω∗ and ωk = ∇F (xk)>γk where
γk ∈ NΛ(zk). Define f(x) = −〈w∗, x〉, x ∈ Rn. Note that MPEC-AKKT holds at x∗ for f , since ∇f(xk)+ωk =
−ω∗+ωk → 0. So, by hypothesis x∗ is a M-stationary point, that is, −∇f(x∗) = ω∗ ∈ ∇F (x∗)>NΛ(F (x∗)).

We will show that MPEC-CCP is a CQ for M-stationary. For this purpose we need the next lemma.

Lemma 3.6. [50, Theorem 6.11] For every v ∈ T ◦Ω(x̄), there is a smooth function φ such that −∇φ(x̄) = v and
attains its minimum relative to Ω uniquely at x̄.

Theorem 3.7. We always have

NΩ(x∗) ⊂ lim sup
(x,z)→(x∗,F (x∗))

∇F (x)>NΛ(z). (37)

If in addition, MPEC-CCP holds at x∗, then NΩ(x∗) ⊂ ∇F (x∗)>NΛ(F (x∗)).

Proof Let ω ∈ NΩ(x∗), so by definition of normal cone, there are sequences {xk} ∈ Ω, {vk} such that
xk →k x

∗, vk →k ω and vk ∈ T ◦Ω(xk).
Using the Lemma 3.6, for each vk ∈ T ◦Ω(xk), we have a smooth function φk such that −∇φk(xk) = vk

and attains its global minimum relative to Ω uniquely at xk. Since MPEC-AKKT is an optimality condition,
by Theorem 3.1, there are sequences {xk,s}, {zk,s}, {vk,s} and {γk,s} satisfying xk,s →s x

k, zk,s →s F (xk),
vk,s := −∇φk(xk,s)→s v

k and −vk,s +∇F (xk,s)>γk,s →s 0 with γk,s ∈ NΛ(zk,s). Thus, for each k ∈ N, there
exists s(k) such that:

•
∥∥xk − xk,s(k)

∥∥+ ‖F (xk)− zk,s(k)‖ < 1/2k;

•
∥∥vk −∇F (xk,s)>γk,s(k)

∥∥ < 1/2k with γk,s(k) ∈ NΛ(zk,s(k)).

Thus, we have found sequences such that xk,s(k) →k x
∗ zk,s(k) →k F (x∗) and ∇F (xk,s)>γk,s(k) →k ω with

∇F (xk,s)>γk,s(k) ∈ ∇F (xk,s)>NΛ(zk,s(k)). Thus, ω ∈ lim sup(x,z)→(x∗,F (x∗))∇F (x)>NΛ(z). If in addition, we

suppose that MPEC-CCP holds at x∗, we obtain NΩ(x∗) ⊂ ∇F (x∗)>NΛ(F (x∗)). As the consequence of
the Theorem 3.7, we get

Corollary 3.8. If x∗ is a local minimizer with MPEC-CCP holding at x∗. Then, x∗ is a M-stationarity point.

Proof Let x∗ be a local minimizer of (13) for a smooth objective function f . Due to the optimality, [50,
Theorem 6.12], 0 ∈ ∇f(x∗)+NΩ(x∗) but since MPEC-CCP holds at x∗, we get 0 ∈ ∇f(x∗)+∇F (x∗)>NΛ(F (x∗))
which is equivalent to state that x∗ is a M-stationary point, by Proposition 2.4 (2).

4 Relationship between old and new MPEC-CQs

In this section we show the relationship between the recently proposed MPEC-CQ and the other MPEC-CQs
found in the literature. We will focus on MPEC-RCPLD, MPEC-Abadie CQ and MPEC-quasinormality.

4.1 MPEC-RCPLD and MPEC-CCP

In this subsection, we will show that MPEC-CCP is strictly weaker than MPEC-RCPLD. First some notations.
Given x ∈ Rn and index subsets I1 ⊂ {1, . . . , q}, I2 ⊂ {1, . . . ,m} and I3 ⊂ {1, . . . ,m}, following [26], we define

G(x; I1, I2, I3) := {∇hi(x),∇Hı(x),∇G(x) : i ∈ I1, ı ∈ I2,  ∈ I3}. (38)

Denote by span G(x; I1, I2, I3) the linear subspace generated by G(x; I1, I2, I3). Put E := {1, . . . , q}. Now, we
proceed with the definition of MPEC-RCPLD.
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Definition 4.1. Let x∗ be a feasible point and E ′ ⊂ E , I ′ ⊂ I(x∗), K′ ⊂ K(x∗) be index sets such that
G(x∗; E ′ , I ′ ,K′) is a basis for span G(x∗; E , I(x∗),K(x∗)). We say that MPEC relaxed constant positive linear
dependence CQ (MPEC-RCPLD) holds at x∗ iff there is a δ > 0 such that

1. G(x; E , I(x∗),K(x∗)) has the same rank for each x ∈ B(x∗, δ);

2. For each A
′ ⊂ A(x∗) and J ′H ,J

′

G ⊂ J (x∗), if there are multipliers {λ, µ, u, v} which are not all zero with

µj ≥ 0 for each j ∈ A′ , and either u`v` = 0 or u` > 0, v` > 0 for each ` ∈ J (x∗), such that∑
i∈A′

µi∇gi(x∗) +
∑
j∈E′

λj∇hj(x∗) +
∑

ı∈I′∪J ′H

uı∇Hı(x
∗) +

∑
∈K′∪J ′G

v∇G(x∗) = 0. (39)

Then, the set {G(x; E ′ , I ′ ∪ J ′H ,K
′ ∪ J ′G),∇gj(x) : j ∈ A′} is linearly independent for every x ∈ B(x∗, δ).

Now, we will continue with the next theorem.

Theorem 4.1. MPEC-RCPLD implies MPEC-CCP.

Proof Take ω∗ ∈ lim sup(x,z)→(x∗,F (x∗))∇F (x)>NΛ(z). Then, there are sequences {xk}, {zk}, {ωk}, {γk}
such that xk → x∗, zk → F (x∗), ωk → ω∗ with ωk := DF (xk)>γk and γk ∈ NΛ(zk). By Lemma 3.4, there is

no loss of generality, if we take γk ∈ N̂Λ(zk). Set γk := (µk, λk, (uk1 , v
k
1 ), . . . , (ukm, v

k
m)). Then, for k sufficiently

large, we have that ωk is equal to∑
j∈A(x∗)

µkj∇gj(xk) +
∑
i∈E

λki∇hi(xk)−
∑

ı∈I(zk)∪J (zk)

ukı∇Hı(x
k)−

∑
∈K(zk)∪J (zk)

vk∇G(xk) (40)

where µk ∈ Rp+, supp(µk) ⊂ A(x∗) supp(uk) ⊂ I(zk) ∪ J (zk) supp(vk) ⊂ K(zk) ∪ J (zk) and uk` ≥ 0, vk` ≥ 0,

∀` ∈ J (zk) since γ ∈ N̂Λ(zk). Taking an adequate subsequence, we assume that I(x∗) ⊂ I(zk) and K(x∗) ⊂
K(zk), ∀k ∈ N. Now, we decompose each ωk into two parts ωk1 and ωk2 , where

ωk1 :=
∑
i∈E

λki∇hi(xk)−
∑

ı∈I(z∗)

ukı∇Hı(x
k)−

∑
∈K(z∗)

vk∇G(xk) (41)

and ωk2 is given by∑
j∈A(x∗)

µkj∇gj(xk)−
∑

ı∈(I(zk)\I(x∗))∪J (zk)

ukı∇Hı(x
k)−

∑
∈(K(zk)\K(x∗))∪J (zk)

vk∇G(xk). (42)

Take index sets E ′ ⊂ E , I ′ ⊂ I(x∗) andK′ ⊂ K(x∗) such that G(x∗; E ′ , I ′ ,K′) is a basis of span G(x∗; E , I(x∗),K(x∗)).
By MPEC-RCPLD, G(xk; E ′ , I ′ ,K′) is a basis of span G(xk; E , I(x∗),K(x∗)), for k ∈ N. Thus, we can write ωk1
as

ωk1 =
∑
i∈E′

λ̂ki∇hi(xk)−
∑
ı∈I′

ûkı∇Hı(x
k)−

∑
∈K′

v̂k∇G(xk) (43)

for some (λ̂k, ûk, v̂k) ∈ Rq × Rm × Rm with supp(λ̂k) ⊂ E ′ , supp(ûk) ⊂ I ′ and supp(v̂k) ⊂ K′ . Using Lemma
2.3 for each k ∈ N, we find index subsets A

′
(k) ⊂ A(x∗), I ′+(k) ⊂ I(xk) \ I(x∗), K′+(k) ⊂ K(xk) \ K(x∗),

J ′H(k),J ′G(k) ⊂ J (xk) such that

ωk2 =
∑

j∈A′ (k)

µ̃kj∇gj(xk)−
∑

ı∈I′+(k)∪J ′H(k)

ũkı∇Hı(x
k)−

∑
∈K′+(k)∪J ′G(k)

ṽk∇G(xk) (44)

for multipliers (µ̃k, ũk, ṽk) ∈ Rp+ × Rm × Rm with supp(µ̃k) ⊂ A
′
(k), supp(ũk) ⊂ I ′+(k) ∪ J ′H(k), supp(ṽk) ⊂

K′+(k) ∪ J ′G(k), and ũk` , ṽ
k
` ≥ 0, ` ∈ J (zk) such that for each k ∈ N, the vectors

G(xk; E
′
, I
′
∪ I

′

+(k) ∪ J
′

H(k),K
′
∪ K

′

+(k) ∪ J
′

G(k)) and {∇gj(xk) : j ∈ A
′
(k)} (45)
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are linearly independent. Since there are only a finite number of possible index subset, we can assume, after
taken an adequate subsequence, that A

′
(k), I ′+(k), K′+(k), J ′H(k) and J ′G(k) are independent of k. Denote

them by A
′
, I ′+, K′+, J ′H and J ′G respectively. Substituting (44) and (43) into (40), we get that ωk is equal to∑
j∈A′

µ̄kj∇gj(xk) +
∑
i∈E′

λ̄ki∇hi(xk)−
∑

ı∈I′∪I′+∪J
′
H

ūkı∇Hı(x
k)−

∑
∈K′∪K′+∪J

′
G

v̄k∇G(xk) (46)

where the multipliers (µ̄k, λ̄k, ūk, v̄k) ∈ Rp × Rq × Rm × Rm are given by

µ̄kj := µ̃kj (j ∈ A′), ūkı := ûkı (ı ∈ I ′), v̄k := v̂k ( ∈ K′),
λ̄ki := λ̂ki (i ∈ E ′), ūkı := ũkı (ı ∈ I ′+ ∪ J

′

H) v̄k := ṽk ( ∈ K′+ ∪ J
′

G))
(47)

with supp(µ̄k) ⊂ A
′
, supp(λ̄k) ⊂ E ′ , supp(ūk) ⊂ I ′ ∪ I ′+ ∪ J

′

H , supp(v̄k) ⊂ K′ ∪ K′+ ∪ J
′

G and ūk` , v̄
k
` ≥ 0, for

` ∈ J (zk). Furthermore, we can see that

γ̄k := (µ̄k, λ̄k, (ūk1 , v̄
k
1 ), . . . , (ūkm, v̄

k
m)) ∈ NΛ(zk). (48)

Now, the sequence {(µ̄k, λ̄k, ūk, v̄k)} has a bounded subsequence, otherwise, dividing (46) byMk := ‖(µ̄k, λ̄k, ūk, v̄k)‖
and considering an adequate convergent subsequence of M−1

k (µ̄k, λ̄k, ūk, v̄k), says {(µ̄, λ̄, ū, v̄)}, we obtain that∑
j∈A′

µ̄j∇gj(x∗) +
∑
i∈E′

λ̄i∇hi(x∗)−
∑

ı∈I′∪I′+∪J
′
H

ūı∇Hı(x
∗)−

∑
∈K′∪K′+∪J

′
G

v̄∇G(x∗) = 0 (49)

where {(µ̄, λ̄, ū, v̄)} is a nonzero vector. Furthermore, µ̄ ≥ 0, supp(µ̄) ⊂ A′ and either ū`v̄` = 0 or ū` > 0, v̄` > 0
for each ` ∈ J (x∗) since NΛ is outer semicontinuous, [50, Proposition 6.6]. Now, (45) and (49) are not compatible
with the MPEC-RCPLD assumption. Thus, the sequence {(µ̄k, λ̄k, ūk, v̄k)} has a convergent subsequence.
Assume, without loss of generality, that the sequence {(µ̄k, λ̄k, ūk, v̄k)} itself converges to some vector (µ̄, λ̄, ū, v̄).
By (48) and the outer semicontinuity of NΛ, we get that (µ̄, λ̄, (ū1, v̄1), . . . , (ūm, v̄m)) is in NΛ(F (x∗)). Taking
limit in (46), ω∗ can be written as∑

j∈A′
µ̄j∇gj(x∗) +

∑
i∈E′

λ̄i∇hi(x∗)−
∑

ı∈I′∪I′+∪J
′
H

ūı∇Hı(x
∗)−

∑
∈K′∪K′+∪J

′
G

v̄∇G(x∗), (50)

where supp(µ̄) ⊂ A
′
, supp(λ̄) ⊂ E ′ , supp(ū) ⊂ I ′ ∪ I ′+ ∪ J

′

H , supp(v̄) ⊂ K′ ∪ K′+ ∪ J
′

G µ̄ ∈ Rn+ and either

ū`v̄` = 0 or ū` > 0, v̄` > 0 for each ` ∈ J (x∗). From (50) and since I ′ ∪ I ′+ and K′ ∪K′+ are disjoint index sets,
we conclude that ω∗ is an element of ∇F (x∗)>NΛ(F (x∗)). Thus, MPEC-CCP holds at x∗. MPEC-CCP is
strictly weaker than MPEC-RCPLD as the next example shows.

Example 4.1 (MPEC-CCP does not imply MPEC-RCPLD). Consider in R2, the point x∗ = (0, 0) and
the constraint system defined by g1(x1, x2) := x1 + x2; g2(x1, x2) := −x1 − x2; g3(x1, x2) := x2

1 + x2
2 and

0 ≤ H1(x1, x2) := x1 ⊥ G1(x1, x2) := x2 ≥ 0. MPEC-RCPLD does not hold, since ∇g3(x1, x2) is positive
linearly dependent at x∗ = (0, 0), but not in any neighborhood of x∗. By the other hand, MPEC-CCP holds at
x∗, since ∇F (x∗)>NΛ(F (x∗)) = R2.

4.2 MPEC-CCP and MPEC-Abadie CQ

MPEC-CQs come from several different approaches and in many cases, clarifying the relations among them is a
difficult task. Here, we show the MPEC-CCP implies the MPEC-Abadie CQ under certain assumption. Now,
we continue with the definition of MPEC-Abadie CQ.

Definition 4.2. We say that the MPEC-Abadie CQ (MPEC-ACQ) holds at x∗ iff TΩ(x∗) = LΩ(x∗), where
LΩ(x∗) := {d ∈ Rn : ∇F (x∗)d ∈ TΛ(F (x∗))}.
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Using the Proposition 2.1, LΩ(x∗) can be written as:

LΩ(x∗) =

d ∈ Rn :
∇gj(x∗)>d ≤ 0, j ∈ A(x∗); ∇hj(x∗)>d = 0, j ∈ E
∇Hj(x

∗)>d = 0, j ∈ I(x∗); ∇Gj(x∗)>d = 0, j ∈ K(x∗)
0 ≤ ∇Hj(x

∗)>d ⊥ ∇Gj(x∗)>d ≥ 0, j ∈ J (x∗)

 . (51)

Note that always TΩ(x∗) ⊂ LΩ(x∗). Now, we proceed with the introduction of the set-valued mapping Rn×Λ 3
(x, z) ⇒ LΩ(x, z) where LΩ(x, z) is given by

LΩ(x, z) :=

d ∈ Rn :
∇gj(x)>d ≤ 0, j ∈ A(x∗); ∇hj(x)>d = 0, j ∈ E
∇Hj(x)>d = 0, j ∈ I(z); ∇Gj(x)>d = 0, j ∈ K(z)
0 ≤ ∇Hj(x)>d ⊥ ∇Gj(x)>d ≥ 0, j ∈ J (z)

 . (52)

Note that LΩ(x, z) coincides LΩ(x∗) when (x, z) = (x∗, F (x∗)). Thus, LΩ(x, z) can be considered as a pertur-

bation of LΩ(x∗). Now, we continue with the relations between ∇F (x)>N̂Λ(z), L◦Ω(x, z) and ∇F (x)>NΛ(z).

Since N̂Λ(z) = T ◦Λ(z), a simple inspection shows that ∇F (x)>N̂Λ(z) ⊂ L◦Ω(x, z). By the other hand, adapting
the proof of [26, Theorem 3.3], we see that L◦Ω(x, z) ⊂ ∇F (x)>NΛ(z). We summarize these results in the next
proposition.

Proposition 4.2. We always have ∇F (x)>N̂Λ(z) ⊂ L◦Ω(x, z) ⊂ ∇F (x)>NΛ(z).

The next theorem can be seen as a primal version of Theorem 3.7

Theorem 4.3. We always have, lim inf(x,z)→(x∗,F (x∗)) L
◦◦
Ω (x, z) ⊂ TΩ(x∗).

Proof. By Theorem 3.7, we have NΩ(x∗) ⊂ lim sup(x,z)→(x∗,F (x∗))∇F (x)>NΛ(z). Then, we get

[ lim sup
(x,z)→(x∗,F (x∗))

L◦Ω(x, z)]◦ = [ lim sup
(x,z)→(x∗,F (x∗))

∇F (x)>NΛ(z)]◦ ⊂ N◦Ω(x∗) ⊂ TΩ(x∗) (53)

where the first inclusion follows from Proposition 4.2 and the last inclusion from [50, Theorems 6.28(b) and 6.26].
By the duality theorem [11, Theorem 1.1.8], [lim sup(x,z)→(x∗,F (x∗)) L

◦
Ω(x, z)]◦ = lim inf(x,z)→(x∗,F (x∗)) L

◦◦
Ω (x, z).

From the last equality, we obtain the desired result.

Motivated by Theorem 4.3, we define the next property

Definition 4.3. Let x∗ be a feasible point. We say that MPEC-Continuity of the Linearized Cone (MPEC-CLC)
holds at x∗ if the set-valued mapping LΩ(x, z) is isc at (x∗, F (x∗)).

From the inclusion LΩ(x, z) ⊂ cl conv LΩ(x, z) = L◦◦Ω (x, z) and the Theorem 4.3, we get that LΩ(x∗) ⊂
TΩ(x∗) if MPEC-CLC holds. Thus, MPEC-CLC implies MPEC-ACQ and as consequence MPEC-CLC is a CQ
for M-stationarity. The next theorem shows that MPEC-CLC implies MPEC-CCP.

Theorem 4.4. MPEC-CLC always implies MPEC-CCP.

Proof. From MPEC-CLC, we get that LΩ(x∗) ⊂ lim inf(x,z)→(x∗,F (x∗)) L
◦◦
Ω (x, z). By polarity theorem, we have

[lim inf(x,z)→(x∗,F (x∗)) L
◦◦
Ω (x, z)]◦ ⊂ L◦Ω(x∗) ⊂ ∇F (x∗)>NΛ(F (x∗)), where the last inclusion follows from Propo-

sition 4.2. By [11, Theorem 1.1.8], lim sup(x,z)→(x∗,F (x∗)) L
◦
Ω(x, z) (= lim sup(x,z)→(x∗,F (x∗))∇F (x)>NΛ(z)), is

a subset of [lim inf(x,z)→(x∗,F (x∗)) L
◦◦
Ω (x, z)]◦. Thus, MPEC-CCP holds.

Remark 4. In the absence of complementary constraints, NΛ(z) = N̂Λ(z), ∀z ∈ Λ. Thus by Proposition 4.2, we
get that L◦Ω(x, z) = ∇F (x∗)>NΛ(z) and L◦◦Ω (x, z) = LΩ(x, z). Thus, the osc of ∇F (x)>NΛ(z) is equivalent to
the isc of L◦Ω(x, z). So, MPEC-CLC can be seeing as a primal version of MPEC-CCP.

An interesting question is the exact relation between MPEC-RCPLD and MPEC-ACQ. Several partial
answers have been provided in the literature. In [26, Example 4.1], the authors showed an example where
MPEC-ACQ holds but not MPEC-RCPLD. In the other hand, in [18], the authors proved that in the absence
of inequality constraints and the presence of only one complementary constraint, MPEC-RCPLD always implies
MPEC-ACQ, c.f. [18, Theorem 3.3]. A simple observation shows that under L◦Ω(x∗) = ∇F (x∗)>NΛ(F (x∗)),
MPEC-CCP (and as consequence MPEC-RCPLD) is sufficient to guarantee the validity of MPEC-ACQ.
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Proposition 4.5. If we have that L◦Ω(x∗) = ∇F (x∗)>NΛ(F (x∗)), Then, MPEC-CCP implies MPEC-ACQ.

Proof. Since MPEC-CCP holds at x∗, then NΩ(x∗) ⊂ ∇F (x∗)>NΛ(F (x∗)). Now, by assumption, this implies
that NΩ(x∗) ⊂ L◦Ω(x∗). By polarity theorem and [50, Theorems 6.28(b) and 6.26], we have

LΩ(x∗) ⊂ cl conv LΩ(x∗) = L◦◦Ω (x∗) ⊂ N◦Ω ⊂ TΩ(x∗). (54)

Since, TΩ(x∗) is always included in L◦Ω(x∗), MPEC-ACQ holds at x∗.

Without complementary constraints, L◦Ω(x∗) = ∇F (x∗)>NΛ(F (x∗)). So, MPEC-CCP (in this case, CCP)
always implies Abadie CQ. The example 4.2 will show that MPEC-ACQ is not sufficient to guarantee MPEC-
CCP,

Remark 5. It is possible that L◦Ω(x∗) = ∇F (x∗)>NΛ(F (x∗)) even if J (x∗) is not empty (i.e. x∗ has degenerate
index). For instance, consider in R, the constraints G(x) = H(x) = x2, g(x) = h(x) = 0 and x∗ = 0.

4.3 MPEC-CCP, MPEC-quasinormality and MPEC-pseudonormality

Here we will show that MPEC-CCP is independent of MPEC-pseudonormality and MPEC-quasinormality. Let
us recall the definition of MPEC-quasinormality,

Definition 4.4. We say that MPEC-quasinormality holds at x∗ ∈ Ω if whenever

∑
j∈A(x∗)

µj∇gj(x∗) +
∑
i∈E

λi∇hi(x∗)−
m∑
ı=1

uı∇Hı(x
∗)−

m∑
=1

v∇G(x∗) = 0 (55)

for some nonzero multipliers {(µ, λ, u, v)} with µ ∈ Rp+, supp(µ) ⊂ A(x∗), supp(u) ⊂ I(x∗) ∪ J (x∗), supp(v) ⊂
K(x∗)∪J (x∗) and either u`v` = 0 or u` > 0, v` > 0, ` ∈ J (x∗), there is no sequence xk → x∗ such that, for each
k, µigi(x

k) > 0 when µj > 0, λihi(x
k) > 0 if λi > 0, −uıHi(x

k) > 0 when uı > 0 and −vG(xk) > 0 if v > 0.

The definition of MPEC-pseudonormality is the following one

Definition 4.5. We say that MPEC-pseudonormality holds at x∗ ∈ Ω if whenever (55) holds for some nonzero
multipliers {(µ, λ, u, v)} with µ ∈ Rp+, supp(µ) ⊂ A(x∗), supp(u) ⊂ I(x∗) ∪ J (x∗), supp(v) ⊂ K(x∗) ∪ J (x∗)
and either u`v` = 0 or u` > 0, v` > 0, ` ∈ J (x∗), there is no sequence xk → x∗, with

∑p
j=1 µjgj(x

k) +∑q
i=1 λi∇hi(xk)−

∑m
i=1 uiHi(x

k)−
∑m
i=1 viGi(x

k) > 0, ∀k ∈ N.

From [35], we get that MPEC-pseudonormality implies MPEC-quasinormality and MPEC-ACQ. Both con-
ditions are sufficient to guarantee that every minimizer is a M-stationary point and when x∗ satisfies the strict
complementarity condition, (i.e. J (x∗) = ∅) then MPEC-quasinormality implies MPEC-ACQ. See [58, The-
orem 3.1]. The next examples will show that MPEC-CCP is independent of the MPEC-pseudonormality and
MPEC-quasinormality.

Example 4.2 (MPEC-pseudonormality does not imply MPEC-CCP). In R2, consider x∗ := (0, 0), g1(x1, x2) =
−x1, g2(x1, x2) = x1 − x2

2x
2
1, H1(x1, x2) := x1 and G1(x1, x2) := 1. MPEC-pseudonormality holds at x∗. In-

deed, assume by contradiction that there are non zero multipliers (µ1, µ2, u) such that µ1∇g1(x∗)+µ2∇g2(x∗)−
u∇H1(x∗) = 0. Then, u = µ2 − µ1 with µ1 ≥ 0 and µ2 ≥ 0. Take any sequence {xk = (xk1 , x

k
2)}

with xk → x∗. If, for k ∈ N, we have µ1g1(xk) + µ2g2(xk) − uH1(xk) > 0, the last inequality implies
that −µ2(xk2)2(xk1)2 > 0 which is impossible. Now, we will show that MPEC-CCP fails. By some calcula-
tions, we have ∇F (x∗)>NΛ(F (x∗)) = R × {0}. Define xk1 := 1/k, xk2 := xk1 , uk := 0, µk2 := (2xk2(xk1)2)−1,
µk1 := µ2(1− 2xk1(xk2)2) and zk := (0, 0, (0,−1)). Clearly, (xk1 , x

k
2)→ (0, 0), µk1 , µ

k
2 ≥ 0. Set wk := µk1∇g1(xk) +

µk2∇g2(xk) − uk∇H1(xk) = (0,−1), ∀k ∈ N. Thus, (0,−1) ∈ lim sup(x,z)→(x∗,F (x∗))∇F (x)>NΛ(z) but (0,−1)

does not belong to ∇F (x∗)>NΛ(F (x∗)) = R× {0}. So, MPEC-CCP fails.

Since MPEC-pseudonormality implies MPEC-ACQ, the above example also shows that MPEC-ACQ also
does not imply MPEC-CCP.
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Example 4.3 (MPEC-quasinormality fails but MPEC-CCP holds). Consider in R2, the point x∗ := (0, 0) and
the constrained system given by g1(x1, x2) = −x1 + x2

2 exp(x1); g2(x1, x2) = x1 exp(x2); 0 ≤ H1(x1, x2) :=
1 ⊥ G1(x1, x2) := x2 ≥ 0. MPEC-CCP holds at x∗. In fact, it follows from ∇F (x∗)>NΛ(F (x∗)) = R2. Now,

we will see that MPEC-quasinormality fails. Take xk1 := 1/k, xk2 :=
√

2xk1 exp(−xk1), k ∈ N, and multipliers
µ1 := 1, µ2 := 1, v := 0. For that choice, µ1∇g1(x∗) + µ2∇g2(x∗) − v∇G1(x∗) = 0. Evenmore, µ2g2(xk) =
µ2x

k
1 exp(xk2) > 0 and µ1g1(xk) = µ1(−xk1 + (xk2)2 exp(xk1)) = µ1x

k
1 > 0. Thus, MPEC-quasinormality cannot

hold at x∗

The above example also shows that MPEC-CCP does not implies MPEC-pseudonormality. From these
examples, we get that MPEC-CCP is independent of MPEC-pseudonormality and MPEC-quasinormality. An-
other important MPEC-CQ is the following one introduced in [56] under a different name, namely, MPEC-no
nonzero abnormal multiplier CQ (MPEC-NNAMCQ).

Definition 4.6. We say that MPEC generalized MFCQ (MPEC-GMFCQ) holds at x∗ ∈ Ω if there are no
nonzero multipliers {(µ, λ, u, v)} with µ ∈ Rp+, supp(µ) ⊂ A(x∗), supp(u) ⊂ I(x∗) ∪ J (x∗), supp(v) ⊂ K(x∗) ∪
J (x∗) and either u`v` = 0 or u` > 0, v` > 0 for each ` ∈ J (x∗) such that (55) holds.

Observe that MPEC-GMFCQ is equivalent to state that γ = 0 is the unique solution of ∇F (x∗)>γ = 0,
γ ∈ NΛ(F (x∗)), where F is given by (14). Furthermore, it is not difficult to see that MPEC-GMFCQ is weaker
than MPEC-MFCQ condition; which state that there is no nonzero multipliers {µ, λ, u, v} such that (55) holds
with µ ∈ Rp+, supp(µ) ⊂ A(x∗), supp(u) ⊂ I(x∗)∪J (x∗) and supp(v) ⊂ K(x∗)∪J (x∗). Under MPEC-GMFCQ
(and as consequence MPEC-MFCQ), we have that {γ ∈ NΛ(F (x∗)) : ∇f(x∗) + ∇F (x∗)>γ = 0} is bounded,
for every smooth function f . The figure 1 shows the relations among several CQs for M-stationarity involved
in this paper. For further informations about other MPEC-CQs, see [35, 27, 58, 26].

MPEC-LICQ

MPEC-MFCQ

MPEC-GMFCQ

MPEC-CPLD

MPEC-RCLPD

MPEC-CCP

M-stationarity

MPEC-pseudonormality

MPEC-quasinormality

MPEC-ACQ

MPEC-Guignard CQ

MPEC-CRCQ

MPEC-RCRCQ

MPEC-ACQ

MPEC-Guignard CQ

MPEC-linear CQ

Figure 1: Relations among several CQs for M-stationarity.

5 Algorithmic applications of MPEC-CCP

In this section, we will show that MPEC-CCP can be used in the convergence analysis of algorithm for solving
for MPECs. We will show that MPEC-CCP can replace other more stringent MPEC-CQs for M-stationarity in
the assumptions to ensure the convergence of several algorithms under mild assumptions.

Since the complementarity constraints of the MPECs is the cause of difficulties from a numerical and
theoretical point of view. A number of specially designed methods have been suggested to deal with it. For
instance, we have the relaxations schemes [52, 32, 30, 54, 21, 39], the complementary-penalty methods [31, 49, 9],
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interior-penalty method [38]. We pay special attention to the complementary-penalty method, the interior-
relation method of Leyffer et al [38], the L-relaxation method of Kanzow and Schwartz [36], the nonsmooth
relaxation of Kadrani et al. [32] and the relaxation of Scholtes [52] and we will show that MPEC-CCP can
be used to extend convergence results of such algorithms above under the same assumptions. Furthermore,
we present a variant of the augmented Lagrangian method with strong convergence properties which generates
sequences of iterates whose limit points conform the MPEC-AKKT condition.

5.1 A new simple variant of the Augmented Lagrangian method for MPEC

Here we propose a new method based on the method called sequential equality-constraints optimization (SECO)
recently introduced in [13], where an each iteration, an equality-constrained optimization problem is solved
approximately. In order to describe the method, we need first some notations. For x ∈ Rn, a penalty parameter
ρ ∈ R++ and multipliers (µ, λ, u, v) ∈ Rp+ × Rq × Rm × Rm, we define the Augmented Lagrangian function
Lρ(x, λ, µ, u, v) [29, 46, 12] as

Lρ(x, λ, µ, u, v) := f(x) +
ρ

2

∥∥∥∥H(x) +
λ

ρ

∥∥∥∥2

+

∥∥∥∥∥
(
G(x) +

µ

ρ

)
+

∥∥∥∥∥
2

+

∥∥∥∥∥
(
u

ρ
−H

)
+

∥∥∥∥∥
2

+

∥∥∥∥∥
(
v

ρ
−G

)
+

∥∥∥∥∥
2
 .

The main model algorithm is now describe, which can general framework. See also [12, 13].

Algorithm 5.1. Let {εk} ⊂ R+ be a sequence of tolerance parameters with εk → 0.
Step 1 (Initialization). Set parameters λmin < λmax, µmax > 0, umax > 0, vmax > 0, γ > 1, τ ∈ [0, 1)

and an iteration counter k := 1. Choose x0 ∈ Rn, λ̄1 ∈ Rm, µ̄1 ∈ Rp+ λ̄1 ∈ Rm+ λ̄1 ∈ Rm+ and a penalty parameter
ρ1 > 0. Set V 0 = max{0, G(x0)}, V 0

g := max{g(x0), 0}, V 0
H := max{−H(x0), 0} and V 0

G := max{−G(x0), 0}.
Step 2 (Solving the sub-problems). Compute an εk-stationary point xk, that is, compute (if possible)

xk ∈ Rn such that there exist ηk ∈ Rm satisfying

‖∇xLρk(xk, λ̄k, µ̄k, ūk, v̄k) +

m∑
i=1

ηki
(
H2
i (xk)Gi(x

k)∇xG(xk) +G2(xk)Hi(x
k)∇xHi(x

k)
)
‖ ≤ εk (56)

max{|ηkiHi(x
k)Gi(x

k)| : i = 1, . . . ,m} ≤ εk (57)

max{|Hi(x
k)Gi(x

k)| : i = 1, . . . ,m} ≤ εk (58)

If it is not possible to find xk satisfying (56), (57) and (58) we stop the execution of the method.
Step 3 (Estimate of multipliers). Compute

λk+1 := λ̄k + ρkh(xk) uk+1 := max{0, ūk − ρkH(xk)} (59)

µk+1 := max{0, µ̄k + ρkg(xk)} vk+1 := max{0, v̄k − ρkG(xk)} (60)

Then, set µ̄k+1, ūk+1 and v̄k+1 as the projections of µk+1, uk+1 and vk+1 onto the safeguarding intervals
[0, µmax]p, [0, umax]m and [0, vmax]m respectively.

Step 4 (Update the penalty parameter).
Define V kg := max{g(xk),−µ̄k/ρk}, V kH := max{−H(xk),−ūk/ρk} and V kG := max{−G(xk),−v̄k/ρk}.
If max{‖h(xk)‖, ‖V kg ‖, ‖V kH‖, ‖V kG‖} ≤ τ max{‖h(xk−1)‖, ‖V k−1

g ‖, ‖V k−1
H ‖, ‖V k−1

G ‖}. Then, set ρk+1 := ρk.
Otherwise, define ρk+1 := γρk.

Step 4 (New iteration). Put k ← k + 1. Go to Step 2.

Remark 6. (1) Different error tolerances εk can used in each (56), (57) and (58) as long they approach to zero.
Similarly, different updates for the penalty parameter can be considered without change the global convergence
theory. See Theorem 5.1. (2) As Augmented Lagrangian algorithms, the efficient of such method, depends on
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the achievement of the Step 2. For instance, we can assure the fulfilment of the Step 2 if we solve exactly the
sub-problems

Minimize Lρk(x, λk, µk, uk, vk) s.t. Hi(x)Gi(x) = 0,∀i

and if some weak CQ (as Guignard’s CQ) holds for X := {x ∈ Rn : Hi(x)Gi(x) = 0,∀i} at the solution
(for instance, it will hold if {x ∈ Rn : H(x) = 0} and {x ∈ Rn : G(x) = 0} are transverse manifolds, [53]).
Since we cannot expect to solve the subproblems exactly, several approaches can be taken for fulfill (56),
(57) and (58). For instance, we can solve the sub-problems by using a Newton’s method for the nonlinear
system : F(x, θ) := ∇xLρk(x, λk, µk, uk, vk) +

∑m
i=1 θiHi(x)∇xHi(x) = 0 and Hi(x) := Hi(x)Gi(x) = 0,

∀i. Another approach, it is to solve the sub-problems using a quadratic penalty method for the constraints
H2
i (x)G2

i (x) = 0, i = 1, . . . ,m, in such a way that the sequence {max{ρkHi(x
k)Gi(x

k) : ∀i}} or the sequence
{max{ρkH2

i (xk)G2
i (x

k) : ∀i}} is bounded.

Now, we will investigate the limit point of the sequence of iterates generated by Algorithm 5.1.

Theorem 5.1. Let {xk} be a sequence of iterative generated by the algorithm. Then

1. If a limit point of {xk} is feasible such point conforms the MPEC-AKKT condition.

2. If, in a feasible limit point of {xk}, MPEC-CCP holds. Then, such point is M-stationary.

3. If MPEC-MFCQ (or MPEC-NNAMCQ) holds in a feasible limit point of {xk}. Then, such limit point is
S-stationary.

Proof. We assume without loss of generality that xk converge to x∗. Since εk → 0, using (58), we get that
Hi(x

∗)Gi(x
∗) = 0, for all i = 1, . . . ,m. Now, let us analyse the behaviour of the sequence {xk}. From (56) and

the definition of the multipliers (60), we obtain that

‖∇f(xk) +

p∑
i=1

λk+1
i ∇hi(xk) +

p∑
j=1

µk+1
j ∇gj(xk)−

m∑
j=1

ûk+1
j ∇Hj(x

k)−
m∑
j=1

v̂k+1
j ∇Gj(xk)‖ ≤ εk,

where
ûk+1
j := uk+1

j − ηkjG2
j (x

k)Hj(x
k) and v̂k+1

j := vk+1
j − ηkjGj(xk)H2

j (xk).

Now, from (57) and the continuity of the constraints, we have that |ûk+1
j − uk+1

j | → 0 and |v̂k+1
j − vk+1

j | → 0.
Then, using the continuity of the gradients,

‖∇f(xk) +

p∑
i=1

λk+1
i ∇hi(xk) +

p∑
j=1

µk+1
j ∇gj(xk)−

m∑
j=1

uk+1
j ∇Hj(x

k)−
m∑
j=1

vk+1
j ∇Gj(xk)‖ → 0.

Now, let us see assume that x∗ is feasible. Set zk := F (x∗), for k ∈ N. Let us see that, for k large enough
µk+1
j = 0, if gj(x

∗) < 0, uk+1
j = 0 if Hj(x

∗) > 0 and uk+1
j = 0, if Gj(x

∗) > 0. Indeed, take j such that gj(x
∗) < 0.

If ρk is unbounded, −ρ−1
k µ̄kj → 0. Then, for k large enough the inequality: gj(x

k) < 2−1gj(x
∗) < −ρ−1

k µ̄kj
holds and hence µk+1

j := max{0, µ̄kj + ρkgj(x
k)} = 0. If ρk is bounded. Then, by Step 4, we see that (V kg )j =

max{gj(xk),−ρ−1
k µ̄kj } → 0 and hence −ρ−1

k µ̄kj → 0. Then, for k sufficiently large, gj(x
k) < 2−1gj(x

∗) < −ρ−1
k µ̄kj

which implies µk+1
j = 0. Similarly, we get uk+1

j = 0, if Hj(x
∗) > 0 and uk+1

j = 0, if Gj(x
∗) > 0.

Thus, uk+1
j = 0 for j ∈ K(x∗), vk+1

j = 0 for j ∈ I(x∗) and µk+1
j = 0 for j /∈ A(x∗). Furthermore, using the

Step 3, we have that uk+1
j ≥ 0 and vk+1

j ≥ 0 for all j = 1, . . . ,m. Then, xk is an εk approximate S-stationary
point and by Remark 2, we conclude that x∗ is a MPEC-AKKT point.

If, we assume that MPEC-CCP holds at the limit point x∗, by Theorem 3.5, we get that x∗ is a M-stationary.
Now, assume that MPEC-MFCQ holds at x∗. By MPEC-MFCQ, the sequence (λk+1, µk+1, uk+1, vk+1)

must be bounded. Taking an adequate subsequence we can assume that (λk+1, µk+1, uk+1, vk+1) converges to
(λ, µ, u, v). Since uk+1 ∈ Rm+ , vk+1 ∈ Rm+ , uk+1

j = 0 for j ∈ K(x∗), vk+1
j = 0 for j ∈ I(x∗) and µk+1

j = 0 for

j /∈ A(x∗). We have that (u, v) ∈ Rm+ × Rm+ , vk+1 ∈ Rm+ , uj = 0 for j ∈ K(x∗), vj = 0 for j ∈ I(x∗) and µj = 0
for j /∈ A(x∗), i.e., x∗ is S-stationary. Similar result holds if we assume that MPEC-NNAMCQ holds.
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A desired property for every method used for solving non-linear mathematical programs is the feasibility of
the limit points, since this may be impossible in general, a result above the infeasibility of iterates is important.
See [55, 23, 14]. The next theorem says that the limit points of the iterates given by Algorithm 5.1 are stationary
for some infeasibility measure. For the classical Augmented Lagrangian methods see [12, Theorem 6.3]

Theorem 5.2. Let {xk} be a sequence of iterative generated by the algorithm. Then, every limit point of {xk}
is a KKT point of the optimization problem

Minimize ‖h(x)‖2 + ‖(g(x))+‖2 + ‖(H(x))−‖2 + ‖(G(x))−‖2
subject to Hi(x)Gi(x) = 0, for i = 1, . . . ,m.

(61)

Proof. We can assume that xk converge to x∗. Since εk → 0, by (58) we get that Hi(x
∗)Gi(x

∗) = 0, for all
i = 1, . . . ,m. If x∗ is feasible for the NLP problem (1), the KKT conditions holds for (61). Now, assume that
x∗ is not feasible. Hence ρk must be unbounded. Following the proof of the Theorem 5.1, we have that

δk := ∇f(xk) +

p∑
i=1

λk+1
i ∇hi(xk) +

p∑
j=1

µk+1
j ∇gj(xk)−

m∑
j=1

uk+1
j ∇Hj(x

k)−
m∑
j=1

vk+1
j ∇Gj(xk)→ 0. (62)

Following [12, Theorem 6.3], we obtain that |uk+1/ρk − (−H(xk))+| → 0, |vk+1/ρk − (−G(xk))+| → 0 and
|µk+1/ρk − (g(xk))+| → 0. Substituting into (62), using δk/ρk → 0, the continuity of the constraints and
xk → x∗ we get

p∑
i=1

hi(x
∗)∇hi(x∗) +

p∑
j=1

(gj(x
∗))+∇gj(x∗)−

m∑
j=1

(−Hj(x
∗))+∇Hj(x

∗)−
m∑
j=1

(−Gj(x∗))+∇Gj(x∗) = 0.

In other words, the limit point x∗ is a KKT point with no null Lagrange multipliers corresponding to the
constraints Hi(x)Gi(x) = 0, for all i = 1, . . . ,m.

As we just see this method have strong convergence properties: it converges to M-stationary points under
weak assumptions and to S-stationary under MPEC-MFCQ. The practical implementation, efficiency, robustness
and numerical tests of this method is out of the scope of this article and it will subject of future research.

5.2 The complementary-penalty method of Leyffer et al.

The complementary-penalty method consist in solving

minimize f(x) +
∑m
i=1 πiGi(x)Hi(x)

subject to g(x) ≤ 0, h(x) = 0
0 ≤ H(x), 0 ≤ G(x)

(63)

where π = (π1, . . . , πm) ∈ Rm+ is a penalty parameter. This kind of regularization technique is based on the
penalization approach. The idea is remove the complementary constraints by adding them into the objective
function through a penalty function. In [38], the authors used an interior-point method for solving (63). That
algorithm is called Algorithm I. Given an error tolerance εk > 0 and a barrier parameter ζk ∈ R+, Algorithm I
tries to find a penalty parameter πk and vectors (xk, sk, λkE , λ

k
I ) ∈ Rn × Rp+ × Rq × Rp+ satisfying Gi(x

k) > 0,
Hi(x

k) > 0, ∀i, sk > 0, λkI > 0 such that

‖∇f(xk) +

p∑
j=1

λkIj∇gj(xk) +

q∑
i=1

λkEi∇hi(xk)−
m∑
i=1

uki∇Hi(x
k)−

m∑
i=1

vki∇Gi(xk)‖ ≤ εk, (64)

‖h(xk)‖ ≤ εk, ‖g(xk) + sk‖ ≤ εk, ‖ζk − λkIiski ‖ ≤ εk (65)

and
‖min{Hi(x

k), Gi(x
k)}‖ ≤ εk, ∀i. (66)
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where uki := ζk/Hi(x
k) − πki Gi(xk), vki := ζk/Gi(x

k) − πkiHi(x
k), ∀i = 1, . . . ,m. The iterate (xk, sk) (if exits)

is called of a εk-stationary point with approximate multipliers (λkE , λ
k
I ) and parameters {πk, ζk}.

The Theorem 3.4 of [38] guarantees convergence to C-stationarity point if MPEC-LICQ holds at the limit
point and to S-stationarity point x∗ if additionally we require that (πki Gi(x

k), πkiHi(x
k))→ (0, 0), ∀i ∈ J (x∗).

Here, we show convergence to M-stationarity point using MPEC-CCP (strictly weaker than MPEC-LICQ) under
some additional assumption.

Theorem 5.3. Suppose that Algorithm I generates an infinite sequence of εk-stationary point (xk, sk) with
approximate multipliers (λk, µk) and parameters {πk, ζk} with {εk} and {ζk} converging to zero. If x∗ is a limit
point of xk, then x∗ is a feasible point. If, in addition, εk = o(max{πki }−1) with MPEC-CCP holding at x∗.
Then, x∗ is M-stationary.

Proof. The feasibility of the limit points follows from [38, Theorem 3.4]. Now, we will show that x∗ is a
MPEC-AKKT point. Assume that {xk} converges to x∗. To simplify the notation, we only focus on the
complementarity part. Consider

uki :=
ζk

Hi(xk)
− πki Gi(xk); vki :=

ζk

Gi(xk)
− πkiHi(x

k). (67)

Set zk := (g(x∗), h(x∗),−(H1(x∗), G1(x∗)), . . . ,−(Hm(x∗), Gm(x∗))), k ∈ N. Clearly, I(x∗) = I(zk), J (x∗) =
J (zk) and K(x∗) = K(zk). Our aim is to find a subsequence N ⊂ N and vectors ûk and v̂k such that for every
k ∈ N , supp(ûk) ⊂ I(zk) ∪ J (zk), supp(v̂k) ⊂ K(zk) ∪ J (zk), either ûk` v̂

k
` = 0 or ûk` > 0, v̂k` > 0 for ` ∈ J (zk)

and

‖
m∑
i=1

uki∇Hi(x
k) +

m∑
i=1

vki∇Gi(xk)−
m∑
i=1

ûki∇Hi(x
k)−

m∑
i=1

v̂ki∇Gi(xk)‖ →N 0. (68)

First, note that uki → 0, for all i ∈ K(zk) = K(x∗). In fact, for i ∈ K(zk), we see that Hi(x
∗) > 0. Thus,

Gi(x
k) → 0, min{Hi(x

k), Gi(x
k)} = Gi(x

k) and πki Gi(x
k) → 0 where in the last line we use (66). Then, from

(67), uki → 0. Thus, we can define ûki := 0, ∀i ∈ I(x∗). Clearly, ‖ûki − uki ‖ → 0, ∀i ∈ K(x∗).
Similarly, we have that vki → 0, for i ∈ I(zk) = I(x∗). Thus, define v̂ki := 0, i ∈ I(x∗). Obviously,

|v̂ki − vki | → 0, ∀i ∈ I(x∗).
Now take i ∈ J (x∗). Since min{Gi(xk), Hi(x

k)} can take only two alternatives, we have the following
cases: (a) there is a subsequence N ⊂ N such that min{Gi(xk), Hi(x

k)} = Hi(x
k), ∀k ∈ N . Thus, from εk =

o(max{πki }−1), πkiHi(x
k)→ 0. Now, we may assume here that ζk/Gi(x

k)→N β for some β ∈ [0,∞]. If β = 0,
from (67), vki → 0. Thus, put v̂ki = 0, ûki = uki . Clearly, v̂ki û

k
i = 0 and ‖(v̂ki , ûki − (vki , u

k
i )‖ = |v̂ki − vki | →N 0.

If β 6= 0. Then, there is δ > 0 such that vki = ζk/Gi(x
k)− πkiHi(x

k) > δ, k ∈ N large enough. It implies that
uki > 0, k ∈ N large enough. Set v̂ki = vki , ûki = uki . Clearly, v̂ki > 0, ûki > 0 and ‖(v̂ki , ûki − (vki , u

k
i )‖ →N 0; (b)

there is a subsequence N ⊂ N such that min{Gi(xk), Hi(x
k)} = Gi(x

k), ∀k ∈ N . As in the previous case, we
can find v̂ki , ûki with v̂ki > 0, ûki > 0 or v̂ki û

k
i = 0 such that ‖(v̂ki , ûki − (vki , u

k
i )‖ →N 0.

Summing up, we always can find N ⊂ N and vectors ûk and v̂k such that for every k ∈ N , supp(ûk) ⊂
I(zk)∪J (zk), supp(v̂k) ⊂ K(zk)∪J (zk), either ûk` v̂

k
` = 0 or ûk` > 0, v̂k` > 0 for ` ∈ J (zk) and (68) holds. Thus,

{xk}k∈N is a MPEC-AKKT sequence converging to x∗. Since, MPEC-CCP holds, x∗ must be a M-stationary
point.

The example below shows that we cannot ensure M-stationarity of the limit point x∗ without the assumption
εk = o(max{πki }−1) used in Theorem 5.3, even if stronger MPEC-CQs are used.

Example 5.1. In R2, consider the function f(x1, x2) = −x1−x2, the complementary constraints H1(x1, x2) :=
x1, G1(x1, x2) := x2 and the point x∗ = (0, 0). Take xk1 := 1/k, xk2 := 1/k, πk := k and εk := 1/k. Clearly,
πkεk = 1, xk = (xk1 , x

k
2) goes to x∗ and it is easy to verify that xk is an εk-stationary point generated by

Algorithm I. Furthermore, MPEC-LICQ (and hence MPEC-CCP) holds at x∗ but x∗ is a C-stationary point
which is not a M-stationary.

In [38], the authors also considered an interior-relaxation method. We refer for it as the Algorithm II: Given
ζk and θk, find variables (xk, sk, skc , λ

k
E , λ

k
I , ξ

k) ∈ Rn×Rp+×Rm+ ×Rq ×Rp+×Rm+ with Gi(x
k) > 0, Hi(x

k) > 0,
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∀i, sk > 0, λkI > 0, skc > 0, ξk > 0 such that

‖∇f(xk) +

p∑
j=1

λkIj∇gj(xk) +

q∑
i=1

λkEi∇hi(xk)−
m∑
i=1

uki∇Hi(x
k)−

m∑
i=1

vki∇Gi(xk)‖ ≤ εk, (69)

where uki := ζk/Hi(x
k)− πki Gi(xk), vki := ζk/Gi(x

k)− πkiHi(x
k), ∀i = 1, . . . ,m.

max{‖h(xk)‖, ‖g(xk) + sk‖} ≤ εk, (70)

max{‖ζk − λkIiski ‖, ‖ζk − ξki skci‖, ‖θk −Gi(xk)Hi(x
k)− skci‖} ≤ εk ∀i (71)

Similarly to Theorem 5.3 we have the next result.

Theorem 5.4. Assume that Algorithm II generates an infinite sequence of εk-stationary point (xk, sk, skc ) with
approximate multipliers (λk, µk, ξk) and parameters {ζk, θk} satisfying conditions (seila), with {ζk}, {εk}, {θk}
converging to zero. If x∗ is a limit point of xk, then x∗ is a feasible point. If, in addition, εk = o(max{ξki }−1),
θk = o(max{ξki }−1) with MPEC-CCP holding at x∗. Then, x∗ is M-stationary.

Proof. Following the proof of [38, Theorem 3.6], we have that {xk, sk} is an ε̂k-stationary point with approximate
multipliers (λk, µk) and parameters {ζk, πk := ξk} where ε̂k := max{εk, (εk + θk)1/2}, satisfying SEILA. The
conclusions came from a direct application of Theorem 5.3, since εk = o(max{ξki }−1), θk = o(max{ξki }−1)
implies ε̂k = o(max{πki }−1).

5.3 L-relaxation of Kanzow and Schwartz

The relaxation scheme established by Kanzow and Schwartz in [36] is:

minimize f(x)
subject to g(x) ≤ 0, h(x) = 0, 0 ≤ H(x), 0 ≤ G(x),

ΦKSi (x; t) ≤ 0, ∀i ∈ {1, . . . ,m}
(72)

where ΦKSi (x; t) is defined as{
(Hi(x)− t)(Gi(x)− t) if Hi(x) +Gi(x) ≥ 2t,
− 1

2 ((Hi(x)− t)2 + (Gi(x)− t)2 if Hi(x) +Gi(x) < 2t.
(73)

For a given t > 0, we use NLPKS(t) to denote the NLP (72). The feasible set of NLPKS(t) is given by the
figure 2. By direct calculations, we get that ∇ΦKSi (x; t) is equal to

t

t

Hi(x)

Gi(x)

ΦKSi (x, t) = 0

Figure 2: Feasible set of the relaxation of Kanzow and Schwartz.

{
(Hi(x)− t)∇Gi(x) + (Gi(x)− t)∇Hi(x) if Hi(x) +Gi(x) ≥ 2t,
(t−Gi(x))∇Gi(x) + (t−Hi(x))∇Hi(x) if Hi(x) +Gi(x) < 2t.

(74)

We improve the main convergence result for this relaxation [30] by using the weaker MPEC-CCP instead of
MPEC-CPLD.
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Theorem 5.5. Let {tk} ↓ 0 and xk be a KKT point of NLPKS(tk). If xk → x∗ and MPEC-CCP holds at x∗.
Then, x∗ is an M-stationary point for (1).

Proof We will show that x∗ is a MPEC-AKKT point. For this, it will be sufficient to show that there is
subsequence of {xk} which is a MPEC-AKKT sequence. Since xk is a stationary point for NLPKS(tk), we see
that using the gradient of ∇ΦKS(xk, tk), (74), the KKT conditions are equivalent to

∇f(xk) +

p∑
j=1

µkj∇gj(xk) +

q∑
i=1

λki∇hi(xk)−
m∑
i=1

ūki∇Hi(x
k)−

m∑
i=1

v̄ki∇Gi(xk) = 0, (75)

where ūk and v̄k are defined as follows

ūki :=

{
uki − ρki (Gi(x

k)− tk) if Hi(x
k) +Gi(x

k) ≥ 2tk,
uki + ρki (Hi(x

k)− tk) if Hi(x
k) +Gi(x

k) < 2tk.
(76)

v̄ki :=

{
vki − ρki (Hi(x

k)− tk) if Hi(x
k) +Gi(x

k) ≥ 2tk,
vki + ρki (Gi(x

k)− tk) if Hi(x
k) +Gi(x

k) < 2tk.
(77)

with the constraints

gj(x
k) ≤ 0 µkj ≥ 0 µkj gj(x

k) = 0 ∀j ∈ {1, . . . , p},
Hi(x

k) ≥ 0 uki ≥ 0 ukiHi(x
k) = 0 ∀i ∈ {1, . . . ,m},

Gi(x
k) ≥ 0 vki ≥ 0 vki Gi(x

k) = 0 ∀i ∈ {1, . . . ,m},
(Hi(x

k)− tk)(Gi(x
k)− tk) ≤ 0 ρki ≥ 0 ρki (Hi(x

k)− tk)(Gi(x
k)− tk) = 0 ∀i.

(78)

Set zk := (g(x∗), h(x∗),−(H1(x∗), G1(x∗)), . . . ,−(Hm(x∗), Gm(x∗))), k ∈ N. Clearly, I(x∗) = I(zk), J (x∗) =
J (zk) and K(x∗) = K(zk). Let us show that for k large enough, ūk and v̄k conform the definition of MPEC-
AKKT, i.e., ūki = 0, i ∈ K(zk); v̄ki = 0, i ∈ I(zk) and either ūki v̄

k
i = 0 or ūki > 0, v̄ki > 0, i ∈ J (zk).

First, we will show that v̄ki = 0, i ∈ I(zk) = I(x∗) for k large enough. For this purpose, we decompose the
index set I(x∗) into a partition of four subsets, namely: I1(x∗, k) := {i ∈ I(x∗) : Gi(x

k) ≥ tk, Hi(x
k) ≥ tk},

I2(x∗.k) := {i ∈ I(x∗) : Gi(x
k) ≥ tk, Hi(x

k) < tk}, I3(x∗, k) := {i ∈ I(x∗) : Gi(x
k) < tk, Hi(x

k) ≥ tk},
I4(x∗, k) := {i ∈ I(x∗) : Gi(x

k) < tk, Hi(x
k) < tk}. There is no loss of generality, possibly after taking an

adequate subsequence, if we assume that each element of the partition is independent of k. Thus, we have the
next partition

I1(x∗) := {i ∈ I(x∗) : Gi(x
k) ≥ tk, Hi(x

k) ≥ tk},
I2(x∗) := {i ∈ I(x∗) : Gi(x

k) ≥ tk, Hi(x
k) < tk},

I3(x∗) := {i ∈ I(x∗) : Gi(x
k) < tk, Hi(x

k) ≥ tk},
I4(x∗) := {i ∈ I(x∗) : Gi(x

k) < tk, Hi(x
k) < tk}.

(79)

Now, we proceed showing that v̄ki = 0, i ∈ I(zk) = I(x∗). Since Gi(x
∗) > 0, i ∈ I(x∗), the sets I3(x∗) and

I4(x∗) must be empty sets for k large enough, otherwise taking limit in Gi(x
k) < tk, we will get Gi(x

∗) = 0, a
contradiction. Now, take i ∈ I1(x∗), then Gi(x

k)+Hi(x
k) ≥ 2tk and from (77) we have v̄ki = vki −ρki (Hi(x

k)−tk).
Since Gi(x

∗) > 0, we have for k large enough, that, Gi(x
k) > tk > 0. From the KKT conditions, vki = 0 and

ρki (Gi(x
k) − tk) = 0. Thus, v̄ki = 0, for every i ∈ I1(x∗). Carry out the same analysis for i ∈ I2(x∗), we get

v̄ki = 0. Therefore, we conclude that v̄ki = 0 for every i ∈ I(zk) = I(x∗).
Now, following the same arguments, we get that ūki = 0 for i ∈ K(x∗). We continue analyzing ūki and v̄ki for

i ∈ J (x∗). Following the same arguments we decompose the index set J (x∗) into a partition of four subsets,
namely: J1(x∗) := {i ∈ J (x∗) : Gi(x

k) ≥ tk, Hi(x
k) ≥ tk}, J2(x∗) := {i ∈ J (x∗) : Gi(x

k) ≥ tk, Hi(x
k) < tk},

J3(x∗) := {i ∈ J (x∗) : Gi(x
k) < tk, Hi(x

k) ≥ tk} and J4(x∗) := {i ∈ J (x∗) : Gi(x
k) < tk, Hi(x

k) < tk}, which
we assume independent of k, maybe after taking an adequate subsequence. For each part, we will obtain that
either ūki v̄

k
i = 0 or ūki > 0, v̄ki > 0, i ∈ J (zk) = J (x∗), for k sufficiently large enough. We have the next cases:

• If i ∈ J1(x∗) = {i ∈ J (x∗) : Gi(x
k) ≥ tk, Hi(x

k) ≥ tk}. Here, ūki = uki − ρki (Gi(x
k) − tk) and

v̄ki = vki − ρki (Hi(x
k) − tk). From the KKT conditions, since tk > 0, we get that uki = 0 and vki = 0.

Now, if Gi(x
k) = tk or Hi(x

k) = tk, we have that ūki = 0 or v̄ki = 0 respectively. If Gi(x
k) > tk and

Hi(x
k) > tk, we get ρki = 0, ūki = 0, v̄ki = 0. In both cases, v̄ki ū

k
i = 0.
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• If i ∈ J2(x∗) = {i ∈ J (x∗) : Gi(x
k) ≥ tk, Hi(x

k) < tk}. From the KKT conditions, we see that vki = 0,
ρki (Gi(x

k)− tk) = 0. If Hi(x
k) +Gi(x

k) ≥ 2tk, we have that v̄k = −ρki (Hi(x
k)− tk) ≥ 0 and ūki = uki ≥ 0.

Now, if Hi(x
k) +Gi(x

k) < 2tk, we get that v̄ki = vki + ρki (Gi(x
k)− tk) = 0. Thus, for i ∈ J2(x∗), we have

that either v̄ki ū
k
i = 0 or v̄ki > 0 ūki > 0.

• If i ∈ J3(x∗) = {i ∈ J (x∗) : Gi(x
k) < tk, Hi(x

k) ≥ tk}. By symmetry, we see that either v̄ki ū
k
i = 0 or

v̄ki > 0 ūki > 0.

• If i ∈ J4(x∗) = {i ∈ J (x∗) : Gi(x
k) < tk, Hi(x

k) < tk}. From the KKT conditions, we see that ρki = 0.
Then, ūki = uki ≥ 0 and v̄ki = vki ≥ 0.

Thus, x∗ is an MPEC-AKKT point. So, if MPEC-CCP holds at x∗, then x∗ is M-stationary point.
When we try to solve NLPs, we usually end up in an approximate KKT point, instead of a true KKT point.

In fact, the stopping criteria for solving NLPs basically check whether an approximate KKT point has been
found (in addition, maybe, to other criteria). So, we rarely end up in a KKT point. This fact has practical
relevance. For example, the method of Kansow and Schwartz has stronger convergence properties: All limit
points are M-stationary points, under weak CQ for M-stationary (as MPEC-CPLD, see [30, Theorem 3.3]), if
each iterative is a KKT point. However, if we consider approximate KKT points instead of KKT points, we
lost most of this advantage. Indeed, without additional assumptions, only convergence to weakly stationary
points can be obtained. We can improve the result of [37, Theorem 13] under the MPEC-CCP assumption.
The precise statement is the following.

Theorem 5.6. Let tk ↓ 0, εk = o(tk), {xk} be a sequence of εk-stationary points of NLPKS(tk) with approximate
multipliers (µk, λk, uk, vk, ρk) ∈ Rp+×Rq×Rm+×Rm+×Rm+ , such that max{|ukiHi(x

k)|, |vki Gi(xk)|, |ρki ΦKSi (xk, tk)| :
i ∈ {1, . . . ,m}} ≤ εk. Assume that xk → x∗ with MPEC-CCP holding in x∗ ∈ Ω. Suppose that there is a
constant c > 0 such that, for all i ∈ J (x∗) and all k sufficiently large, the iterates (Gi(x

k), Hi(x
k)) satisfy

(Gi(x
k), Hi(x

k)) /∈ [(tk, (1 + c)tk)× ((1− c)tk, tk)]
∪[((1− c)tk, tk)× (tk, (1 + c)tk)]
∪(tk, (1 + c)tk)2 ∪ ((1− c)tk, tk)2.

(80)

Then, x∗ is a M-stationary point.

Proof We will proof that under the expression (80), x∗ is a MPEC-AKKT point. For this purpose, it will
be sufficient to show that there is a subindex N ⊂ N such that {xk}k∈N is a MPEC-AKKT sequence. Since xk

is an εk- stationary point for NLPKS(tk), we have, following [37], that for k large enough

‖∇f(xk) +

p∑
j=1

µkj∇gj(xk) +

q∑
i=1

λki∇hi(xk)−
m∑
i=1

ūki∇Hi(x
k)−

m∑
i=1

v̄ki∇Gi(xk)‖ ≤ εk (81)

with supp(µk) ⊂ A(x∗), where ūk and v̄k are defined as follows

ūki :=

{
uki − ρki (Gi(x

k)− tk) if Hi(x
k) +Gi(x

k) ≥ 2tk,
uki + ρki (Hi(x

k)− tk) otherwise
(82)

v̄ki :=

{
vki − ρki (Hi(x

k)− tk) if Hi(x
k) +Gi(x

k) ≥ 2tk,
vki + ρki (Gi(x

k)− tk) otherwise
(83)

and
gj(x

k) ≤ εk, µkj ≥ 0 |µkj gj(xk)| ≤ εk ∀j ∈ {1, . . . , p},
Hi(x

k) ≥ −εk, uki ≥ 0 |ukiHi(x
k)| ≤ εk ∀i ∈ {1, . . . ,m},

Gi(x
k) ≥ −εk, vki ≥ 0 |vki Gi(xk)| ≤ εk ∀i ∈ {1, . . . ,m},

ΦKSi (xk, tk) ≤ εk, ρki ≥ 0 |ρki ΦKSi (xk, tk)| ≤ εk ∀i ∈ {1, . . . ,m},

(84)

Put zk := (g(x∗), h(x∗),−(H1(x∗), G1(x∗)), . . . ,−(Hm(x∗), Gm(x∗))), k ∈ N. Clearly, I(zk) = I(x∗), K(zk) =
K(x∗) and J (zk) = J (x∗). Our aim is to find a subsequence N ⊂ N and vectors ûk and v̂k such that for every
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k ∈ N , supp(ûk) ⊂ I(zk) ∪ J (zk), supp(v̂k) ⊂ K(zk) ∪ J (zk), either ûk` v̂
k
` = 0 or ûk` > 0, v̂k` > 0 for ` ∈ J (zk)

and

‖
m∑
i=1

ūki∇Hi(x
k) +

m∑
i=1

v̄ki∇Gi(xk)−
m∑
i=1

ûki∇Hi(x
k)−

m∑
i=1

v̂ki∇Gi(xk)‖ →N 0. (85)

Now, similarly as the proof of Theorem 5.5, we decompose I(x∗) into a four disjoint subsets (which we assume
independent of k, after possibly taking an adequate subsequence), I1(x∗) := {i ∈ I(x∗) : Gi(x

k) ≥ tk, Hi(x
k) ≥

tk}, I2(x∗) := {i ∈ I(x∗) : Gi(x
k) ≥ tk, Hi(x

k) < tk}, I3(x∗) := {i ∈ I(x∗) : Gi(x
k) < tk, Hi(x

k) ≥ tk},
I4(x∗) := {i ∈ I(x∗) : Gi(x

k) < tk, Hi(x
k) < tk}.

We will show that there is a subsequence N ⊂ N, such that v̄ki →N 0, ∀i ∈ I(x∗) = I(zk). Thus,
we can define v̂ki := 0 for all i ∈ I(x∗), k ∈ N . Note that, ‖v̂ki − v̄ki ‖ →N 0, ∀i ∈ I(x∗). Now, take
i ∈ I1(x∗). Thus, Gi(x

k) + Hi(x
k) ≥ 2tk. Due to the εk-stationarity of xk, we have that vki Gi(x

k) → 0 and
ρki (Gi(x

k)− tk)(Hi(x
k)− tk)→ 0. But, since Gi(x

k)→ Gi(x
∗) > 0, we have that vki → 0, ρki (Hi(x

k)− tk)→ 0
and as consequence v̄ki = vki − ρki (Hi(x

k) − tk) → 0. Now, if i ∈ I2(x∗). We have two cases: if there is a
subsequence K1 ⊂ N, such that Gi(x

k) + Hi(x
k) ≥ 2tk for k ∈ K1. Here, as we just have seen, v̄ki →K1 0.

In the other case, if there is a subsequence K2 ⊂ N, such that Gi(x
k) + Hi(x

k) < 2tk for k ∈ K2, we have
v̄ki = vki +ρki (Gi(x

k)− tk). But, from the εk-stationarity of xk, we get tk ≤ Gi(xk) < 2tk−Hi(x
k) ≤ 2tk+εk for

k ∈ K2, which is a contradiction, since Gi(x
k)→ Gi(x

∗) > 0. Since Gi(x
∗) > 0, i ∈ I(x∗), the sets I3(x∗) and

I4(x∗) must be empty sets for k large enough, otherwise taking limit in Gi(x
k) < tk, we will get Gi(x

∗) = 0, a
contradiction. So, in every case, there is subsequence N ⊂ N such that v̄ki →N 0, ∀i ∈ I(x∗).

Following the same above arguments for K(x∗) = K(zk), given any subsequence of {xk}, we can find another
subsequence N ⊂ N such that ūki →N 0. Thus, we can define ûki := 0 for all i ∈ K(zk), k ∈ N with the property
‖ûki − ūki ‖ →N 0, ∀i ∈ K(zk) = K(x∗).

Now, we will focus on the index subset J (zk). We will find a subsequence N ⊂ N and scalars ûki , v̂ki for
i ∈ J (zk) such that either ûki v̂

k
i = 0 or ûki > 0 and v̂ki > 0 with ‖(ûki , v̂ki )−(ūki , v̄

k
i )‖ →N 0, ∀i ∈ J (zk) = J (x∗).

For this purpose, decompose J (x∗) into a partition of four subsets, namely: J1(x∗) := {i ∈ J (x∗) : Gi(x
k) ≥

tk, Hi(x
k) ≥ tk}, J2(x∗) := {i ∈ J (x∗) : Gi(x

k) ≥ tk, Hi(x
k) < tk}, J3(x∗) := {i ∈ J (x∗) : Gi(x

k) <
tk, Hi(x

k) ≥ tk} and J4(x∗) := {i ∈ J (x∗) : Gi(x
k) < tk, Hi(x

k) < tk}. We have the next sub-cases.

• If i ∈ J1(x∗) = {i ∈ J (x∗) : Gi(x
k) ≥ tk, Hi(x

k) ≥ tk}. Certainly, Gi(x
k) + Hi(x

k) ≥ 2tk. In that case,
ūki = uki − ρki (Hi(x

k) − tk) and v̄ki = vki − ρki (Gi(x
k) − tk). We will show that ūki → 0 or v̄ki → 0 for an

adequate subsequence. First, since Hi(x
k) ≥ tk, Gi(x

k) ≥ tk, |ukiHi(x
k)| ≤ o(tk) and |vki Gi(xk)| ≤ o(tk),

we get that uki → 0 and vki → 0. Furthermore, from Hi(x
k) ≥ tk and Gi(x

k) ≥ tk, there is a subsequence
K ⊂ N such that Hi(x

k)/tk →K α and Gi(x
k)/tk →K β, for some scalars α, β ∈ [1,∞]. If α 6= 1. Then,

|ρki (Gi(x
k)− tk)(Hi(x

k)/tk − 1)| ≤ |ρki ΦKSi (xk, tk)|/tk ≤ o(tk)/tk, implies that ρki (Gi(x
k)− tk)→K 0 and

hence ūki = uki − ρki (Hi(x
k)− tk)→K 0. Similarly, if β 6= 1, we conclude that v̄ki →K 0. Now, only rest to

analyze when α = β = 1. For this case, we get (1 + c)tk > Hi(x
k) ≥ tk and (1 + c)tk > Gi(x

k) ≥ tk for
k ∈ K large enough. Now, if Hi(x

k) > tk for infinite k, (80) implies Gi(x
k) = tk and hence ūki = uki → 0.

If Gi(x
k) > tk for infinite k, from (80) we get Hi(x

k) = tk and hence v̄ki = vki → 0. From, all the case, we
conclude that there is subsequence N ⊂ N, such that ūki →N 0 or v̄ki →N 0. When ūki →N 0, we define
ûki := 0, v̂ki := v̄ki , k ∈ N . Thus, ‖(ûki , v̂ki )− (ūki , v̄

k
i )‖ = |ūki | →N 0. In the case, v̄ki →N 0, define v̂ki := 0,

ûki := ūki , k ∈ N . Clearly, ‖(ûki , v̂ki )− (ūki , v̄
k
i )‖ = |v̄ki | →N 0. In both cases, we always have ûki v̄

k
i = 0 for

all k ∈ N , i ∈ J1(zk).

• Take i ∈ J2(x∗) = {i ∈ J (x∗) : Gi(x
k) ≥ tk, Hi(x

k) < tk}. We will show that there is a subsequence
N ⊂ N and scalars {ûki , v̂ki }, such that ‖(ūki , v̄ki )−(ûki , v̂

k
i )‖ →N 0 and either ûki v̂

k
i = 0 or ûki > 0 and v̂ki > 0.

Now, since Gi(x
k) ≥ tk, we conclude vki → 0. Now, we have two alternatives, that Gi(x

k) +Hi(x
k) ≥ 2tk

holds for infinite many k or Gi(x
k) +Hi(x

k) < 2tk holds for infinite many k.

– If Gi(x
k) + Hi(x

k) ≥ 2tk holds for infinite many k. In this case, we get v̄ki = vki − ρki (Hi(x
k) − tk)

and ūki = uki − ρki (Gi(x
k) − tk). From, −εk ≤ Hi(x

k) < tk and Gi(x
k) ≥ tk, there is a subsequence

K ⊂ N such that Hi(x
k)/tk →K α and Gi(x

k)/tk →K β, for some scalars α ∈ [0, 1], β ∈ [1,∞]. If
α 6= 1. Then, the inequality |ρki (Gi(x

k)− tk)(1−Hi(x
k)/tk)| = |ρki (Gi(x

k)− tk)(Hi(x
k)− tk)|/2tk ≤

|ρki ΦKSi (xk, tk)|/tk implies that ρki (Gi(x
k) − tk) →K 0. Now, we define v̂ki := v̄ki and ûki := uki .
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Clearly, v̂ki , ûki ≥ 0 and ‖(ūki , v̄ki ) − (ûki , v̂
k
i )‖ = |ρki (Gi(x

k) − tk)| →K 0. Now, if β 6= 1, we get
ρki (Hi(x

k) − tk) → 0 and hence v̄ki →K 0. So, define v̂ki := 0 and ûki := ūki . Here, v̂ki û
k
i = 0

and ‖(ūki , v̄ki ) − (ûki , v̂
k
i )‖ = |v̄ki | →K 0. Now, when α = β = 1, we get (1 + c)tk < Hi(x

k) < tk and
(1+c)tk > Gi(x

k) ≥ tk for k ∈ K large enough. From (80), the only possibility is Gi(x
k) = tk. Thus,

ūki = uki ≥ 0. Now, we define, v̂ki := v̄ki and ûki := uki . Clearly, v̂ki , û
k
i ≥ 0 and ‖(ūki , v̄ki )− (ûki , v̂

k
i )‖ =

|ρki (Gi(x
k)− tk)| = 0.

– If Gi(x
k) + Hi(x

k) < 2tk holds for infinite many k. In this case v̄ki → 0. From −εk ≤ Hi(x
k) < tk

and Gi(x
k) ≥ tk, there is a K ⊂ N such that Hi(x

k)/tk →K α and Gi(x
k)/tk →K β, for some

scalars α ∈ [0, 1], β ∈ [1,∞]. If α 6= 1, from |ρki ΦKSi (xk, tk)| ≤ o(tk), the expression |ρki (Gi(x
k) −

tk)(Hi(x
k)/tk − 1)| ≤ ρki |(Gi(xk) − tk)2 + (Hi(x

k) − tk)2|/2tk = |ρki ΦKSi (xk, tk)|/tk, implies that
ρki (Gi(x

k) − tk) →K 0 and hence v̄ki = vki + ρki (Gi(x
k) − tk) →K 0. Now, we define v̂ki := 0

and ûki := ūki . Clearly, v̂ki û
k
i = 0 and ‖(ūki , v̄ki ) − (ûki , v̂

k
i )‖ = v̄ki →K 0. Now, if β 6= 1, we get

|ρki (Gi(x
k) − tk)(Gi(x

k)/tk − 1)| ≤ ρki |(Gi(xk) − tk)2 + (Hi(x
k) − tk)2|/tk = 2|ρki ΦKSi (xk, tk)|/tk

which implies ρki (Gi(x
k) − tk) → 0 and hence v̄ki →K 0. So, define v̂ki := 0 and ûki := ūki . Hence,

v̂ki û
k
i = 0 and ‖(ūki , v̄ki ) − (ûki , v̂

k
i )‖ = |v̄ki | →K 0. Now, we will analyze when α = β = 1. In this

case, (1 − c)tk < Hi(x
k) < tk and (1 + c)tk > Gi(x

k) ≥ tk for k ∈ K large enough. From (80), we
get Gi(x

k) = tk. Thus, v̄ki = vki + ρk(Gi(x
k)− tk)→K 0. Here, define v̂ki := 0 and ûki := ūki . Hence,

v̂ki û
k
i = 0 and ‖(ūki , v̄ki )− (ûki , v̂

k
i )‖ = |vki | →K 0.

• For i ∈ J3(x∗) = {i ∈ J (x∗) : Gi(x
k) < tk, Hi(x

k) ≥ tk}. Similarly, as item anterior, we can find
a subsequence K ⊂ N and points {ûki , v̂ki }, such that either ûki v̂

k
i = 0 or ûki > 0 and v̂ki > 0 with

‖(ūki , v̄ki )− (ûki , v̂
k
i )‖ → 0.

• For i ∈ J4(x∗) = {i ∈ J (x∗) : Gi(x
k) < tk, Hi(x

k) < tk}. Clearly, Gi(x
k) + Hi(x

k) < 2tk. In
that case, ūki = uki + ρki (Hi(x

k) − tk) and v̄ki = vki + ρki (Gi(x
k) − tk). From −εk ≤ Hi(x

k) < tk and
−εk ≤ Gi(x

k) < tk, there is a subsequence K ⊂ N such that Hi(x
k)/tk →K α and Gi(x

k)/tk →K β,
for some scalars α, β ∈ [0, 1]. If α 6= 1, then |ρki (Gi(x

k) − tk)(Hi(x
k)/tk − 1)| ≤ ρki |(Gi(xk) − tk)2 +

(Hi(x
k) − tk)2|/2tk = |ρki ΦKSi (xk, tk)|/tk → 0 implies that ρki (Gi(x

k) − tk) →K 0. Furthermore, from
|ρki (Hi(x

k) − tk)(Hi(x
k)/tk − 1)| ≤ ρki |(Gi(xk) − tk)2 + (Hi(x

k) − tk)2|/tk = 2|ρki ΦKSi (xk, tk)|/tk → 0,
we get ρki (Hi(x

k) − tk) →K 0. In this case, define v̂ki := vki and ûki := uki . Clearly, v̂ki ≥ 0, ûki ≥ 0 and
‖(ūki , v̄ki )− (ûki , v̂

k
i )‖2 = |ρki (Gi(x

k)− tk)|2 + |ρki (Hi(x
k)− tk)|2 →K 0. By symmetry, we obtain the same

result if β 6= 1. If α = β = 1, we get (1− c)tk < Hi(x
k) < tk and (1− c)tk < Gi(x

k) < tk for k ∈ K large
enough, which is impossible by (80). Thus, we can find a subsequence N ⊂ N and vector {ûki , v̂ki }, such
that ‖(ūki , v̄ki )− (ûki , v̂

k
i )‖ →K 0 and either ûki v̂

k
i = 0 or ûki > 0 and v̂ki > 0 for i ∈ J4(zk).

Summarizing, we conclude, from all the cases, that there is a subsequence N ⊂ N and points {ûki , v̂ki }, k ∈ N ,
i ∈ {1, . . . ,m}, with ûki = 0 for i ∈ K(zk), v̂ki = 0 for i ∈ I(zk) and either ûki v̂

k
i = 0 or ûki > 0 and

v̂ki > 0 for i ∈ J (zk) such that for all i ∈ {1, . . . ,m}, ‖(ūki , v̄ki ) − (ûki , v̂
k
i )‖ →N 0 and ‖

∑m
i=1 ū

k
i∇Hi(x

k) +∑m
i=1 v̄

k
i∇Gi(xk) −

∑m
i=1 û

k
i∇Hi(x

k) −
∑m
i=1 v̂

k
i∇Gi(xk)‖ →N 0. Thus, the subsequence {xk : k ∈ N} with

the approximate multipliers (µk, λk, ûk, v̂k) is a MPEC-AKKT sequence with xk →N x∗. Since by hyphotesis,
MPEC-CCP holds at x∗, the point x∗ is a M-stationary point.

Remark 7. MPEC-MFCQ implies that the sequence of approximate multipliers {(µk, λk, uk, vk)} is bounded.
In fact, most of the CQs for M-stationary used in the convergence analysis of several MPECs algorithms, as
MPEC-MFCQ, tries to bound or indirectly control the sequence of approximate multipliers. But, as we just see,
we can obtain convergence to M-stationary points even if the sequence of approximate multipliers is unbounded.
In the Theorem 5.5 or in the Theorem 5.6 (under (80)), we can guarantee convergence to M-stationary points
with the less stringent MPEC-CCP without require boundedness of the multipliers.

5.4 The nonsmooth relaxation by Kadrani et al.

The relaxation scheme of Kadrani et al [32] is given by

minimize f(x)
subject to g(x) ≤ 0, h(x) = 0 0 ≤ Hi(x) + t, 0 ≤ Gi(x) + t

ΦKDBi (x; t) ≤ 0 ∀i ∈ {1, . . . ,m}
(86)
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where ΦKDBi (x; t) := (Hi(x)− t)(Gi(x)− t). The NLP (86) is denoted by NLPKDB(t). The figure 3 shows the
feasible set of NLPKDB(t) for a given t > 0. By straightforward calculations, we have

t

t

Hi(x)

Gi(x)

ΦKDBi (x, t) = 0

Figure 3: Feasible set of the relaxation of Kadrani et al.

∇ΦKDBi (x; t) := (Hi(x)− t)∇Gi(x) + (Gi(x)− t)∇Hi(x) ∀i ∈ {1, . . . ,m}. (87)

Using MPEC-CCP instead of MPEC-CPLD, we improve the result of Hoheisel et al [30]. The proof follows
similar arguments as the theorem 5.5.

Theorem 5.7. Let {tk} ↓ 0 and xk be a KKT point of NLPKDB(tk). If xk → x∗ and MPEC-CCP holds in
x∗. Then, x∗ is an M-stationary point.

If we replace the sequence of KKT points by a sequence of εk-stationary points, following a similar line of
arguments as the theorem 5.6, we have the next result.

Theorem 5.8. Let tk ↓ 0, εk = o(tk), xk be a sequence of εk-stationary points of NLPKDB(tk). Assume that
(µk, λk, uk, vk, ρk) ∈ Rp+×Rq×Rm+×Rm+×Rm+ , satisfy max{|uki (Hi(x

k)+tk)|, |vki (Gi(x
k)+tk)|, |ρki ΦKDBi (xk, tk)| :

i ∈ {1, . . . ,m}} ≤ εk and xk → x∗. Suppose that x∗ conforms MPEC-CCP and suppose further that there is a
constant c > 0 such that, for all i ∈ J (x∗) and all k sufficiently large, the iterates (Gi(x

k), Hi(x
k)) satisfy

(Gi(x
k), Hi(x

k)) /∈ [(tk, (1 + c)tk)× ((1− c)tk, tk)]
∪[((1− c)tk, tk)× (tk, (1 + c)tk)] ∪ (tk, (1 + c)tk)2.

(88)

Then, x∗ is a M-stationary point.

Proof We will show that, under the hypothesis (88), x∗ is a MPEC-AKKT point. Since xk is an εk- stationary
point for NLPKDB(tk), we have, using the gradient of ∇ΦKDB(xk, tk) (see (87)) that for k large enough

‖∇f(xk) +

p∑
j=1

µkj∇gj(xk) +

q∑
i=1

λki∇hi(xk)−
m∑
i=1

ūki∇Hi(x
k)−

m∑
i=1

v̄ki∇Gi(xk)‖ ≤ εk, (89)

where supp(µk) ⊂ A(x∗), ūki := uki − ρki (Gi(x
k) − tk), v̄ki := vki − ρki (Hi(x

k) − tk), ∀i ∈ {1, . . . ,m} and the
approximate multipliers satisfy the relations

gj(x
k) ≤ εk, µkj ≥ 0 |µkj gj(xk)| ≤ εk ∀j ∈ {1, . . . , p},

Hi(x
k) + tk ≥ −εk, uki ≥ 0 |uki (Hi(x

k) + tk)| ≤ εk ∀i ∈ {1, . . . ,m},
Gi(x

k) + tk ≥ −εk, vki ≥ 0 |vki (Gi(x
k) + tk)| ≤ εk ∀i ∈ {1, . . . ,m},

ΦKDBi (xk, tk) ≤ εk, ρki ≥ 0 |ρki ΦKDBi (xk, tk)| ≤ εk ∀i ∈ {1, . . . ,m},

(90)

Put zk := (g(x∗), h(x∗),−(H1(x∗), G1(x∗)), . . . ,−(Hm(x∗), Gm(x∗))), k ∈ N. Clearly, I(zk) = I(x∗), K(zk) =
K(x∗) and J (zk) = J (x∗). Our aim is to find a subsequence N ⊂ N and vectors ûk and v̂k such that for every
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k ∈ N , supp(ûk) ⊂ I(zk) ∪ J (zk), supp(v̂k) ⊂ K(zk) ∪ J (zk), either ûk` v̂
k
` = 0 or ûk` > 0, v̂k` > 0 for ` ∈ J (zk)

and

lim
k∈N
‖
m∑
i=1

ūki∇Hi(x
k) +

m∑
i=1

v̄ki∇Gi(xk)−
m∑
i=1

ûki∇Hi(x
k)−

m∑
i=1

v̂ki∇Gi(xk)‖ = 0. (91)

Now, we will show that ūki → 0, ∀i ∈ K(zk) and v̄ki → 0, ∀i ∈ I(zk). In this case, we can define ûki = 0,
∀i ∈ K(zk) and v̂ki = 0, ∀i ∈ I(zk). Clearly, |ûki−ūki | = |ūk| → 0, ∀i ∈ K(zk) and |v̂ki −v̄ki | = |v̄k| → 0, ∀i ∈ I(zk).
To prove ūki → 0, ∀i ∈ K(zk), observe that for i ∈ K(zk) = K(x∗), we Since |uki (Hi(x

k) + tk)| ≤ εk and
|ρki (Gi(x

k)−tk)(Hi(x
k)−tk)| ≤ εk, we get ρki (Gi(x

k)−tk)→ 0 and uki → 0. Thus, ūki = uki −ρki (Gi(x
k)−tk)→ 0.

Similarly, we get v̄ki = vki − ρki (Hi(x
k)− tk)→ 0 for all i ∈ I(zk).

A continuation, we will analyze J (zk). Decompose J (x∗) into a partition, namely: J1(x∗) := {i ∈ J (x∗) :
Gi(x

k) > tk, Hi(x
k) > tk}, J2(x∗) := {i ∈ J (x∗) : Gi(x

k) > tk, Hi(x
k) ≤ tk}, J3(x∗) := {i ∈ J (x∗) : Gi(x

k) ≤
tk, Hi(x

k) > tk} and J4(x∗) := {i ∈ J (x∗) : Gi(x
k) ≤ tk, Hi(x

k) ≤ tk}. As always, we can assume that each
element of the partition independent of k. We will only analyze the set J1(x∗), the other cases can be proven
similarly. Take i ∈ J1(x∗) = {i ∈ J (x∗) : Gi(x

k) > tk, Hi(x
k) > tk}. Then, there is a subsequence K ⊂ N such

that Hi(x
k)/tk →K α and Gi(x

k)/tk →K β, for some scalars α, β ∈ [1,∞]. If α 6= 1. Then, from εk = o(tk) we
get |uki (Hi(x

k)/tk + 1)| ≤ o(tk)/tk → 0 and |ρki (Gi(x
k) − tk)(Hi(x

k)/tk − 1)| ≤ o(tk)/tk → 0. Thus, uki → 0,
ρki (Gi(x

k)−tk)→ 0 and hence ūki = uki −ρki (Gi(x
k)−tk)→ 0. Similarly, if β 6= 1, from |vki (Gi(x

k)+tk)| ≤ εk =
o(tk) and |ρki (Gi(x

k)− tk)(Hi(x
k)− tk)| ≤ εk = o(tk), we get ūki = vki −ρki (Hi(x

k)− tk)→ 0. Now, if α = β = 1,
from Hi(x

k)/tk →K 1 and Gi(x
k)/tk →K 1, we get that (1+c)tk > Hi(x

k) > tk and (1+c)tk > Gi(x
k) > tk for

k large enough, which is impossible by (88). Thus, we see that there is subsequence N ⊂ N, such that ūki →N 0
or v̄ki →N 0. When ūki →N 0, define ûki := 0, v̂ki := v̄ki , k ∈ N , and when v̄ki →N 0, define v̂ki := 0, ûki := ūki ,
k ∈ N . In any case, ‖(ûki , v̂ki )− (ūki , v̄

k
i )‖ →N 0 and ûki v̄

k
i = 0, k ∈ N , i ∈ J1(zk) = J1(x∗).

In resume, there is a subsequence N ⊂ N and vectors {(ûk, v̂k) : k ∈ N} with ûki = 0; i ∈ K(zk), v̂ki = 0;
i ∈ I(zk) and either ûki v̂

k
i = 0 or ûki > 0 and v̂ki > 0 ∀i ∈ J (zk) such that ‖(ūki , v̄ki ) − (ûki , v̂

k
i )‖ →N 0, ∀i and

‖
∑m
i=1(ūki − ûki )∇Hi(x

k) +
∑m
i=1(v̄ki − v̂ki )∇Gi(xk)‖ →N 0. Thus, {xk : k ∈ N} with approximate multipliers

(µk, λk, ûk, v̂k) is a MPEC-AKKT sequence with xk →N x∗. Since MPEC-CCP holds, x∗ is a M-stationary
point.

5.5 The global relaxation of Scholtes

The global relaxation scheme of Scholtes [52] is:

minimize f(x)
subject to g(x) ≤ 0, h(x) = 0, 0 ≤ H(x), 0 ≤ G(x),

ΦSi (x; t) := Hi(x)Gi(x)− t ≤ 0, ∀i ∈ {1, . . . ,m}
(92)

The above NLP is denoted by NLPS(t). Similarly to the relaxations or penalization schemes mentioned above,
we can use the MPEC-CCP to replace more stringent MPEC-CQs in order to guarantee convergence to M-
stationary points, as the next theorem shows.

Theorem 5.9. Let tk ↓ 0, εk = o(tk), xk be a sequence of εk-stationary points of NLPS(tk). Assume
that (µk, λk, uk, vk, ρk) ∈ Rp+ × Rq × Rm+ × Rm+ × Rm+ , satisfy max{|ukiHi(x

k)|, |vki Gi(xk)|, |ρki ΦSi (xk, tk)| :
i ∈ {1, . . . ,m}} ≤ εk and xk → x∗. Suppose that x∗ conforms MPEC-CCP and that there is a constant
c > 0 such that, for all i ∈ {1, . . . ,m} and all k large enough, the iterates (Gi(x

k), Hi(x
k)) do not belong to

{(a, b) ∈ R2 : (1− c)tk < ab < (1 + c)tk}. Then, x∗ is a M-stationary point.

Proof. Hence MPEC-CCP holds at x∗, it will be sufficient to show that x∗ is a MPEC-AKKT point. Since {xk}
is a sequence of εk-stationary point of NLPS(tk), we get that

‖∇f(xk) +

p∑
j=1

µkj∇gj(xk) +

q∑
i=1

λki∇hi(xk)−
m∑
i=1

ūki∇Hi(x
k)−

m∑
i=1

v̄ki∇Gi(xk)‖ ≤ εk (93)

where v̄ki := vki − ρkiHi(x
k), ūki := uki − ρkiGi(xk), supp(µk) ⊂ A(x∗) and gj(x

k) ≤ εk, µkj ≥ 0, |µkj gj(xk)| ≤ εk,

∀j ∈ {1, . . . , p}; Hi(x
k) ≥ −εk, uki ≥ 0, |ukiHi(x

k)| ≤ εk, ∀i ∈ {1, . . . ,m}; Gi(xk) ≥ −εk, vki ≥ 0, |vki Gi(xk)| ≤
εk, ∀i ∈ {1, . . . ,m}; max{ΦSi (xk, tk), ρki ΦKSi (xk, tk)} ≤ εk, ρki ≥ 0, ∀i ∈ {1, . . . ,m}.
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Now, set zk := (g(x∗), h(x∗),−(H1(x∗), G1(x∗)), . . . ,−(Hm(x∗), Gm(x∗))), k ∈ N. Now, we will show that
there is a subsequence N ⊂ N such that ūki →N 0, ∀i ∈ K(zk) and v̄ki →N 0, ∀i ∈ I(zk). Indeed, take
i ∈ K(zk) = K(x∗). Since xk is a εk-stationarity point, we get uki → 0, Gi(x

k)Hi(x
k) ≥ −εkHi(x

k) and
ρki (Gi(x

k)Hi(x
k)/tk − 1)→ 0. Then, there is a subsequence N ⊂ N such that Gi(x

k)Hi(x
k)/tk →N α for some

α ∈ [0, 1]. If α 6= 1, then ρki → 0 and ūki = uki − ρkiGi(xk) → 0. If α = 1, we get (1 − c)tk < Hi(x
k)Gi(x

k) <
(1 + c)tk, k ∈ N , which is a contradiction. Then as well for i ∈ I(zk) = I(xk). Thus, we can define ûki = 0,
∀i ∈ K(zk) and v̂ki = 0, ∀i ∈ I(zk).

Take i ∈ J (zk) = J (x∗). From, Hi(x
k)Gi(x

k)− tk ≤ o(tk), we conclude that there is a subsequence N ⊂ N
such that Gi(x

k)Hi(x
k)/tk →N β for some β ∈ [−∞, 1]. If β 6= 1, ρki →N 0. Define ûki := uki , v̂ki := vki . Note

that ûki ≥ 0, v̂ki ≥ 0 and ‖(ûki , v̂ki ) − (ūki , v̄
k
i )‖ →N 0. If β = 1, we get (1 − c)tk < Hi(x

k)Gi(x
k) < (1 + c)tk,

k ∈ N , which is impossible for assumption.
Thus, we can find a subsequence N ⊂ N and vectors (ûk, v̂k) such that supp(ûk) ⊂ I(zk)∪J (zk), supp(v̂k) ⊂

K(zk)∪J (zk), ûk` v̂
k
` = 0 or ûk` > 0, v̂k` > 0 for ` ∈ J (zk) and ‖(ûki , v̂ki )− (ūki , v̄

k
i )‖ →N 0. Then, x∗ is a MPEC-

AKKT point which is a M-stationary point, since MPEC-CCP holds.

Note that we have obtain convergence to M-stationarity point for the relaxation of Scholtes [52] using only
first-order information and a weak MPEC-CQ, This compares with the Theorem 3.3 of [52] where MPEC-LICQ
is assume to be valid, together with a second-order optimality condition holding for all iterates and an additional
condition about the bi-active index set. The assumption εk = o(tk) is, in general, necessary in order to get
convergence to a M-stationary point, despite that a stronger MPEC-CQs may be considered and the iterates
do not belong to the {(a, b) ∈ R2 : (1− c)tk < ab < (1 + c)tk} for some c > 0, as the next example shows.

Example 5.2. Take the system considered in the example 5.1. Define tk = 1/k, εk := (t
1/4
k − t3/4k )/(1− t1/4k +

t
3/4
k ), xk1 = xk2 := t

1/4
k , uk := 0, vk := 0 and ρk := (1 + εk)/xk1 . By some calculations, we see that xk = (xk1 , x

k
2)

is an εk-stationaty point. Clearly, xk goes to x∗ := (0, 0), the iterates do not belong to {(a, b) ∈ R2 : (1− c)tk <
ab < (1 + c)tk} for any c > 0, since xk1x

k
2/tk = 1/t

1/2
k →∞. Note that MPEC-LICQ (and hence MPEC-CCP)

holds at x∗ and x∗ is not a M-stationary. The assumption εk = o(tk) fails, since εk/tk →∞.

6 Conclusions

Many constrained optimization algorithms, in the search for optimal solutions, usually end it up at a point where
the KKT condition holds approximately. This motivates the study of the possible limit points generated by
those methods and their relationship with optimality conditions. Sequential optimality conditions analyzed in
[2, 41, 8, 34] serve for that purpose and they can be seen as sequential counter-parts of KKT. In the presence of
complementarity constraints, it is well-known that standard constrained optimization algorithms may converge
to non-KKT points from which a descent direction arises and that different many alternatives to point-wise
optimality conditions such as weakly stationary, C-stationary or M-stationary were stated. Thus, we introduced
the sequential counter-part of the optimality condition M-stationarity (which is the same of S-stationarity) called
MPEC-AKKT and we settled its main properties. The non-triviality of that sequential optimality condition is
guaranteed by its companion CQ (MPEC-CCP). Out of all the constrained optimization algorithms studied here
and found in the literature, which are designed to solve MPECs, we see that the convergence to M-stationary
points is achieved if additional assumptions about the iterates are required, which we believe is a reflection of
the deep relation between AKKT and the recently introduced MPEC-AKKT. Furthermore, using the notion of
MPEC-AKKT in combination with the companion MPEC-CQ, we prove convergence to M-stationary points for
several schemes, under weaker assumptions than the previous stated, even in the case, where the set of multipliers
is unbounded. Additionally, guided by MPEC-AKKT, we propose a new method whose stopping criterion are
based on the MPEC-AKKT condition and we show that such method has nice convergence properties. Finally,
we hope that, this kind of analysis can be useful in the development and derivation of new methods for solving
MPECs with strong convergence properties, specially in the search for algorithms whose stopping criteria are
based on the MPEC-AKKT condition instead of the AKKT condition and variations.
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