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Abstract

Concave Mixed-Integer Quadratic Programming is the problem of minimizing a concave quadratic

polynomial over the mixed-integer points in a polyhedral region. In this work we describe an algorithm

that finds an ǫ-approximate solution to a Concave Mixed-Integer Quadratic Programming problem. The

running time of the proposed algorithm is polynomial in the size of the problem and in 1/ǫ, provided
that the number of integer variables and the number of negative eigenvalues of the objective function are

fixed. The running time of the proposed algorithm is expected unless P = NP .
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1 Introduction

Mixed-Integer Quadratic Programming (MIQP) problems are optimization problems in which the objective
function is a quadratic polynomial, the constraints are linear inequalities, and some of the variables are
required to be integers:

minimize x⊤Hx+ h⊤x

subject to Wx ≥ w

x ∈ Z
p × R

n−p.

(1)

In this formulation, H is symmetric, and all the data is rational. Concave MIQP is the special case of
MIQP when the objective is concave, which occurs when H is negative semidefinite. Concave quadratic cost
functions are frequently encountered in real-world problems concerning economies of scale, which corresponds
to the economic phenomenon of “decreasing marginal cost” (see [13, 28]). Concave MIQP is strongly NP-
complete [29, 14, 12] and it is still NP-hard in very restricted settings such as the problem to minimize
∑n

i=1(w
⊤

i x)
2 over x ∈ {0, 1}n [24], or when the concave quadratic objective has only one negative eigenvalue

[27].
If we assume that the dimension n is fixed, then Concave MIQP is polynomially solvable. Del Pia, Dey,

and Molinaro [12] showed that in fixed dimension we can decide in polynomial time if a MIQP problem
is bounded or not. If the problem is bounded, they show how we can replace the original polyhedron
Q := {x ∈ R

n : Wx ≥ w} with a polytope Q′ that contains at least one optimum solution. Cook, Hartmann,
Kannan, and McDiarmid [5, 16] showed that in fixed dimension we can find a description of the integer hull
conv{x ∈ Z

n : x ∈ Q′} of Q′ in polynomial time, and this result can be extended to the mixed-integer hull
Q′

I := conv{x ∈ Z
p × R

n−p : x ∈ Q′} by discretization [6, 17]. Since the minimum of a Concave MIQP on
a polytope Q′ is always achieved at one of the vertices of Q′

I , Concave MIQP can now be solved in fixed
dimension by evaluating all vertices of Q′

I and by selecting one with lowest objective value. In this work, we
will not assume that the dimension n of the problem is fixed.
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1.1 Our contribution

In order to state our approximation result, we first give the definition of ǫ-approximation. Consider an
instance of MIQP, and let g(x) denote the objective function. Let x∗ be an optimum solution of the problem,
and let gmax be the maximal value of g(x) on the feasible region. For ǫ ∈ [0, 1], we say that a feasible point
x⋄ is an ǫ-approximate solution if

|g(x⋄)− g(x∗)| ≤ ǫ · |gmax − g(x∗)|.

In the case that the problem is unbounded or infeasible, the definition fails, and we expect our algorithm to
return an indicator that the problem is unbounded or infeasible. If the objective function has no upper bound
on the feasible region, our definition loses its value because any feasible point is an ǫ-approximation for any
ǫ > 0. The definition of ǫ-approximation has some useful invariance properties. For instance, it is preserved
under dilation and translation of the objective function, and it is insensitive to affine transformations of the
objective function and of the feasible region. Our definition of approximation has been used in earlier works,
and we refer to [23, 33, 3, 9] for more details.

In this paper we describe an algorithm that finds an ǫ-approximate solution to Concave MIQP. The key
idea used in the algorithm consists in decomposing the original feasible set into a number of polyhedral
subregions with a special property. We then obtain separately an ǫ-approximate solution for each of the
subregions, and the best one will be an ǫ-approximate solution for the original Concave MIQP problem.
In order to obtain an ǫ-approximate solution in a subregion, we adapt classic algorithms in the continuous
Quadratic Programming (QP) setting based on mesh partition and linear underestimators. These algorithms
were introduced by Pardalos and Rosen [26], and later perfected by Vavasis [33]. Parts of our analysis are
based on the one given by Vavasis. These algorithms are not applicable to the mixed-integer case as they
rely on the convexity of the feasible region. Our contribution is to adapt such algorithmic techniques to the
mixed-integer case: the geometry of the mixed-integer points in each subregion in fact allows us to relax the
convexity requirement. In our algorithm we need to solve a number of Mixed-Integer Linear Programming
(MILP) problems with a fixed number of integer variables. These problems can be solved in polynomial time
by Lenstra [20].

The running time of the proposed algorithm is polynomial in the size of the problem and in 1/ǫ, provided
that the number p of integer variables, and the number k of negative eigenvalues of H are fixed. We now
state the main result of this paper.

Theorem 1. There is an algorithm to find an ǫ-approximate solution to Concave MIQP (1) in time

O

(

2p
⌈

√

k

ǫ

⌉k

τ

)

.

In the above formula, k denotes the number of negative eigenvalues of H, and τ denotes the time to solve a
MILP problem with p integer variables and of the same size as (1).

We recall that the size of a problem is the sum of the sizes of the data defining it (see [30, 4] for more
details). Thus the size of MIQP problem (1) is the sum of the sizes of H , h, W , w. The time to solve a
MILP problem with p integer variables and of size ϕ is τ = poly(ϕ)2poly(p) (see [20, 7] for more details). In
particular, we have that τ ≥ ϕ, and thus the size of the problem does not appear explicitly in the running
time of our algorithm.

The proposed algorithm has running time polynomial in the size of the problem and in 1/ǫ, and exponen-
tial in both k and p. We now explain why this running time is expected unless P = NP . First, we consider
the dependence on ǫ. Suppose we had a similar approximation algorithm, but with running time polynomial
in | log ǫ|. Vavasis [33] showed that, for k = 1 and p = 0, such an algorithm could solve Concave QP with one
concave direction in polynomial time, and the latter problem is NP-complete [27]. Suppose now that we
had an approximation algorithm with running time polynomial in 1/ǫ and in k. Vavasis [33] showed that, for
p = 0, such algorithm could solve 3SAT in polynomial time, again implying P = NP. Finally, the existence
of an approximation algorithm with running time polynomial in p, even in the MILP case k = 0 and for ǫ
fixed, would allow us to solve MAX3SAT in polynomial time, again implying P = NP .
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We remark that some of the procedures that we describe yield an alternative algorithm to solve Concave
MIQP in polynomial time when the dimension n is fixed. This alternative algorithm, in contrast with the
one described at the beginning of Section 1, does not use the method given in [12] to bound the feasible
region.

1.2 Related approximation algorithms

In the IPCO version of this paper [11] we presented a different “flatness-based” algorithm to find an ǫ-
approximate solution to Concave MIQP. The key decomposition idea used in [11] is similar to the one that
we use in the “parity-based” algorithm presented in this paper. However, the obtained decomposition of
the original feasible set into subregions is radically different. In the flatness-based algorithm, we start by
obtaining just one subregion inside the original polyhedron. We then show that the remaining parts of the
original polyhedron are “flat”, and we subdivide each of them, using Lenstra’s algorithm, into a number
of polyhedra that live in a space with one less integer variable. By applying recursively the above step to
the lower-dimensional polyhedra, we obtain the desired decomposition. In the parity-based algorithm no
recursion is needed to obtain the subregions. We first partition the mixed-integer lattice Z

p × R
n−p into 2p

translated mixed-integer lattices, based on the parity of the vectors in Z
p. For each translated lattice, we

then obtain one subregion directly from the original polyhedron. The main benefits of this different approach
are:

(i) We do not need to apply Lenstra’s algorithm for the decomposition. (We still need Lenstra’s algorithm
as a subroutine to solve MILPs with a fixed number of integer variables.)

(ii) We do not need to bound the feasible region, or to reduce the problem to a full-dimensional one. In
fact, those steps are necessary in the flatness-based algorithm only to be able to decompose the outer
region of the polyhedron using Lenstra’s algorithm.

(iii) The total number of subregions that we obtain is 2p instead of (at most) (2k · 4p(p+ 1)2p(p−1)/4)p+1.

(iv) The parity-based algorithm lends itself better to parallel implementation. This is because the 2p

subregions are obtained from the original polyhedron in a non-recursive fashion.

Concave QP is the continuous version of Concave MIQP, and can be obtained by setting p = 0 in (1).
Concave QP is also NP-complete [29, 31], even when the concave quadratic objective has only one concave
direction [27]. In [33], Vavasis gives an algorithm to find an ǫ-approximate solution to Concave QP whose
running time is

O

(

⌈

√

k

ǫ

⌉k

ℓ

)

,

where ℓ denotes the time to solve a Linear Programming (LP) problem of the same size as the original QP
problem. Vavasis’ algorithm is polynomial in the size of the problem and in 1/ǫ, provided that the number of
negative eigenvalues of H is fixed. Moreover, this running time is expected unless P = NP . Our algorithm
reduces to Vavasis’ when p = 0, thus it can be seen as an extension of Vavasis’ algorithm to the mixed-integer
case. This shows that the computational effort needed to find an ǫ-approximate solution to a Concave QP
or to a Concave MIQP are essentially the same, as long as the number of integer variables is small. This
is not the first time that the same type of problem can be solved to the same extent and with the same
complexity in the continuous case, and in the mixed-integer case with a fixed number of integer variables. In
fact, celebrated results by Khachiyan [19] and by Lenstra [20] show that this is true also for linear problems:
both Linear Programming, and Mixed-Integer Linear Programming with a fixed number of integer variables
can be solved in polynomial time.

In [32, 34], Vavasis obtains approximation algorithms for general QP problems, provided that the feasible
region is bounded. One of the main ingredients in these results is the use of weak Löwner-John pairs for the
polytope describing the feasible points.

In [10], De Loera, Hemmecke, Köppe, and Weismantel present an algorithm to find an ǫ-approximate
solution for the problem of minimizing a polynomial function over mixed-integer points in a polytope. The
running time is polynomial in the maximum total degree of the polynomial, the input size, and 1/ǫ, provided
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that the dimension is fixed. Using a stronger notion of approximation, they also show the existence of a
fully polynomial-time approximation scheme for the problem of maximizing a non-negative polynomial over
mixed-integer points in a polytope, when the number of variables is fixed. Both algorithms are based on
Barvinok’s theory for encoding all lattice points of a polyhedron in terms of short rational functions [1, 2].

In [18], Hildebrand, Weismantel, and Zemmer give a fully polynomial-time approximation scheme for
MIQP problems, provided that the dimension is fixed, and the objective is homogeneous with at most
one positive or negative eigenvalue. Their approach links the subdivision strategy of Papadimitriou and
Yannakakis [25] with real algebraic certificates for the positivity of polynomials.

2 Description of the algorithm

In this section we describe our algorithm to find an ǫ-approximate solution to a Concave MIQP problem.
The analysis of its running time provides a proof to Theorem 1.

Our starting point is a Concave MIQP problem of the form (1) in which H is negative semidefinite with
rank k.

2.1 Diagonalization

The first task of our algorithm is to construct a rational linear change of variables (y, z) = L⊤x that
transforms the objective function of (1) in separable form, where the negative-definite part of the problem
is confined to k variables. This transformation maps (1) into an equivalent problem of the form:

minimize y⊤Dy + c⊤y + f⊤z

subject to (y, z) ∈ P

(y, z) ∈ L,

(2)

where y ∈ R
k, z ∈ R

n−k, D is diagonal and negative definite, P is a rational polyhedron in R
n, and L is a

subset of Rn isomorphic to Z
p × R

n−p.

In order to obtain this change of variables, we first compute a rational decomposition of H of the form
H = LD̃L⊤, where the matrix D̃ is diagonal, whose first k diagonal entries are negative and the rest are
zero, and where L is non-singular. Such a decomposition can be obtained in O(n3) time via symmetric
Gaussian elimination [8] or LDL⊤ decomposition (see, e.g., [15]). The importance of these decomposition
techniques is that, in contrast to other factorizations like the Eigenvalue decomposition or the Cholesky
decomposition, they are rational decompositions; i.e., if the matrix H is rational then all numbers that
appear in the decomposition are rational and polynomially sized.

We now perform the change of basis (y, z) = L⊤x, and we end up with an equivalent problem of the form
(2), where y is a k-dimensional vector, z is a (n− k)-dimensional vector, D is diagonal and negative definite,
and

L := {(y, z) ∈ R
n : (y, z) = L⊤x, for x ∈ Z

p × R
n−p}.

Note that L is a mixed-integer lattice. In fact, if we denote by ℓ1, . . . , ℓn the columns of L⊤, we can write
the set L in the form

L = {(y, z) =
n
∑

i=1

xiℓ
i : x1, . . . , xp ∈ Z, xp+1, . . . , xn ∈ R}.

2.2 Boundedness of MIQP

The next task of our algorithm is to detect if a Concave MIQP problem of the form (2) is unbounded or not.
As we describe below, this can be done by solving 2k+1 MILP problems with p integer variables and of the
same size as (2). We remark that detecting if a general MIQP problem is unbounded is NP-hard even in
the pure continuous case (see [22, 12]).

We first define two functions. The first one is the part of the objective function that depends on y:

q(y) := y⊤Dy + c⊤y.
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The second one is a function that associates to each ȳ ∈ R
k, the optimal value of the MILP problem obtained

as the restriction of (2) to the set of points (ȳ, z). Formally,

φ(ȳ) := min{f⊤z : (ȳ, z) ∈ P ∩ L},

for all ȳ for which the minimum exists. If, for a fixed ȳ, the MILP on the right-hand side is infeasible,
we write φ(ȳ) := ∞. Similarly, if, for a fixed ȳ, the MILP on the right-hand side is unbounded, we write
φ(ȳ) := −∞. Our MIQP problem (2) is now equivalent to the unconstrained problem

minimize q(y) + φ(y)

subject to y ∈ R
k.

Given a set S ⊆ R
n, we denote by

π(S) = {y ∈ R
k : ∃z ∈ R

n−k with (y, z) ∈ S}

the projection of S onto the space of the y variables. The next proposition characterizes when our MIQP is
unbounded.

Proposition 1. A Concave MIQP problem of the form (2) is unbounded if and only if

(i) For every y ∈ π(P ∩ L), φ(y) = −∞, or

(ii) Region π(P ∩ L) is unbounded.

Proof. In this proof we denote the feasible set of (2) by F , i.e., F := P ∩ L. Condition (i) trivially implies
that (2) is unbounded. In fact, the existence of a single ȳ such that φ(ȳ) = −∞ implies that (2) is unbounded
because φ(ȳ) is a restriction of (2).

To prove the sufficiency of condition (ii), we now assume that π(F) is unbounded. As π(F) ⊆ π(convF),
we have that π(convF) is unbounded as well. By Meyer’s theorem [21] we have that convF is a rational
polyhedron, and Fourier’s method implies that π(convF) is a rational polyhedron as well. Let yr be a nonzero
rational vector in the recession cone of π(convF). It follows that there exists a rational vector zr such that
(yr, zr) is in the recession cone of convF . Let (ȳ, z̄) ∈ F , and consider the ray {(ȳ, z̄) + t(yr, zr) : t ≥ 0}.
The objective function y⊤Dy+ c⊤y+f⊤z evaluated on the ray is t2(yr⊤Dyr)+O(t). Since the leading term
is negative, the objective function tends to −∞ along the ray. It follows that (2) is unbounded because, for
every t̄ ∈ R, the ray {(ȳ, z̄) + t(yr, zr) : t ≥ t̄} contains (infinitely many) points in F .

To prove necessity of the conditions, we now assume that (2) is unbounded, and show that at least one
of the two conditions holds. Consider the relaxation of (2) obtained by dropping the constraint (y, z) ∈ L.
Also the latter continuous problem is unbounded, and in this case Vavasis [31] proved that there exists a
rational ray {(ỹ, z̃) + t(yr, zr) : t ≥ 0} ⊆ P along which the objective function of (2) tends to −∞. At least
one among yr and zr must be nonzero.

Suppose yr is nonzero, and let (ȳ, z̄) ∈ F . The ray {(ȳ, z̄) + t(yr, zr) : t ≥ 0} is contained in P .
Moreover, for every t̄ ∈ R, the ray {(ȳ, z̄) + t(yr, zr) : t ≥ t̄} contains points in F . This implies that the ray
{ȳ + tyr : t ≥ t̄} contains points in π(F) for every t̄ ∈ R, and hence π(F) is unbounded.

The other case is that yr = 0, in which case zr is nonzero. Our ray {(ỹ, z̃)+ t(yr, zr) : t ≥ 0} can then be
written as {(ỹ, z̃ + tzr) : t ≥ 0}. Also, f⊤zr < 0 because the objective function decreases along the ray by
assumption. Let ȳ ∈ π(F), let z̄ be a vector such that (ȳ, z̄) ∈ F , and consider the ray {(ȳ, z̄ + tzr) : t ≥ 0}.
This new ray is contained in the polyhedron {(y, z) ∈ P : y = ȳ}. Moreover, since (yr, zr) is rational, the
ray {(ȳ, z̄ + tzr) : t ≥ t̄} contains points in F for every t̄ ∈ R. Finally, f⊤(z̄ + tzr) = t(f⊤zr) + O(1) tends
to −∞ along the ray, implying φ(ȳ) = −∞.

The characterization given in Proposition 1 allows us to determine whether problem (2) is unbounded or
not. For every j = 1, . . . , k, solve

min{yj : (y, z) ∈ P ∩ L},

max{yj : (y, z) ∈ P ∩ L}.
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Each problem is a MILP with p integer variables and of the same size as (2). If any of these MILPs is
unbounded, then MIQP (2) is unbounded by Proposition 1. Otherwise, let (ȳ, z̄) be a point in P ∩L, which
can be, for example, an optimum solution of one of the 2k MILPs just solved. We can now compute φ(ȳ)
by solving another MILP with p integer variables and of the same size as (2). As the point ȳ is in π(P ∩L),
Proposition 1 implies that φ(ȳ) = −∞ if and only if problem (2) is unbounded.

We note that we could have checked if π(P ∩ L) is unbounded by solving only k + 1 MILP problems
instead of 2k. However, checking it as described above allows us later, in (3), to avoid solving 2k similar
MILP problems, effectively rendering this check free from a computational perspective. We now assume that
MIQP problem (2) is bounded.

We remark that the results presented so far in Section 2 provide an alternative algorithm to solve Concave
MIQP in polynomial time when the dimension n is fixed. In fact, using the above technique in fixed
dimension, we can decide in polynomial time if a Concave MIQP problem of the form (1) is bounded or
not. Assume now that the problem is bounded. Then, a minimum of the Concave MIQP on the polyhedron
Q := {x ∈ R

n : Wx ≥ w} is always achieved at all feasible points in one of the minimal faces of the
mixed-integer hull QI = conv{x ∈ Z

p ×R
n−p : Wx ≥ w} of Q. As described in Section 1, in fixed dimension

a description of QI can be found in polynomial time. Concave MIQP can now be solved by evaluating a
feasible point in each minimal face of QI and by selecting one with lowest objective value. In particular, this
algorithm does not use the method given in [12] to bound the feasible region.

2.3 Decomposition

In this section we show how to decompose the MIQP problem (2) into 2p MIQP problems restricted to a
smaller feasible region. To construct this decomposition we will solve 2p · 2k MILP problems with p integer
variables.

Consider the mixed-integer lattice

L̄0 := {(y, z) ∈ R
n : (y, z) = L⊤x, for x ∈ 2Zp × R

n−p},

and the cosets of L̄0 in L defined by

L̄v := L̄0 + L⊤(v, 0),

for every binary vector v ∈ {0, 1}p. Equivalently,

L̄v = {(y, z) =
n
∑

i=1

xiℓ
i : xi even if i ∈ {1, . . . , p}, vi = 0,

xi odd if i ∈ {1, . . . , p}, vi = 1,

xp+1, . . . , xn ∈ R}.

Note that the family L̄v, for v ∈ {0, 1}p, forms a partition of L. We now observe a key property of cosets
which will play a key role in our approximation algorithm.

Claim 1. Let v ∈ {0, 1}p, and let (y0, z0) and (y1, z1) be vectors in L̄v. Then the midpoint of the segment
joining (y0, z0) and (y1, z1) is in L.

Proof of claim. Let (y•, z•) be the midpoint of the segment joining (y0, z0) and (y1, z1), i.e.,

(y•, z•) :=
1

2
(y0, z0) +

1

2
(y1, z1).

Each (yβ , zβ), for β = 0, 1, can be written as (ỹβ, z̃β) + L⊤(v, 0), for some (ỹβ , z̃β) ∈ L̄0. Moreover, we
can write each (ỹβ , z̃β) as:

(ỹβ , z̃β) = L⊤xβ ,
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for xβ ∈ 2Zp × R
n−p. We obtain

(y•, z•) =
1

2
(L⊤x0 + L⊤(v, 0)) +

1

2
(L⊤x1 + L⊤(v, 0)) = L⊤

x0 + x1

2
+ L⊤(v, 0).

For every i = 1, . . . , p, scalars x0
i and x1

i are both even, therefore x0
i +x1

i is even and (x0
i +x1

i )/2 is an integer.
The vector (y•, z•) is then in L because it is the sum of two vectors in L. ⋄

Next, we compute for each v ∈ {0, 1}p and each j = 1, . . . , k the 2 MILP problems

lvj := min{yj : (y, z) ∈ P ∩ L̄v},

uv
j := max{yj : (y, z) ∈ P ∩ L̄v}.

(3)

Each of these MILPs is bounded, since the same problems over the larger feasible region P ∩L are bounded
by Proposition 1. For each v ∈ {0, 1}p, we define the polytope P̄ v as

P̄ v := {(y, z) ∈ P : lvj ≤ yj ≤ uv
j , j = 1, . . . , k},

and we consider the MIQP problem (2) restricted to feasible region P̄ v ∩ L

minimize y⊤Dy + c⊤y + f⊤z

subject to (y, z) ∈ P̄ v

(y, z) ∈ L.

(4)

In Section 2.4 we will show how to construct an ǫ-approximate solution (yv, zv) to each Concave MIQP
problem (4). We now show that the vector (y△, z△) that achieves the minimum objective function value
among all the 2p vectors (yv, zv), for v ∈ {0, 1}p, is an ǫ-approximate solution to the Concave MIQP
problem (2).

Since Lv, for v ∈ {0, 1}p, forms a partition of L, there exists v̄ ∈ {0, 1}p such that Lv̄ contains a global
optimum solution of (2). Then the ǫ-approximate solution (yv̄, zv̄) to the corresponding Concave MIQP (4)
is also an ǫ-approximate solution to the Concave MIQP (2). As the objective value of (y△, z△) is at most
that of (yv̄, zv̄), we have that the vector (y△, z△) is an ǫ-approximate solution to the Concave MIQP (2).
The ǫ-approximate solution to the original Concave MIQP (1) is then the vector x△ := L−⊤(y△, z△).

2.4 Approximation in one subregion

In this section we present an algorithm to find an ǫ-approximate solution (yv, zv) of MIQP problem (4). This
ǫ-approximate solution can be found by solving ⌈

√

k/ǫ⌉k MILP problems with p integer variables.

We now fix a vector v ∈ {0, 1}p. For ease of notation we drop the v superscript, i.e., we write P̄ , L̄, lj ,
uj instead of P̄ v, L̄v, lvj , u

v
j , respectively. We also assume that lj < uj for all j = 1, . . . , k, because otherwise

yj is uniquely determined and can be dropped from the problem. In order to simplify some computations,
we assume that the coordinates of the vector y are translated and rescaled so that

[l1, u1]× · · · × [lk, uk] = [0, 1]k.

Note that this affine transformation depends on v̄ and changes the data defining (4). In particular: (i)
the negative entries of D can change, but still remain negative, (ii) the set L can become a translated
mixed-integer lattice, and (iii) the vector c, the polytope P̄ , and the function q(y) can change.

We now place an (m+1)×· · ·× (m+1) grid of points in the cube [0, 1]k. The value of m is the ceiling of
√

k/ǫ, and the reason behind this choice will be explained later. The coordinates of the points of the grids
have the form (i1/m, i2/m, . . . , ik/m), where i1, . . . , ik ∈ {0, 1, . . . ,m}. The grid partitions [0, 1]k into mk

subcubes. Next, for each subcube C, we construct an affine underestimator of the restriction of q(y) to C.
In what follows, we denote by γ the absolute value of the smallest diagonal entry of D.

Claim 2. For each subcube C, we can construct an affine function µ(y) such that for every y ∈ C we have

µ(y) ≤ q(y) ≤ µ(y) +
γk

4m2
.
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Proof of claim. Let C be a particular subcube, say C = [r1, s1] × · · · × [rk, sk], where sj − rj = 1/m for
every j. For each j = 1, . . . , k, the affine univariate function

λj(yj) := djj(rj + sj)yj + cjyj − djjrjsj (5)

satisfies λj(rj) = djjr
2
j + cjrj , and λj(sj) = djjs

2
j + cjsj . We define the affine function from R

k to R given
by

µ(y) :=

k
∑

j=1

λj(yj).

The separability of q implies that µ(y) and q(y) attain the same values at all vertices of C. As q is concave,
this in particular implies that µ(y) ≤ q(y).

We now show that q(y)− µ(y) ≤ γk/(4m2). From the separability of q, we obtain

q(y)− µ(y) =
k
∑

j=1

(djjy
2
j + cjyj − λj(yj)).

Using the explicit formula for λj given in (5), it can be derived that:

djjy
2
j + cjyj − λj(yj) = −djj(yj − rj)(sj − yj).

The univariate function on the right-hand side is concave, and its maximum is achieved at yj = (rj + sj)/2.
This maximum value is −djj/(4m

2). Therefore, as −djj ≤ γ, for j = 1, . . . , k, we establish that q(y)−µ(y) ≤
γk/(4m2). ⋄

For each subcube Ct, t = 1, . . . ,mk, our algorithm now constructs the corresponding affine function µt(y)
described in Claim 2. Then, we minimize µt(y) + f⊤z on each subcube Ct. This can be done by solving the
following MILP problem with p integer variables:

minimize µt(y) + f⊤z

subject to (y, z) ∈ P̄

y ∈ Ct

(y, z) ∈ L.

Finally, our algorithm returns the best solution (y⋄, z⋄) among all the mk optimum solutions just obtained.

We now show that (y⋄, z⋄) is an ǫ-approximate solution to the MIQP problem (4). In order to do so, in
the next two claims we will obtain two different bounds. To simplify the notation in the next arguments,
from now on we denote the objective function of MIQP (4) by

g(y, z) := q(y) + f⊤z = y⊤Dy + c⊤y + f⊤z.

The first bound is an upper bound on the gap between the objective value at (y⋄, z⋄) and the objective
value at an optimum solution (y∗, z∗) of (4).

Claim 3. g(y⋄, z⋄)− g(y∗, z∗) ≤ γk/(4m2).

Proof of claim. Let t⋄ such that (y⋄, z⋄) ∈ Ct⋄ and t∗ such that (y∗, z∗) ∈ Ct∗ . We have

g(y⋄, z⋄) ≤ µt⋄(y
⋄) + f⊤z⋄ +

γk

4m2

≤ µt∗(y
∗) + f⊤z∗ +

γk

4m2

≤ g(y∗, z∗) +
γk

4m2
.

The first inequality follow because, by Claim 2, we have q(y⋄) ≤ µt⋄(y
⋄) + γk/(4m2). The second inequality

holds by definition of (y⋄, z⋄). The third inequality follow because, by Claim 2, we have µt∗(y
∗) ≤ q(y∗). ⋄
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The second bound is a lower bound on the gap between the maximum and the minimum objective
function values of the points in P̄ ∩L. Without loss of generality, we now assume that the smallest diagonal
entry of D, the one with absolute value γ, is d11. By construction of P̄ there exists a point (y0, z0) ∈ P̄ ∩ L̄
such that y01 = 0. Similarly, there is a point (y1, z1) ∈ P̄ ∩ L̄ such that y11 = 1. We define the midpoint of
the segment joining (y0, z0) and (y1, z1) as

(y•, z•) :=
1

2
(y0, z0) +

1

2
(y1, z1).

The vector (y•, z•) is in L by Claim 1, and is in P̄ since it is a convex combination of two points in P̄ .
We are now ready to derive our lower bound.

Claim 4. g(y•, z•)− g(y∗, z∗) ≥ γ/4.

Proof of claim. The claim follows from the chain of inequalities below.

g(y•, z•) =
1

2

(

g(y0, z0) + g(y1, z1)
)

−
1

4
(y0 − y1)⊤D(y0 − y1)

≥ g(y∗, z∗)−
1

4
(y0 − y1)⊤D(y0 − y1)

= g(y∗, z∗) +
1

4

k
∑

i=1

(y0j − y1j )
2(−djj)

≥ g(y∗, z∗) +
1

4
(y01 − y11)

2(−d11)

= g(y∗, z∗) +
γ

4
.

The first inequality holds because g(y0, z0) ≥ g(y∗, z∗) and g(y1, z1) ≥ g(y∗, z∗). In order to obtain the
second inequality, note that all the terms of the summation are nonnegative, thus a lower bound is given by
the first term. In the last equation, we have used −d11 = γ, and (y01 − y11)

2 = 1 by choice of y0 and y1. ⋄

Using Claim 3, Claim 4, and the definition of m we obtain

|g(y⋄, z⋄)− g(y∗, z∗)| ≤
γk

4m2

≤
k

m2
· |g(y•, z•)− g(y∗, z∗)|

≤ ǫ · |g(y•, z•)− g(y∗, z∗)|.

Therefore, (y⋄, z⋄) is an ǫ-approximate solution to the MIQP problem (4).
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[4] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer Programming. Springer, 2014.

9



[5] W. Cook, M. Hartman, R. Kannan, and C. McDiarmid. On integer points in polyhedra. Combinatorica,
12(1):27–37, 1992.
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