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Abstract

With greater penetration of renewable generation, the uncertainty faced
in electricity markets has increased substantially. Conventionally, genera-
tors are assigned a pre-dispatch quantity in advance of real time, based on
estimates of uncertain quantities. Expensive real time adjustments then need
to be made to ensure demand is met, as uncertainty takes on a realization.
We propose a new stochastic-programming market clearing mechanism to
optimize pre-dispatch quantities, given the uncertainties’ probability distri-
bution and the costs of real-time deviation. This model differs from similar
mechanisms previously proposed in that pre-dispatch quantities are not sub-
ject to any network or other physical constraints; nor do they play a role
in financial settlement. We establish revenue adequacy in each scenario (as
opposed to “in expectation”), welfare enhancement and expected cost recov-
ery (including deviation costs), for this market clearing mechanism. We also
establish that this market clearing mechanism is social welfare optimizing.

Key words and phrases: stochastic programming, locational pricing, wind
power, regulation.
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1 Introduction
The increasing penetration of intermittent renewable power generation (such as
wind and solar) has led to much discussion of how to cope with the uncertainty
these sources induce in electricity markets. Several authors (e.g. [3, 8, 12, 18, 2,
14]) have presented re-formulations of the traditional optimal power flow problem
as two-stage stochastic programs; in the present paper, we aim to improve on
these.

In models of this type, the first stage represents an initial dispatch computed in
advance, with only probabilistic estimates of some quantities available. This could
be thought of as a “day-ahead” dispatch, although the same ideas can be applied
on shorter time scales. The second stage represents a regulation or balancing
market operated in or near real-time.

Inasmuch as the initial dispatch may be modified later, it could be thought of as
“non-physical”; however, the associated first-stage prices (“contract prices”) may
have real financial implications. In existing literature, the first stage is designed to
be constrained with physical system constraints.

In general, these models exhibit revenue adequacy in expectation (see [8, 12,
18]). That is, the total expected payments made by consumers will equal or exceed
the total expected compensation paid to generators. However, revenue adequacy
need not occur in every scenario – an example is given in [12]. The model pro-
posed in the present paper is free from this defect.

Another desirable property is cost recovery: the compensation paid for each
dispatched energy tranche to the firm that offered it should equal or exceed the
cost of producing it. The per-unit production cost may be taken (as e.g. in [8])
to coincide with the price at which the tranche was offered. Our model presents a
uniform pricing model that is proved to have cost recovery in expectation, includ-
ing the cost of any deviations.

We establish that our market clearing model is incentive compatible. We
demonstrate here that the decisions made by an independent system operator, who
clears the market based on maximizing expected total welfare align with those
made by individual agents, as long as those agents are truthful (i.e. a competitive
equilibrium is reached), as well as risk neutral.

One can also ask the usual questions asked of a stochastic program, i.e. do the
above properties remain valid when the sample incorporated in the stochastic pro-
gram is not the full underlying distribution? Revenue adequacy is maintained for
our model even if we encounter a scenario that we had not included in the sample.
Furthermore, we establish an asympthotic result that demonstrates expected cost
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recovery, as long as the chosen sample is “rich enough” in being reflective of the
true distribution.

2 The new SP model
We assume a power system modelled by DC load flow approximation, consisting
of a collection of nodes connected by lines. The lines are assumed lossless, so
that if F is a vector of flows on the lines, the net power τn(F ) imported into node
n by F is a linear functional of F . The capabilities of the transmission system
are represented by the requirement F ∈ U ; we assume U to be a bounded convex
polyhedral set with 0 ∈ U .

The supply side of the market will comprise a finite collection of tranches,
with tranche j consisting of a quantity gj of energy offered at a node n(j). Let
O(n) denote the set of tranches offered at node n.

2.1 The real-time problem.
Consider the following optimal power flow problem, to be thought of as repre-
senting real-time dispatch:

[RT (x, d)]: min
∑

j

(
cjXj + r+j (Xj − xj)+ + r−j (Xj − xj)−

)
s.t. τn(F ) +

∑
j∈O(n)Xj = dn ∀n [πn]

0 ≤ Xj ≤ gj ∀j
F ∈ U

(1)
Here Xj represents the quantity of energy to accept (dispatch) from tranche j

(for each j), and F the vector of associated line flows. The parameter d = (dn)
gives the demand for energy at each node. The parameter x = (xj) reflects a non-
standard offer structure: each offered tranche j has an associated per-unit cost
(or ask price) cj , with additional costs applying when the dispatch exceeds (r+j ) or
falls short of (r−j ) the level xj . Here xj represents a previously established setpoint
or pre-dispatch, and the objective terms including it represent the costs of making
real-time adjustments away from this level. We assume r+j ≥ 0 and r−j ≥ 0, but it
is possible that cj < 0.

Note that RT (x, d) is a linear program. It is a variant of the standard dispatch
problem considered e.g. in [11]. We assume in this paper that RT (x, d) is always
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feasible; this can be achieved by (for example) allowing unlimited load-shedding
– which is effectively a high-priced offer of supply – at any node.

Now suppose that (X∗, F ∗) is a primal optimal solution of RT (x, d), and that
(πn) are optimal dual prices for the energy balance constraints (i.e. energy prices
at the nodes). We will assume that energy is traded at the prices πn with no side
payments. That is, the consumers at node n collectively pay πndn for their demand
dn, and the provider of tranche j receives πn(j)X∗j for the energy it supplies.

According to the Lagrangian Duality Theorem (see e.g. [17]), the Lagrangian

L(X,F ) =
∑

j

(
cjXj + r+j (Xj − xj)+ + r−j (Xj − xj)−

)
+
∑

n πn

(
dn − τn(F )−

∑
j∈O(n)Xj

) (2)

is minimized, subject to the remaining constraints 0 ≤ Xj ≤ gj ∀j and F ∈ U , at
(X∗, F ∗). This leads immediately to several useful observations.

2.2 Revenue adequacy.
Considering the terms containing F in (2), we see that

∑
n πnτn(F ) is maximized

over F ∈ U at F ∗. By comparison with the feasible point 0 ∈ U (all zero flows),
this gives

∑
n πnτn(F ∗) ≥ 0. But, since (X∗, F ∗) satisfies the energy balance

constraints in RT (x, d), τn(F ∗) = dn −
∑

j∈O(n)X
∗
j . So we have∑

n

πndn ≥
∑
j

πn(j)X
∗
j .

That is, the revenue raised from consumers is sufficient to pay the suppliers. Note
that this result holds for all values of the parameters x and d; in particular, it is not
necessary to choose the setpoints x in any particular way.

2.3 Pricing and dispatch of individual offers.
Considering the terms containing Xj in (2), we see that for each j,

(cj − πn(j))Xj + r+j (Xj − xj)+ + r−j (Xj − xj)−

is minimized over 0 ≤ Xj ≤ gj at X∗j . This reveals the relationship between the
dispatch of a particular tranche and the energy price at its local node:
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if πn(j) < cj − r−j , then X∗j = 0
if πn(j) = cj − r−j , then 0 ≤ X∗j ≤ xj
if cj − r−j < πn(j) < cj + r+j , then X∗j = xj
if πn(j) = cj + r+j , then xj ≤ X∗j ≤ gj
if πn(j) > cj + r+j , then X∗j = gj .

2.4 Supplier margins.
Assume that the objective of (1) reflects suppliers’ actual costs. Then the margin
(gross profit) made by the supplier of tranche j will be

πn(j)X
∗
j − cjX∗j − r+j (X∗j − xj)+ − r−j (X∗j − xj)−.

In the light of the above result on X∗j , this margin can be expressed as

mj(xj, πn(j)) =

{ −r−j xj, if πn(j) ≤ cj − r−j
(πn(j) − cj)xj, if cj − r−j ≤ πn(j) ≤ cj + r+j
(πn(j) − cj − r+j )gj + r+j xj, if πn(j) ≥ cj + r+j .

(3)
In particular, the margin is positive if πn(j) > cj and negative if πn(j) < cj .

The possibility of a negative margin (i.e. of the market accepting a supplier’s
offer in a way that fails to cover the supplier’s costs) is in contrast to the standard
DCOPF market formulation (see, e.g. [11]) in which supplier margins are always
non-negative.

Note also from (3) that the supplier’s margin mj(xj, πn(j)) is uniquely de-
termined (provided the local nodal price πn(j) is uniquely determined) even in
degenerate cases where X∗j is not uniquely determined. Such a case may occur,
for example, if two identical tranches are offered at the same node.

2.5 The dual real-time problem.
Now consider the dual DRT (x, d) of the linear program RT (x, d). When we
express RT (x, d) as a linear program in standard form, the parameters x and d
are constraint right-hand-sides; thus they appear in DRT (x, d) only as objective
coefficients. That is, the feasible set S of DRT (x, d) does not depend on x or
d. From this observation we can derive a result which will be useful later in the
paper, and may also be of independent interest.
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Lemma 2.1 There exists a constant C, depending only on the feasible set S, such
that for any x, the set

{d : RT (x, d) has unique energy price duals satisfying |πn| ≤ C}

has full Lebesgue measure.

Remark. This result offers reassurance that the prices generated by the proposed
mechanism are both well-determined and bounded – unless the system is excep-
tionally unlucky in the demands experienced at its nodes.

Proof. Since S is a (possibly unbounded) polyhedral set with finitely many ver-
tices, we can choose C so that ‖v‖∞ ≤ C for all vertices v of S. The optimal set
of any problem DRT (x, d) will be a face f (possibly just a single vertex) of S; if
the energy price variables (πn) are uniquely determined (i.e. constant on f ), then
they will satisfy |πn| ≤ C. It therefore suffices to show that for a fixed x, the set

∆x = {d : RT (x, d) has non-unique energy price duals (πn)}

has Lebesgue measure zero.
For each face f of S on which the (πn) variables are not constant, choose

points vf , wf differing in at least one πn component. When DRT (x, d) has such
a face f as its optimal set, its objective row is orthogonal to vf − wf . Since
this objective row includes the demands dn as coefficients corresponding to the
variables πn, we have aTf d+ bf = 0 for some non-zero vector af and scalar bf . So

∆x ⊆
⋃
f

{
d : aTf d+ bf = 0

}
.

Since S has only finitely many faces, the latter set is a finite union of hyperplanes,
with Lebesgue measure zero.

2.6 The stochastic programming problem.
We turn now to the problem of selecting optimal setpoints x prior to solution of
the real-time problem (1). Let J(x, d) denote the optimal value of the problem
RT (x, d). Consider the first-stage problem

[FP (µ)]: minx E [J(x,D)] (4)
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where D is a random vector of demands with distribution µ. Note that this is
an unconstrained optimization: we place no a priori constraints on the decision
variable x.

We can bring (1) and (4) together as the two-stage stochastic programming
problem

[SP ]: min E
[∑

j

(
cjXj + r+j (Xj − xj)+ + r−j (Xj − xj)−

)]
s.t. τn(F ) +

∑
j∈O(n)Xj = Dn ∀n w.p.1 [πn]

0 ≤ Xj ≤ gj ∀j w.p.1
F ∈ U w.p.1

(5)
Here the demands Dn, the second-stage decision variables Xj and F , and the

second-stage dual variables πn are all random variables, i.e. have values depend-
ing on an outcome ω selected from a sample space Ω. To simplify notation, we
follow the usual convention of suppressing the dependence on ω for random quan-
tities; thus e.g. F rather than F (ω).

Let (x∗, X∗, F ∗) be optimal for (5); then x∗ is optimal for (4) (see [3] or [5]).
As with the real-time problem, Lagrangian duality (for this case see [15]) can be
used to establish properties of the solution. The Lagrangian of (5)

L(x,X, F ) = E
[∑

j

(
cjXj + r+j (Xj − xj)+ + r−j (Xj − xj)−

)]
+E

[∑
n πn

(
Dn − τn(F )−

∑
j∈O(n)Xj

)] (6)

is minimized, subject to the remaining constraints 0 ≤ Xj ≤ gj ∀j w.p.1 and
F ∈ U w.p.1, at (x∗, X∗, F ∗). This leads immediately to some further useful
observations.

2.7 Optimal setpoints are quantiles of real-time dispatch.
Considering the terms containing xj in (6), we see that

E
[
r+j (X∗j − xj)+ + r−j (X∗j − xj)−

]
is minimized over the unconstrained variable xj at x∗j . If r+j = r−j = 0 this is
a trivial result, but otherwise the problem is a variant of the well known “News
Vendor” stochastic optimization. The result follows (see, e.g. [15, 7]) that x∗j is

the
r+j

r+j +r−j
quantile of the probability distribution of X∗j .
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2.8 Expected supplier margins.
Considering the terms containing xj or Xj in (6), we see that

E
[
(cj − πn(j))Xj + r+j (Xj − xj)+ + r−j (Xj − xj)−

]
is minimized, subject to 0 ≤ Xj ≤ gj w.p.1 (and xj unconstrained), at (x∗j , X

∗
j ).

It follows by comparison with the feasible solution xj = Xj = 0 that

E
[
(cj − πn(j))X∗j + r+j (X∗j − x∗j)+ + r−j (X∗j − x∗j)−

]
≤ 0.

That is, the expected margin made by the supplier of tranche j (see section 2.4)
is non-negative. This result offers some solace to suppliers: while this market
model may deliver them negative margins on occasion, their margins are at least
non-negative in expectation.

2.9 Uplift payments
The possibility of negative margins suggests a need for uplift payments to sup-
pliers to ensure that their costs are recovered. The most straightforward approach
would be a simple uplift payment in each market trading period equal to the neg-
ative part of the supplier’s margin on each tranche. Alternatively, the result of
Section 2.8 suggests a way to make the uplift payments smaller: aggregate the
margin over multiple market trading periods and make an uplift payment equal to
the negative part of the total. As the number of trading periods aggregated over
increases, the required uplift payments should tend to zero.

It should be noted that the latter approach is not entirely consistent with the
ideas of [?] regarding appropriate incentives for longer-term investment. However
further discussion of this point is beyond the scope of the present paper.

2.10 Competitive equilibrium.
The Lagrangian (6) offers a way to regard the optimum as the solution to a com-
petitive game. It may be expressed as

L(x,X, F ) = −
∑

j E
[
(πn(j) − cj)Xj − r+j (Xj − xj)+ − r−j (Xj − xj)−

]
−E [

∑
n πnτn(F )] + E [

∑
n πnDn] .

(7)
Consider a game in which each energy tranche j is offered by an agent Aj de-
siring to maximize the supplier margin on that tranche, while an additional agent
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Firm cost of gen. ramp up ramp down capacity
F1 10 1 -1 50
F2 20 5 0.001 80
I1 0.01 1 0.001 20 in scen 1

50 in scen 2

Table 1: Offer costs (in $) and quantities (in MW) for all firms.

Atrans controls the transmission system and desires to maximize the transmission
loss and constraint rental

∑
n πnτn(F ). If the game is perfectly competitive and

all agents are risk-neutral (so that expected values will serve as their objectives)
then (7) shows that the optimum (x∗, X∗, F ∗) is an equilibrium for the game. In
economic language: the competitive solution is social-welfare maximizing.

The reader may wonder if a similar result could be proved when the agents in
the market are risk averse. In this case, if the market for trading risk is complete
(i.e. there are enough instruments such as hedge contracts available to agents),
then the results obtained in [13] can be applied. In this case, we can demonstrate
that the risk adjusted system position will coincide with the risk-averse, competi-
tive equilibrium.

3 Illustrative examples
In this section we lay out two simple examples to illustrate the properties of our
model.

3.1 Single node example
Consider a single node system where two firm and one intermittent suppliers offer
in energy and a deterministic demand of 100MW. The intermittent supplier (firm
I1) faces two equally likely production scenarios, one low and one high. The cost
of generation, ramp up and down costs as well as capacities of generation are
provided in Table 1. The dispatch problem can then be formulated as
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[Ex1] min
∑

ω∈{1,2}

1

2

(
10Xω

1 + 20Xω
2 + 0.01Xω

3

+1(Xω
1 − x1)+ + 1(Xω

1 − x1)−
+5(Xω

2 − x2)+ + 0.001(Xω
2 − x2)−

+1(Xω
3 − x3)+ + 0.001(Xω1

3 − x3)−
)

s/t Xω
1 +Xω

2 +Xω
3 = 100 ω ∈ {1, 2}

0 ≤ Xω
1 ≤ 50 ω ∈ {1, 2}

0 ≤ Xω
2 ≤ 80 ω ∈ {1, 2}

0 ≤ X1
3 ≤ 20

0 ≤ X1
3 ≤ 50

xi ≥ 0 i ∈ {1, 2, 3}

The solution to this problem is outlined in Table 2.

firm advisory position real time generation
F1 50 50 in scen. 1

50 in scen. 2
F2 30 30 in scen. 1

0 in scen. 2
I1 50 20 in scen. 1

50 in scen. 2

Table 2: Advisory and real time generation (in MW) for the firms.

For this problem the optimal objective is $800.38, and the probability adjusted
second stage duals are 20.001 and 11 for first and second scenarios respectively.
Table 3 outlines the revenues, costs and profits of the generators in this simple
example.

This example demonstrates the mechanics of the proposed market clearing
and settlement schemes. It is clear here that the we maintain revenue adequacy in
each scenario and that generators recover cost in expectation. We will also point
out that if a “physical” first stage constraint, such as proposed in [12] is added to
the model that welfare decreases. Here if we ensure that that first stage advisory
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firm and scenario revenue cost profit expected profit
F1 scen 1 1000.05 500 500.05 275.025
F1 scen 2 550 500 50
F2 scen 1 600.03 600 0.03 0
F2 scen 2 0 0.03 -0.03
I1 scen 1 400.02 0.23 399.79 474.645
I1 scen 2 550 0.5 549.5

Table 3: Computation of payments (in $) to the generators.

position must meet demand, i.e.
∑

i xi = 100, then the optimal dispatch cost
increases to $815.37.

3.2 Two node example
The example depicted in Figure 1 is taken from [12]. It has two inelastic demand
scenarios (this can be thought of as demand net of renewable generation) which,
although they agree as to the total load, differ markedly in the location of the
load. The Thermal generation offer is completely inflexible (requiring Xi(ω1) =
Xi(ω2) = xi), while the Hydros are completely flexible with indicated deviation
costs. The line is lossless.
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..................................................................................................................................................
..........
........
.......
.......
.. .......

.......
........
.........
.............

..................................................................................................................................................
..........
........
.......
.......
..A B
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.......
..
.......
.......
..

D1

......................................................................................
.......
..
.......
.......
..

D2

......................................................................................................................
.....
.......
.......
..

5 @ $25 (±$2)
Hydro 1

..................................................................................................................
.......
..
...........
.....

5 @ $20
Thermal

......................................................................................
.......
..
.......
.......
..

5 @ $10 (±$2)
Hydro 2

capacity 3

Figure 1: A two-node system with random loads.

The optimal advisory position for this problem is given by x∗ = (0, 3, 5), that
is, 3 units from the Thermal and all 5 units of Hydro 2. The optimal real time
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Scenario probability D1 D2

ω1 0.6 2 6
ω2 0.4 7 1

Table 4: Scenarios for the two-node problem.

dispatches for this example are given by X∗(ω1) = (0, 3, 5) for scenario 1 and
X∗(ω2) = (1, 3, 4) for the second scenario. Furthermore the nodal prices are
given by πω1

A = πω1
B = 15.333333 for scenario 1, and πω2

A = 27, and πω2
B = 8

for scenario 2. For this example, the total payment in scenario one is $122.667
which is precisely what is collected from the consumer. In scenario two, the pay-
ment to generators adds up to $140.00 while the collected revenues from demand
is $197.00. The difference between the collected revenues and payments to the
generators is entirely due to congestion rent in this scenario. Clearly the settle-
ment mechanism is revenue adequate in each scenario. We note that if physical
constraints are imposed on the advisory position and the settlement scheme fol-
lows what is suggested in [12] then collected revenues in scenario one will be
insufficient to cover the participant payments.

4 Continuity properties
The probability distribution of the demands D in (4) is inevitably a modelling ap-
proximation to the real world. In practice it is likely to be a discrete distribution,
consisting of a finite collection of scenarios with attached probabilities. In this
section we consider the possibility of the actual demand vector being drawn from
a “true” probability distribution different from the one used in (4) to determine
setpoints x. In particular, this affects the result of section 2.8: expected supplier
margins are non-negative if the setpoints have been chosen optimally for the de-
mand distribution that will actually be experienced.

Proposition 4.1 Let µ1, µ2, . . . be probability distributions of demand, and sup-
pose that the µn converge in distrbution to a limiting distribution µ, with the sup-
ports of µ and the µn all lying within a bounded set. Let xn∗ be a minimizer of
FP (µn). Then any limit point x∗ of {xn∗} is a minimizer of FP (µ).
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Remark. Our intended interpretation of this result casts µ in the role of the true
distribution of demand, and the µn as modelling approximations thereof. The
result suggests that the minimizers of FP (µn) may be regarded as approximations
to a minimizer of FP (µ).

Proof. Apply Theorem 12 of Chapter 9 in [1]. The uniform bound on the supports
of µn, µ and the fact that J(·, D) is convex and finite-valued with probability 1,
ensure that the required hypotheses are satisfied.

We turn now to the supplier margins considered in sections 2.4 and 2.8. Let
Mj(x, d) be the margin made by the supplier of tranche j in problem RT (x, d);
recall that this margin may be expressed as mj(xj, πn(j)), where mj is the (con-
tinuous) function given in (3).

Proposition 4.2 Let the demand vector D be drawn from a probability distribu-
tion µ which has bounded support and is absolutely continuous with respect to
Lebesgue measure. Then E [Mj(x,D)] is continuous in x.

Remark. Combining Propositions 4.1 and 4.2 offers comfort to suppliers even
when the modelled distribution of demand differs from the true one. The ex-
pected supplier margin – which according to Section 2.8 is non-negative when the
demand distribution is modelled exactly – will vary continuously as the modelled
demand distribution (and associated optimal setpoints) are varied away from this
ideal.

Proof. Let the sequence (xk) converge to x. Let the demand vector d be such
that RT (x, d) has uniquely determined prices (πn). (According to Lemma 2.1,
the random vector D will take on such a value with probability 1.) As noted in
Section 2.5, the feasible set S of DRT (x, d) does not depend on either x or d. It
follows from this that for sufficiently large k, DRT (xk, d) will have its optimum
on the same face of S as DRT (x, d); in particular, the energy prices (πn) will be
the same for RT (xk, d) as they are for RT (x, d). We then have

mj(x
k
j , πn(j))→ mj(xj, πn(j))

by continuity of mj . That is, Mj(x
k, d) → Mj(x, d). This gives Mj(x

k, D) →
Mj(x,D) with probability 1. The result follows by the dominated convergence
theorem, with Lemma 2.1 providing the necessary boundedness for the duals.

The result of Proposition 4.2 does not hold if the demand distribution is dis-
crete rather than continuous.
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