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Abstract. In general, multistage stochastic optimization problems are formulated on the basis
of continuous distributions describing the uncertainty. Such “infinite” problems are practically im-
possible to solve as they are formulated and finite tree approximations of the underlying stochastic
processes are used as proxies. In this paper, we demonstrate how one can find guaranteed bounds,
i.e. finite tree models, for which the optimal values give upper and lower bounds for the optimal
values of the original infinite problem. Typically, there is a gap between the lower and upper bound.
However, this gap can be made arbitrarily small by making the approximating trees bushier. We
consider approximations in the first order stochastic sense, in the convex order sense and based on
subgradient approximations. Their use is shown in a multistage risk-averse production problem.
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1. Introduction. Multistage stochastic optimization problems are typically for-
mulated in terms of continuous distributions for the underlying stochastic processes
describing the problem uncertainty. As such, they are usually intractable as they are
originally defined and approximations in terms of finite scenario trees are needed for a
numerical solution. The approximation procedure is typically coined as the scenario
tree generation. Many are the papers dealing with scenario tree generation and the
calculation of the approximation error associated to the bounding approach. Even if
a large discrete tree model is constructed, the problem might be unsolvable because
of the curse of dimensionality. In this situation easy-to-compute bounds have been
proposed in literature by solving many much smaller problems instead of the big one
associated to the large discrete scenario tree. The idea of looking at sub-problems
with only two scenarios goes back to [1] for the two-stage linear case. In [13], approx-
imations of the optimal stochastic solution for multistage linear stochastic programs
have been quantified by solving pair sub-problems, by measuring the quality of the
deterministic solution and rolling horizon measures which update the estimation and
add more information at each stage. In [14] the authors extends the bounding ap-
proach of [1, 13, 20], for stochastic multistage mixed integer linear programs, solving
a sequence of group sub-problems made by a subset of reference scenarios, and a
subset of scenarios from the finite support. Besides, in [15] bounds for multistage
convex problems with concave risk functionals as objective are provided. In [3] the
authors generalize the definition of the Value of Stochastic Solution and Expected
Value of Perfect Information measures for the optimal value of various deterministic
equivalent models in a multistage setting with finite support. More recent bounding
approaches under the assumption of a given large discrete tree model are proposed
in [2, 21, 22]. In [9] the author elaborates an approximation scheme which integrates
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stage-aggregation and discretization through coarsening of sigma-algebras to ensure
computational tractability, while providing deterministic error bounds.

An alternative approach is to construct not one or a chain of approximating
scenario trees, but two trees, a lower tree and an upper tree, the solution of which lead
to upper and lower bounds for the optimal value of the original continuous problem in
terms of the underlying uncertainty. The advantage of the latter approach is that it
generates intervals in which the optimal value lies under guarantee. If the size of the
guaranteed interval is not satisfactorily small, the two trees may be refined to make
the gap smaller.

Results in this direction were for the first time obtained by Frauendorfer [4],
followed by [5, 8]. They observe that for convex minimization problems in both the
random parameters and decision variables, one has to concentrate the probability
mass on the barycenters of the partition covering the support of the distribution (a
discretization of the underlying probability space), to get a lower bound. For concave
functions in the random parameters, one has to distribute the probability mass to the
extreme points to get a lower bound. In this way every interior point is a barycenter of
a discrete distribution sitting on the extremal points; let us call this method balayage1.
This approach (without naming it balayage) appears in [4, 5]. These authors consider
a mixed type of objective, which is concave in one random variable, say η and convex
in another one, say ξ and assume they follow a block-diagonal autoregressive process.
For upper bounds, one has to use the balayage measure for the convex part and the
barycentric measure for the concave part. In contrast, the barycentric measure for
the convex part and the balayage measure for the concave part provide a lower bound.
The bounds can be made arbitrarily tight by successively partitioning the domain of
the random vectors. In [5] the authors discretize the conditional distributions and in a
second step the transition probabilities are combined to form a discrete scenario tree.
In [8] barycentric discretizations are adopted in a more general setting investigating
convex multistage stochastic programs with a generalized non-convex dependence on
the random variables.

In this paper, we generalize the bounding ideas of [4, 5, 8] to not necessarily
Markovian scenario processes and derive valid lower and upper bounds for the convex
case in both the random parameters and decision variables. The concave-convex case
requires only an easy additional step, where the upper and lower bound techniques
may be used simultaneously for the two parts of the objective. These two parts
may be dependent. We construct new discrete probability measures directly from the
simulated data of the whole scenario process and not from the discretization of the
conditional distributions as done before in the literature.

Our general setup is a multistage stochastic optimization problem of the form

v(P ):= min
x0,...,xT

E[Q(x0, ξ1, x1, . . . , ξT , xT )] :xt � Ft=σ(ξ1, . . . , ξt), xt ∈ Xt}, (1.1)

where Q(·) is some cost function, ξ = (ξ1, . . . , ξT ) is the stochastic scenario process
defined on a probability space (Ξ,F , P ), where Ξ = XTi=1Ξi and F = (F1, . . . ,FT )
is the filtration generated by projections of Ξ onto Xti=1Ξi for each t. The decision
process is x = (x0, . . . , xT ) and the notation xt � Ft means that xt is measurable
w.r.t. to Ft. This constraint is called the nonanticipativity constraint2. Xt is the

1The word balayage has been introduced by G. Choquet, see for instance [16].
2For the sake of simplicity, we do not consider the case where the available information - the

filtration - is larger than the one generated by in ξ. In the latter case one has to consider the
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set of constraints for the decision variables xt at stage t = 1, . . . , T , which may be
incorporated into the objective function Q by adding the convex indicator function

IXt(xt) =

{
0 if xt ∈ Xt
∞ otherwise.

In the following, we assume that all constraints have been incorporated in this way
into the objective function. E denotes the mathematical expectation.

Our main problem (1.1) is general in the sense that the scenario process may take
(uncountably) infinite values. For the solution of such a problem however, one has to
approximate it by a simpler problem, where the scenario process ξ̃ takes only finitely
many values. In this case the distribution P̃ of the scenario process ξ̃ is represented
by a scenario tree. For the simpler scenario process P̃ , the solution of problem (1.1)
reduces to an optimization problem in RN , typically with quite large dimension N .
Modern solvers are able to handle it.

Whenever problems are solved by approximation, the question of approximation
error arises. Let us mention here a basic approximation result proved in [19].

Theorem 1.1. Suppose that Q(x0, ξ1, x1, . . . , ξT , xT ) is convex in all x and Lips-
chitz with Lipschitz constant L in ξ. Then the approximation error expressed in terms
of the absolute difference in optimal values |v(P )− v(P̃ )| can be bounded by

|v(P )− v(P̃ )| ≤ L · d(P, P̃ ), (1.2)

where d(P, P̃ ) is the nested distance between the two scenario models P and P̃ .
More generally, if the expectation E in (1.1) is replaced by a distortion functional

R(Y ) =
´ 1

0
F−1
Y (u)h(u) du, with FY being the distribution function of Y , and h being

the nonnegative distortion function, then the assertion changes to

|v(P )− v(P̃ )| ≤ L · sup
0≤u≤1

h(u) · d(P, P̃ ) (1.3)

Remark. The (upper) average value-at-risk (conditional value-at-risk, expected
shortfall)

AV aRα(Y ) = min{q +
1

1− α
E[Y − q]+ : q ∈ R}

is a distortion functional with

h(u) =
1

1− α
1lα≤u≤1

where 1l is the indicator function and thus in (1.3) we have sup0≤u≤1 h(u) = (1−α)−1.

For the exact definition and properties of the nested distance d(P, P̃ ) we refer to
the book [19]. The nested distance is based on minimal transportation costs between
the scenario processes ξ and ξ̃. Let us mention here that any feasible transportation
plan between the two processes leads to an upper bound in (1.2). Thus a possible
way of obtaining upper and lower bounds is as follows:

1. Find a finite scenario process ξ̃ with distribution P̃ and a feasible3 trans-
portation plan π between the infinite process ξ and the finite process ξ̃.

nested distribution of ξ (see [18]), but for this paper the multivariate distribution of ξ contains all
information.

3A transportation plan is feasible, if it respects the filtration structure, see [19].
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2. Solve the finite problem and find v(P̃ ).
3. According to Theorem 1.3 the bounds are then given by:

v(P̃ )− L · dπ(P, P̃ ) ≤ v(P ) ≤ v(P̃ ) + L · dπ(P, P̃ ), (1.4)

where dπ is the distance calculated with the transportation plan π. Obviously
the best bounds are obtained for the optimal transportation plan, which
defines the nested distance, but any other transportation plan leads also to
guaranteed bounds.

However, it turns out, that the bounds given in (1.4) are not very tight: in this
paper we propose better ways to find bounds based on the notions of first order and
convex dominance for probability measures.

The paper is organized as follows: In section 2 we describe the principles of
bounding for two-stage stochastic optimization problems. Section 3 contains the main
results for the multistage situation based on first order and convex order stochastic
dominance. An example of the construction of upper and lower trees are contained
in section 4. Finally Section 5 reports numerical results on a multistage production
problem and Section 6 concludes the paper.

2. Bounding two-stage stochastic optimization problems. We consider
two-stage stochastic optimization problems where cost function in (1.1) is of the form
Q(x0, ξ1, x1) containing just one single random variable ξ ≡ ξ1. We assume here and
in the following that the decisions x takes values in Rd, while the random variables ξ
take values in Rm.

Let P and P ′ be probability distributions on Rm. We recall the definition of
first order stochastic dominance and convex dominance that will be useful to provide
bounds proposed in the paper.

Definition 2.1 (Stochastic Dominance). Let P and P̃ be probability distributions
on Rm. The following stochastic dominances hold true:

(i) First order stochastic dominance (FSD). P is dominated by P ′ in first order
sense, and we write

P ≺FSD P̃ ,

if
´
f(v) dP (v) ≤

´
f(v) dP̃ (v) for all nondecreasing integrable real valued

function f , i.e. for functions f for which v ≤ w (componentwise) implies
that f(v) ≤ f(w).

(ii) Convex stochastic dominance (CXD). P is dominated by P̄ in the convex
order sense, and we write

P ≺CXD P̄ ,

if
´
f(v) dP (v) ≤

´
f(v) dP̄ (v) for all convex integrable f .

The relation ≺CXD is also known under the names Bishop-de Leeuw ordering or
Lorenz dominance. More details about order relations can be found in [17]. Typi-
cally probabilities being smaller in convex ordering can be obtained by concentrating
the mass on the expectation (by virtue of using Jensen’s inequality [7]) and prob-
abilities being larger in convex ordering are obtained by moving the masses in a
mean-preserving way to the boundaries of the convex hull of the support of P (as is
done in Edmundson-Madansky’s inequality [11, 12]). These simple facts are the basis
of the results of this paper.
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2.1. Bounds based on convex order for two-stage stochastic optimiza-
tion problems.

Lemma 2.2. Suppose that the probability measure P can be written as P =∑
i wiPi, where wi are nonnegative weights with

∑
i wi = 1 and Pi are probability

measures. Then

P :=
∑
i

wiδE(Pi) ≺CXD P, (2.1)

where δE(Pi) is the point mass associated to E(Pi) with weight wi.
Proof. Let g be convex and integrable. Thenˆ

g(v) dP (v) =
∑
i

wi

ˆ
g(v)dPi(v) ≥

∑
i

wig(E(Pi)) =

ˆ
g(v) dP (v) .

Thus, if the support of P , say Ξ, of the probability P is partitioned into a finite
union of disjoint sets Ξ =

⋃
iAi, Pi be the conditional probability given Ai, i.e.

Pi(B) = P (B ∩ Ai)/pi with pi = P (Ai) and if zi = E(Pi), then
∑
i piδzi ≺CVX P

(see Figure 2.1 for an example).
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Fig. 2.1. Example of a partition of a 2-dimensional support Ξ of P , into a finite union of
disjoint sets Ai such Ξ =

⋃
i Ai with expectation E(Pi).

To get the inverse relation, suppose that P possesses a Lebesgue density and that
the support of P is contained in the union of convex polyhedral sets Ai, such that their
interiors are disjoint. Ai is the convex hull of its extremal points, say {ei1, . . . , eiki}.
Each point v in the set Ai it can be written as

v =
∑
j

wij(v)eij . (2.2)
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with wij(v) ≥ 0 and
∑
j w

i
j(v) = 1. If the Ai’s are simplices, then the representation

in (2.2) is unique, but uniqueness is not required here (see Figure 2.2 for an example).
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Fig. 2.2. Example of a partition of a 2-dimensional support Ξ of P , into a finite union of
disjoint sets Ai such Ξ =

⋃
i Ai with extremal points {ei1, . . . , eiki} and P̄i a discrete nonnegative

measure sitting on the extremals of Ai.

Lemma 2.3. Let P vi =
∑
j w

i
j(v)δeij and let P̄i =

´
Ai
P vi dP (v), which is a discrete

nonnegative measure sitting on the extremals of Ai. Let P̄ =
∑
i P̄i. Then P̄ is a

probability measure with the property that P ≺CXD P̄ .

Proof. Let g be convex and integrable. Then

ˆ
g(v) dP̄ (v) =

∑
i

ˆ
Ai

g(v) dP̄i =
∑
i

ˆ
Ai

∑
j

g(eij)w
i
j(v)dP (v)

≥
∑
i

ˆ
Ai

g(
∑
j

wij(v)eij) dP (v) =
∑
i

ˆ
Ai

g(v) dP (v)

≥
ˆ
g(v)dP (v).

Remark: Orderings and risk functionals. If f is nondecreasing and real
valued, then P ≺FSD P̃ implies that P f ≺FSD P̃ f , where P f resp. P̃ f are the image
measures under f . Thus, if a risk measure ρ is monotonic w.r.t. ≺FSD, then P ≺FSD
P̃ and u 7→ Q(x, u) nondecreasing for all x implies that ρP (Q(x, ·)) ≤ ρP̃ (Q(x, ·)).
Hence also infx ρP (Q(x, ·)) ≤ infx ρP̃ (Q(x, ·)).
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Likewise, if f is convex and real valued, then P ≺CXD P̄ implies that P f ≺SSD
P̄ f , where P f resp. P̄ f are the image measures under f . Thus, if a risk mea-
sure ρ is monotonic w.r.t. ≺SSD, then P ≺CXD P ′ and u 7→ Q(x, u) convex
and nondecreasing for all x implies that ρP (Q(x, ·)) ≤ ρP̄ (Q(x, ·)). Hence also
infx ρP (Q(x, ·)) ≤ infx ρP̄ (Q(x, ·)).

3. Bounding multistage stochastic optimization problems. We consider
now a multistage stochastic optimization problem of the form (1.1) where the un-
certainty is described by a stochastic process ξ = (ξ1, . . . , ξT ). This process is char-
acterized by P1, the distribution of ξ1 and the conditional distributions ξt|(ξ1 =
u1, . . . , ξt−1 = ut−1) for all t > 1, denoted by Pt(·|u1, . . . , ut−1). Our goal is threefold

1. to find tree processes P̄ and P such that with the value function v as in (1.1)
we have

v(P ) ≤ v(P ) ≤ v(P̄ ),

or with a possible correction term ε

v(P )− ε ≤ v(P ) ≤ v(P̄ ) + ε;

2. to be able to construct refinements of these bounds by considering bushier
trees, if the gap is considered too large;

3. to find approximate solutions for the infinite problem (1.1) based in the so-
lutions of the finite problem without solving the infinite problem.

3.1. Bounds based on first order dominance. Stochastic first order dom-
inance given in Definition 2.1 may be broken down in a multistage setting to the
conditional distributions. To this end, we introduce the following definition.

Definition 3.1. We say that a process ξ is totally monotone, if the conditional
distributions satisfy

ξt|(ξ1 = u1, . . . , ξt−1 = ut−1) ≺FSD ξt|(ξ1 = w1, . . . , ξt−1 = wt−1)

whenever u1 ≤ w1, . . . , ut−1 ≤ wt−1
4.

Lemma 3.2. Let the two processes ξ and ξ̃ be totally monotone. Let in addition

ξt|(ξ1 = u1, . . . , ξt−1 = ut−1) ≺FSD ξ̃t|(ξ̃1 = u1, . . . , ξ̃t−1 = ut−1). (3.1)

Then P ≺FSD P̃ .

Proof. Let f be monotonic in all arguments and let P and P̃ the two probability
distributions associated to the totally monotone processes ξ and ξ̃ which satisfy (3.1).
Consider

fT−1(u1, . . . , uT−1) :=

ˆ
f(u1, . . . , uT ) dP (uT |u1, . . . , uT−1)

and

f̃T−1(u1, . . . , uT−1) :=

ˆ
f(u1, . . . , uT ) dP̃ (uT |u1, . . . , uT−1).

4These are stronger assumptions than introduced in previous papers [6] and [10].
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Then fT−1 and f̃T−1 are monotonic in (u1, . . . , uT ) and by assumption fT−1 ≤ f̃T−1.
With the similar argument,

fT−2(u1, . . . , uT−2) :=

ˆ
f(u1, . . . , uT−1) dP (uT−1|u1, . . . , uT−2)

and the analogously defined f̃T−2 are again monotonic and satisfy fT−2 ≤ f̃T−2 and
continuing the integration to the end one gets that

ˆ
f(·) dP (·) ≤

ˆ
f(·) dP̃ (·).

If the cost function Q(x0, ξ1, x1, . . . , ξT , xT ) is monotonic in (ξ1, . . . , ξT ), we can
apply Lemma (3.2) to problem (1.1) to construct upper bounds.

Example 1. Consider the following multistage stochastic optimization problem
with linear constraints in x.

min

{
c0(x0) + E[

T∑
t=1

ct(xt, ξt)] : x ∈ X

}
,

where the feasible set X is given by

W0x0 ≥ h0

A1 x0 +W1 x1 ≥ h1(ξ1)

A2 x1 +W2 x2 ≥ h2(ξ2)

...

AT xT−1 +WT xT ≥ hT (ξT ) (3.2)

x1 � F1

...

xT � FT .

Then if u 7→ ht(u) and u 7→ ct(xt, u) are monotonically nondecreasing, then the cost
function Q(x0, ξ1, x1, . . . , ξT , xT ) is monotonic in (ξ1, . . . , ξT ).

For later use we may also state that if (x, u) 7→ ct(x, u) and u 7→ ht(u) are
convex for all t, then the cost function Q(x0, ξ1, x1, . . . , ξT , xT ) is jointly convex in all
arguments.

In the following, we elaborate the method for a three stage model, the general-
ization to more stages can be done analogously, but the notation is more involved.
Suppose that (ξ1, ξ2) take their values in a rectangle Ξ = [L1, U1] × [L2, U2]. Let
L1 = a1 < a2 < · · · < ama+1 = U1 and let for each i = 1, . . . ,ma + 1, L2 = bi,1 <
bi,2 < · · · < bi,mb+1 = U2. Define the rectangles Ai,j = [ai, ai+1] × [bi,j , bi,j+1]; i =
1, . . . ,ma, j = 1, . . . ,mb. We assume that the scenario distribution (ξ1, ξ2) has a
density and therefore it does not matter that the rectangles are not disjoint. De-
fine pi,j = P (Ai,j). Let the finite tree process ξ̃ = (ξ̃1, ξ̃2) takes in each rectan-

gle Ai,j respectively the upper value ξ̃1 = ai+1 with probability
∑
j pi,j and the

right value ξ̃2 = bj+1 with probability pi,j/
∑
j pi,j conditional on ξ̃1 = ai+1. Then
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ξ̃ = (ξ̃1, ξ̃2) := (ai+1, bj+1) is a finite tree process P̃ , for which we solve the basic prob-

lem (1.1). Let the solution be x̃i1, resp. x̃i,j2 . We extend this to a decision function on
Ξ by setting

x̃1(u1) = x̃i1 when u1 ∈ Ai

and

x̃2(u1, u2) = x̃i,j2 when (u1, u2) ∈ Ai ×Bj .

We get

v(P̃ ) =

ˆ
Q(x0, u1, x̃1, u2, x̃2) dP̃ (u1, u2)

=
∑
i,j

pi,jQ(x0, ai+1, x̃
i
1, bj+1, x̃

i,j
2 )

≥
∑
i,j

ˆ
Ai×Bj

Q(x0, u1, x̃
i
1, u2, x̃

i,j
2 ) dP (u)

=
∑
i,j

ˆ
Ai×Bj

Q(x0, u1, x̃1(u1), u2, x̃2(u1, u2)) dP (u)

=

ˆ
(Q(x0, u1, x̃1(u1), u2, x̃2(u1, u2)) dP (u) ≥ v(P ).

For establishing a lower bound we use the same setup as before. Let the finite tree
process ξ˜ = (ξ˜1, ξ˜2) takes in each rectangle Ai,j respectively the lower value ξ˜1 = ai

with probability
∑
j pi,j and the left value ξ˜2 = bj with probability pi,j/

∑
j pi,j

conditional on ξ˜1 = ai. Then ξ˜ = (ξ˜1, ξ˜2) := (ai, bj) is a finite tree process P˜ , for

which we solve the basic problem (1.1).
If x∗1(u1, u2) and x∗2(u1, u2) are the solutions of the infinite problem, we can make

out of then a feasible solution of the finite tree problem, by setting

x+
1 (ai) = min

u1∈Ai

x∗1(u1)

x+
2 (ai, bj) = min

u1∈Ai,u2∈Bj

x∗2(u1, u2).

By monotonicity,

v(P ) =

ˆ
Q(x0, u1, x

∗
1(u1), u2, x

∗
2(u1, u2)) dP (u)

≥
∑
i,j

ˆ
Ai,j

Q(x0, u1, x
+
1 (ai), u2, x

+
2 (ai, bj)) dP (u) ≥ v(P˜).

3.2. Bounds based on convex dominance. In this section we provide bounds
based on convex dominance for multistage stochastic programs. One might conjecture
that for two scenario processes Pt(ut|u1, . . . , ut) ≺CXD P̄t(ut|u1, . . . , ut) for all t and
all (u1, . . . , uT ) is sufficient to entail P ≺CXD P̄ . However this is not true as the
following example shows:

Example 2. Let ξ1 ∼ N(0, σ2
1) and ξ2|ξ1 ∼ N(exp(−ξ2

1/4), σ2
1). Similarly,

ξ̄1 ∼ N(0, σ2
2) and ξ̄2|ξ̄1 ∼ N(exp(−ξ̄2

1/4), σ2
2). If σ1 < σ2, then ξ1 ≺CXD ξ̄1 and also
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(ξ2|ξ1 = x) ≺CXD (ξ̄2|ξ̄1 = x) for all x. But (ξ1, ξ2) 6≺CXD (ξ̄1, ξ̄2) as can be seen
from the second moments. Choose e.g. σ1 = 1/2, σ2 = 1. Then

E(ξ2
2) = σ2

1 +
√

1/σ2
1 + 1/σ4

1 = 4.7221 >

> 2.4142 = σ2
2 +

√
1/σ2

2 + 1/σ4
2 = E(ξ̄2

2).

Notice also that a convex order dominating discrete probability cannot by found
by choosing dominating discretizations for first components and for all conditional
distributions of the second component and concatenating them together as as the
next example shows.

Example 3. Suppose that ξ1 is distributed according to Uniform[0, 1] and that
ξ2|ξ1 is distributed according to Uniform[ξ1(1 − ξ1), ξ1(1 − ξ1) + 1]. Let ξ̄1 take the
values 0 and 1 each with probability 1/2. Then ξ̄1 dominates ξ1 in convex order. Like-
wise, let for each u, ξ̄2(u) take the values u(1 − u) and u(1 − u) + 1 with probability
1/2 each. Then the conditional distributions ξ2|ξ1 = u are dominated by ξ̄2(u) for
all u. But if concatenating ξ̄1 with the conditional distributions ξ̄2(u) only the condi-
tional distributions for u = 0 and u = 1 are used and one obtains that (ξ̄1, ξ̄2) has a
distribution, which sits on all 4 edges of the unit square with equal probabilities 1/4.
But this is not a convex dominant of (ξ1, ξ2), since

E(ξ2
2) = 16/30 > E(ξ̄2

2) = 1/2.

The same example shows that concatenating lower bound approximations for the
conditional probabilities does not lead to a lower bound approximation for the total
probability. That is why in our procedure, the full multistage sample is used to
generate the bounding trees and not just the conditional distributions.

According to the two previous examples we claim that convex order of conditional
distributions is not sufficient, and a stronger condition must hold: The construction of
convex upper and lower bounds must be based on comparing the whole distributions
and not just the conditional ones.

For simplicity, we consider here three-stage stochastic programs. Generalization
to more stages requires a more complicated notation but can be done in an analogous
way.

Let Q(x0, ξ1, x1(ξ1), ξ2, x2(ξ1, ξ2)) be a convex function in ξ and let P be a prob-
ability measure on a bounded rectangle in R2. Notice that the extension to Rm×Rm
is obvious, but the notation gets more complicated so we omit it. As in (1.1) F1 is
the σ-algebra generated by the first component in R2 and F is Borel σ-algebra of R2.
Our problem is reduces to find

v(P ) = min
x0,x1,x2

EP [Q(x0, ξ1, x1(ξ1), ξ2, x2(ξ1, ξ2))] (3.3)

where x0 is deterministic, x1 is measurable w.r.t. F1 and x2 is measurable w.r.t. F .

3.2.1. Upper tree approximation based on convex order stochastic
dominance. Upper bounds for minimization problems are always easy to obtain,
since every feasible solution constitutes an upper bound. If the basic problem P
contains continuous distributions, but the approximating problem P̃ is discrete, then
one has to construct a feasible solution for P out one for P̃ . Suppose that P̃ is a
scenario tree with values zi1 in the second stage and zi,j2 in the third stage and x̃i1 and
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x̃i,j2 are its discrete solutions of the problem with P̃ as the distribution of the scenario
process. Then by any reasonable extension function one may construct a solution for
the P -problem (3.3), for instance by setting

x̃1(ξ1) = xi1 if zi1 is the point, which is closest to ξ1

x̃2(ξ1, ξ2) = xi,j2 if (zi1, z
i,j
2 ) is the point, which is closest to (ξ1, ξ2).

Obviously,

min
x0,x1(·),x2(·)

EP [Q(x0, ξ1, x1(ξ1), ξ2, x2(ξ1, ξ2))] ≤ EP̃ [Q(x0, ξ1, x̃1(ξ1), ξ2, x̃2(ξ1, ξ2))].

That is any extension of a solution of any tree process P̃ leads to an upper bound.
However notice that one has to evaluate the objective function for the scenario process
P and the solution x̃ in order to get the upper bound.

We aim however at finding an upper bound, which can be calculated on a finite
tree without evaluating the continuous problem. A construction similar to the one
for P̄ in the two-stage case may be used.

Suppose that (ξ1, ξ2) take their values in a rectangle Ξ = [L1, U1]× [L2, U2]. Let
L1 = a1 < a2 < · · · < ama+1 = U1 and let for each i, l2 = bi,1 < bi,2 < · · · < bi,mb+1

=
u2.

Define the rectangles Ai,j = [ai, ai+1] × [bi,j , bi,j+1], i = 1, . . . ,ma, j = 1, . . . ,mb.
We assume that the scenario distribution (ξ1, ξ2) has a density and therefore it does
not matter that the rectangles are not disjoint.

Let Pi,j be the distribution P conditioned on the set Ai,j , i.e.

Pi,j(D) =
1

pi,j
P (Ai,j ∩D)

with pi,j = P (Ai,j). We have that

P =
∑
i,j

pi,jPi,j .

Let P̄i,j be a probability measure sitting on the four extremals of Ai,j such that
Pi,j ≺CXD P̄i,j . Then P ≺CXD P̄ by the following lemma.

Lemma 3.3. If Pi,j ≺CXD P̄i,j for all i, j and P =
∑
i,j pi,jPi,j and P̄ =∑

i,j pi,jP̄i,j then

P ≺CXD P̄ .

Proof. Let f be convex, then

EP (f) =
∑
i,j

pi,jEPi,j
(f) ≤

∑
i,j

pi,jEP̄i,j
(f) = EP̄ (f).

P̄ is a tree process and one may find the solution of the pertaining optimiza-
tion problem. Let x∗i1 and x∗i,j2 be the solution of this problem. We construct a

continuous extension of this solution. If (ξ1, ξ2) =
∑
wi,j(ξ1, ξ2)ei,j1 , then we set

x̄1(ξ1) =
∑
wi,j(ξ1, ξ2)x∗i1 and x̄2(ξ1, ξ2) =

∑∑
wi,j(ξ1, ξ2)x∗i,j2 . By construction

EP̄ [Q(x0, ξ1, x̄1(ξ1), ξ2, x̄2(ξ1, ξ2))] ≥ EP [Q(x0, ξ1, x1(ξ1), ξ2, x2(ξ1, ξ2))].
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If now the P -problem is solved to optimality, one sees that the relationship

v(P̄ ) ≥ v(P )

holds.

3.2.2. Lower tree approximation based on convex order stochastic dom-
inance. The problem of finding lower bounds is slightly more involved than finding
the upper bounds. We refer to the same construction of rectangles as before. Let zi,j

be the barycenters of Pi,j .
By construction, P i,j ≺CXD Pi,j and by the Lemma 3.3 P ≺CXD P .

Let FA be the σ-algebra generated by the sets Ai,j . Notice that for all integrable
function f

E[f(ξ1, ξ2)|FA] =
∑
i,j

EPi,j
(f)1lAi,j

.

We now distinguish two cases:
• Case I: Conditionally on Ai, ξ2 is independent of ξ1.
• Case NI: The independence assumption is not satisfied.

[Case I]. In this case, the conditional expectations given Ai,j of all functions which

only depend on the first component ξ1 do not depend on j, in particular zi,j1 = zi1
does not depend on j.

The following proposition holds true:
Proposition 3.4. Let P be the tree constructed using zi1 and zi,j2 with scenario

probabilities pi,j. Then: v(P ) ≤ v(P ).
Proof. We get

EP [Q(x0, ξ1, x1(ξ1), ξ2, x2(ξ1, ξ2))]

= EP {EP [Q(x0, ξ1, x1(ξ1), ξ2, x2(ξ1, ξ2))|FA}]
≥ EP [Q(x0,E(ξ1|FA),E(x1|FA),E(ξ2|FA),E(x2|FA)]

= EP [Q(x0, z
i
1, x

i
1, z

i,j
2 , xi,j2 )]

≥ v(P )

The last inequality comes from the fact that we have constructed a feasible solution
for P , but this need not be the optimal one. However its optimal solution leads a
further lower bound for the problem with P as scenario process. Therefore P is a
lower tree approximation.

[Case NI]. If the independence assumption is not valid, we use an different ap-
proach:

Notice that if z 7→ Q(x, z) is convex and finitely valued, then for every point z̃

Q(x, z) ≥ Q(x, z̄) + 〈q(z̄|x), z − z̃〉

where q(z̄|x) is a subgradient of z 7→ Q(x, z) at z̄ for fixed x. Consequently

E[Q(x, ξ)] ≥ E[Q(x, ξ̄)] + E〈q(ξ̄|x), (ξ − ξ̄)〉
≥ E[Q(x, ξ̄)]− [E(C2(ξ̄))]1/2 · [E(‖ξ̄ − ξ)‖2)]1/2 (3.4)

where C(ξ̄) is a bound for the norm of the subgradients q(ξ̄|x) uniformly in x

sup
x
‖q(ξ̄|x)‖ ≤ C(ξ̄).
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Fig. 3.1. Left: The notation of the constructed scenario tree. Right: The pertaining decision tree.

The case of constraints of the form (x, z) ∈ B needs a little more attention.
Suppose that Q(x, z) = Q0(x, z) + IB(x, z), where Q0(x, z) is convex and finitely
valued and B is a convex set.

If (x, z̄) ∈ B and q(x, z̄) is a subgradient of z 7→ Q(x, z) at z̄ for fixed x, then
Q(x, z) ≥ Q(x, z̄) + 〈q(z̄|x), z − z̄〉 even if (x, z) /∈ B. Therefore (3.4) is a valid lower
bound for all values of ξ.

A similar argument holds for the three-stage case: if z1 7→ Q(x0, z1, x1, z2, x2) is
convex, with subgradient q(z1|x0, x1, x2, z2), then

EP [Q(x0, ξ1, x1, ξ2, x2)]

≥ E[Q(x0, ξ̄1, x1, ξ2, x2)] + E[〈q(ξ̄1|x0, x1, x2, ξ2), (ξ1 − ξ̄1)〉]
≥ E[Q(x0, ξ̄1, x1, ξ2, x2)]− [EP (C2(ξ̄1))]1/2 · [EP (‖ξ1 − ξ̄1‖2)]1/2.

For the construction of the lower approximating tree, let zi,j = (zi,j1 , zi,j2 ) as before
be the barycenters of Pi,j .

However, since the lower approximation has to be a tree, we set

z̄i1 =

mb∑
j=1

pi,jz
i,j
2 .

Let P be the tree constructed using z̄i1 as first stage values and and zi,j2 as second
stage values with scenario probabilities pi,j . The notation of this tree as well as of
the decision tree is shown in Figure 3.1.

Proposition 3.5. Let P be the tree constructed using z̄i1 as first stage values and
and zi,j2 as second stage values with scenario probabilities pi,j. For the tree process P
we have that

v(P )− [
∑
i

piC(z̃i1)] ·max
i,j
‖z̄i1 − z

i,j
2 ‖ ≤ v(P ).



14 F. MAGGIONI AND G. CH. PFLUG

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4.1. 5000 points distributed according to the distribution P of the scenario process (ξ1, ξ2),
with ξ1 ∼ P1 distributed according to a Beta(2,2) distribution and ξ2|ξ1 ∼ P2(·|ξ1) according to a

Beta(2, 1.4−0.8·ξ1
0.3+0.4·ξ1

).

Proof. As in Proposition 3.4 before, we have that

EP [Q(x0, ξ1, x1(ξ1), ξ2, x2(ξ1, ξ2))] ≥ EP [Q(x0, z
i,j
1 , xi1, z

i,j
2 , xi,j2 )]

= EP [Q(x0, z̄
i
1, x

i
1, z

i,j
2 , xi,j2 )] + EP [Q(x0, z

i,j
1 , xi1, z

i,j
2 , xi,j2 )]− EP [Q(x0, z̄

i
1, x

i
1, z

i,j
2 , xi,j2 )]

≥ EP [Q(x0, z̄
i
1, x

i
1, z

i,j
2 , xi,j2 )]− [

∑
i

pi C
2(z̃i1)]1/2 · [

∑
i,j

pi,j‖z̄i1 − z
i,j
1 ‖2]1/2

If the zi,j1 do not coincide for different j but fixed i, then the correction term

[
∑
i

pi C
2(z̃i1)]1/2 · [

∑
i,j

‖z̄i1 − z
i,j
1 ‖2]1/2

has to be subtracted. Otherwise the correction term disappears.

4. Lower and upper scenario trees construction: an example. In order
to demonstrate the approach proposed in Section 3 with a simple example, assume
that distribution P of the scenario process is given by (ξ1, ξ2), where ξ1 ∼ P1 is
distributed according to a Beta(2,2) distribution and ξ2|ξ1 ∼ P2(·|ξ1) is condition-
ally given ξ1 distributed according to Beta(2, 1.4−0.8·ξ1

0.3+0.4·ξ1 ). A sample of 5000 points
distributed according to P is shown in Figure 4.1.

For a given integers m1 and m2 we define the sets Ai,j as the squares with vertices
[((i−1)/m1, (j−1)/m2); (i/m1, (j−1)/m2); ((i−1)/m1, j/m2), (i/m1, j/m2)] for i =
1, . . . ,m1+1; j = 1, . . . ,m2+1. The upper approximation sits on the (m1+1)·(m2+1)
points (i/m1, j/m2). The lower approximation sits on some barycenters of the Ai,j .
The probabilities are pi,j = P (Ai,j).

If Ai,j = [(a, c); (a, d); (b, c); (b, d)] is such a rectangle, and (u1, u2) is a point in
this rectangle, then let Pi,j(u1, u2) be a probability measure sitting on the vertices
with probability

p(a, c) =
b− u1

b− a
· d− u2

d− c
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Fig. 4.2. The upper approximation P̄ based on convex stochastic dominance (left) and the
corresponding scenario tree structure (right).

p(a, d) =
b− u1

b− a
· u2 − c
d− c

p(b, c) =
u1 − a
b− a

· d− u2

d− c

p(b, d) =
u1 − a
b− a

· u2 − c
d− c

.

Notice that the expectation of Pi,ju1, u2 is (u1, u2).
In order to estimate the upper and lower approximations P̄ resp. P , we use a

large sample of N random deviates (ξ
(n)
1 , ξ

(n)
2 ). Set

P̄ =
1

N

N∑
n=1

Pi,j(ξ
(n)
1 , ξ

(n)
2 ) · 1l

(ξ
(n)
1 ,ξ

(n)
2 )∈Ai,j

.

P̄ is a finite process, and defines a tree process, which is the upper approximation. Fig-
ure 4.2 shows a construction of an upper approximation P̄ based on convex stochastic
dominance with the corresponding scenario tree structure with m1 = 5 and m2 = 3.

For the lower bound, the generation algorithm is a little more complicated. We

sample (ξ
(n)
1 , ξ

(n)
2 ), n = 1, . . . , N from P and set

ni,j =
1

N

N∑
n=1

1l
(ξ

(n)
1 ,ξ

(n)
2 )∈Ai,j

;

pi,j = ni,j/N ;

zi,j1 =
1

ni,j

N∑
n=1

ξ
(n)
1 1l

(ξ
(n)
1 ,ξ

(n)
2 )∈Ai,j

;

zi,j2 =
1

ni,j

N∑
n=1

ξ
(n)
2 1l

(ξ
(n)
1 ,ξ

(n)
2 )∈Ai,j

;
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Fig. 4.3. The barycenters (black diamonds) and the modified barycenters (black squares) of the
lower approximation tree based on convex stochastic dominance (left) and the corresponding scenario
tree structure (right).

Fig. 4.4. The upper approximation P̃ based on first order stochastic dominance (left) and the
corresponding scenario tree structure (right).

z̄i1 =

∑
j pi,jz

i,j
1∑

j pi,j
.

Then P is defined as

P =
∑
i,j

pi,jδ(zi1,z
i,j
2 ).

P̄ can be represented as a tree. Arcs (i, j) for which pi,j = 0 can be elimi-

nated. Figure 4.3 shows the barycenters (zi,j1 , zi,j2 ) (black diamonds) and the mod-

ified barycenters (z̄i1, z
i,j
2 ) (black squares) for the choice m1 = 5, m2 = 3 and the

distribution as in Figure 4.1.
Finally Figure 4.4 shows an upper approximation P̃ based on first order stochastic

dominance with the corresponding scenario tree structure as described in Section 3.1.
Similarly a lower approximation P˜ based on first-order stochastic dominance can be
obtained by putting the weights to the left and lower corner of each rectangles in
which the support has been dissected.
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5. Case study: a multistage production problem. This section presents a
simple multistage production problem adopted to test the bounds introduced before.
The problem can be summarized as follows: Consider a single product inventory
system, which is comprised of a warehouse and a factory. The planning horizon is T
periods. Random demands have to be satisfied from an inventory (the only random
quantities in the model). If the random demand exceeds the stock, it will be satisfied
by rapid orders from a different source, which come at a higher price. At each time
step (stage), orders can be placed. The goal is to minimize the total production cost
of the factory in the entire planning period.

Let assume the following notation.

Deterministic parameters:

ct the cost of producing a unit of the product
at the factory at time t = 0, . . . , T − 1;

bt the procurement cost from another retailer
for a unit of product at time t = 1, . . . , T ;

st the selling price at time t = 1, . . . , T ;
ht the inventory holding costs for positive inventory

from time t to t+ 1, t = 0, . . . , T − 1;
d the final value of the inventory;
Pt the maximal production capacity

of factory at time t = 0, . . . , T − 1;
v0 is the amount of the product

in the warehouse at the beginning of the period 1;
Q the maximal cumulative production capacity

of the factory up to time T − 1.

Stochastic scenario process:

ξt is the demand for the product at time t = 1, . . . , T .
(the random scenario process) All the demand must be satisfied;

ξt is the history of the demand for the product until time t.

Stochastic decision variables:

xt ≥ 0 is the amount of the product to be produced by the factory
and used to satisfy the demand at time t = 0, . . . , T − 1.

Auxiliary variables:

vt the amount of the product in the warehouse
after sales are effectuated at t = 1, . . . , T .

Notice that if vt is positive, vt = [vt]+, an inventory holding cost ht · [vt]+ will be
paid to carry the stock to the next step. If vt is negative, vt = [vt]−, a procurement
cost bt [vt]− to buy extra stock from another retailer will be paid. The final stock is
valuated with the value d [vT ]+.
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The problem can be modelled as follows:

min E[c0 · x0 + h0 · v0 +

T−1∑
t=1

ct · xt(ξt) +

T−1∑
t=1

ht · [vt(ξt)]+ +

T∑
t=1

bt · [vt(ξt)]−

−
T∑
t=1

st · ξt − d · [vt(ξT )]+], (5.1)

s.t. 0 ≤ x0 ≤ P0, (5.2)

0 ≤ xt(ξt) ≤ Pt t = 1, . . . , T − 1, (5.3)

Q ≥ x0 +

T−1∑
t=1

xt(ξt), (5.4)

v1(ξ1) = v0 + x0 − ξ1, (5.5)

vt+1(ξt+1) = [vt(ξt)]+ + xt(ξt)− ξt+1 t = 1, . . . , T − 1, (5.6)

vt(ξt) = [vt(ξt)]+ − [vt(ξt)]− t = 1, . . . , T, (5.7)

[vt(ξt)]+ ≥ 0 t = 1, . . . , T, (5.8)

[vt(ξt)]− ≥ 0 t = 1, . . . , T. (5.9)

The objective function (5.1) denotes the expected total cost obtained from production,
procurement from external retailers, inventory holding while the last two terms are the
profits respectively from selling and for the final value of the inventory. Constraints
(5.2)-(5.3) impose lower and upper levels on the factory production, constraint (5.4)
imposes an upper bound on the maximal cumulative production capacity of the factory
throughout the planning horizon. Finally constraints (5.5),(5.6), (5.7), (5.8) and (5.9)
respectively define the dynamics of the inventory level and its definition.

5.1. Risk aversion strategy: including the Average Value at Risk. Given
the confidence level α, we introduce now in the model (5.1)-(5.9), the (upper) average
value at risk:

AV aRα = min {y +
1

(1− α)
E([c0 · x0 + h0 · v0 +

T−1∑
t=1

ct · xt(ξt)

+

T−1∑
t=1

ht · [vt(ξt)]+ +

T∑
t=1

bt · [vt(ξt)]− −
T∑
t=1

st · ξt

−d · [vt(ξT )]+ − y]+) : y ∈ R}, (5.10)

where y represents the Value at Risk (V aR). If α = 0, then AV aR0 equals the expec-
tation and if α = 1, then AV aR1 is consistently defined as the essential supremum.

Introducing the auxiliary variable u(ξT ) the model (5.1)-(5.9) in a risk aversion
strategy becomes:

min y +
1

(1− α)
Eu(ξT ), (5.11)
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s.t. u(ξT ) ≥ c0 · x0 + h0 · v0 +

T−1∑
t=1

ct · xt(ξt)

+

T−1∑
t=1

ht · [vt(ξt)]+ +

T∑
t=1

bt · [vt(ξt)]− −
T∑
t=1

st · ξt

−d · [vt(ξT )]+ − y, (5.12)

0 ≤ x0 ≤ P0, (5.13)

0 ≤ xt(ξt) ≤ Pt t = 1, . . . , T − 1, (5.14)

Q ≥ x0 +

T−1∑
t=1

xt(ξt), (5.15)

v1(ξ1) = v0 + x0 − ξ1, (5.16)

vt+1(ξt+1) = [vt(ξt)]+ + xt(ξt)− ξt+1 t = 1, . . . , T − 1, (5.17)

vt(ξt) = [vt(ξt)]+ − [vt(ξt)]− t = 1, . . . , T, (5.18)

[vt(ξt)]+ ≥ 0 t = 1, . . . , T, (5.19)

[vt(ξt)]− ≥ 0 t = 1, . . . , T, (5.20)

u(ξT ) ≥ 0. (5.21)

5.2. Computation of bounds for a multistage risk-averse production
problem. This section presents some computational tests on the three-stage (T = 2)
risk-averse production problem. We assume that the distribution P of the demand
scenario process is given by ξ2 = (ξ1, ξ2), where ξ1 ∼ P1 is distributed according
to a Beta(2,2) distribution and ξ2|ξ1 ∼ P2(·|ξ1) is conditionally given ξ1 distributed
according to Beta(2,(1.4− 0.8 · ξ1)/(0.3 + 0.4 · ξ1)) in the range [0,100]. The maximal
production capacity of the factory at each period t = 0, 1 is Pt = 567 units, and the
integral production capacity of the factory for the entire planning period is Q = 13600.
The initial inventory is v0 = 10, the final value of the inventory is d = 2 per unit,
and values of production price ct, selling price st, inventory holding cost ht and
procurement cost bt at time period t are presented in Table 5.1.

Table 5.1
Production price ct, selling price st, inventory holding cost ht from time t to time t + 1 and

procurement cost bt for extra stock from another retailer at time t.

t ct st ht bt
0 3.5 - 2 -
1 3.6 10.7 1.9 8
2 - 10.5 - 8.1

The linear problems derived from our case study have been solved under AMPL
environment along MOSEK solver by interior-point algorithm. All the computations
have been performed on a 64-bit machine with 12 GB of RAM and a 2.90 GHz
processor.

In order to find guaranteed bounds, we consider first two finite three-stage trees
P̃ = (ξ̃1, ξ̃2) and P˜ = (ξ˜1, ξ˜2) having the same structure T5,5: 5 branches from the

root and 5 from each of the second-stage nodes resulting in k = 5× 5 = 25 scenarios
and 31 nodes. The two finite scenario trees have been built according to first order
stochastic dominance as described in Section 3.1 providing respectively upper and
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lower bounds: They are obtained by dissecting the support intro 25 rectangles Ai,j ,
i = 1, . . . , 5, j = 1, . . . , 5 and putting the weights respectively to the left and lower
corner (ai, bj) and to the up and right corner (ai+1, bj+1). Similarly other pairs
of finite scenario trees with bushier tree structures T10,10,T20,20,T40,40,T80,80 and
T160,160 have been considered (see Table 5.2 for details). Lower and upper bounds
to the total cost of problem (5.11)-(5.21) by using the finite scenario trees based on
first order stochastic dominance (FSD) are reported in Tables 5.3-5.4-5.5 and Figures
5.1-5.2. As expected the worst lower and upper bounds are given by T5,5 with an

absolute gap v(P̃ ) − v(P˜) of 137.5 but requiring the lowest CPU time (0.0625 CPU
seconds over 30 runs). Increasing the size of the scenario tree, signicantly improves
the bounds, monotonically reaching lower values of gaps up to 4.11 for the biggest
scenario tree considered T160,160 (see Figure 5.1 in the case of α = 0 where the
bounds are plotted for increasing values of complexity of calculation measured in
CPU seconds). Similar results are obtained for different values of confidence level α
(see Figure 5.2). The time required to solve the problem (see last column of Tables
5.3-5.4), monotonically increases with the dimension of the tree reaching the highest
value for T160,160 (3.40625 CPU seconds over 30 runs). Finally, average relative gaps
v(P̃ )−v(P˜)

v(P˜) are reported in table 5.5: as expected they improve monotonically with the

number of scenarios in the trees, ranging from 32% for T5,5 to 0.8% for T160,160.

Table 5.2
Scenario tree structures based on first order stochastic dominance (FSD) and convex order

dominance (CXD) adopted to compute the bounds.

Tree Number of scenarios Number of nodes
FSD - CXD T5,5 25 31
FSD - CXD T10,10 100 111
FSD - CXD T20,20 400 421
FSD T40,40 1600 1641
FSD T80,80 6400 6481
FSD T160,160 25600 25761

Table 5.3
Lower bounds objective function values and complexity of calculation (in CPS seconds) of finite

scenario tree structures, based on first order stochastic dominance (FSD) for increasing values of α.

Trees v(P˜) CPU seconds
α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

TFSD5,5 361.66 379.61 414.36 450.22 479.13 514.65 0.062

TFSD10,10 399.09 415.49 447.27 479.49 514.06 565.42 0.078

TFSD20,20 416.66 433.89 464.34 495.87 531.56 582.08 0.093

TFSD40,40 424.98 441.91 472.85 503.94 539.45 589.18 0.156

TFSD80,80 427.86 445.24 477.25 509.58 545.95 593.42 0.375

TFSD160,160 430.71 448.02 479.51 511.47 547.34 596.37 3.406
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Fig. 5.1. Lower and upper bounds to the total cost of problem (5.11)-(5.21) with confidence level
α = 0, by using the finite scenario trees based on first order stochastic dominance, for increasing
values of complexity of calculation measured in CPU seconds.
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Fig. 5.2. Lower and upper bounds to the total cost of problem (5.11)-(5.21) by using the finite
scenario trees T5,5 and T10,10 based on first order stochastic dominance.

We consider now lower and upper bounds built on convex stochastic dominance
as described in Section 3.2. They are obtained by dissecting the support into ma×mb

rectangles Ai,j , i = 1, . . . ,ma, j = 1, . . . ,mb and putting the weights respectively to
the barycenter and to the four corners. In this way the bounds can be calculated on
two finite trees without evaluating the continuous problem.

Lower and upper bounds based on convex stochastic dominance (CXD) are re-
ported in Tables 5.6-5.7-5.8 and Figures 5.3-5.4. Since ξ2 depends by ξ1, the correction
term described in Section 3.2.2 for lower tree approximation should be computed (see
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Table 5.6, column 3). This is obtained as follows: problem (5.1)-(5.9) can be rewritten
as

min E[c0 · x0 + h0 · v0 +

T−1∑
t=1

ct · xt(ξt) +

T−1∑
t=1

ht · [vt(ξt)]+ +

T∑
t=1

bt · [vt(ξt)]−

−
T∑
t=1

st · ξt − d · [vt(ξT )]+ + Ψ[x0, . . . , xT , ξT ]],

where

Ψ[x0, . . . , xT , ξT ] =

{
0 if (x0, . . . , xT ) ∈ X
∞ otherwise

with

X :=



0 ≤ x0 ≤ P0,
0 ≤ xt(ξt) ≤ Pt t = 1, . . . , T − 1,

Q ≥ x0 +
∑T−1
t=1 xt(ξt),

v1(ξ1) = v0 + x0 − ξ1,
vt+1(ξt+1) = [vt(ξt)]+ + xt(ξt)− ξt+1 t = 1, . . . , T − 1,
vt(ξt) = [vt(ξt)]+ − [vt(ξt)]− t = 1, . . . , T,
[vt(ξt)]+ ≥ 0 t = 1, . . . , T,
[vt(ξt)]− ≥ 0 t = 1, . . . , T.

Let P be the tree constructed using z̃i1 as first stage values and and zi,j2 as second
stage values with scenario probabilities pi,j . According to Proposition 3.5, we have
that the error made by the tree process P for our three-stage production problem by
collapsing zi,j1 in z̃i1, i = 1, . . . ,ma is c1

∑
i,j pi,j · |z̃i1 − z

i,j
1 |. In the risk-adverse case

we need just to divide the previous expression by the confidence level (1−α). Notice
that if the demand at time 2 is independent by the demand at time 1 then the error is
null. The absolute gap between CXD lower and upper bounds based on the simplest
tree structure considered T5,5, reduces considerably compared to the one obtained
by first order construction passing, in case of α = 0, from to 136.44 to 11.5 units.
Increasing the size of the scenario tree to T20,20, signicantly improves the bounds
closing the gap (see Figure 5.4) instead of 34.1 for FSD and taking approximately the
same CPU time. Different values of confidence level α are considered in Figure 5.3

and relative gaps v(P̄ )−v(P )
v(P ) are reported in table 5.8: results show that the average

gaps considerably reduces passing from 4% with TCXD5,5 to 0% with TCXD20,20 .

6. Conclusions. The paper develops lower and upper bounds for multistage
stochastic programs based on first order stochastic dominance and convex order dom-
inance of probability measures. The proposed method allows to construct solutions
for the infinite problem by considering finite trees approximations as proxies, and
can even be made arbitrarily close by making the approximating trees bushier. For
illustration numerical results on a multistage risk-averse production problem are pre-
sented. Results show that the solutions based on convex order dominance construction
outperform the ones obtained by first order stochastic dominance closing the gap be-
tween upper and lower bounds within a limited computational complexity and simple
scenario tree structures.
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Fig. 5.3. Lower and upper bounds to the total cost of problem (5.11)-(5.21) by using the finite
scenario trees T5,5, T10,10 and T20,20 based on convex stochastic dominance (CXD).
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Fig. 5.4. Lower and upper bounds to the total cost of problem (5.11)-(5.21) with α = 0, by
using finite scenario trees based on convex dominance (CXD).
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Table 5.4
Upper bounds objective function values and complexity of calculation (in CPS seconds) of finite

scenario tree structures, based on first order stochastic dominance (FSD) for increasing values of α.

Trees v(P̃ ) CPU seconds
α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

TFSD5,5 498.11 517.68 550.63 589.31 616.53 652.39 0.062

TFSD10,10 466.95 484.41 517.45 550.13 585.02 636.19 0.078

TFSD20,20 450.76 468.31 498.78 530.31 566.00 616.52 0.093

TFSD40,40 440.40 457.90 490.28 522.79 558.68 606.50 0.156

TFSD80,80 437.88 455.18 486.54 518.54 554.38 604.34 0.375

TFSD160,160 434.42 451.76 483.42 515.61 551.73 601.18 3.406

Table 5.5
Gaps of finite scenario tree structures based on first order stochastic dominance (FSD) for

increasing values of α.

Trees
v(P̃ )−v(P˜)

v(P˜)

α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

TFSD5,5 0.377 0.363 0.328 0.308 0.286 0.267

TFSD10,10 0.170 0.165 0.156 0.147 0.138 0.125

TFSD20,20 0.081 0.079 0.074 0.069 0.064 0.059

TFSD40,40 0.036 0.036 0.036 0.037 0.035 0.029

TFSD80,80 0.023 0.022 0.019 0.017 0.015 0.018

TFSD160,160 0.008 0.008 0.008 0.008 0.008 0.008

Table 5.6
Lower bounds objective function values, errors c1

∑
i,j pi,j · |z̃i1 − z

i,j
1 | and complexity of cal-

culation (in CPS seconds) of finite scenario tree structures, based on convex stochastic dominance
(CXD) for increasing values of α.

Trees v(P ) Error CPU s.
α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

TCXD5,5 424.74 442.55 473.21 509.15 535.18 571.15 0.0044 0.046

TCXD10,10 431.40 448.12 479.49 511.74 543.62 592.49 0.0031 0.059

TCXD20,20 431.40 448.21 479.81 512.43 549.41 597.81 0.0027 0.076
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Table 5.7
Upper bounds objective function values and complexity of calculation (in CPS seconds) of finite

scenario tree structures, based on convex stochastic dominance (CXD) for increasing values of α.

Trees v(P̄ ) CPU seconds
α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

TCXD5,5 436.25 454.48 484.83 520.67 575.95 621.62 0.042

TCXD10,10 431.64 448.50 479.82 513.74 553.09 604.95 0.054

TCXD20,20 431.40 448.21 479.81 512.43 549.41 597.81 0.078

Table 5.8
Gaps of finite scenario tree structures based on convex dominance (CXD) for increasing values

of α.

Trees v(P̄ )−v(P )
v(P )

α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

TCXD5,5 0.027 0.026 0.024 0.022 0.076 0.088

TCXD10,10 0.0005 0.0008 0.0006 0.003 0.017 0.020

TCXD20,20 0 0 0 0 0 0


