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Abstract: We study derivative-free constrained optimization problems and propose a
trust-region method that builds linear or quadratic models around the best feasible and
and around the best infeasible solutions found so far. These models are optimized within
a trust region, and the progressive barrier methodology handles the constraints by pro-
gressively pushing the infeasible solutions toward the feasible domain. Computational
experiments on smooth problems indicate that the proposed method is competitive with
COBYLA, and experiments on two nonsmooth multidisciplinary optimization problems
from mechanical engineering show that it can be competitive with NOMAD.
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1 Introduction

This work targets inequality constrained optimization problems by combining ideas
from unconstrained derivative-free trust-region algorithms (DFTR) [36] with the pro-
gressive barrier (PB) approach [8] to handle constraints. We consider the following
optimization problem:

min - f(z) (1)
subject to  ¢(x) <0
[ <x<u
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where f: R" — RU{+o0} is a single-valued objective function, ¢: R" — (RU{+o00})™
corresponds to the vector of constraints, I, u € (RU{£o0})" are bounds and n, m € N.
The functions f and c are typically the outputs of a simulation, or a blackbox, and are
called the true functions, while Problem (1) is called the true problem.

The following terminology from the taxonomy presented in [29] is used. The con-
straints of Problem (1) are assumed to be quantifiable, relazable, simulation, and known.
The taxonomy labels these assumptions as (QRSK) and have the following meaning:
A relaxable constraint can be violated without causing issues in the evaluation of the
objective and the other constraint functions, whereas the violation of any unrelaxable
constraint makes the other outputs non exploitable. In practice, it means that, for any
algorithm, infeasible points may be considered as iterates as long as the proposed solu-
tion is feasible. Quantifiable means that the function ¢ returns a vector of values and it
is possible to measure, from an infeasible point, the distance to feasibility. Simulation
means that the analytical expressions of the constraints are not available, but rather
given by a simulation, and finally, there are no hidden constraints, which are constraints
not known by the user.

Derivative-free methods from the literature may be classified into direct-search and
model-based algorithms. At each iteration of a direct-search method, decisions for the
next iterations are based only on the comparison of the newly evaluated points with
the best solution so far. In model-based methods, local models are built around the
current iterate. Both approaches have certain advantages. For example direct-search
methods are simpler and can be more easily parallelized but on the other hand model
based-methods try and account for the shape of the function more directly. Given
a very badly behaved function we would use a direct-search method. If the function
can be adequately approximated by a smooth function we would prefer a model-based
approach unless it is essential to exploit some parallel architecture.

Many derivative-free algorithms and their applications in numerous fields are dis-
cussed in the textbook [19] and in the survey [3].

The treatment of nonlinear constraints remains a real challenge. Of course uncon-
strained methods can always be applied inside frameworks such as exact penalty meth-
ods [32], Lagrangian methods [14], or sequential penalty derivative-free methods [33].
Our approach is rather a direct treatment for general constraints, which only a few
algorithms offer.

In model-based algorithms, the first algorithm proposed to handle general con-
straints without the use of their derivative is COBYLA designed by Powell and pre-
sented in [36]. It is a derivative-free trust-region algorithm and the constraints are
treated in the subproblem. Linear models are built from the vertices of simplexes.
In [15] a DFTR algorithm is proposed to treat problems without the use of the objec-
tive function derivatives but with the gradient of nonlinear constraints. In [43] a DFTR
algorithm combines an augmented Lagrangian method with a filter technique to solve
specific optimization problems presenting a separable structure. In [38] and [39], Sam-
paio and Toint propose to use the trust-funnel method of Gould and Toint [24] for
problems with general constraints. In [42], Troltzsch adapts SQP algorithms to gen-
eral equalities in a derivative-free algorithm. In [12] general inequality constrained



problems are solved by a DFTR algorithm called NOWPAC. At each iteration, the
strict feasibility of the trial point is ensured, thanks to an interior path provided by a
quadratic offset of the constraints. NOWPAC requires feasible initial points. Finally,
in [2] and [21] DFTR algorithms using an inexact restoration method are proposed
with respectively a penalty-like merit function and a filter. Algorithm treating linear
constraints are proposed in [25] and [37] for model-based methods.

In the direct-search class of methods, the extreme barrier [5] treats all types of
constraints by rejecting infeasible points. This is achieved by setting the objective
function value to infinity at infeasible trial points. Filter methods [22] are adapted
in [1], [6] and [20] to direct-search methods to treat nonlinear and quantifiable con-
straints. Filter methods do not combine the objective and the constraints into a single
merit function as penalty-based methods, but instead they aggregate all constraints
into a single constraint violation function and consider trade-offs between minimizing
the objective function versus reducing the constraint violation. Kolda, Lewis and Tor-
czon [26] present an algorithm for problems with general equality constraints where
linear equalities are treated explicitly, while nonlinear constraints are handled by an
augmented Lagrangian method adapted from [16] to a direct-search algorithm. Deriva-
tives of nonlinear constraints are not used. In 2009, the progressive barrier (PB) for
inequalities was proposed and specialized to the mesh adaptive direct search algorithm
(MADS) [8]. The PB treats inequality constraints by aggregating constraints viola-
tions into a single function and considers trade-offs between objective function quality
and feasibility. The name of the method originates from an upper bound, a threshold
on the constraint violation, that is progressively reduced to force the iterates towards
the feasible region. There is no need of derivatives and no penalty function. In 2010,
the progressive-to-extreme barrier, [9], combines both progressive and extreme barrier
techniques. Specific treatment for linear equalities or inequalities are also proposed
n [11], [27], [30] and [31] for direct-search methods.

The goal of this work is to adapt the constraints handling PB technique to the
DFTR framework. The document is organized as follows. Section 2 gives a high level
description of a generic DF'TR algorithm for unconstrained optimization, followed by
the main PB components necessary to handle constraints. A basic framework for
DFTR algorithms and a short description of the techniques used to build and improve
the models are given. The PB is presented as a process to treat the constraints that
allows infeasible iterates. Section 3 introduces a new algorithm combining the DFTR
framework and the PB to solve Problem (1). Computational experiments are conducted
in Section 4. Our code is shown to be competitive with COBYLA for DFO problems,
and competitive with NOMAD [28] for BBO problems. We conclude with a discussion
and future work in Section 5.



2 Derivative-free trust-region and progressive bar-
rier

2.1 Trust-region notations and definitions

The DFTR algorithms for unconstrained optimization belong to the class of model-
based algorithms, but also to the class of trust-region algorithms. The unconstrained
DFTR algorithm targets the following derivative-free optimization problem:

min - f(z). (2)
As in trust-region methods, see for example [44], the algorithm works efficiently provided
that one can trust the model in a neighborhood of the current point, called the trust
region. At each iteration a (relatively) local model of the objective function is built
and then minimized, [19]. In DFTR methods, the gradient of the objective function
is unavailable to build the models, although the convergence analysis assumes some
smoothness properties of the objective function and some properties of the model.
Below, we define the trust region, and some notions for the models and the geometry of
the sample set used to build these models. The main idea, as in classical trust-region
methods with derivatives, is to solve the subproblems defined with model functions that
are easier to minimize, and to perform this minimization within the trust region.

The following description is inspired from [18], with small modifications in the man-
agement of the criticality step. As in standard trust-region methods with derivatives,
2% denotes the current iterate at iteration k, and the trust region is the closed ball
B(z*; A*) = {z € R" : ||z —2"|| < A*}. The norms used in practice include Euclidian
and infinite norms. The size of the trust region, within which the model is optimized,
is called the trust region radius and is denoted by the scalar A* > 0.

In the theory developed in [19], at each iteration k£ the model is built through
interpolation or regression from a finite set Y*(2*) C R” of sample points for which the
objective function has been evaluated. Hence derivatives are not used to construct the
model. The model of the true function f at iteration k is denoted by f*.

The convergence analysis relies on some assumption on the quality of the models.
It is convenient to assume that the functions satisfy the following definition proposed
in [19] and slightly reformulated in [13]. Indeed, the definition ensures first-order con-
vergence results similar to those of classical trust-region methods because the model
has Taylor-like first-order behaviour. This definition applies in particular for contin-
uously differentiable functions with Lipschitz continuous gradient on an appropriate
open domain (see [19, chap. 6]).

Definition 2.1. Let f be a model of f € C* at x € R, and consider the radius A > 0.

Suppose that there exists a positive constant r such that for all y € B(xz; A) the model
f satisfies :

IV/) - ViRl <

1f(w) = FWIl < w(A)?
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Then the model f is said to be a k-fully-linear model of f on B(x; A).

These properties indicate that the model f and its gradient are close to the function
f and its gradient V f as long as the trust region radius is small enough. Similarities
with Taylor bounds in the derivative case are clear.

The second-order convergence results require the models to satisfy the following
definition:

Definition 2.2. Let f be a model of f € C* at x € R", and consider the radius A > 0.
Suppose that there exists a positive constant k such that for all y € B(x; A) the model
f satisfies:

IV2f ) = Vil < kA,
IVF) = Vil < s(A),
If () = FWI < KA.

Then the model f is said to be a k-fully-quadratic model of f on B(x; A).

Once again similarities with Taylor-like second-order bounds can be observed. As-
suming that the model satisfies stronger properties leads to stronger convergence anal-
ysis (e.g., see [12] and their definition of p-reduced fully-linear).

In [19, Chap. 6], different algorithms are detailed to construct and maintain fully-
linear and fully-quadratic models. They are based on the notion of well-poisedness in-
troduced in [19, chap. 3]. A model is said to be certifiably fully-linear (respectively cer-
tifiably fully-quadratic) when the sample set satisfies well-poisedness properties. These
geometric properties on sample sets are sufficient conditions to ensure fully-linear or
fully-quadratic models, and convergence is guaranteed. essentially because in the for-
mer case we know that the model improves as the trust region radius is decreased so
the trust region management alone ensures that the radius stays bounded away from
zero without taking any special precautions. We remark that well-poised sample sets
can be determined in a finite number of steps.

2.2 The unconstrained DFTR algorithm

A basic framework for unconstrained DFTR algorithms is summarized in this section.
The model is built using interpolation techniques rather than Taylor approximations,
which implies some modification between the DFTR algorithm and a classical trust-
region algorithm with derivatives.

There are different ways to define a DFTR algorithm, in particular different options
to choose the sample sets and build the models [39]. To simplify and to present the main
steps of the algorithm, at each iteration k, we build certifiably x-fully-linear models for
some fixed x > 0.

At each iteration the well-poisedness of the sample set is checked and modified if
necessary. In our algorithm the sample set Y*(x*) is built by taking exactly (n + 1)
points for linear models and ("Hzﬂ for quadratic models in a ball of radius 2A*
around z*.



Only interpolation techniques are used, no regression techniques are involved. If
there is an insufficient number of points then additional points are randomly sampled
and the geometry improvement algorithm is called, before evaluating the true function
values. If there are too many points, the most recent points are chosen.

Algorithm 1 DFTR for unconstrained optimization.

Step 1 - Model construction
Build a quadratic model f* from Y*(2*) that approximates the objective function
[ in B(z"; AF).

Step 2 - Subproblem
Optimize the subproblem on the trust region:

i* e argmin  f¥(x). (3)
x€B(zk;Ak)

The step 5% = 7% — 2% € B(0; A*) must achieve a fraction of a Cauchy step sf..

Step 3 - Step calculation
Evaluate f at ¥ and compute the ratio

f=?) — f(@*)
fR(ak) — fr(iv)
Step 4 - Trust region radius update

Py =

o If p'} > 1y, then set 2%+ = 7% and

AR — ’)/UlecA]c if AF > :qukHa
min{YineAF, Apaz b if AF < pl| g

o If 15y < pf <, then set 2**' = 7% and

Ak’-i—l _ ’VdecAk if Ak > MHQkHa
AR i AR < g,

o If pk <o, then set 2"t = 2% and AFF = 4 AP,

Figure 1: Iteration k of the DFTR unconstrained optimization algorithm.

The outline of this algorithm is presented in Figure 1. Additional algorithmic pa-
rameters are defined by: 79, M1, Viee; Vine, 1 With 0 < 19 < 1 < 1 (and 1, # 0),
0 < Yagee < 1 < Yine, 1t > 0. The parameter n; represents a threshold to decide if the ra-
tio comparing true and predicted improvements of the objective function is sufficiently



high. The parameter 7, is non-negative and can be chosen equal to zero. It is intro-
duced, among other reasons, to allow simple decrease rather than sufficient decrease.
The constants 4. and ;. are multiplication factors to increase and decrease the trust
region radius A*. The parameter u is a constant used to trigger the decreases of the
trust region radius when the gradient becomes small, to ensure that for small values of
AF the difference between the true gradient (or some gradient of a nearby function) is
appropriately approximated by the model gradient. A starting point z° must also be
provided. In Step 2, the Cauchy step s& is the minimizer of the model in the direction
of the gradient. The notation g* refers to the gradient of the model function f’“ and
it is the direction to the Cauchy point that drives first-order descent (corresponding to
the steepest descent direction in methods with derivatives).

As detailed in [18], which presents a general convergence analysis for DF'TR, algo-
rithms, if the model gradient is not small and the ratio for the trust region management
is large enough we increase A* regardless of any other conditions, if the step is success-
ful.

If the trust region radius is large compared to the norm of the model gradient, then
the characteristics of a fully-linear or fully-quadratic model are useless as the bounds
provided by the definitions may be too large to be meaningful and to guarantee an
accurate model but it is important to relate this occurring to these two quantities.
Under additional assumptions on f, and by replacing the original criticality step by
the one described in [13], first and second order global convergence can be proved [19].
The models are fully-linear for first order analysis and fully-quadratic for second order
analysis. Step 4 in Algorithm 1 ensures that A* converges to zero and replaces both
Step 5 and the criticality step in the algorithm proposed in [19, chap. 10]. Indeed, if
there are infinitely many iterations in which the trust region radius is not decreased,
then there are infinitely many iterations in which the value of f decreases by a minimal
value, which is impossible if f is assumed to be bounded from below. A natural stopping
criteria is then based on the value of AF.

As the trust region radius converges to zero, it means with the definition of fully-
linear and fully-quadratic models that the models become sufficiently close to the true
function on the trust region. As we can prove that the model gradient converges to
zero because a fraction of a Cauchy step is achieved at each iteration, the true gradient
also converges to zero. In other words, convergence analysis in classical trust-region
algorithm with derivative can be transferred to derivative-free trust-region algorithm
under another assumption. The most important difference is that in classical trust-
region algorithm with sufficient decrease, the trust region radius converges to infinity
whereas it converges to zero in the DFO context. However, and contrary to [45], in the
derivative case one can guarantee convergence with simple decrease if the trust region
radius A¥ goes to zero, but this may not be a good idea in practice.

An important feature of Algorithm 1 is that it is not required to impose fully-linear
(or fully-quadratic) models at every iteration, but only at the ones where the trust
region radius is decreased or if the model gradient is (relatively) small compared with
the trust region radius, and we are hoping this means that we are close to stationarity,
so we have to ensure that the model gradient adequately represents the true gradient.



In our presentation, the algorithm certifying the well-poisedness of the sample set
is called at the beginning of each iteration. Thus the models are always certifiably
fully-linear or fully-quadratic. If the well-poisedness is not guaranteed, an algorithm to
improve the geometry of the sample set is called. Hence, when the ratio p’} of Step 3 is
smaller than 7y, and when in addition the gradient of the model is large in comparison
with the trust region radius A*, we can reduce the trust region radius to improve the
accuracy of the model on a smaller region. Indeed, the algorithm ensures good geometry
of the sample sets at each iteration. With other management of the sample sets, a bad
ratio may occur because of bad geometry and to prevent this the model improvement
algorithm is needed. Reducing the trust region radius with no information regarding
the properties of the models (fully-linear or fully-quadratic) is likely to slow down the
algorithm. It is especially important that the gradient of the model is related to the
magnitude of A¥ when the model gradient becomes small, otherwise the Taylor-like
bounds do not guarantee the accuracy of the model and the convergence criterion on
the model does not imply convergence on the true function.

2.3 The progressive barrier

We now provide the main components used by the PB to handle constraints. Let

V¥ denote the set of all points visited by the start of iteration k, and at which the

values of the true functions, f and ¢, have previously been evaluated. The PB method

uses a constraint violation function h: R™ — R* U {400} which is an aggregation of

the violations of the constraint functions ¢;, i € {1,2,...,m}. It satisfies h(x) = 0
m

if and only if z is feasible. For example, one can use hy = 3. (max(c;,0))?, or hy =
i=1

s

(max(c;,0)), or even hy, = max (¢, 0).
i€{l...m}

1
The PB relies on the barrier threshold h¥ . which depends on k, the index of
the iteration. The barrier threshold filters each point = for which h(z) > h% . The
idea is to obtain a feasible point by progressively decreasing the barrier threshold and
selecting a point x at iteration k& with a smaller constraint violation than at iteration
k — 1. However, the barrier threshold is not decreased too rapidly. Indeed, decreasing
the threshold slowly allows selecting a promising infeasible point x with a low objective
function value f. The sequence of thresholds {h¥, .} is non-increasing.
The PB maintains two incumbent solutions at each iteration: a feasible % and
an infeasible ¥ one. The principle is to select these incumbents from V¥ and to test
nearby trial points in the hopes of improving the objective function value, f, or the

constraint violation function value, h. We define these two points at iteration k:

(2

o 2% € argmin{xr € V¥ : h(x) = 0}, the best feasible point, called the feasible

incumbent.

o ¥ € argmin{f(z) € V¥ : 0 < h(x) < Rk}, the infeasible point within
the barrier threshold with the least objective function value, called the infeasible
incumbent.



At least one of these two incumbents exists. When both exist, the algorithm labels one
of them as the primary incumbent z% and the other as the secondary incumbent x%:

vh < apand o§ < af i f(2]) > fak) - plf (k)]

o o and 2% <« 2%, otherwise,

where p > 0 is a trigger, set at 0.1 in our computational experiments, to favor feasible
over infeasible solutions. The algorithm then explores around both incumbents, but
deploys more effort around the primary one. In other words, more blackbox evaluations
are computed near the incumbent that has the more promising objective function value.

If the infeasible incumbent has a lower objective function value than the feasible
incumbent, ie. f(z%) < f(z%), then exploring near the infeasible incumbent may
potentially lead to a feasible solution with a lower objective function value than f(z%).

Three types of iterations are distinguished, associated with different parameter up-
date rules. These rules are based on the analysis of the set of points V¥ and those
evaluated during the iteration k. This set of points is V*+1.

e An iteration is said to be dominating whenever a trial point « € V**! that dom-
inates one of the incumbents is generated, i.e., when:

h(z) =0 and f(x) < f& or
0 < h(x) < h% and f(z) < fF, or
0 < h(z) < by and f(z) < ff,

where fk = f(z%), f¥ = f(a%) and hY = h(2%). In this case, hEtL is set to hh.

max

e An iteration is said to be improving if it is not dominating, but if there is an
infeasible solution x € V¥ with a strictly smaller value of h, i.e. when:

0 < h(z) < h¥ and f(z) > fF.

In other words, there is an infeasible solution with a lower value of h than h%
but a higher value of f than fF. The barrier threshold is updated by setting
hEl = max{h(z) : h(z) < h¥, z € V¥}. As a result, 2% is eliminated by the
barrier threshold at iteration k + 1. The points in V¥*! may have been generated

during iteration k or during a previous iteration.

e An iteration is said to be unsuccessful when every trial point = € V¥ is such that:
h(x) =0 and f(x) > fF, or  h(z)=h%and f(z)> fF or  h(z)> A}

In this case, hftl = h% as in the dominating iteration. This implies that both

incumbent solutions remain unchanged: %™ = 2% and 2%*! = 2%. If the barrier
threshold would be pushed further, no infeasible incumbent would be admissible
as an infeasible current incumbent. Unlike the improving iteration, there are no
other infeasible points to choose.



The improving iterations are the only ones which allow a reduction of the barrier
threshold h%FLl below h¥. Figure 2 summarizes the three different cases. The leftmost
figure illustrates a dominating iteration: a feasible trial point dominating x% or an
infeasible one dominating x% is generated. The corresponding regions are represented
by the thick line segment on the ordinate axis, and by the rectangular shaded region,
respectively. The central figure illustrates an improving iteration: there is an z € V*
whose image lies in the shaded rectangle: x has a lower constraint violation function
value than h¥ at the expense of a higher objective function value than fF. Finally,
the rightmost figure depicts an unsuccessful iteration. Every feasible point of V¥ is
dominated by the feasible incumbent, and every infeasible point of V¥ has a higher

constraint violation function value than h’}.
Dominating iteration = Improving iteration  Unsuccessful iteration
f A

I

(h§.fF)

0 h 0 h 0

Figure 2: Tllustration of possible regions for the 3 different types of iterations. Figure
adapted from [8].

To summarize, convergence toward the feasible region is handled by the barrier
threshold h* . and selecting the infeasible point with the smallest objective function

max?

value aims at generating a solution with a good value of f.

2.4 The speculative line-search

In addition to the PB, we borrow a rudimentary line-search devised in the context of
the MADS algorithm. The speculative search was first described in [7] as the dynamic
search, and renamed as speculative search in [8]. The main idea of the speculative
search is to explore further in a direction that leads to a dominating iteration.

More formally, in the context of the PB, let 2* be one of the incumbent solutions
ok or x%. Suppose that exploration around z* leads to a dominating iteration by
generating the point x. Define s = x — z*, the direction of success. The speculative
search simply explores further along this direction at the sequence of trial points x +
2s,x+4s,...,x+2's and stops as soon as a trial point does not dominate the previous

one.
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3 A derivative-free trust-region algorithm using the
progressive barrier

The main idea of the new algorithm to treat Problem (1) is to combine the unconstrained
DFTR algorithm of Section 2.1 with constraint handling techniques from the PB of
Section 2.3. Models of the true functions f and c¢ are built, and two constrained
subproblems based on these models are minimized at each iteration (the exact statement
of these subproblems appear in Step 3 of Algorithm 2).

3.1 Primary and secondary subproblems

The steps in the progressive barrier derivative-free trust-region (PBTR) algorithm
are similar to those of DFTR, but there are two constrained subproblems around two
incumbents: the primary subproblem around the primary incumbent and the secondary
subproblem around the secondary incumbent. The constraint violation threshold is
managed by the PB, as in the original version of PB for MADS. The efforts in term of
blackbox evaluations are different around each incumbent. Building the models around
one incumbent, the primary, is made by allowing more blackbox function evaluations
than around the secondary incumbent. Section 4 details different implementations
tested, with different strategies for the allocation of evaluations between the primary
and the secondary subproblems.

Thus in comparison with Algorithm 1, that is for unconstrained problems, Step 0
is added to determine the primary and secondary incumbent solutions and Step 7 is
added to explore further along directions that lead to dominating solutions, potentially
generating new incumbent solutions for the next iteration. A minimal decrease on the
objective function value f is imposed to accept new points.

Some additional modifications are introduced in this hybrid algorithm. As there
are two subproblems at each iteration (one around each incumbent), we define two
different trust region radii at each iteration: the trust region radius A% around z% and
A% around z¥. The notation ¢ is introduced to denote the models of the contraint
function ¢;, i € {1,2,...,m}. Furthermore, 2%, 2% denote the primary and secondary
incumbents and ¥, ¥ denote the solution of the trust-region subproblems centred at
the infeasible and feasible incumbents, respectively.

Recall that the set V¥ C R" at iteration k corresponds to the points already eval-
uated by the start of iteration k. As before, the sample set of evaluated points used
to build models around a point 2* is denoted by Y*(2*), and is built as presented in
Section 2.1.

Figure 3 describes iteration k, with the same algorithm parameters introduced in
Section 2.1. Recall that when the geometry of the sample set is improved it guarantees
a k-fully-linear or a r-fully-quadratic model depending on the type of model built.

11



Algorithm 2 PBTR for constrained optimization.

Step 0 - Primary and secondary incumbents
Let 2% be the primary incumbent and x% be the secondary incumbent with
{xljg% x’;‘} = {xlﬁ“a x];}

Step 1 - Construction of the sample set
The sample set V*(a%) is built with "2 points as presented in Section 2.1
with geometry improvement. The sample set Y*(z%) is built with at least 2 points.

Step 2 - Models construction
Build certifiably s-fully linear models f£ and &, from Y*(z%) that approximate f
and ¢ in B(z%; AY).
Build linear models f% and & from Y*(z%) that approximate f and ¢ in B(z%; AL).

Step 3 - Subproblems
Optimize the constrained subproblems on the trust-regions:

i* € argmin  fF(x) 7F € argmin  fE(z)
zeR" xrER™
subject to c(x) <0 subject to ¢ (z) <0
x € B(af; A})) v € B(wp; Axf))
[ <z<u [ <x<u.

Step 4 - Step calculation
Evaluate f and c at ¥ and z*.
Compute the ratios p% and pf as described in Section 3.2.

Step 5 - Update the barrier threshold hF+!

max

The barrier threshold is updated by using PB principles and the classification of
iteration in success, improvement and failure. See Section 3.2.

Step 6 - Update the trust region radii
The trust region radii A% and A% are updated following rules adapted from DFTR.
See Section 3.2.

Step 7 - Speculative line-searches
If 2% leads to a dominating iteration, perform a speculative search from ¥ in the
direction s = % — 2%, If z* leads to a dominating iteration, perform a speculative

search from z% in the direction s = 7% — z%. See Section 2.4.

Figure 3: Iteration k of the PBTR constrained optimization algorithm.
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3.2 Progressive barrier and trust-region update rules

The update rules for A, Ak and Ak are presented below. During iteration &, the true
functions f and c are evaluated at #* generated by solving the infeasible subproblem
and/or at ¥ by solving the feasible one. Notice that the variables are differentiated by
a hat and a bar rather than by subscripts F and 1 because it is possible that solving the
subproblem whose domain is centered around the infeasible incumbent x% might lead to
a feasible solution, and solving the subproblem around x% might lead to an infeasible
solution. The barrier threshold h**! is updated as described in Section 2.3 with the

max

following modification. The filtered set

Fr={z eV h(x)<ht

k and if 2 is a non-dominated point in V*}

is built and used by the PB as the replacement for V*. This is done because the new
PBTR algorithm generates more points than MADS, and if the set of points used to
update the barrier threshold A%l is not reduced, the barrier is decreased too slowly.
The trust region radius update rules of DF'TR are adapted to take the constraints
into account and to improve both f and h. For the objective function, we compute the

same ratio p§ as in DFTR. The ratio p} compares the relative variation of the true

function f and the model f* at #* and 2%, and similarly ﬁ’} compares the evaluation of
f at ¥ and z*:

g 1@ = 1@) f@h) —f@)
T fr(ak) — fr(@)’ fr(zk) — fo(z)

The model h*¥ of the constraint violation function h is defined using the same
m

norm, but with the model of ¢. For example, if A = 3 (max(c;,0))?, then hf =
i=1

Py =

m

> (max(&,’f, O))Q. The second set of ratios compare the variation of the true function h
i=1

over the variation of the model function h*:

o h@Y—hGEY) . (b)) A
S A e o)

The new rules are an adaptation of the DFTR update rules, with three main
differences. First, the ratio for the constraint violation function A is taken into account.
Second, there are two incumbents: a feasible and an infeasible one. Third, the condition
to increase the trust region radius in Step 4 of Algorithm 1 is that the trust region radius
is small compared to the norm of the model gradient of the objective function. In the
constrained case, we introduce two Boolean variables defined as follows:

Pr s true iff | VAY(2h)| > pak and Pr is true iff |V fE(zh)| > pAk

These Boolean variables are used to devise the trust region radius update rules. In
what follows, the negation of P¥ is denoted by —P%.
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For each trust region radius A% and A% the update rule depends on the status of
feasibility of the new generated points ¥ and z* respectively. The update rules are
similar to that of DFTR, with some modifications: the ratios for both f and h are
taken into account when the new generated point is infeasible.

e Update rule for A¥ when 2* is infeasible:

YineAf if my < ﬁlff and m < pf and P,
AT =0 YaeelAf i P < 1o or pf < 1o or =P, (4)
AY  otherwise.

e Update rule for A¥ when 2 is feasible:

YineAY if ny < ,5’}' and PF,
Ak — AFif o < p% < and PF, (5)
YaeeA¥  otherwise.

k

e Update rule for A% when z* is infeasible:

VineAf  if m < pf and gy < pp and P,
A]I%j_l = VdecAl;‘ if ﬁ];‘ < o Or ﬁ]fj < 7)o Or _'plli"? (6)
AR otherwise.

e Update rule for A% when z* is feasible:

Vch];‘ lf m S ﬁ]} and 7)1]‘?'7
AI;H _ Ak if gy < p’}‘ < and Py, (7)
YaecA¥.  otherwise.

In every case, when both ratios exceed 7y, but at least one of them is less than
11, then the trust region radius remains unchanged at iteration k£ + 1. Indeed, it is
analogous to the unconstrained algorithm, in which a ratio between 7y and 7; implies
no modification for the trust region radius.

When the new generated point is feasible, the update rules are defined by considering
only the ratio of f, and similar rules as in the unconstrained case are applied.

3.3 Convergence analysis

The goal of this section is to demonstrate that at least one sequence among the two
trust region radii sequences converges to zero.

We suppose in the following that the functions f and ¢; for ¢ € {1,..,m} are twice
continuously differentiable and that the function f is bounded from below. It is also
assumed that at each iteration, the feasible and infeasible subproblems are solved by
doing at least a fraction of the Cauchy step for f in the case of the feasible subproblem,
and for h in the case of the infeasible subproblem. Let denote by kcqueny the fraction of
Cauchy decrease (one for all the functions) and by g the bound on the Hessian of the
models supposed uniformly bounded. As in [18] the following assumptions are made:
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Assumptions 1. Consider f, ¢ € C?, where f is bounded from below. For every
iteration k, it is possible to compute @ (if 2% exists) and T (if x¥. exists) such that:

W(*) — BE () > KCauchy | k- g Ak
(z7) (z) > TthHmm PR

and

r k= RCauch . ||gk||
flaf) — fi(@) > L|lgfl min ¢ ==, A5
2 Ry
where g’; and g¥ are respectively the model gradient of f at z% and the model gradient
of h at x%.

The assumption combines those involving the Cauchy steps and the uniform bound
on the model Hessians. The assumption that f is bounded from below, and the fact that
the speculative line-search requires minimal decrease on f implies that the line-search
will necessarily terminate after a finite number of steps.

The following pair of theorems shows that at least one trust region radii sequences
converges to 0.

Theorem 3.1. Let Ak be the sequence of trust region radii around the feasible incum-
bents produced by Algorithm PBTR under Assumption 1. If the algorithm generates at
least one feasible solution, then
. k
kEI—Poo AF =0

PrROOF. Suppose that the algorithm PBTR generates a first feasible solution at
iteration kqo. It follows that all subsequent iterations & > kg, will have a feasible
incumbent solution, and the sequence {A%} is well-defined.

Suppose that the sequence {A%} does not converge to zero. Then there exists an
e > 0 such that the cardinality of the set {k : A’} > ¢} is infinite. Now, since v, > 1,
the cardinality of the set {k : AEFL > Ak > ﬁ} is also infinite, implying that there is
an infinite number of iterations k where A% is not decreased, i.e. where ﬁfc > 1.

Assumption 1 implies that a fraction of the Cauchy step for f is achieved:

k
Fh) = F@) 2 mo(PH () — () 2 0 "C gk min {M

2 e

A’;}ZC>O

. 2 . .
where C' = 1=“%"~ min {%, 1} ,ufT, because for those iterations k,
wmc

)
g5l > pA* > p—.

wmc

As f is bounded from below and the objective function value is decreased an infinite
number of times by at least the constant C' > 0, there is a contradiction. Therefore
Ak — 0. O
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Theorem 3.2. Let A% be the sequence of trust region radii around the infeasible in-
cumbents produced by Algorithm PBTR under Assumption 1. If the algorithm never
generates any feasible solutions, then

lim A =0.

k—+o0

PROOF. Suppose that the algorithm PBTR never generates any feasible solutions.
This implies that the initial point 2° is infeasible. Consider the two cases. -i- If

iteration k is either dominating or unsuccessful, then h¥+tl = h(z%) and therefore x% is

max
an infeasible incumbent candidate at iteration k + 1. -ii- If the iteration is improving,
then by definition there exists an infeasible point with a better value of h than h(z%),
and the update of h®l allows to choose this point. By induction all incumbents are
infeasible, and the sequence A’} is well-defined for all £ > 0.
Similar arguments from proof of the previous theorem can be applied here. Suppose
that the sequence {A%} does not converge to zero. Then there exists an ¢ > 0 such

that the cardinality of the set {k : AF1 > Ak > ==} is infinite. There is then an

infinite number of iterations k where A% is not decreased, which means that pf > no.
Assumption 1 implies that a fraction of the Cauchy step for f is achieved:

k
N 7 TkiA RCauc . g
bk~ 10) 2 (i) — 74(0) 2 e g { L a5 0

where C' = g ~Chs mln{ ot 1} piz—, because for those iterations k,

znc

€
lgrll > pA* > p—

wmc
As h is bounded from below by the value 0, and the constraint violation function
value is decreased an infinite number of times by at least the constant C' > 0, there is
a contradiction. Therefore AY — 0. O

There are two possible outcomes for Algorithm PBTR. Either it generates a feasible
solution, in which case A% — 0, or either it does not, in which case A¥ — 0. At least
one trust region radii sequences converges to 0. However, if the algorithm generates
both feasible and infeasible points, then nothing can be said about the limit of the
sequence Ak,

4 Implementation and computational results

This section describes our Python implementation of the PBTR algorithm, and shows
computational experiments comparing it with two state-of-the-art software packages.
We first describe our computational testbed.
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4.1 Computational testbed

The computational results are generated using 40 small-scale DFO analytical problems
from the CUTEst collection [23] which respect the form of Problem (1), with inequality
constraints and bounds. The unscaled problems from CUTEst are not selected because
our implementation does not incorporate dynamic scaling as done in COBYLA from
NLopT and NOMAD version 3.7.2.

For each analytical problem the initial point provided by CUTEst is used. It lies
inside the bounds but does not necessarily satisfy the other constraints. Each instance
is considered with a budget of 100(n+1) blackbox evaluations, the same order of mag-
nitude used in [10] and [11]

The name, number of variables (n), number of constraints (m) and information
about these problems are given in Table 1.

Two derivative-free multidisciplinary design optimization (MDO) problems from
mechanical engineering are also used is a second round of computational experiments.

The first problem is called ATRCRAFT RANGE and is taken from [40]. Computational
experiments on this problem are conducted in [4, 9, 35]. Three coupled disciplines,
namely structure, aerodynamics and propulsion are used to represent a simplified air-
craft model with 10 variables. The objective function is to maximize the aircraft range
under bounds constraints and 10 relaxable constraints. The blackbox implements a
fixed point method through the different disciplines in order to compute the different
quantities.

The second problem is called SIMPLIFIED WING and aims at minimizing the drag of
a wing by optimizing its geometry [41] through 7 bound-constrained variables, subject
to 3 relaxable constraints. This multidisciplinary design optimization problem involves
structures and aerodynamics. Both ATIRCRAFT_RANGE and SIMPLIFIED _WING are initial-
ized with a point chosen in the center of the region defined by the bounds.

Data profiles [34] are used to illustrate the results on the analytical problems. These
graphs allow to compare different algorithms on a set of instances given a tolerance
parameter 7 € [0; 1], fixed to 107 in this section. More precisely, a curve is associated
to each method in a x —y plane, where y corresponds to the proportion of problems close
within 7 to a reference solution, after x groups of n+1 evaluations have been done. This
reference solution is the best solution achieved by the different methods that are plotted
in the graph. Data profiles were originally introduced for unconstrained problems, and
have been adapted here to the constrained case, by considering only feasible solutions.
With this strategy, it may occur though that no algorithm solves a problem when no
feasible solutions have been found. A tolerance of 10~ for h is used to consider a point
as being feasible.

Performance profiles from [34] are also plotted. For such graphs, a performance
ratio r, s is defined by

tps
min{t,, : s €S}

Tps =

for Algorithm s on Problem p where S is the set of algorithms tested. It is the ratio
of the number of evaluations needed to solve the problem (t,,) over the number of
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Name n o m lower  upper initial point
bounds bounds
avgasb 8 10 8 8 Feasible
b2 3 3 0 0 Infeasible
chaconnl 3 3 0 0 Infeasible
himmelp5 2 3 2 2 Infeasible
hs10 2 1 0 0 Infeasible
hsll 2 1 0 0 Infeasible
hs12 2 1 0 0 Feasible
hs15 2 2 0 1 Infeasible
hs18 2 2 2 2 Infeasible
hs19 2 2 2 2 Infeasible
hs22 2 2 0 0 Infeasible
hs23 2 5 2 2 Infeasible
hs24 2 3 2 0 Feasible
hs29 3 1 0 0 Feasible
hs30 3 1 3 3 Feasible
hs31 3 1 3 3 Feasible
hs33 3 2 3 1 Feasible
hs34 3 2 3 3 Feasible
hs35 3 1 3 0 Feasible
hs36 3 1 3 3 Feasible
hs43 4 3 0 0 Feasible
hsb57 2 1 2 0 Feasible
hs64 3 1 3 0 Infeasible
hs72 4 2 4 4 Infeasible
hs76 4 3 4 0 Feasible
hs84 5 6 5 5 Feasible
hs86 5 10 5 0 Feasible
hs95 6 4 6 6 Infeasible
hs96 6 4 6 6 Infeasible
hs97 6 4 6 6 Infeasible
hs98 6 4 6 6 Infeasible
hs100 7 4 0 0 Feasible
hs101 7 6 7 7 Infeasible
hs108 9 13 1 0 Infeasible
kiwcresc 3 2 0 0 Infeasible
lootsma, 3 2 0 1 Feasible
polak6 5 4 0 0 Infeasible
simpllpb 2 3 0 0 Infeasible
snake 2 2 0 0 Infeasible
spiral 3 2 0 0 Feasible

Table 1: Description of the 40 analytical problems.
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evaluations needed to solve it with the best algorithm. The performance profile P,(«a)
of Solver s € S corresponds to the probability for s to have a performance ratio within
a factor a € R. It is approximated by

Pi(a) = isize{p €EP :rps <a}
Ny
where n, is the number of problems and P the set of problems. The curve on the far
left side of a performance profile begins with & = 1 and indicates the ratio of problems
solved by s. The curve when o« — oo indicates on how many problems s converges.
Data profiles and performance profiles are complementary.

Convergence graphs (objective value versus number of evaluations) are plotted for
the two MDO problems. The NOMAD (version 3.7.2) and COBYLA (NLoPT) soft-
ware packages are used with their default settings. NOMAD with default settings uses
quadratic models as presented in [17]. The software COBYLA implements a derivative-
free trust-region algorithm as described in [36]. The models used are linear and a
penalty function is used to handle the constraint, based on the infinity norm.

4.2 An implementation of the PBTR algorithm

We now describe the implementation specifics of PBTR. Different options for the man-
agement of the sample sets are proposed. Finally a variant of the update rule for the
barrier threshold, h,,.., is presented, giving two options for this update, the original as
in MADS and a new one.

Sample set management and subproblems

The techniques used to build the sample sets for linear and quadratic models are detailed
in Section 2.1. The PBTR algorithm distinguishes two incumbents, the primary and
the secondary. Three different options are implemented to manage the sample sets of
these incumbents. Each builds the sample set of points around a point x by taking
every point at a distance within twice the size of the trust region radius. If that set
of points is too large, the more recently generated ones are selected. Furthermore, at
each iteration the geometry improvement algorithm is called for both the sample sets
built around the primary incumbent and the secondary incumbent. The subproblems
are optimized with a limit of 100 iterations of lpopt used with a tolerance for each
constraint equal to 10~%, which is compliant with a global tolerance for the problem
defined by hy(z) < 107

The first option is named QUAD_QUAD. Quadratic models are built around both
the primary and secondary incumbents x% and z%. The sample set around the primary
iterate contains exactly ("H)QM points and then the models built are completely de-
termined. To have this exact number of points, new points are sampled and evaluated
by respecting the well-poisedness of the sample set. The models are built with inter-
polation and are completely determined by the points in the sample sets. The sample
set around the secondary iterate contains at most w points depending if there
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are less than w points in a ball of radius 2A% around the secondary iterate.

Then the models built are underdetermined or completely determined depending of the
number of points. In the underdetermined case the minimum of the Frobenius norm is
taken as explained in [19, chap. 5]. More precisely, among all quadratic interpolation
functions that pass trough the sample set, we select the one with the least Frobenius
norm of the Hessian matrix of the quadratic function.

The second option is named QUAD_LIN. Quadratic models are built around the
primary incumbents and linear models around the secondary incumbents. As above,
the primary sample set contains exactly w points and the models built are com-
pletely determined. The secondary sample set contains at most n + 1 points depending
if there are less than (n+ 1) points in a ball of radius 2A% around the secondary iterate.

The third option is named LIN_LIN. Linear models are built around both primary
and secondary incumbents x% and z%. The sample set around the primary iterate
contains exactly n + 1 points and then the models built are completely determined.
The sample set around the secondary iterate contains at most n + 1 points.

These three options for the management of the sample set are compared in Sec-
tion 4.3.

Revised barrier threshold update rules

Recall that an improving iteration happens when at the end of an iteration, there are
no points dominating the current incumbents, but there is at least one infeasible point
which is not dominated by the infeasible incumbent. It means that there is at least one
point z such that f(x) > f(x%) and 0 < h(z) < h(zh).

A revised version of the barrier threshold update rule is proposed in case of an
improving iteration. In the original version of the progressive barrier in MADS, as
presented in Section 2.3, after an improving iteration k, the barrier threshold is set to
the value ho9inal = max{h(z) : h(z) < h¥ x € V*}. Selecting hoi9mal to update the
barrier threshold is appropriate in the context of MADS but not in the context of a
DFTR algorithm. The reason is that to construct models, DFTR spends more function
evaluations at every iterations than MADS, and the barrier threshold parameter would
converge very slowly to zero.

To circumvent this undesirable behaviour, we define ¥ as the infeasible point with
the best value of h at the end of iteration k: 2% € argmin{h(z) : h(z) > 0, z € F*}. and
propose the following rule to reduce the threshold parameter: Following an improving
iteration, we set

hEFL = 0.9 x porimel 4 0.1 x h(x¥).

max max

This update rule guaranties to find at iteration k+ 1 an infeasible incumbent satisfying
the barrier threshold. And it offers a trade-off to push the barrier threshold adequately,
between a too aggressive strategy decreasing the barrier threshold too rapidly and an
unaggressive strategy susceptible to fail to find a feasible point.

In the computational experiments below, the two barrier threshold update rules are
labelled by ORIGINAL and REVISED.
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4.3 Computational comparisons of strategies for PBTR

The testbed used is described and different options implemented to test versions of
PBTR are described above. In addition, other solvers exist to solve Problem (1). Here
computational results are presented to determine the best strategy for PBTR and its
validity in existing algorithms.

The previous paragraphs described three options for the sample set management
and two options for the barrier threshold management. Recall that the names of the
options for the sample set management are QUAD_QUAD, QUAD_LIN and LIN_LIN. And
the names of the options for the barrier threshold management are ORIGINAL and RE-
VISED. Figure 4 compares the six possible strategies by plotting the proportion of
problems solved versus the number of groups of n + 1 evaluations. Figure 5 compares
specifically the two quadratic strategies, QUAD_QUADORIGINAL and REVISED, by plot-
ting the proportion of problems solved versus the number of groups of n+1 evaluations.
The conclusions that are drawn do not take into account the time necessary to con-
struct the linear and quadratic models. The figures reveal that combining quadratic
models in both primary and secondary subproblems is the most efficient, and that the
revised update rule for the barrier threshold performs better. Hence the best strategy
is QUAD_QUAD_REVISED. The second best strategy also builds both quadratic mod-
els, but uses the original threshold update rule. Inspection of the six curves suggests
that quadratic models are worth constructing, and the revised rule is always preferable
to the original one, designed for another algorithm. At least for the problems tested,
the improvements made at each iteration with quadratic models are worth the cost of
building these models.
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(a) Data profiles with 7 = 1073. (b) Perf. profiles at 100(n + 1) evaluations.

Figure 4: Data profiles for six PBTR strategies.

4.4 Comparison of PBTR with NOMAD and COBYLA

In order to validate our algorithm the best strategy for PBTR (QUAD_QUAD with
REVISED), is compared to state-of-the art software packages NOMAD and COBYLA.
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Figure 5: Data profiles comparing the original and revised quadratic PBTR strategies.

The data profiles in Figure 6(a) shows that our algorithm is competitive with
COBYLA on the benchmark set of smooth analytical problems. As expected, both
model-based COBYLA and PBTRQUAD_QUAD perform better than the direct-search
NOMAD algorithm. This behaviour was anticipated, as we do not recommend to use a
direct-search method for problems that can be well-approximated by smooth functions.
The performance of PBTR is comparable to that of COBYLA, and when the number
of function evaluations exceeds 40(n + 1), PBTR slightly outperforms COBYLA. This
last observation is confirmed by the performance profiles in Figure 6(b.)
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Figure 6: Comparison of PBTR with NOMAD and COBYLA on DFO problems.

The convergence graphs for both blackbox multidisciplinary design optimization
problems are plotted in Figure 7. For the ATRCRAFT_RANGE problem, the solver COBYLA
decreases quickly but stalls at a feasible solution with objective function value around
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—1600, whereas both NOMAD and PBTR converge to solutions with a similar objective
function value near —4000. This can be explained by the fact that COBYLA is, with
its linear models, a first order algorithm. The plot reveals that NOMAD improves the
solution more rapidly than PBTR on this BBO problem. The right part of the figure
on the SIMPLIFIED WING problem indicates a similar behaviour for COBYLA.

However, here both NOMAD and PBTR behave in a very similar way: both con-
vergence graph overlap and reach the same objective function value.

-500 08
—4—COBYLA > —5—COBYLA
-1000 | —o—PBTR —o—PBTR
* - NOMAD “ * -NOMAD
-1500
- -6

-2000 [

-2500 -10

-3000

N
e *®
o)

&
a
=}
IS}

objective function value
objective function value

L e —

-4000 L L L L L - \7 i L L L i
500 1000 1500 2000 2500 3000 0 500 1000 1500 2000

evaluations evaluations

(a) ATRCRAFT RANGE. (b) SIMPLIFIED WING.

Figure 7: Convergence graphs of PBTR, NOMAD and COBYLA for the two MDO
problems.

5 Discussion

This work shows how to treat nonlinear inequalities for derivative-free and blackbox op-
timization problems, by combining techniques from derivative-free trust-region methods
with the progressive barrier strategy. After MADS, it is the first algorithm to deploy
the progressive barrier.

Different strategies are compared and the best one is identified by computational
results on a collection of 40 problems from the CUTEst collection. It consists of build-
ing quadratic models for every subproblem solved and of a trade-off rule to update the
barrier threshold. This new algorithm PBTR combines features of both model-based
and direct-search algorithms. Our computational results suggest that PBTR is com-
petitive with COBYLA and preferable to NOMAD on analytical DFO problems, and
that PBTR is competitive with NOMAD and preferable to COBYLA on nonsmooth
blackbox optimization problems.

Future work includes the integration of dynamic scaling in our implementation and
other sample set managements, to allow overdetermined models, or to numerically
analyze the frequency to improve the geometry of sample sets. Penalty function could
also be examined for the subproblem treatment. Finally, prior to our work, the PB was

23



only adapted to the MADS algorithm. We have shown that it can also be successfully
adapted to a trust-region algorithm. Adaptations to other nonlinear algorithms should
also be investigated.
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