
Parallel stochastic line search methods with
feedback for minimizing finite sums

Dragana Bajović ∗ Dušan Jakovetić † Nataša Krejić†

Nataša Krklec Jerinkić †

February 19, 2019

Abstract

We consider unconstrained minimization of a finite sum of N con-
tinuously differentiable, not necessarily convex, cost functions. Sev-
eral gradient-like (and more generally, line search) methods, where
the full gradient (the sum of N component costs’ gradients) at each
iteration k is replaced with an inexpensive approximation based on
a sub-sample Nk of the component costs’ gradients, are available in
the literature. However, a vast majority of the methods considers
pre-determined (either deterministic or random) rules for selecting
subsets Nk; these rules are unrelated with the actual progress of the
algorithm along iterations. In this paper, we propose a very general
framework for nonmonotone line search algorithms with an adaptive
choice of sub-samples Nk. Specifically, we consider master-worker ar-
chitectures with one master and N workers, where each worker holds
one component function fi. The master maintains the solution es-
timate xk and controls the states of the workers (active or inactive)
through a single scalar control parameter pk. Each active worker sends
to the master the value and the gradient of its component cost, while

1Department of Power, Electronics and Communication Engineering, Faculty of Tech-
nical Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia,
e-mail: dbajovic@uns.ac.rs..

2Department of Mathematics and Informatics, Faculty of Sciences, University of Novi
Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, e-mail: djakovet@uns.ac.rs,

natasak@uns.ac.rs, natasa.krklec@uns.ac.rs. Research supported by Serbian Min-
istry of Education, Science and Technological Development, grant no. 174030

1

inactive workers stay idle. Parameter pk is proportional to the ex-
pected (average) number of active workers (which equals the average
sample size), and it can increase or decrease along iterations based
on a computationally inexpensive estimate of the algorithm progress.
Hence, through parameter pk, the master sends feedback to the workers
about the desired sample size at the next iteration. For the proposed
algorithmic framework, we show that, for any outcome ω (where ω
corresponds to one realization of the full run of the algorithm), ev-
ery accumulation point of sequence {xk} is a stationary point of the
full cost function. Under the strong convexity assumption, we provide
linear convergence result and the worst-case non-asymptotic analy-
sis. Simulations on both synthetic and real world data sets illustrate
the benefits of the proposed framework with respect to the existing
non-adaptive rules.

Key words: Variable sample methods; Stochastic optimization;
Parallel algorithms; Non-convex cost functions; Feedback.

1 Introduction

We consider problems of the form:

min
x∈Rn

f(x) :=
1

N

N∑
i=1

fi(x), (1)

where each fi : Rn → R, i = 1, ..., N, is a continuously differentiable (not
necessarily convex), deterministic function bounded from below. Such prob-
lems arise frequently in machine learning, where a (usually large scale sized)
training data set is partitioned into N subsets, and each fi represents a loss
with respect to each of the training data subsets. (Notice that usually fi
here is itself a sum over the individual training data examples but this is
abstracted here.)

In the scenarios of large training sets, it can be beneficial to apply gradient-
like methods, where the full gradient (gradient of f) at each iteration k
is replaced with an inexpensive estimate. Usually, the estimate of ∇f(xk)
(xk ∈ Rn being the current iterate) is of the form: 1

|Nk|
∑

i∈Nk
∇fi(xk), where

Nk is a subset of N = {1, ..., N}. Therefore, in a sense, instead of work-
ing with the full cost function f , such algorithms work at each iteration k
with a less expensive, but inexact version fNk

(xk) := 1
|Nk|

∑
i∈Nk

fi(xk). The

2

literature on methods of this type is extensive. We reference here a rep-
resentative sample of the works; namely, the methods include incremental,
e.g., [7, 37, 25, 35], stochastic, e.g., [50, 59, 46, 56, 38, 29, 18, 40], and hybrid
methods, e.g., [22, 48, 14, 12]. Besides the gradient approximations, they
can also utilize different search directions (generated according to the avail-
able information – the available subset Nk), including, e.g., Quasi-Newton-
type directions, e.g., [22, 31, 52, 15, 36, 6, 24, 17]. Indeed, in this context,
reference [11] demonstrates efficiency of a variable sample size Newton-CG
method proposed therein.

Variable sample size approach or adaptive scheduling schemes have also
been considered for solving problems of type (1). Reference [26] considers
the case of convex stochastic optimization and derives error bounds in terms
of sample size. Reference [54] carries out a similar analysis for the strongly
convex case. A relationship between the sample size growth and the deter-
ministic convergence rate for a class of optimization methods is considered
in [41, 42]. A set of conditions that ensures almost sure convergence is pre-
sented in [42], together with a specific recommendation for sample size and
error tolerance sequences. Another interesting approach that offers a quan-
titative measure of quality of a solution is presented in [47]. Therein, op-
timality functions for general stochastic programs (expected value objective
and constraint functions) are considered and an algorithm that utilizes opti-
mality functions to select sample size is developed. An adaptive sample size
scheduling is considered in [28] as well. Different types of stochastic equilib-
rium problems and applications of variable sample size schemes are the topic
of study in [55]. Furthermore, variable sample scheduling for second order
methods is employed in [10, 11]. More recent relevant works on adaptive
sampling and stochastic line searches include, e.g., [12, 13, 43]. In [12], the
authors propose a stochastic optimization method that adaptively controls
the sample size used in the computation of gradient approximations based
on a novel inner product test. In [13], adaptive increase of the sample size
is incorporated in the second order (L-BFGS) method. Reference [43] incor-
porates the backtracking Armijo line-search to the stochastic optimization
setting, assuming that the function and gradient values are available up to a
dynamically adjusted accuracy. A review of variable sample size methods is
available in [32].

In this paper, building from references [2, 3, 4] and the prior work [30,
31], we propose a framework for nonmonotone line search methods with an
adaptive choice of the sets Nk. We consider the commonly used master-

3

worker model, e.g., of computing machines in a cluster, with one master node
and N worker nodes; see, e.g., [1, 33, 9, 57, 51], for similar models. Each
worker i holds one function fi in (1) and can evaluate this function’s values
and its gradients. This model is used frequently for large-scale distributed
optimization in cluster or cloud environments, whereby the training data
set at each worker i – which parameterizes function fi – is so large that it
is infeasible to transfer or store all the workers’ data at the master; or, in
alterative, the workers cannot send their data to the master due to privacy
constraints (while the variable dimension n and the number of nodes N are
of a moderate to medium size.)

The master node coordinates computation and updates the solution es-
timate xk ∈ Rn (see Figure 1). Each worker, at each iteration k, can be
in two possible states: active and inactive. Active workers i compute pairs
(fi(xk), ∇fi(xk)) and send them to the master, while inactive workers stay
idle. The state of each worker, and therefore the (average) size of the sam-
pleNk, is controlled by the master, and it is increased or decreased as needed,
based on the actual progress of the algorithm. Therefore, the algorithm in-
corporates feedback information from the master to the workers about what
(average) sample size is needed for efficient progress at the next iteration.
The proposed framework considers a nonmonotone line search, and it is flex-
ible with respect to the utilized search directions – we allow for arbitrary
directions which are descent with respect to the available function approxi-
mation fNk

.
In more details, at each iteration k, the master node broadcasts to all

workers the current estimate xk and a control parameter pk ∈ [0, 1]. Upon
reception of pk, each worker i decides, independently from other workers
but dependently upon its previous state (see Section 2 for details), whether
it will be active at iteration k; it becomes active with probability pk (in
which case it evaluates the pair (fi(xk), ∇fi(xk)) and transmits it to the
master) and inactive with probability 1 − pk (in which case it stays idle).
Hence, the master works with a sample of an average size N pk, updates xk
via a nonmonotone line search rule, and it decides on the value of the next
control parameter pk+1; the latter quantity can either decrease, stay equal,
or increase with respect to pk. The update rule for the control parameter pk
is based on the comparative size of two quantities, which we denote by dmk

and εk. The quantity dmk is a suitable measure of progress made with
respect to the current function fNk

; the quantity εk estimates how different
fNk

is with respect to the true objective f at the current iterate xk. The

4

adaptive rule for choosing pk operates as follows. If dmk is small relative
to εk, pk+1 increases with respect to pk. Intuitively, the progress which is
possible based on the average sample size equal to N pk is exhausted, and
hence the precision of approximating f should be increased. Conversely, if
dmk is large with respect to εk, then pk+1 is decreased with respect to pk -
the progress can still be achieved even with a lower precision, and hence the
average sample size is decreased. The change (increase or decrease) in pk is
set such that the quantities dmk and εk are kept in a balance (i.e., they have
comparable values) across iterations.

Our main results are as follows. Assuming that the fi’s are continu-
ously differentiable and bounded from below (and not necessarily convex),
we show that, eventually (starting from a random, i.e., outcome dependent,
but finite k̄) pk = 1 for all k ≥ k̄, i.e., the master works with the full sam-
ple. This eventual involvement of all workers in the optimization process,
i.e., the achievement of the “full precision,” is not artificially enforced in
the algorithm, but is rather a result of a carefully designed feedback process
between the master and the workers. Moreover, we show that every accu-
mulation point of the sequence of iterates {xk} is a stationary point of the
desired cost function f . We also provide some non-asymptotic analysis where
the worst-case complexity is stated for strongly convex case. The proposed
method incurs significant communication and computational cost savings on
the simulated problem formulations and instances, when compared with the
methods where the true objective function (and its gradient) is used at all
iterations, and with the hybrid (incremental) scheme in [22].

Therefore, the purpose of the current paper is to introduce the proposed
adaptive framework, establish convergence guarantees to a stationary point
under very generic, not necessarily convex, costs, and deliver initial numerical
results.

This paper builds on references [2, 3, 4] and [30, 31] for centralized op-
timization. In [2, 3, 4], the authors propose an algorithm which allows that
the sample size both increase and decrease along iterations within the trust
region framework. A similar mechanism for the schedule sequence in a line
search framework is developed in [30]. Reference [31] extends the work in [30]
to a nonmonotone line search framework. In this paper, we also consider a
nonmonotone line search framework, as done in [31]. However, a major dif-
ference of the current paper with respect to [31] and [2, 3, 4, 30] is that here
the sample size is controlled only in terms of its mean value, and not in terms
of the actual current size. From the implementation perspective, the frame-

5

work proposed here is much more suitable for, e.g., cluster environments,
as the master controls the current sample through a single scalar parame-
ter pk, which it broadcasts to all workers. In contrast, with the algorithms
in [2, 3, 4, 30, 31], the master needs a more complex control mechanism,
for example to contact each of the workers individually and declare each of
them active or inactive. Finally, from the perspective of the algorithm de-
sign and analysis, the simplified sample size control here corresponds to a
more challenging situation in the design of the control rules and the algo-
rithm analysis. Specifically, compared with [31] – the work closest to this
paper – we introduce here a very different lower bound for controlling the
pk’s which is essential to ensure eventual activation of all workers and hence
the convergence to a stationary point.

Paper organization. Section 2 describes the model that we assume
and presents the proposed algorithmic framework, while Section 3 provides
its convergence analysis. In Section 4 we present the results of the initial nu-
merical testings. Finally, in Section 5, some conclusions about the proposed
framework are drawn.

Most of the scalar and vector quantities in the sequel are random, i.e.,
dependent on an outcome ω of the underlying probability space. (Through-
out, ω corresponds to a realization of the full algorithm run.) Where needed,
we will explicitly state whether a certain quantity is deterministic or random
and omit ω wherever there is no possibility of confusion.

2 Model and algorithm

We consider a master-worker computational model (Figure 1); see also [1, 33,
9, 57, 51]. Each worker i holds a continuously differentiable, not necessarily
convex, function fi : Rn → R, i = 1, ..., N . Unlike, e.g., [22], we do not
impose any assumptions on the “similarity” among the fi’s; that is, we do
not require that the minimizers of the individual fi’s – if they exist – are close
or within a pre-defined distance from each other. This allows, for example,
that the training data sets from different workers may be generated from
very different distributions. We state the formal standard assumption below.

A 1. Each function fi : Rn → R, i ∈ N , is continuously differentiable and
bounded from below.

Notice that Assumption A1 implies that the objective function f is also

6

continuously differentiable and bounded from below.
The master-worker system solves problem (1) through an iterative algo-

rithm, as follows. The algorithm consists of the outer iterations k and the
inner iterations s. We first describe the outer iterations k.1 The master
node maintains over k the solution estimate xk ∈ Rn. At each iteration k,
the master node broadcasts to all workers quantity xk and a scalar control
parameter pk ∈ [0, 1]. At each iteration k, each worker can be in one of the
two possible states: active and inactive. As we will see further ahead, the
state of each worker does not change along the inner iterations. Each active
worker i calculates the pair (fi(xk), ∇fi(xk)) and sends it back to the master.
Notice that the goal of outer iterations is to get ∇fNk

(xk), and the goal of
the inner iterations is to get αk.

The assumed abstract master-worker architecture is well suited for situ-
ations where the decision variable dimension n and the number of nodes N
are of a moderate to medium size, while each fi may correspond to a large-
sized training data set, so that it is economical that each worker stores and
keeps locally this training data, calculates locally the pair (fi(xk), ∇fi(xk)),
and then communicates the pair with the master. Notice that the physical
implementation of the master node here can correspond to multiple actual
machines with shared parameters. See, e.g., [34], for actual physical imple-
mentations of architectures similar to the simplified, abstract architecture
considered here.

The parameter pk plays the role of activation probability of each worker
at iteration k. Upon reception of pk, each worker decides, independently from
other workers, whether it will be active or inactive at iteration k. It becomes
active with probability pk and inactive with probability 1−pk. More precisely,
the state update of each worker is performed as follows, depending on the
current and previous values of the control parameter, pk and pk−1. (Notice
that each worker i stores and memorizes both pk and pk−1.) If pk = pk−1, then
each worker i keeps the same state as in the previous iteration k− 1. Else, if
pk 6= pk−1, each worker sets its state at k to active with probability pk (and
to inactive with probability 1 − pk), independently from all other workers,
and independently from its own and others’ previous states. In other words,
whenever the control parameter pk changes, the system is being reconfigured.
The mechanism of the update of pk that we propose is explained later; as
we will see, pk will actually not be a deterministic quantity, i.e., it will be

1From now on, we refer to the outer iterations simply as iterations.

7

Figure 1: Illustration of the adopted master-worker computational model. At
the outer iterations k, the master sends to the workers xk, while the active
workers send back to the master the pair (fi(x),∇fi(x)) where x = xk; at the
inner iterations s which occur at the beginning of the k-th outer iteration,
the master sends to the workers the trial point xk + βsdk, while the active
workers send back to the master fi(x) where x = xk + βsdk.

a random variable. Hence, iterates xk are also random. Denote by Ñk the
random number of active workers at iteration k, i.e., Ñk = |Nk|. Notice that
Nk is also random. Notice that, if pk 6= pk−1, Ñk is a random variable, which,
conditioned on the value of pk, has a Binomial distribution Ñk : B(N, pk).
Otherwise, Ñk is determined by the previous number of working nodes, more
precisely Ñk = |Nk−1|. Denote also by Nk := pkN ; that is, Nk is the average
number of active workers, conditioned on the current value of pk. In the
sequel, ω represents one realization of the infinite sequence of sets Nk(ω),
k = 0, 1, ...

We now explain how the master node updates the solution estimate xk
based on the received information from active workers (fi(xk), ∇fi(xk)), i ∈
Nk, i.e., based on the function

fNk
(x) =

1

|Nk|
∑
i∈Nk

fi(x).

Notice that, for each fixed constant x ∈ Rn, fNk
(x) is random due to the

dependence on the random set Nk. Specifically, the subsequent solution
estimate is obtained through a nonmonotone line search rule with generic
descent directions, as follows:

xk+1 = xk + αkdk,

8

where dk is the search direction and αk is the step size. Due to the randomness
of xk and the fact that step size αk is the result of a line search dependent on
xk (see the details ahead in Algorithm 3), both αk and dk are also random
quantities. We allow for a generic descent search direction dk for function
fNk

, i.e., dk is such that, for every outcome ω, there holds:

dTk∇fNk
(xk) < 0.

We now discuss some practical possibilities for the choice of dk. The obvi-
ous choice is dk = −∇fNk

(xk). However, incorporating some second order
information can improve the algorithm speed of convergence significantly,
especially if the nonmonotone line search rule is applied as suggested be-
low. For example, one can employ the spectral gradient direction of the form
dk = −zk∇fNk

(xk), where zk is a positive constant obtained trough xk−xk−1

and ∇fNk
(xk)−∇fNk−1

(xk−1), see, e.g., [8] for details. In this case, the mas-
ter node has to store the previous solution estimate xk−1 and the previous
gradient ∇fNk−1

(xk−1) in order to calculate the new search direction; that
is, it additionally stores two vectors of length n. Alternatively, one can use
Quasi-Newton types of directions such as BFGS. Such directions are of the
form dk = −Hk∇fNk

(xk), where Hk is updated via an inexpensive recursion,
such that positive definiteness of Hk is maintained. Overall, compared with
the spectral gradient method, the master additionally stores an n × n ma-
trix and performs its update over iterations k. Finally, when the memory
requirements for BFGS are an issue, one can consider the limited memory
BFGS approach as suggested in [10, 11].

We now describe the inner iterations s; their purpose is to determine the
step size αk via an Armijo-type rule. Specifically, once the master calcu-
lates dk, it initiates the inner iterations s = 0, 1, ... At each s, the master
evaluates a trial point xk + βs dk (β ∈ (0, 1)) and sends it to all the workers.
Here, β is a deterministic parameter. The workers do not change their state
during the inner iterations, i.e., during all inner iterations they stay in their
current state. Upon reception of the trial point xk +βs dk, each active worker
i, i ∈ Nk, calculates the function value fi (xk + βsdk) and sends it back to
the master. The process is repeated until the following condition is met for
a certain inner iteration sk (here αk := βsk):

fNk
(xk + αkdk) ≤ fNk

(xk) + ηαkd
T
k∇fNk

(xk) + ek, (2)

where η ∈ (0, 1) is the deterministic parameter, and ek represents the so called

9

”nonmonotonicity” parameter. The sequence {ek}k∈N0 is deterministic, fixed
in advance and it satisfies the following condition.

C 1. The sequence {ek}k∈N0 is positive and summable, that is

ek > 0,
∞∑
k=0

ek < ẽ <∞. (3)

In general, this nonmonotone line search with backtracking allows for
longer step sizes when compared with the Armijo rule (wherein ek = 0). In
other words, less trial points are needed and we expect less function evalu-
ations fNk

(xk + αdk) to be calculated. Besides this rule – which originates
in [23] – other nonmonotone schemes like, e.g., [58], [20] [27], can also be con-
sidered, since the convergence results hold with technical differences in the
proofs. The results obtained in a similar variable sample scheme framework
[31] indicate that the best choice for the line search rule depends on a search
direction to be used. For instance, the negative gradient search direction
seems to work better with less freedom in (2), so the parameter ek for this
direction should be modest. Moreover, since nonmonotone line search may
be beneficial for deterministic optimization (i.e., for the full sample in our
context), especially if the spectral gradient-type direction is used (see [8] for
instance), we allow ek > even if Nk = N . However, notice that convergence
analysis remains the same if we allow ek ≥ 0 instead of ek > 0.

The proposed line search (see step S4 in Algorithm 3) is well defined, i.e.,
it terminates after a finite number of inner iterations if the function fNk

is
continuously differentiable and bounded from below, as assumed throughout
this paper. Moreover, backtracking may be considered as a substitute for
Wolfe conditions since it makes the step size not too small [39].

We now explain how the master updates the control parameter and sets
the new value pk+1. The update is governed by the actual progress of the al-
gorithm estimated by computationally inexpensive means – this is the feature
of our work which distinguishes it from most of the literature. Specifically,
the control parameter is updated by comparing two measures of progress:
dmk and εk. The quantities dmk and εk, as explained ahead, are random,
due to their dependence on xk. The first measures the progress in decreasing
the objective function and is defined by

dmk = −αkd
T
k∇fNk

(xk). (4)

10

Some other choices of dmk ≥ 0 are possible as well (see [31] for details)
but are not considered in this paper. The purpose of the second measure
of progress εk, is to estimate the error which is generated by employing the
sample average function fNk

instead of f . The quantity εk = εk(p) is a
function of the next control parameter p = pk+1 which is to be determined;
εk(p) may also depend on the data currently available at the master, e.g., on
the value fNk

(xk) - this is encoded in the subscript k of notation εk(p). This
means that for each fixed p, quantity εk(p) is random and depends on ω. As it
can be seen from the proofs, the only technical requirement is that εk(p) ≥ 0
for all p ∈ [0, 1] and bounded away from zero for all p ∈ [0, 1). However,
a desirable property is that εk(p) is a decreasing function with respect to
p. We assume that the control parameter pk takes values from the discrete
set Π = {π1, π2, ..., πm} fixed in advance, where 0 < π1 < π2 < ... < πm =
1 are deterministic quantities. The number of allowed values (m) can be
arbitrary large. However, our tests indicate that m ≤ N provides sufficiently
good performance. Before we discus the possible choices of εk, we state the
condition which is the only one that has to be formally satisfied.

C 2. For every outcome ω, there holds: εk(p) ≥ 0, for all p ∈ Π, and
εk(p) ≥ κ > 0 for all p ∈ Π\{1}.

Let us now discuss the specific choices εk(p). One possibility is to set
εk(p) = 1 − p, which is feasible as we assume that p can take only finitely
many discrete values. This is a simple choice which is easy to calculate, but
it does not account for the influence of the current solution estimate xk. In
order to incorporate the latter information, one can define

εk(p) = µ
σk√
pN

, (5)

where µ is a positive deterministic quantity and σ2
k measures the variance

(spread) of the set of values fi(xk), i ∈ Nk and is defined by

σ2
k =

1

|Nk|
∑
i∈Nk

(
fi(xk)− 1

|Nk|
fNk

(xk)

)2

. (6)

Notice that σ2
k is random, e.g., due to its dependence on xk. Even in the

case where the sample variance estimate in (5) is employed, C2 is not too
restrictive since we do not expect the variance to converge to zero. However,
a positive constant κ can be added to εk in (5) as a safeguard, if necessary.

11

Regarding the update of the control parameter, the main idea is to con-
struct an algorithm that allows us to work with as few nodes as we can and
still ensure continuous progress over iterations k, especially at the beginning
of the optimization process. However, in order to ensure almost sure conver-
gence towards a stationary point of the true objective function f , we need to
reach the whole set of nodes eventually. There are two crucial points which
make this possible. One of them is incorporated in step S3 of the main al-
gorithm (see ahead Algorithm 3), and it states that the set of active nodes
does not change if the control parameter remains the same. As it can be seen
from the proofs, this requirement discards the scenario where pk = p < 1 af-
ter some finite iteration k̄. On the other hand, persistent changes of pk (i.e.,
changes of pk that do not stop after a certain finite iteration) and the subset
of active nodes have to be avoided. This is achieved by a random safeguard
sequence denoted by {pmin

k }. This sequence will be a lower bound for the
true control parameter pk, i.e., it will be required that pk+1 ≥ pmin

k for all k.
The update of this safeguard sequence will be described later on.

Let the lowest allowed probability π1 define the initial safeguard pmin
0 :=

π1 and take this value as the initial probability, i.e. p0 := pmin
0 . In order to

perform the update of the safeguard pmin
k , the master has to store and update

a vector of length m which is denoted by Fk = ([Fk]1, ..., [Fk]m). The role of
this vector, is to track the approximate objective function values for different
values of pk, i.e., for different precision levels. As can be seen in Algorithm 1
ahead, for k ≥ 1, quantities pmin

k and Fk are random. The jth component
[Fk]j corresponds to the precision level controlled by πj and represents the
lowest value of the approximate objective function defined by πj precision
level achieved within the first k iterations. Recall that the control parameter
determines only the expected number of working nodes. Therefore, Fk tracks
different levels of the expected precision. Each component of this vector
is initially set to +∞. It is worth noting that our theory allows that m
can be taken independently from N . Hence, when N grows very large, m
can be chosen so that it stays bounded as N grows; therefore, storing and
maintaining Fk does not induce significant costs.

The algorithm for updating the lower bound pmin
k is presented below. The

main idea is to increase the lower bound, and therefore increase the expected
precision, if there was not enough decrease in the approximate objective
function fNk

. More precisely, we track the decrease of the expected precision
level determined by pk+1 which is to be used in the following iteration. Before
stating the algorithm, we introduce parameters θk and γk which determine

12

sufficient decrease in the approximate objective function and increase in the
lower bound, respectively. They are both generic parameters assumed only to
be positive and uniformly bounded away from zero which is formally stated
in the following condition. These parameters are stated as random to allow
more freedom in their choice, but one can also set them as deterministic
sequences fixed in advance.

C 3. Parameters θk and γk are such that θk ≥ θ > 0 and γk ≥ γ > 0.

One possible choice is θk = pk. In that case, θ = π1. Thus, although
θk is truly random in this case, the condition C3 is easily satisfied with θ
and γ being deterministic and fixed in advance. Further details on suitable
choices of these parameters are given in Section 4, and the algorithms below
are stated with generic values.

The updating of the lower bound pmin
k at the master is stated within

Algorithm 1 below. Notice that the sequence {pmin
k }k∈N is nondecreasing

and bounded from above by 1.

ALGORITHM 1.

Updating the lower bound pmin
k at the master

S0 Inputs: pk, pk+1, fNk+1
(xk+1), Fk; θk, γk. Let j be such that πj = pk+1.

S1 Updating the lower bound.

If pk < pk+1 and [Fk]j − fNk+1
(xk+1) < θk set

pmin
k+1 = min{1, pmin

k + γk}.

Else, pmin
k+1 = pmin

k .

S2 Updating vector Fk

If pk < pk+1, set

[Fk+1]j = min{fNk+1
(xk+1), [Fk]j}.

Else, Fk+1 = Fk.

13

Notice that if pk+1 is used for the first time then [Fk+1]j = ∞ and the
lower bound remains unchanged. Also, recall that the number of active nodes
|Nk+1| does not have to be equal to Nk+1.

Now, let us state the algorithm for updating the control parameter pk
and the main algorithm. These algorithms are presented with generic search
directions, generic function εk and generic parameters θk, γk. The algorithms
allow a lot of freedom in choosing these quantities. In Section 4 we state the
specific parameter values used in the initial numerical testings with the BFGS
search direction. The convergence (for an arbitrary outcome ω) is proved in
Section 3 under rather general assumptions. Furthermore, our initial tests
indicate that the safeguard lower bounds pmin

k do not significantly affect the
actual update of the control parameter pk and thus their role is just to provide
a theoretical safeguard needed for the convergence proofs.

ALGORITHM 2.

Updating the control parameter pk at the master

S0 Inputs: dmk, p
min
k , pk, εk(pk), ν1 ∈ (0, 1).

S1 If pk ≤ pmin
k set pk+1 = min{πj ∈ Π : πj ≥ pmin

k }. Else, go to step S2.

S2 1) If dmk = εk(pk) set pk+1 = pk.

2) If dmk > εk(pk) set pk+1 = max{πj ∈ Π : pmin
k ≤ πj ≤ pk, dmk ≤

εk(πj)}. If such pk+1 does not exist, set pk+1 = min{πj ∈ Π : πj ≥
pmin
k }.

3) If dmk < εk(pk) and

i) dmk ≥ ν1εk(pk) set pk+1 = min{πj ∈ Π : πj ≥ pk, dmk ≥
εk(πj)}. If such pk+1 does not exist set pk+1 = 1.

ii) dmk < ν1εk(pk) set pk+1 = 1.

The main idea of Algorithm 2 is to keep the two measures of precision
close to each other by adapting the expected precision level. If dmk > εk(pk),
the precision is too high and hence we decrease it by decreasing the control
parameter, if the lower bound pmin

k allows. Roughly speaking, the solution is
still far away and we want to approach it with smaller cost, i.e., with a smaller
number of workers activated. On the other hand, if the measure of progress
in the objective function dmk is relatively small, we increase the expected

14

precision by increasing the control parameter. The proposed algorithms aim
to activate the whole set of nodes eventually, but only when the solution
neighborhood is approached.

The proposed overall main algorithm is given in Algorithm 3. Notice
that algorithm Algorithm 3 operates in such a way that each worker updates
the step length in coordination with the other workers, the master being in
charge of computing the search direction and updating the step length at
each inner iteration of the line search.

ALGORITHM 3.

The main algorithm

S0 Inputs (the master): pmin
0 ∈ (0, 1), x0 ∈ Rn, β, ν1, η ∈ (0, 1), {ek}k∈N0

satisfying C1.

S1 The master sets p0 = pmin
0 and sends x0 and p0 to all the workers.

S2 Each worker activates with probability p0, independently from other
workers. Each active worker i sends the pair (fi(x0), ∇fi(x0)) to the
master. The master sets k = 0

S3 The master calculates the search direction dk such that dTk∇fNk
(xk) <

0.

S4 Nonmonotone line search through inner iterations: Find the smallest
nonnegative integer sk such that αk = βsk satisfies

fNk
(xk + αkdk) ≤ fNk

(xk) + ηαkd
T
k∇fNk

(xk) + ek.

At each s = 0, 1, ..., sk, the master sends xk +βsdk to all active workers,
and each active worker sends back fi(xk + βsdk) to the master.

S5 The master sets xk+1 = xk + αkdk and dmk = −αkd
T
k∇fNk

(xk).

S6 The master determines pk+1 via Algorithm 2 and sends pk+1 and xk+1

to all the workers.

S7 Workers state update: If pk+1 = pk, each worker stays in its previous
state, i.e., Nk+1 = Nk. Else, each worker activates with probability
pk+1, independently from other workers, and independently from its
previous states and the previous states of other workers. The set Nk+1

consists of the current active nodes.

15

S8 Each active worker i sends the pair (fi(xk+1), ∇fi(xk+1)) to the master.

S9 The master determines pmin
k+1 via Algorithm 1.

S10 The master sets k = k + 1. If Nk = N and ∇fNk
(xk) = 0, stop. Else

go to step S3.

Notice from step S10 that we assumed that the master is aware of the total
number of workers N . The stoping criterion is as in deterministic optimiza-
tion - ∇f(xk) = 0. Notice that the full gradient is calculated only if Nk = N
so there are no additional costs in step S10.

3 Convergence analysis

This section provides convergence analysis of the proposed algorithm. The
first part is devoted to asymptotic result where we prove that the algorithm
converges to a stationary point of the considered objective function almost
surely, provided that the search direction is descent with respect to the cur-
rent estimate of the objective function. This result is obtained without im-
posing convexity and leans on the fact that the full sample is reached even-
tually. The second part states conditions under which linear convergence
with respect to the expected optimality gap is attained. This furthermore
implies complexity result stated in the second subsection and provides some
non-asymptotic analysis. This result is stated under the strong convexity
assumption.

3.1 Asymptotic analysis

In this subsection, we prove that Algorithm 3 converges to a stationary point
of (1) for any outcome ω. Therefore, in all the proofs in the sequel work
we assume that ω is arbitrary, but fixed and we write ω explicitly in the
statements.

In the following theorem we prove that control parameter pk eventually
reaches 1. This is the crucial result for convergence analysis. More precisely,
given an arbitrary outcome ω, control parameter pk = 1 for all k ≥ k̄, where
k̄ is outcome-dependent, but finite number of iterations. It is important
to notice here that pk = 1 might occur at some k < k̄ and then decrease
to some smaller value, but eventually, i.e., from iteration k̄ and onwards,

16

we have pk = 1. The proof contains two main arguments. First, we show
that pk cannot remain at a constant value strictly smaller than 1 from a
certain iteration onwards. Second, we show that pk cannot exhibit persistent
changes, and eventually reaches the value of 1 without further decreases.
Regarding the first argument, the proof given here is along the lines of the
proof of Lemma 4.1 in [30]. Regarding the second argument, the stochastic
nature of the activation sets Nk here requires a different analysis with respect
to [30]. Notice that a different update of lower bounds pmin

k is used here. This
second argument is the main technical contribution of Theorem 3.1.

Theorem 3.1. Let A1 and C1-C3 hold and assume that {xk(ω)} is a se-
quence of random vectors generated with Algorithm 3. Then, for any fixed
outcome ω, the sequence {xk(ω)} is either finite with n1(ω) elements and
xn1(ω) is the stationary point of the objective function f , or {xk(ω)} is infi-
nite and there exists finite k̄(ω) ∈ N such that pk(ω) = 1 for every k ≥ k̄(ω).

Remark. The proof below works in such a way that it fixes an arbitrary
outcome ω, and then it considers the evolution of the relevant quantities
pk(ω) and {xk(ω)}. All the auxiliary quantities that appear in the proof
below, namely all subsequences Ki(ω), the corresponding values ni(ω), and
all the values depending on these, such as p̄(ω) and r(ω), are also random,
i.e., outcome-dependent. Once we fix ω, all the steps in the proof hold surely
within this outcome.
Proof. Let us fix an arbitrary outcome ω. According to step S10, the main
algorithm terminates only if ∇f(xk) = 0. Therefore, we consider the case
where the number of iterations is infinite. First, we prove that pk cannot be
constant if it is strictly smaller than 1.

Suppose that there exists n2 such that for every k ≥ n2

pk = p1 ∈ Π\{1}.

In that case, step S7 of Algorithm 3 implies that Nk = N 1 for every k ≥ n2

for some fixed set N 1. Denoting gNk
k = ∇fNk

(xk), we know that for every
k ≥ n2

fN 1(xk+1) ≤ fN 1(xk) + ηαk(gN
1

k)Tdk + ek,

17

i.e., for every q ∈ N

fN 1(xn2+q) ≤ fN 1(xn2+q−1) + ηαn2+q−1(gN
1

n2+q−1)Tdn2+q−1

+ en2+q−1 ≤ . . . ≤ fN 1(xn2)

+ η

q−1∑
j=0

(
αn2+j(g

N 1

n2+j)
Tdn2+j + en2+j

)
. (7)

Now, assumption A1 implies the existence of a constant MF such that

−η
q−1∑
j=0

αn2+j(g
N 1

n2+j)
Tdn2+j ≤ fN 1(xn2)− fN 1(xn2+q)

+

q−1∑
j=0

en2+j

≤ fN 1(xn2)−MF + ẽ. (8)

The inequality (8) is true for every q so

0 ≤
∞∑
j=0

−αn2+j(g
N 1

n2+j)
Tdn2+j ≤

fN 1(xn2)−MF + ẽ

η
:= C.

Therefore

lim
k→∞

dmk = lim
j→∞
−αn2+j(∇fN 1(xn2+j))

Tdn2+j = 0. (9)

Since ν1εk(pk) ≥ ν1κ > 0 for every k ≥ n2, there exists n3 > n2 such that
dmn3 < ν1εn3(pn3) and therefore Algorithm 2 implies pn3+1 = 1 which is in
contradiction with the current assumption.

We have just proved that the control parameter cannot stay on p1 < 1. If
the lower bound of control parameter pmin

k achieves 1 at some finite iteration,
the statement of the theorem obviously holds since we have that pk+1 ≥ pmin

k

for every k. Now, let us assume that the statement of the theorem is not true
and consider the remaining case, i.e., assume that pmin

k < 1 for all k. This
assumption implies that pmin

k is increased only at finitely many iterations.
Therefore, based on Algorithm 1, we conclude that there exists an iteration
n5 such that for every k ≥ n5 we have one of the following possibilities:

M1 pk+1 ≤ pk;

18

M2 pk+1 > pk and [Fk]j(k) − fNk+1
(xk+1) ≥ θk, where pk+1 = πj(k) ∈ Π;

M3 pk+1 > pk and pk+1 has not been used before.

Now, let p̄ = πj̄ ∈ Π be the maximal probability that is used at infinitely
many iterations. Furthermore, define the set of iterations K1 at which the
sample size changes to p̄. The definition of p̄ implies that there exists n6 such
that for every k ∈ K1, k ≥ n6 the probability is increased to p̄, i.e.

pk < pk+1 = p̄ = πj̄, k ≥ n6.

Define r = max{n5, n6} and set K2 = K1

⋂
{r, r+1, . . .}. Clearly, each itera-

tion in K2 excludes the case M1. Moreover, taking out the first member of a
sequence K2 and retaining the same notation for the remaining sequence we
can exclude the case M3 as well. This leaves us with M2 as the only possible
scenario for iterations in K2. Therefore, for every k ∈ K2 the following is
true

[Fk]j̄ − fNk+1
(xk+1) ≥ θk ≥ θ.

The number of subsets of the whole set of nodes is finite. Therefore, there
exists a subset N̄ which appears infinitely many times within K2. So, define
K3 ⊆ K2 such that for every k ∈ K3

Nk+1 = N̄ .

Denote lk = l(k) and K3 = {lk − 1}k∈N.
Then for arbitrary k ∈ N we have

[Fl(k)−1]j̄ − fN̄ (xl(k)) ≥ θ.

Consider fN̄ (xl(k−1)). According to the definition ofK3 we know that fN̄ (xl(k−1))
is used in step S2 of Algorithm 1 for updating [Fl(k)−1]j̄. Therefore,

fN̄ (xl(k−1)) ≥ [Fl(k)−1]j̄

and, for every k ∈ N

fN̄ (xl(k−1))− fN̄ (xl(k)) ≥ θ.

However, this implies that fN̄ is decreased for a positive constant infinitely
many times, which is in contradiction with the assumption A1. We conclude
that the statement holds with k̄ = n4. �

19

Remark. It is important to notice here that in Theorem 3.1 k̄ = k̄(ω) is a
random variable since it depends on the outcome ω. Therefore, the value that
k̄ takes depends on a particular sample realization of the random sequenceNk

and may be different in each particular run of the optimization procedure. We
have just proved that it is finite for any given run. Notice that this statement
does not imply that k̄ is uniformly bounded across all the trajectories. Given
the complexity of randomness, it might be very hard (or even impossible) to
verify uniform boundedness under the current assumptions.

Under the conditions stated in Theorem 3.1, one can easily prove the
following statement.

Theorem 3.2. Let A1 and C1-C3 hold and assume that {xk(ω)} is the se-
quence of random vectors generated with Algorithm 3. Then, for each fixed
outcome ω, the sequence {xk(ω)} is either finite with n1(ω) elements and
xn1(ω) is the stationary point of the objective function f , or {xk(ω)} is infi-
nite and there exists a finite k̄(ω) ∈ N such that pk(ω) = 1 for every k ≥ k̄(ω)
and the sequence {xk(ω)}k≥k̄(ω) belongs to the level set

L(ω) = {x ∈ Rn | f(x) ≤ f(xk̄(ω)) + ẽ},

where ẽ is given in (3).

In order to prove the main theorem, we need the following assumption
on the search directions. Again, we assume that this holds for an arbitrary
outcome ω.

A 2. There exists c > 0, such that, for arbitrary outcome ω, there holds:
dTk∇fNk

(xk) ≤ −c‖∇fNk
(xk)‖2 for every k.

Notice that here we assume that c is a deterministic constant, i.e. in-
dependent of ω. The inequality in assumption A2 is satisfied for the choice
dk = −∇fNk

(xk). It is also satisfied for a Quasi-Newton direction which
retains uniformly positive definite inverse Hessian approximation. The se-
quence of search directions is bounded, e.g., if the level set L is compact (see
Theorem 3.2); this is true if, e.g., f is convex and coercive (f(x) → +∞
whenever ‖x‖ → +∞).

We impose an additional standard assumption on search directions.

A 3. For every outcome ω, the following implication is true: the sequence of
search directions {dk}k∈N is bounded if the sequence {xk}k∈N is bounded.

20

Notice that the above Assumption, for any ω, holds if the level set L(ω)
is compact. The Assumptions A2–A3 allow us to prove the main result
stated below which corresponds to the classical result from deterministic
optimization. We omit the arguments which relay on standard analysis of
line search methods. For more details, see [30] for example.

Theorem 3.3. Let A1-A3 and C1-C3 hold. Then, the sequence {xk(ω)}
generated by Algorithm 3 is either unbounded, or every accumulation point
of the sequence is stationary for function f.

Proof. Let us fix an arbitrary outcome ω. We have already showed that
the main algorithm terminates at xk only if ∇f(xk) = 0. Therefore, we
consider the case where the number of iterations is infinite. In that case,
Theorem 3.1 implies the existence of iteration k̄ such that pk = 1 for every
k ≥ k̄. This means that Ñk = N for every k ≥ k̄ and furthermore implies
that fNk

(x) = fN (x) = f(x) for every k large enough. Therefore, the rest of
the proof follows the steps of the standard nonmonotone line search analysis
applied on the original objective function f and the result follows by the
standard arguments. �

Notice that Theorem 3.3 implies that Algorithm 3 converges to a station-
ary point of f for every ω, if f is convex and coercive.

3.2 Non-asymptotic analysis

Within this subsection we investigate conditions for the linear convergence
and provide a worst-case complexity analysis under the following assumption.

A 4. There exist positive constants µ and L such that the following holds for
every i = 1, ..., N and every x ∈ Rn

µI � ∇2fi(x) � LI.

We set dk = −∇fNk
(xk) for simplicity, but the same analysis can be con-

ducted for any other search direction satisfying assumption A2 and ‖dk‖ ≤
R‖∇fNk

(xk)‖ for some R > 0.
The strong convexity assumption implies that the following holds for ev-

ery x ∈ Rn

µ(f(x)− f(x∗)) ≤ ‖∇f(x)‖2, (10)

21

where x∗ is an unique minimizer of f . Moreover, it also implies that the step
size αk is uniformly bounded from bellow (see [31] for instance), i.e.,

αk ≥ min{1, (1− η)/L} := a. (11)

Considering (conditional) Binomial distribution of |Nk|, one can show
that for all k and j = k, k + 1

E(fNk
(xj)) = E(rkf(xj)) and E(∇fNk

(xk)) = E(rk∇f(xk)), (12)

where the expectation is taken with respect to outcome ω and rk = 1 −
(1 − pk)N := 1 − hk. Notice that hk ≤ (1 − pmin

0)N := h and let us denote
r := 1− h. Then we can show the following.

Theorem 3.4. Let A1, A4 and C1-C3 hold. Then

E(f(xk+1)− f(x∗)) ≤ ρE(f(xk)− f(x∗)) + ek/r,

where ρ ∈ (0, 1) provided that h is small enough.

Proof. Applying the expectation to (2) we obtain

E(rkf(xk+1)) ≤ E(rkf(xk))− ηaE(‖∇fNk
(xk)‖2) + ek. (13)

If we denote the history of Algorithm 3 until the kth iteration by Fk, we
obtain

E(∇fNk
(xk)|Fk) = rk∇f(xk)

which yields

r2
k‖∇f(xk)‖2 = ‖E(∇fNk

(xk)|Fk)‖2 ≤ (E(‖∇fNk
(xk)‖|Fk))2 ≤ E(‖∇fNk

(xk)‖2|Fk).

Taking the expectation we get

−E(‖∇fNk
(xk)‖2) ≤ −E(r2

k‖∇f(xk)‖2).

Putting the previous inequality into (13), subtracting f(x∗) from both sides
and using the strong convexity, we obtain

E(f(xk+1)− f(x∗))− E(hkf(xk+1)) ≤ E(f(xk)− f(x∗))− E(hkf(xk))

+ ek − ηaE(µ(f(xk)− f(x∗))r2
k).

22

Rearranging the previous expression yields

E(f(xk+1)− f(x∗)) ≤ E((f(xk)− f(x∗))(1− ηaµr2
k)) + ek

+ E(hk(f(xk+1)− f(xk)± f(x∗)))

= E((f(xk)− f(x∗))(1− ηaµr2
k − hk)) + ek

+ E(hk(f(xk+1)− f(x∗)))

≤ E((f(xk)− f(x∗))(1− ηaµr2)) + ek

+ E(h(f(xk+1)− f(x∗))). (14)

Now, using the fact that h and r are deterministic, there follows

E(f(xk+1)− f(x∗)) ≤ E(f(xk)− f(x∗))
1− ηaµr2

r
+
ek
r
,

so the statement holds with ρ = (1−ηaµr2)/r ∈ (0, 1) for h small enough,i.e.,
for h ∈ (0, (2ηaµ+ 1−

√
4ηaµ+ 1)/(2ηaµ)). �

Using the above result, one can prove the following complexity result (see
[5],Theorem 2.3).

Theorem 3.5. Let A1, A4 and C1-C3 hold. Then, if {ek} tends to zero R-
linearly, Algorithm 3 takes at most k̄ iterations to ensure f(xk)− f(x∗) < ε
where

k̄ = d log(f(x0)− f(x∗) +Q)

| log(ρ̂)|
log(ε−1)e, Q > 0, ρ̂ ∈ (0, 1).

Although this result does not require achieving full sample size to reach
nearly-optimal solution, the sample size lower bound represented by h can
be very large. On the other hand, the proposed algorithm achieves the full
sample after a finitely many iterations and, depending on the search direction
and the line search, linear or even faster convergence rate may be achieved.
However, it is very complicated to estimate the number of iterations needed
for achieving the full sample and the full complexity result remains an open
problem. One of the possible solutions is to control the sample size lower
bound sequence in some predetermined way, but this is not coherent with
the adaptive framework which is proposed.

4 Numerical results

The main motivation behind the proposed algorithm is to show that the class
of problems considered in this paper can be solved with reduced communica-

23

tion and computational costs and still provide an approximate solution of the
same quality as if all the workers are constantly active. In order to demon-
strate the benefits of the proposed feedback approach – abbreviated here the
VSS-F – it is compared with the Sample Average Approximation method
(SAA) which uses the whole set of workers at every iteration (Nk = N for ev-
ery k). Moreover, in order to demonstrate that the feedback that controls the
sample size in VSS-F can also provide some savings compared with the prede-
termined sequences of sample sizes, we also compare VSS-F with the heuristic
scheme (referred here to as HEUR) tested in [22] where the (expected) sample
size is increased by 10% at each iteration, i.e., pk+1 = min{1.1pk, 1}. Notice
that we set the value of the augmentation parameter to 1.1, as used in [22].
This may not be the optimal value, and it may be possible to tune it better
for specific problems and specific problem instances; this tuning is out of this
paper’s scope. Nonetheless, the comparisons we carry out are fair as, with
each of the three tested methods (including the proposed VSS-F) – we use
reasonable (but ad hoc) choices of the tuning parameters which are kept the
same across all the tested problems and across all problem instances.

We compare the methods with respect to several criteria. The first is
the number of function fi evaluations (FEV), where every component of the
gradient ∇fi is counted as one function evaluation. More precisely, the costs
of calculating fNk

(x) and ∇fNk
(x) are assumed to be |Nk| and n|Nk|, respec-

tively. The total count of FEVs includes both inner and outer iterations. The
assumed FEV cost model is suitable if one does not consider the structure
of the cost functions but might be overestimating the cost in certain special
cases where a gradient evaluation may be much cheaper. For example, in
binary classification problems with logistic loss functions, a gradient is ob-
tained without significant additional computation once the function itself is
evaluated.

Besides FEVs, we introduce the following comparison of the methods,
accounting for the parallel architecture of the underlying computational sys-
tem; see, e.g., [53, 45] for similar comparison metrics. Such system can be,
e.g., a computer cluster, or a wireless sensor network (set of workers) with a
fusion center (master). We associate with each inner and outer iteration of
a tested algorithm (VSS-F, SAA, and HEUR) a cost C. Namely, the cost of
an iteration C is given by:

C = Ccomp + r Ccomm, (15)

where Ccomp is the computational cost, and Ccomm is the communication cost.

24

For a computer cluster system, it is natural that C corresponds to the execu-
tion time of the algorithm. On the other hand, in a wireless sensor network
with battery-operated devices (where power is the most expensive resource),
it is natural that C corresponds to the total consumed power. Due to the par-
allel system architecture, Ccomp (either per an outer or per an inner iteration)
is modeled to be the same irrespective of the number of active workers. How-
ever, Ccomm depends on the number of active workers. More precisely, Ccomp

equals the total number of FEVs per single worker within an (either inner
or outer) iteration (where FEVs are counted as described above). Further,
Ccomm equals the total number of scalars communicated from each worker
to the master and from the master to all workers within an (inner or outer)
iteration. Here, a broadcast scalar communication from the master to all
workers, i.e., communication when the master sends equal messages to all
workers (as for example in Step S4 of Algorithm 3), is counted as a single
(n-scalars) communication. Notice that, as only active workers perform com-
munications, Ccomm at each inner or outer iteration is an increasing function
of the number of active workers. That is, Ccomm increases with the current ef-
fective degree (number of neighbors–active workers) of the master at a given
iteration; see, e.g., [53] for a related model. We will compare the three meth-
ods (VSS-F, HEUR, and SAA) by examining their total costs until stopping,
where we count the overall incurred cost across all inner and outer iterations
until stopping.

The parameter r is the ratio of the cost of a single scalar transmission
and a single FEV. Actual value of r depends on the problem of interest and
on the underlying computational system. For a computer cluster, it can be
a relatively small number, for example on the order 0.01; see, e.g., [53], for a
related model. On the other hand, for a wireless sensor network, r is usually
a large number; see, e.g., [45]. We also include the idealized scenarios r = 0
(ideal computer cluster with zero-delay communications) and r → ∞ (an
idealization of a wireless sensor network).2

All of the above methods are applied on two types of convex problems
– convex quadratic and logistic losses. The algorithms are tested both on

2Strictly speaking, for the wireless sensor network scenario where C is the consumed
power, a more accurate model is to include in Ccomp the computational cost across all
workers and the master, i.e., here we could sum the FEVs across all workers and the
master for each iteration. However, for wireless sensor network, we consider the idealized
scenario when r → ∞, so that the computational cost is negligible and the difference
between the adopted model and the one described here is irrelevant.

25

synthetic and real data sets. Moreover, they are also tested on non-convex
quadratic losses. A more detailed description is provided below.

Previous testings of similar variable sample size schemes [31] suggest that
the proposed line search rule fits well with the BFGS search direction. More-
over, including the second order information enhances the performance of
each of the three sample size schemes simulated here. Therefore, we set
dk = −Hk∇fNk

(xk) where Hk is the inverse Hessian approximation updated
by the BFGS rule with H0 being the identity matrix and the gradient dif-
ference calculated by yk = ∇fNk+1

(xk+1) − ∇fNk
(xk). Since sTk yk is not

guaranteed to be positive, we skip the update if sTk yk < 10−8 as common
in the BFGS approach. That way we ensure positive definiteness of Bk and
provide a descent direction with respect to the current approximation of the
objective function so calculating yk and αk as proposed does not deteriorate
the main concept. We have also performed test with the negative gradient
search direction and got the results that are in all cases significantly inferior
to the results with BFGS direction. Furthermore, the difference between
three tested updates of the control parameters i.e., VSS-F, SAA and HEUR
was completely consistent with the differences presented for the BFGS di-
rection. Thus the results obtained with the negative gradient direction are
not included in the paper. The nonmonotone line search rule in (2) is imple-
mented with e0 = 0.1 and ek = e0k

−1.1. In order to make a fair comparison,
the search direction, the line search rule, and all the other relevant parame-
ters are common for each of the three tested schemes. The difference is only
in updating the sequence of samples and their sizes, i.e., in updating pk. We
have employed the precision measure εk defined by (5), while the remaining
safeguard parameters are set to

θk = (k + 1)pk, γk = (Nexp(1/k))−1.

Further, we use ν1 = 1/
√
N, pmin

0 = 0.1, η = 10−4, β = 0.5 in Algorithm 2
and Algorithm 3. The set of admissible values for the control parameters pk
is determined by the step 1/N , i.e., πj+1 = πj + 1/N . The set of parameters
shown here is used across all problems and all problem instances, i.e., no
parameter tuning is performed according to each specific instance.

The convex quadratic problem is of the form

fi(x) =
1

2
(x− ai)>Bi(x− ai),

where Bi ∈ Rn×n is a positive definite (symmetric matrix), and ai ∈ Rn is
a vector uniformly distributed on the interval [1, 11]. Quantities Bi, ai, i =

26

1, ..., N are generated mutually independently. For each i, we first generate
a matrix B̃i with i independent, identically distributed (i.i.d.) elements that
have the standard normal distribution. Then, we extract the eigenvector
matrix Qi ∈ Rn×n of matrix 1

2
(B̃i + B̃>i). We set Bi = QiDiag(ci)Q

>
i , where

ci ∈ Rn has the i.i.d. entries uniformly distributed on the interval [1, 101].
The non-convex case takes the same form but with the Bi’s entries gen-

erated to be i.i.d., from the normal distribution with mean 5 and variance 1.
Notice that, in this case, the desired objective function f(x) can be written
as f(x) = 1

2
xTAx − bx + c, for some (possibly indefinite) n × n matrix A,

vector b ∈ Rn and scalar c. Here, the function f may not be convex and
hence we can not claim convergence towards global minimizer. However, we
are interested in finding a stationary point of f. As it is well know, see [39],
the iterative sequence is convergent if it is bounded and then it converges
to a stationary point. The practical value of this is, e.g., in solving in a
distributed manner (over the master-worker architecture) the linear system
Ax = b with an indefinite matrix A, which is an important problem in its
own right, see [21, 49, 16]. Although this example is not covered by the theo-
retical results obtained in the previous Section, the corresponding numerical
results indicate that the algorithm behaves rather well on this example as
well.

The logistic problem is a machine learning problem of determining the
linear classifier which minimizes the logistic loss. We give a brief description,
while more details can be found in [9] for instance. The local loss function is

fi(x) = R‖x‖2 +
J∑

j=1

ln
(

1 + e−b
j
ix

T aji

)
where aji ∈ Rn, bji ∈ R with the nth component equal to 1, i.e. [aji]n = 1,
and R is a regularization parameter. In the case of synthetic data, the
remaining components of aji are generated randomly and independently by
using the standard normal distribution. Moreover, we form x̄ ∈ Rn also
with the standard normal distribution and define bji = sgn(x̄Taji +ρij) where
the ρij’s are independent, with the Gaussian distribution having zero mean
and standard deviation 0.1. We also perform testings on the real data set
“mushrooms” which is available at the following repository: www.csie.ntu.
edu.tw/~cjlin/libsvmtools/datasets.

All these problems are generated in advance, before the optimization pro-
cess starts. Therefore, the objective function is considered as deterministic.

27

We conducted 10 runs of each of the three methods for all the problems
(convex quadratic – synthetic data, logistic – synthetic and real data, and
non-convex quadratic – synthetic data). For the synthetic data, each test is
performed with a different problem instance where all the input parameters
are re-generated as explained above. With the real data set “mushrooms,” 10
tests are repeated with the same input data. However, the difference between
the tests arises because VSS-F and HEUR yield a stochastic sequence of
iterations and therefore generate different results at each test (each run).
With each of the three methods (VSS-F, SAA, and HEUR), we use the
initialization x0 = 0. The stopping criterion, with each of the three methods,
is as follows: the algorithms terminate if the maximal number of FEVs (107)
is reached or if

‖∇fNk
(xk)‖ < τ and Nk = N ,

where we use different values of τ for different problems (convex quadratic –
synthetic data, logistic – synthetic and real data, and non-convex quadratic
– synthetic data). Notice that, with this stopping rule, the algorithms can
terminate only if the master detects that the full sample N is used. The
full sample is required because no knowledge on the similarity of the fi’s is
assumed at the master. Indeed, having ‖∇fNk

(xk)‖ small, with |Nk| < N ,
may not imply that ‖∇f(xk)‖ is small as well. Designing stopping criteria
under the imposed fi-similarity is left for future work.

In the convex quadratic case, the stopping criterion parameter is τ = 0.5
which yields the relative error in the objective function of order 10−6. More
precisely, (f(xk) − f(x∗))/f(x∗), where x∗ = arg minxf(x), is of the order
10−6. The dimension of the optimization variable is n = 3 and the number of
nodes is N = 1000. These parameters are retained in a general (non-convex)
case as well.

In the logistic - synthetic case, the stopping criterion is defined by τ =
10−2, the dimension is n = 4, the number of nodes is N = 1000, and the
number of samples per node is J = 2. With the data set “mushrooms,” the
number of features is n = 112, the number of data points, here equal to the
number of workers, is N = 8124, and J = 1. The regularization parameter R
is set to 0.1. Since none of the tested methods managed to converge within
107 FEVs (except for VSS-F in one run) we set τ = 10−1 and report the
relevant results. Given that the cost of a gradient evaluation increases with
the dimension of the optimization variable n, a larger FEV limit than the
adopted value of 107 might be considered for this problem. However, the

28

reported results with the 107 FEV limit and τ = 0.1 give enough insights of
the benefits obtained through the proposed feedback scheme.

The results on the analysis of FEVs are shown at Figure 2. The (green)
diamonds show the costs for each run of VSS-F, the (red) dots are the costs of
SAA while the (blue) squares are the costs of HEUR, for each run, expressed
as the number of function evaluations, FEV. The cost reduction obtained
by VSS-F with respect to both competitors is rather significant. For convex
quadratic the savings are ranging form 20% to 50%, Figure 2.1. In the case
of non-convex quadratic the savings are even larger, going up to 80%, Figure
2.2. The same is happening with the synthetic logistic loss example - we
have the reduction of up to 50%, Figure 2.3. In 2 runs considering the real
data set, none of the tested schemes converged within 107 FEVs. For the
remaining runs, the savings are from 25% to 70% regarding SAA and similar
results hold for HEUR.

It is important to comment here the role of safeguard parameters in the
actual implementation of the algorithm. As already explained pmin

k is impor-
tant from the theoretical point of view as this sequences ensures that the full
set of nodes is employed eventually. Thus it might seem that pmin

k actually
interferes with the feedback mechanism and thus even reduces the relatively
complex mechanism of pk update into mere increase by a certain schedule.
Apparently, that does not happen in actual implementation. In all tests we
have performed pmin

k did not significantly affect the feedback process at all as
it value increased only three times within all runs in all examples. Thus the
vast majority of runs terminated with pmin

k = pmin
0 = 0.1.

We also report on the number of inner iterations that the proposed VSS-F
method incurs on the four tested problems is usually quite small. Namely,
on each of the four tested problems, the number of inner iterations per outer
iteration is typically 3-4 and maximally 5 (across all runs of all four tested
problems).

Figures 3 and 4 show comparisons with respect to cost (15) for the
strongly convex quadratic example and the logistic losses example (synthetic
data), respectively. The Figures for the remaining two considered exam-
ples (non-convex quadratic losses, and logistic losses for the “mushrooms”
data set) are similar and are hence omitted for brevity. We consider three
scenarios: 1) r = 0 – an idealized setting for execution time on a computer
cluster; 2) r = 0.01 – a potential setting for execution time in a real computer
cluster; and 3) r → ∞ – an idealized setting for a wireless sensor network.
The figures present the overall costs (counting both the costs of inner and

29

outer iterations) until stopping for the three values of r (Figures 3.1 and 4.1:
r = 0; Figures 3.2 and 4.2: r = 0.01; Figures 3.3 and 4.3: r → ∞3) The
stopping criterion and the stopping parameters are the same as in the FEVs
comparisons above.

We now comment on the obtained results. Consider first Figure 3.1. Here,
as the communication cost (time) is neglected and as the time per inner or per
outer iteration does not depend on the number of active workers, it is natural
that SAA performs the best, as it performs the “most exact” updates among
the three tested methods. However, when the communication cost is no more
negligible (Figures 3.2 and 3.3), the proposed VSS-F performs better than
both SAA and HEUR. Similar conclusions can be drawn from the logistics
losses example as well (Figure 4.)

We end this section by illustrating the sample size behavior (Figure 5)
and the progress of the algorithm in terms of the full gradient norm against
the relevant cost measure compared to other tested schemes (Figure 6).

5 Conclusion

We considered a generic nonmonotone line search framework for the mini-
mization of a finite sum of generic component costs. We assumed a master-
worker model, where the master maintains the solution estimate xk and
broadcasts it to the workers. Each worker holds a component cost, and,
at each iteration k, it can be in one of the two possible states – active or
inactive. At each iteration k, active workers evaluate their component costs
and the corresponding gradients at the current iterate xk and send this in-
formation back to the master, while inactive workers stay idle. We proposed
a mechanism in which the master node controls the average number of ac-
tive workers through a single scalar parameter pk. The master adaptively
increases or decreases pk over iterations, as needed, based on an inexpensive
estimate of the algorithm progress. Hence, the master sends through pk the
feedback information to the workers as to how many of them should be active
at the next iteration to ensure progress, on the one hand, and save compu-
tational cost as much as possible, on the other hand. Simulations on convex
and non-convex quadratic losses and on (convex) logistic losses – both on

3For the case r → ∞, computational cost becomes negligible; hence, we plot on the
y-axis only the communication cost, for convenience.

30

synthetic and real world data sets – demonstrate the benefits of introducing
feedback in the sample size choice along iterations.

There are several interesting future research directions. First, the frame-
work can be specialized and analyzed to more restricted classes of costs.
Second, it is certainly relevant to incorporate in the master-worker model
the effects of several imperfections, like delays and network topology. For
example, if the (master and worker) nodes are organized in a network (e.g., a
two dimensional grid), then the gradient and function information from cer-
tain workers will be received with delays, depending on how distant (in terms
of the number of hops) a worker is from the master; see, e.g., [1]. In this
paper, we considered the idealized model, as it represents a necessary start-
ing point for the analysis of the feedback mechanisms in the control of the
sample size. Studying effects of various imperfections like delays represents
an interesting future research direction.

Acknowledgement. We are grateful to the anonymous referees whose
comments and suggestions helped us to improve the quality of this paper.

References

[1] A. Agarwal, J. Duchi, Distributed Delayed Stochastic Optimiza-
tion, Proceedings of the Advances in Neural Information Processing
Systems, (2011).

[2] F. Bastin, Trust-Region Algorithms for Nonlinear Stochastic Pro-
gramming and Mixed Logit Models, PhD thesis, University of Namur,
Belgium, 2004.

[3] F. Bastin, C. Cirillo, P. L. Toint, An adaptive Monte Carlo
algorithm for computing mixed logit estimators, Computational Man-
agement Science 3(1), (2006), pp. 55-79.

[4] F. Bastin, C. Cirillo, P. L. Toint, Convergence theory for non-
convex stochastic programming with an application to mixed logit,
Math. Program., Ser. B 108, (2006), pp. 207-234.

[5] S. Bellavia, N. Krejić, N. Krklec Jerinkić, Subsampled inex-
act new-ton methods for minimizing large sums of convex functions,
arXiv:1811.05730, (2018).

31

[6] A. Berahas, J. Nocedal, M. Takac, A multi-batch L-BFGS
method for machine learning, Advances in Neural Information Pro-
cessing Systems, (2016), pp. 1055–1063.

[7] D. P. Bertsekas, Incremental Gradient, Subgradient, and Proximal
Methods for Convex Optimization: A Survey, Report LIDS – 2848,
(2010), pp. 85-119.

[8] E. G. Birgin, J. M. Mart́ınez, M. Raydan, Nonmonotone Spec-
tral Projected Gradient Methods on Convex Sets SIAM J. Optim.
10(4), (2006), pp. 1196-1211.

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Dis-
tributed Optimization and Statistical Learning via the Alternating Di-
rection Method of Multipliers, Foundations and Trends in Machine
Learning, 3(1), (2011), pp. 1-122.

[10] R. H. Byrd, G. M. Chin, W. Neveitt, J. Nocedal, On the
Use of Stochastic Hessian Information in Optimization Methods for
Machine Learning, SIAM J. Optim., 21(3), (2011), pp. 977-995.

[11] R. H. Byrd, G. M. Chin, J. Nocedal, Y. Wu, Sample size se-
lection in optimization methods for machine learning, Mathematical
Programming, 134(1), (2012), pp. 127-155.

[12] R. Bollapragada, R. Byrd, J. Nocedal, Adaptive sam-
pling strategies for stochastic optimization, arXiv preprint
arXiv:1710.11258, (2017).

[13] R. Bollapragada, D. Mudigere, J. Nocedal, H.-J. Michael
Shi, P. Tak Peter Tang, A progressive batching l-bfgs method for
machine learning,arXiv preprint arXiv:1802.05374, (2018).

[14] R. Byrd, G. Chin, J. Nocedal, Y. Wu, Sample size selection
in optimization methods for machine learning, Mathematical program-
ming, 134(1), (2012), pp. 127–155.

[15] R. Byrd, S. Hansen, J. Nocedal, Y. Singer, A stochastic quasi-
Newton method for large-scale optimization, SIAM Journal on Opti-
mization, 26(2), (2016), pp. 1008–1031.

32

[16] S.-C. T. Choi, C. C. Paige, M. A. Saunders, MINRES-QLP: A
Krylov Subspace Method for Indefinite or Singular Symmetric Systems,
SIAM Journal on Scientific Computing, 33(4),(2011), pp. 1810-1836.

[17] F. Curtis, A self-correcting variable-metric algorithm for stochas-
tic optimization, In International Conference on Machine Learning,
(2016), pp. 632–641.

[18] A. Defazio, F. Bach, S. Lacoste-Julien, Saga: A fast incre-
mental gradient method with support for non-strongly convex compos-
ite objectives, In Advances in neural information processing systems,
(2014), pp. 1646–1654.

[19] E. Dolan, J. More, Benchmarking optimization software with per-
formance profiles, Mathematical programming, 91(2), (2002), pp. 201-
213.

[20] M.A. Diniz-Ehrhardt, J. M. Mart́ınez, M. Raydan, A
derivative-free nonmonotone line-search technique for unconstrained
optimization, Journal of Computational and Applied Mathematics,
219(2), (2008), pp. 383-397.

[21] R. Fletcher, Conjugate Gradient Methods for Indefinite Systems,
Numerical Analysis, Springer, (1976), pp. 73-89.

[22] M. P. Friedlander, M. Schmidt, Hybrid deterministic-stochastic
methods for data fitting, SIAM J. Scientific Computing, 34(3), (2012),
pp. 1380-1405.

[23] D. H. Li, M. Fukushima, A derivative-free line search and global
convergence of Broyden-like method for nonlinear equations, Opt.
Methods Software, 13, (2000), pp. 181-201.

[24] R. Gower, D. Goldfarb, P. Richtarik, Stochastic block BFGS:
Squeezing more curvature out of data, International Conference on
Machine Learning, (2016), pp. 1869–1878.

[25] M. Gurbuzbalaban, A. Ozdaglar, P. Parrilo, A globally
convergent incremental Newton method, Mathematical Programming,
151(1), (2015), pp. 283–313.

33

[26] Ghadimi, S., Lan, G., Zhang, H, Mini-batch stochastic approx-
imation methods for nonconvex stochastic composite optimization,
Mathematical Programming, 155(1-2), (2016), pp. 267–305.

[27] L. Grippo, F. Lampariello, S. Lucidi, A nononotone line search
technique for Newton’s method, SIAM J. Numerical Analysis, 23(4),
(1986), pp. 707-716.

[28] F.S. Hashemi, S. Ghosh, R. Pasupathy, On adaptive sampling
rules for stochastic recursion, Proceedings of the Winter Simulation
Conference 2014, IEEE, (2014), pp. 3959-3970.

[29] R. Johnson, T. Zhang, Accelerating stochastic gradient descent
using predictive variance reduction, Advances in neural information
processing systems, (2013), pp. 315–323.

[30] N. Krejić, N. Krklec, Line search methods with variable sample
size for unconstrained optimization, Journal of Computational and Ap-
plied Mathematics, 245, (2013), pp. 213-231.

[31] N. Krejić, N. Krklec Jerinkić, Nonmonotone line search methods
with variable sample size, Numerical Algorithms, 68(4), (2015), pp.
711-739.

[32] N. Krejić, N. Krklec Jerinkić, Stochastic gradient methods for
unconstrained optimization, Pesquisa Operacional, 34(3), (2014), pp.
373-393.

[33] J. Langford, A. Smola, M. Zinkevich, Slow learners are fast,
Proc. Advances in Neural Information Processing Systems 22, (2009),
pp. 2331-2339.

[34] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, B.-Y. Su, Scaling Dis-
tributed Machine Learning with the Parameter Server 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14), (2014), pp. 583-598.

[35] A. Mokhtari, M. Eisen, A. Ribeiro, IQN: An incremental quasi-
Newton method with local superlinear convergence rate, SIAM Journal
on Optimization, 28(2), (2018), pp. 1670–1698.

34

[36] A. Mokhtari, A. Ribeiro, Global convergence of online limited
memory BFGS, Journal of Machine Learning Research, 16(1), (2015),
pp. 3151–3181.

[37] A. Nedic, D. P. Bertsekas, Incremental Subgradient Methods for
Nondifferentiable Optimization, SIAM J. Optimization, 12, (2001), pp.
109-138.

[38] A. Nedic, A. Olshevsky, Stochastic Gradient-push for Strongly
Convex Functions on Time-varying Directed Graphs, IEEE Transac-
tions on Automatic Control, 61(12), (2016), pp. 3936-3947.

[39] J. Nocedal, S. J. Wright, Numerical Optimization, Springer,
1999.

[40] L. Nguyen, J. Liu, K. Scheinberg, M. Takac, SARAH: A novel
method for machine learning problems using stochastic recursive gradi-
ent, International Conference on Machine Learning, (2017), pp. 2613–
2621.

[41] R. Pasupathy, On choosing parameters in retrospective-
approximation algorithms for simulation-optimization, Proceedings of
the 2006 Winter Simulation Conference, IEEE, (2006), pp. 208-215.

[42] R. Pasupathy, On Choosing Parameters in Retrospective-
Approximation Algorithms for Stochastic Root Finding and Simulation
Optimization, Operations Research, 58(4), (2010), pp. 889-901.

[43] C. Paquette, K. Scheinberg, A stochastic line search method with
convergence rate analysis, arXiv preprint arXiv:1807.07994, (2018).

[44] E. Polak, J. O. Royset, Efficient sample sizes in stochastic nonlin-
ear programing, Journal of Computational and Applied Mathematics,
217(2), (2008), pp. 301-310.

[45] M. Rabbat, R. Nowak, Distributed Optimization in Sensor Net-
works, Proceedings of the 3rd international symposium on Information
processing in sensor networks (2004).

[46] B. Recht, C. Re, S. J. Wright, F. Niu, Hogwild: A Lock-Free
Approach to Parallelizing Stochastic Gradient Descent, Advances in
neural information processing systems, (2011), pp. 693-701.

35

[47] J. O. Royset, Optimality functions in stochastic programming,
Math. Programming, 135(1-2), (2012), pp. 293–321.

[48] J. Royset, R. Szechtman, Optimal budget allocation for sample
average approximation, Operations Research, 61(3), (2013), pp. 762–
776.

[49] Y. Saad, Iterative Solution of Indefinite Symmetric Linear Systems
by Methods Using Orthogonal Polynomials over Two Disjoint Intervals,
SIAM J. Numer. Anal., 20(4), (1983), pp. 784–811.

[50] M. Schmidt, N. Le Roux, F. Bach, Minimizing Finite Sums with
the Stochastic Average Gradient, Mathematical Programming, 162(1-
2), (2017), pp. 83–112.

[51] O. Shamir, N. Srebro, T. Zhang, Communication Efficient Dis-
tributed Optimization using an Approximate Newton-type Method,
31st International Conference on Machine Learning, ICML (2014).

[52] N. Schraudolph, J. Yu, S. Gunter, A stochastic quasi-Newton
method for online convex optimization, Artificial Intelligence and
Statistics, (2007), pp. 436–443.

[53] K. I. Tsianos, S. Lawlor, M. G. Rabbat, Communica-
tion/Computation Tradeoffs in Consensus-Based Distributed Opti-
mization, Advances in neural information processing systems, (2012),
pp. 1943-1951.

[54] Uday V. Shanbhag, J.H. Blanchet, Budget constrained stochas-
tic optimization, Proceedings of the 2015 Winter Simulation Con-
ference, Huntington Beach, CA, USA, December 6-9, IEEE/ACM,
(2015), pp. 368-379.

[55] Uday V. Shanbhag, Decomposition and Sampling Methods for
Stochastic Equilibrium Problems, PhD thesis, Department of Manage-
ment Science and Engineering (Operations Research), Stanford Uni-
versity, 2006.

[56] F. Yousefian, A. Nedic, U. V. Shanbhag On stochastic gradient
and subgradient methods with adaptive steplength sequences, Auto-
matica 48(1), (2012), pp. 56-67.

36

[57] Y. Zhang, J. C. Duchi, M. Wainwright, Comunication-Efficient
Algorithms for Statistical Optimization, Journal of Machine Learning
Research, 14(Nov), (2013), pp. 3321-3363.

[58] H. Zhang, W. W. Hager, A nonmonotone line search technique
and its application to unconstrained optimization SIAM J. Optim. 4,
(2004), pp. 1043-1056.

[59] M. Zinkevich, M. Weimer, A. J. Smola, L. Li, Parallelized
Stochastic Gradient Descent, Proceedings of the Advances in Neural
Information Processing Systems, (2010).

37

1 2 3 4 5 6 7 8 9 10
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

5

Run

F
E

V

VSS-F SAA HEUR

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
x 10

5

Run

F
E

V

VSS-F SAA HEUR

Figure 2.1: Convex quadratic Figure 2.2: Non - convex quadratic

1 2 3 4 5 6 7 8 9 10
2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

4

Run

F
E

V

VSS-F SAA HEUR

1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

10

11
x 10

6

Run

F
E

V

VSS-F SAA HEUR

Figure 2.3: Logistic - synthetic Figure 2.4: Logistic - mushrooms

Figure 2: Total number of FEVs until stopping for 10 independent runs of
each tested method for the four tested problems.

38

2 4 6 8 10
140

160

180

200

220

240

260

280

300

320

run

c
o
s
t

(r
 =

 0
)

VSS-F

SAA

HEUR

Figure 3.1

2 4 6 8 10
1000

1200

1400

1600

1800

2000

2200

run

c
o
s
t

(r
 =

 0
.0

1
)

VSS-F
SAA
HEUR

Figure 3.2

2 4 6 8 10
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

5

run

c
o
m

m
u
n
.

c
o

s
t

HEUR
VSS-F
SAA

Figure 3.3

Figure 3: Total cost (15) until stopping for 10 independent runs of each tested
method, for the example of strongly convex quadratic losses and different
values of parameter r; Fig. 3.1: r = 0; Fig. 3.2: r = 0.01; and Fig. 3.3:
r →∞ (for r →∞, the y-axis shows communication cost).

39

2 4 6 8 10
40

60

80

100

120

140

160

run

c
o
s
t
(r

=
0
)

VSS

HEUR

SAA

Figure 4.1

2 4 6 8 10
300

400

500

600

700

800

900

run

c
o
s
t

(r
 =

 0
.0

1
)

VSS-F

HEUR

SAA

Figure 4.2

2 4 6 8 10
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

4

run

c
o
m

m
u
n
.

c
o

s
t

SAA
VSS-F
HEUR

Figure 4.3

Figure 4: Total cost (15) until stopping for 10 independent runs of each tested
method, for the example of logistic losses (synthetic data) and different values
of parameter r; Fig. 4.1: r = 0; Fig. 4.2: r = 0.01; and Fig. 4.3: r → ∞
(for r →∞, the y-axis shows communication cost).

40

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

900

1000

iteration

s
a
m

p
le

 s
iz

e

VSS

HEUR

Figure 5

Figure 5: Sample size behavior of the considered algorithms for one run, the
non-convex quadratic case.

41

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

140

160

cost (r=0)

th
e
 f
u
ll

g
ra

d
ie

n
t
n
o
rm

VSS-F

SAA

HEUR

Figure 6.1

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

140

160

cost (r=0.01)

th
e
 f
u
ll

g
ra

d
ie

n
t
n
o
rm

VSS-F

SAA

HEUR

Figure 6.2

0 0.5 1 1.5 2 2.5 3

x 10
5

0

20

40

60

80

100

120

140

160

commun. cost

th
e
 f
u
ll

g
ra

d
ie

n
t
n
o
rm

VSS-F

SAA

HEUR

Figure 6.3

Figure 6: The full gradient norm until stopping (y-axis) for one run of each
tested method, for the example of non-convex quadratic losses, against the
Total cost (15) with different values of parameter r; Fig. 6.1: r = 0; Fig.
6.2: r = 0.01; and Fig. 6.3: r →∞ .

42

