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CONVEX RELAXATIONS FOR QUADRATIC ON/OFF
CONSTRAINTS AND APPLICATIONS TO OPTIMAL
TRANSMISSION SWITCHING

KSENIA BESTUZHEVA* HASSAN HIJAZITT, AND CARLETON COFFRIN?

Abstract. This paper studies mixed-integer nonlinear programs featuring disjunctive con-
straints and trigonometric functions. We first characterize the convex hull of univariate quadratic
on/off constraints in the space of original variables using perspective functions. We then introduce
new tight quadratic relaxations for trigonometric functions featuring variables with asymmetrical
bounds. These results are used to further tighten recent convex relaxations introduced for the Op-
timal Transmission Switching problem in Power Systems. Using the proposed improvements, along
with aggressive bound propagation, we close 10 out of the 28 medium-size open test cases in the
NESTA benchmark library. The tightened model has better computational results when compared
to state-of-the-art formulations.

Key words. Mixed-Integer Nonlinear Programming, Perspective Relaxation, On/Off con-
straints, Optimal Transmission Switching, Trigonometric Functions

AMS subject classifications. 90C11, 90C26, 90C25, 90C30, 90C90

1. Introduction. We study non-convex Mixed-Integer Nonlinear Programs of
the form,

min f(x,y)
(MINLP) s.t. ¢i(x,y) <0, Viel,
h,j(X) < 0 if Zj = 1, VJ € J,
xeR" yeZ™.
Functions f, g; and h; are assumed to be continuous and twice differentiable.

Given a binary variable z € {0, 1}, we are interested in the special case of a univariate
quadratic on/off constraint,

(1) ar’ +br+c—y<0,if z=1.

(1) is also known as a disjunctive or indicator constraint. We assume that the variable
bounds are part of the disjunction, i.e.,

0 if z = 0,

) if z = 1.

In the optimization literature, on/off constraints are most oftenly formulated
using the standard big-M approach [23],

ar’ +br —y < —cz+ M(1—2z),

where M is a constant parameter guaranteeing that the constraint becomes re-
dundant if w = 0. These big-M formulations often lead to weak continuous relaxations,
and thus inefficient computational results.
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2 K. BESTUZHEVA, H. HIJAZI, AND C. COFFRIN

An alternative approach is to use disjunctive programming. Consider a general
on/off constraint:

g(x) <0if z =0,
xeR", z€{0,1},

u

xl<x<x,

where g(x) : R® — R is a convex function, x' and x* are two vectors in R”. This
constraint can be reformulated as a disjunction between two sets:

XEF()UFl,
(2) Io ={(x,2) e R" x {0,1} | z = 0, x' <x <x"},
I ={(x,2) eR" x {0,1} | z =1, g(x) <0, x' <x <x"}.

or, equivalently,

x € conv(T'y U TY),

3
®) xeR" ze{0,1}

Dropping the integrality requirement on variable u results in a convex relaxation
of (2) which is typically tighter than the big-M relaxation. The challenging task lies
in finding a compact algebraic characterization of set (3), i.e., a representation defined
in the space of original variables.

1.1. Related work. Extensive work has been done on deriving convex relax-
ations of on/off constraints defined in a higher-dimensional space. Stubbs and Mehro-
tra [29] have generalized the lifting procedure for linear sets [1,22,28] to the convex
case. Ceria and Soares [7] have applied perspective functions to formulate the convex
hull of a union of convex sets. Grossmann and Lee [14] used these results to describe
the convex hull of a disjunction involving convex nonlinear inequalities. However, all
these approaches require adding auxiliary variables to the original formulation, thus
increasing the model size, and decreasing it computational efficiency.

Based on perspective functions, Giinliik and Linderoth in [15] were able to propose a
compact characterization of the convex hull when the set I'y reduces to a single point.
Hijazi et al [19] were able to generalize this result to cases where I'g is a hyper-
rectangle and the constraints are isotone. In a recent work, Belotti et al. [5] study the
efficiency of non-convex formulations for on/off constraints in conjunction with ag-
gressive bound tightening techniques. For a detailed literature review and additional
results, we refer to the recent work by Bonami et al. in [6].

In this paper we extend the reach of relaxations based on perspective functions to non-
monotone quadratic functions. In Section 2, we give the definition of a perspective
function, review some results from disjunctive programming and provide the proof
for our convex hull characterization. Quadratic relaxations of trigonometric functions
are derived in Section 3. In Section 4, the Optimal Transmission Switching (OTS)
problem in Energy Systems and its Quadratic Convex (QC) relaxation are presented.
This problem is about finding an optimal configuration of a given power network
where line switching is permitted. The new convex hull formulation is applied to the

This manuscript is for review purposes only.
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CONVEX RELAXATIONS FOR QUADRATIC ON/OFF CONSTRAINTS AND APPLICATIONS TO OTS 3

non-monotone quadratic constraints in the QC relaxation, and other ways of strength-
ening the model are investigated. Finally, Section 5 reports the computational results
and Section 6 concludes the paper.

2. The New Convex Hull.

2.1. Perspective functions. For a given convex function f(x) : R" — R its
perspective function f: R"™t — (R U {+00}) is defined as:

- {zf(x/z) ifz>0

=X,2) = .
f=(xz) + oo otherwise.

For each fixed z = 2° the function f(x,2°) represents a dilation of the original
function f(x).

A perspective function has a focal point, which is a point approached by the
dilations as z approaches 0. By modifying the argument of the perspective function
one can modify its focal point. We use this property to build our convex hulls.

Note that the perspective operator preserves convexity, i.e., if function f is convex,
so will be its perspective f.

Fig. 1: Several dilations of the square function

2.2. State-of-the-art formulation. For completeness, we will re-state a result
presented in [19], which characterizes the convex hull of a union of two convex sets
defined by isotone functions.

DEFINITION 1 ( [19]). Let f : E > R, E € R".
o f is independently increasing (resp. decreasing) on coordinate i is for all
x € dom(f) and A > 0 such that x + \e; € dom(f), where e; is ith unit vector
of the standard basis, we have f(x + Ae;) = f(x) (resp. f(x+ Ae;) < f(x)).
e f is independently monotone on coordinate i if it is independently increasing
or independently decreasing on the ith coordinate.
e f is isotone if it is independently monotone on every coordinate.

THEOREM 2 ( [19]). Let f : E — R/ E < R, be an isotone closed convex
function with J' (resp., J?) the set of indices on which f is independently increasing
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92 (resp. decreasing),

93 To={(x,2) eR" x {0,1} | 2=10,1°<x < u’},

" o= {(x2) eR" x (0,1} | 2= 1, f(x) <0.I' < x < u'} £ &,
96 Then conv(T'g U T'1) = closure(I), where

(x,2) e R*TY

2qs(x,2) <0 VS c{l,2,..,n}

2P+ (1—-2)0<z<zut+(1—2)u®
0<z<l1

97 gs = (f ohg) and hg(R™ x [0,1] — R™) is defined by

1—1// —

lll ViESﬁJl

» ) ul VieSnJy
(hs(x,2))i = zi—(1=z)u) Vie i, 1 ¢S,

4
w2 e g, i ¢ S

z

100 2.3. Convex hull of a non-monotone quadratic constraint. We start by
101 proving the following lemma about convex hulls.

LEMMA 3. Let D = Dy u Ds.
Then conv(D) = conv(conv(D;) u conv(Ds))

Proof. 1. [conv(D) < conv(conv(D1) U conv(D3))]
Since Dy < conv(D;) and Ds < conv(Dsz), we have that

D = D; u Dy € conv(D1) U conv(Ds).
By taking the convex hull of both sets we obtain that
conv(D) < conv(conv(D1) U conv(Ds)).

2. [conv(conv(D1) v conv(D3)) € conv(D)]
Since D1 € D and Dy € D, we have that

conv(D1) € conv(D) and conv(D3) € conv(D),

leading to
(conv(D1) U conv(D3)) € conv(D).

conv(conv(D1) U conv(Ds)) is the smallest convex set containing the union, and since
conv(D) is a convex set containing the union, we can deduce that

conv(conv(D1) U conv(Ds)) S conv(D).

103 Now, we shall prove our main result.
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CONVEX RELAXATIONS FOR QUADRATIC ON/OFF CONSTRAINTS AND APPLICATIONS TO OTS 5
THEOREM 4. Let f(x,y) =az?+br+c—y, a>0,
Ty = {(:c,y,z) ERZxB|2=0, o <az<a™, y= O}, and

<
I ={(z,y,2) eR?xB | z=1, dh <z <z", y' <y<y", flz,y)<0}

then conv(T'g U T') =

. m—m““(l—z)+ng\/@’ N
x_xlo(l_z)-i-pz;_\/@’
{(z,y,2) e R? x [0,1] w“1+pz>_\@’ |

zaelt + (1 —2)zl <o < zx™ + (1 — 2)zvo,

y'z <y<y'z )

104 where p = % and § = p* —c.

(a) Big-M formulation (b) Convex hull formulation

Fig. 2: Tightening convex relaxations

Proof. First, we split I'; into
Iﬂ{ = {(.Z',y,Z) EF0 | —pPS TS $u1}7 and Fl = {(x7y7z) eFO | wll ST < _p}

Consider the set I'" = T'yg U T']. For z € T'], f(x,y) is isotone, and its inverse can be
taken. The inequality f(z,y) < 0 can be rewritten as:

. + 6
flx,y)=x+p— ya

<0

~

f(x,y) is isotone, thus Theorem 2 can be applied. Let us first construct the functions
zqs.
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o[S = & hyy(z,y,2) = ((x— (1- Z)w“O)/z> |

y/z

52
24y = 2f(hg(z,y,2) =2 — (1 — 2)z" + pz — W_

ﬂs—unmmw¢»—<wd,

y/z

/ 522
zq1 = zf(hi(w,y, 2)) = a4+ pz— WTz~

e[S = (2] ha(o,y.2) — <<$ (- z)wm/z) |

u

Yy

u 26
2 = 2f (ha(w,y,2)) = 2 — (1= 2)a® + pz — [ L2220

As y < y"', it is easy to see that the constraint zg> < 0 is dominated by z2qg < 0.
Therefore, the convex hull is given by:

x—x (1 — 2) + pz < 4/ 92
l +622
conv(I'™) = < (z,y,2) € R? x [0,1] T+ pz <\
—p <z <z + (1 —z)xho,
ylz <y < yz.

The convex hull of I'' = Ty U I’} can be obtained similarly:

x—mlo(l—z)—&-pzz—q/%,

[yz+622
conv(Th) = { (2,9, 2) e R? x [0,1] T+ pr > | B,

zelt + (1 - 2)zl <z < —p,

ylz <y < y'z.

105 Now we construct IV by taking a union of the two sets defined above:
106 T" = conv(I'™) U conv(I').

4822
x—x" (1 —2)+ pz <4/ L2
:Bll +pz < /yz-ﬁ;&z’z
l b +022
(z,y,2) e R? x [0,1] z—wo (1—2)+ 33 > -/ 55

2
T+ pz > —q L

zelt + (1 —2)zl <o <z + (1 — 2)zvo

ylz <y < yz

Fl
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CONVEX RELAXATIONS FOR QUADRATIC ON/OFF CONSTRAINTS AND APPLICATIONS TO OTS 7

We have that Tou Ty =T v TV by definition of these sets. From Lemma 3 we
have that conv(I'™ UT!) = conv(conv(I'™) U conv(I')) = conv(I”). It is easy to see that
IV is convex, thus conv(T" U T'!) = T".

0

Figure 2 compares the convex hull to the region defined by the big-M constraint.

3. Quadratic Outer Approximations of Trigonometric Functions. In this
section, we derive quadratic relaxations for trigonometric functions f(z), ' < = <
x*, and we consider the case (z" — x') < /2, with asymmetrical bounds. To the
best of our knowledge, this is the first quadratic relaxation of trigonometric functions
exploiting asymmetrical bounds on z.

Let Q¢ (21,22, x3) denote the equation of the quadratic function passing through
three distinct points (z1; f(21)), (2; f(22)), and (x3; f(x3)).

021 — 1)
Q (21, @2, 3) = w(m —z)(z — @) + @(x — 22) + f(2)
521631632 621

where d;; = ¢; — x; and ¢;; = f(=z;) — f(z;).
PROPOSITION 5. Given e s.t. 0 <e< % —a*, if 0 < x' <x“ < I, then
cos(x™ + €) < cos(x") — esin(x"

Proof. Consider the tangent to the function cos(x) at z = a¥. Its equation is
written f(x) = cos(x") — sin(ax™)(z — ). It lies above the cosine function since

cos(x) is concave for 0 < 2 < 7. Then for all 0 < e < § — x" we have:

cos(z" +¢€) < f(x* + €) = cos(x") — esin(z")

\
u
XM +e

N
X
x=

sin

-------- Qsin
08 / ———— linear outer approximation

05
16 off 08 0.9 1 1.1 12 13 14 1ls

Fig. 3: For the sine function, we compare a linear outer approximation to the new
quadratic relaxation defined by the points (z;sin(z!)), (x*;sin(x®)), and
(" + ¢ sin(x” + ¢€))

THEOREM 6. Given e s.t. 0 <e< g —x", if 0 < o<zt < 5, then

sin(z) < Qgin (2!, T4, % + €), Vz € [z, 2Y].

This manuscript is for review purposes only.
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8 K. BESTUZHEVA, H. HIJAZI, AND C. COFFRIN

l u u
Proof. We have 1 = ', x5 = " and 3 = =" + €.

This leads to d32 = @, + € — @, = € and 831 = (@, + €) — x; = d21 + €. Consider the
function corresponding to the difference between Qgin() and sin(),

fe(x) = Qsin(xl, wu, " + 6) — bln(aﬁ)

_ $32021 — pare
6%16 + 52162

(x — 1) (x — x2) + %(m — x2) + sin(xz) — sin(x)

21
We will first show that f.(z) is strictly decreasing at «*. Since f.(x*) = 0, this implies
that f is positive in the neighborhood below x*. We will then show that f.(z) has
a unique stationary point in the interval [z!, z%]. Since f.(x') = f.(z*) = 0, this is
sufficient to prove that f(x) is positive on the hole interval.
Let us consider the derivative of f.(x),

¢ P32021 — Poye€ P21
= P20 T P oy — 2L cos
fe() 82+ 82162 2z —xy —x2) + oo cos(x)
Now consider f.(x") = f.(x2),
’ $32021 — Pare P21
— Fe2Tel T VA o g — 21
fe(x2) 53¢ + 0mc? (2zo — 1 — x2) + S cos(xg)
_ ¢32001 — @€ P21
= et o (ze —x1) + oo cos(xa)
32021 — o€ P21
- e 1 o 021 + oo cos(xz)
32001 — P21 | P
= —F=———~ + — —cos(x
6(621 + E) 521 ( 2)
_ _Px20m  dn | én ~ cos(s)
€(021 +¢€) a1 +e o 2
¢)32521 — 6(,2521 + 6(521 + 6) <% — COS(:EQ)) ]’L(€)
- €(021 +¢) (0o + )]

where

h(e) = ¢32021 — €1 + €(a1 + €) <(§2211 — cos(m2)>

Since €(da1 + €) > 0, we have that f,(x2) < 0 < h/(¢) < 0.
Consider the derivative of h,

I (€) = 821 cos(xa + €) — a1 + (621 + 2¢) (?21 — cos(w2)>

21

= 021 (cos(za + €) — cos(xa)) + 2¢ (?2211 - cos(azg)>

Based on Proposition 5, we have that cos(zz + €) — cos(x2) < esin(xz), consequently,
/ : ¢21
I (€) < —€doy sin(xo) + 2¢ Fo cos(xs)

21
<e (2¢21 — 2cos(xy) — 91 sin(azg))
921

This manuscript is for review purposes only.
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CONVEX RELAXATIONS FOR QUADRATIC ON/OFF CONSTRAINTS AND APPLICATIONS TO OTS 9

We will next to show that
P21

2= — 2cos(x3) — d21 sin(x2) <0
921

or, equivalently,
1 .
9(021) = a1 — 821 cos(x2) — 5651 sin(x»)
1
= sin(x2) — sin(zg — d21) — 21 cos(xz) — 5531 sin(zz) <0

Consider the derivatives:

g'(821) = cos(xy — 21) — cos(xz) — b2 sin(x)

g"(821) = sin(xg — d21) — sin(z2) < 0
Since g(0) = 0, ¢’(0) = 0 and ¢”(d21) < 0, we have proved that g(d21) < 0, Vd2; =0
and thus f.(x2) < 0, Ye, 0 < € < 5 —x". Since fi(z) is a convex function and
is negative at the upper bound x%, it can have at most one root in the interval
[x!, £%]. Consequently f. has a unique stationary point in this interval. Since f.(x!) =
fe(x®) = 0, and f. is positive in the neighborhood of x¥, it is positive on the hole
interval.

|

Note that this proof can be easily adapted to the case f(x) = cos(x), = € [-7/2,0]
by translating the x axis by 7/2. It can also be adapted to cos(z), = € [0,7/2] and
sin(x), = € [-7/2,0] by inverting the sign of x.

Having a quadratic relaxation for sin(z) and cos(x) enables us to use the convex-hull
formulation of quadratic on/off constraints introduced in Section 2.

4. Optimal Transmission Switching. The Optimal Transmission Switching
(OTS) problem is an extension of the Optimal Power Flow (OPF) problem where
power lines can be switched on/off.

4.1. The Optimal Power Flow (OPF) problem. We consider a network
(N, E), where N is the set of buses (nodes) and F is the set of lines (edges) linking
pairs of nodes in both directions. Each bus has two variables: a voltage magnitude
v;, and a phase angle ;. The physical properties of the lines are described by two
constants, the susceptance b;;, and the conductance g;;. The AC power flows in the
network are defined by
Pij = 8ijV; — 8ivivj cos(by;) — bijviv;sin(fi;) V(i,j) € B

(4) . .
gij = —bijv? + bjjv;v; cos(8;;) — 8;;Vivj sin(6;;) Y(i,j) e E
where p;; and g;; represent respectively active and reactive power flowing through
line (i,7) € E, and 6;; = 6; — 0; is the voltage angle difference. Another physical
constraint in the network is Kirchhoff’s Current Law, where p! and ¢/ respectively
denote active and reactive power generation, and p! and q! are constant predefined
loads at bus i:
p! —p.= Z pij VieN

(i,4)eE
¢ —d= > q; YieN

(i,4)eE

(5)
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The operational constraints in the network are the following:

(6a) p? <p! <p? VieN
(6b) @' <¢f <¢ VieN
(6¢) vl<u <o YieN
(6d) 0, <0;; <0 V(i,j)eE
(Ge) p?j + qizj <sj; V(i,j)ekE

where sj; denotes the thermal capacity of line (i,7), 0§j and 6;; bound the phase
angle difference between connected buses, and v}, v¥ represent the lower and upper
bounds on voltage magnitude at bus i. The goal is to minimize the generation cost
for a set of generators G while satisfying the defined above network constraints:

min 3 ed(0)? + o)
s.t.(4), (5), (6)

4.2. The Optimal Transmission Switching (OTS) Problem.

4.2.1. Previous Work on Optimal Transmission Switching. By changing
the topology of a power network, congestion created by thermal limits or voltage
bounds can be reduced [26,27]. More recently, it has been observed that topology
design may lead to cost savings around 10% in locational marginal price energy mar-
kets [12,13,17,18,25]. Topology design for reducing generation costs was originally
suggested in [24] and formalized in [12], and is referred to as Optimal Transmissions
Switching. From a mathematical standpoint, the OTS problem presents a challeng-
ing non-convex Mixed-Integer NonLinear Program (MINLP). To tackle this problem,
many studies [2—4, 12,13, 16—18] approximate the non-convex power flow equations
with a linear power flow model known as the DC model. However, recent studies [9]
show that the latter does not appear to be appropriate for OTS studies as it exhibits
significant feasibility issues with respect to the original nonlinear model. Moreover,
the approximate linear formulation can either underestimate or overestimate the ben-
efits of line switching in different contexts.

4.2.2. Problem Definition. The OTS problem is an extension of the OPF
problem where line switching is permitted. For each line (4, j) a binary variable z;;
indicating the status of the line is added to the model. If a line (4, j) is disconnected
(zi; = 0), then no active and reactive power can be flowing through it. This leads to
disjunctive versions of constraints (4), (6d) and (6e):

7 Dij = gij’U? - gijvivj COS(QH) - bijvivj sin(@ij), if Zij = 1 V(Z,]) € E,

oo
— O —

qij = *bij’U? + bij’Ui’Uj COS(Gij) - gijij Sin(aij), if Zij = 1 V(Z,]) € E,
Py +ai; < s, if 2y =1 V(i,j) € E,

pzj:qzj:()v llej:() V(Z,])EE,

Oﬁj < 0 ﬁe%a if z;; =1 V(i,j) e B,

—_
o
=

~ o~ ~ —~ —~
—_
—_
~—
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where M; and M, are big-M constants guaranteeing that the variable 60;; is free
whenever z;; = 0. The standard values used for M; and M, are given below,

M, = )6, and M, = )6},
E E

4.3. Tightening the big-M constants.

PROPOSITION 7. Let E* (resp. E') denote the set of |[N| — 1 edges having the
largest upper (resp. smallest lower) bound on the phase angle difference 0;;. Then,

0; —0; <01, and 0; —0; > > 0L, V(i,j) € E.
Eu El

Proof. Due to Kirchhoff’s Voltage Law, the voltage drop around a loop is zero.
Observe that the longest loop-less path has at most |N| — 1 edges. Hence the voltage
drop 0; — 0; cannot be larger than the sum of the largest (|N|—1) 6} values. A
similar argument holds for the lower bound.

d

4.4. The Quadratic Convex (QC) Relaxation. Due to the non-convex na-
ture of trigonometric and multilinear functions, optimality guarantees can only be
provided using convex relaxations. Hijazi et al. [20] have introduced a quadratic re-
laxation that exploits the tight bounds on the phase angle and voltage magnitude
variables 6;; and v;.

Let
(13) wﬁ = v;v;5 cos(B;5)
(14) 4 = viv; sin(6y5)
(15) w; = v}
Using these auxiliary variables, equations (4) become linear:
(16) Pij = gijwi — gijw]} — bijw];
(17) ¢ij = —bijwi + bijw]; — gijw};

The QC relaxation [20] uses quadratic and polyhedral relaxations for sin(6;;)
and cos(6;;) in conjunction with McCormick envelopes for multilinear terms. The
quadratic relaxations introduced in [20] for cos(f;;) does not support asymmetrical
phase angle bounds. Furthermore the on/off version of these quadratic constraints are
formulated using weak big-M approaches. In light of the results presented in previous
sections, we are able to improve the QC relaxation using asymmetrical quadratic
relaxations and tight on/off constraints representation. As a showcase, we present
below the formulation of the on/off version corresponding to the quadratic relaxation
of sin(f;;) when 65 < 0. Similar constraints can be generated for the other cases. Let
Qif}n denote the auxiliary variable used in the quadratic relaxation corresponding to
sin(6;;), we have,

5= aqbl; + bijby + cij, sin — ),
sin(0}) < @ <sn@3). || Yol <o, < Yo,
Hﬁj <0 < Glyj, E! Ev
Zij = 1 Zij = 0

This manuscript is for review purposes only.
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Based on Theorem 4, we can write the convex hull formulation of this disjunction as

follows,
/jS.r‘z+522
013_;0%(1_Z)+ng %7
sinz 22
05 — D0 (1—2) + pz > — S0
(18) El

Q3P z+622

0 + pz = —\ — 45—,
Qiirz+622
0l + pz <\ L —,

Note that this formulation is non-differentiable at points where és;; = z;;. Nu-
merical issues arising from this irregularity can be alleviated using a linear outer
approximation of the nonlinear constraints. This results in a relaxation which is still
valid as the functions are convex.

4.5. On/Off Lifted Nonlinear Cuts. In this subsection, we use an alternate
representation of the voltage angle bounds. Specifically, given —/2 < Hfj <0} <
7/2, we define the following constants:

(19a) Bij = (03 +6.,)/2
(19Db) bij = (035 — 0};)/2
(19¢) vy =v, +v

l
(190) o o+ oy

Using the ¢, d,v? representation, now we can write the Lifted Nonlinear Cuts for the
QC-OTS model. The derivation of these cuts can be found in [11].

o7 v (]} cos(¢i;) + w); sin(gi;)) — v3 cos(i)vT
(20a) v} cos(0;;)vf w; = vl“'v;‘ cos(dl-j)('vaé v v}’) V(z,j) eFE
v7v7 (w; cos(¢i;) + wy; sin(¢i;)) — v cos(i5)vT wi—
(20Db) vt cos(8;;)viw; = 'vl'ul cos(d;; )(vlvl —vj'v}') V(i,j)e E

We use the convex hull formulation introduced in [19] to get a disjunctive version
of these cuts.

4.6. Bounds Propagation. The strength of the QC relaxation depends on the
bounds on voltage magnitudes and phase angle differences. In order to exploit this
feature we apply bound propagation to the QC-OTS model, as was first proposed
in [10] for the QC relaxation of the continuous Optimal Power Flow model.

For this purpose the traditional constraint-programming notions, such as minimal
continuous constraint networks (CCNs) and bound-consistency, are adapted in [10]
to relaxations by defining the concept of a continuous constraint relaxation network
(CCRN). Algorithms for computing minimal and bound-consistent CCRNs are intro-
duced.

In this paper we use minimal CCRNs, because they yield tighter bounds than
bound-consistent networks. In [10] the minCCRN algorithm was used to propagate
the bounds on 6;; and v; in the continuous QC model. To avoid solving many mixed-
integer programs, in the revised minCCRN algorithm we find solutions of the contin-
uous relaxations of the original programs. Bound propagation on the binary variables
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Fig. 4: The impact of variable bounds on the convex relaxations

is introduced: if the lower bound of z;; in the relaxed model is proven to be greater
than 0, then this variable can be fixed to 1.

5. Computational results.

5.1. Bound Propagation Strength and Performance. This section eval-
uates the bound propagation algorithm on 28 test cases from the NICTA Energy
Systems Test Case Archive (NESTA) - v0.5.0 [8] ranging from 3 to 300 nodes. The
models were implemented in C++ and solved using Gurobi 6.5.0 on Dell PowerEdge
1950 machines with 2x 2.00GHz Intel Quad Core Xeon E5405 CPUs and 16GB of
memory.

In our experiments, we only select instances where the original QC-OTS model
provides an optimality gap greater than 1%. The optimality gap is calculated as
the relative difference between the upper bound obtained from solving the exact AC-
OTS model and the lower bound returned by the QC relaxations of the OTS model.
Upper bounds on the solution of the non-convex AC-OTS model were computed using
Bonmin-1.8.4.

Table 1 summarizes the bound propagation results using the following metrics:
sequential runtime of the algorithm, parallel runtime, reduction in the size of § and v
domains after bound propagation (measured in percentage of the the original domain
size) and number of free lines, i.e. lines where z cannot be fixed to 1 or 0 after bound
propagation (measured in percentage of the total number of lines in the network).

5.2. Results on the QC-OTS models. This subsection discusses the results
on the QC-OTS models. The computational environment is the same as in the pre-
vious subsection. The convergence tolerance on the relative difference between upper
and lower bounds on the solutions of mixed-integer problems was set to € = 0.01, and
the time limit was set to 7200 seconds.

We present the results for the following modifications of the QC-OTS model:

e S - simple QC-OTS model without any improvements.

e BP - model with bound propagation.

e Qtrig - model with bound propagation and improved quadratic relaxations of
trigonometric functions.

The ’SQ’ suffix indicates that the convex hull formulation was used to represent
quadratic on/off constraints, while "M’ indicates the use of a big-M formulation.

Table 2 shows the runtimes in seconds. It can be seen that the new formulation
improves the runtime compared to the standard big-M approach, especially in the
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Table 1: Bound propagation results

Test Case Sequential Parallel 0 domain (%) v domain (%) Free
time(s) time(s) lines (%)
3-lmbd 0.41 0.07 41.93 100 33.33
30-ieee 99.87 2.04 16.86 94.37 90.24
118_ieee 1572.70 8.20 34.25 98.12 97.31
162_ieee_dtc 5123.70 19.15 35.01 98.08 97.54
300_ieee 13736 27.69 38.98 10.69 80.54
3-lmbd__api 0.54 0.10 7.11 59.62 33.33
6_ww__api 5.11 0.34 1.14 19.93 45.45
24 _ieee_rts__api 80.20 2.03 28.3 66.83 55.26
30-as__api 94.74 1.79 8.55 80.05 48.78
5_pjm 2.31 0.17 16.78 99.05 100.00
30_fsr__api 82.15 1.94 12.86 96.3 90.24
30-ieee__api 99.02 2.60 12.08 88.24 65.85
39_epri__api 140.45 2.78 12.66 96.21 52.17
73_ieee_rts__api 885.07 14.06 31.82 67.57 59.17
118_ieee__api 1589.64 11.38 31.6 97.38 91.94
189_edin__api 2987.68 16.08 13.46 96.01 75.24
300_ieee__api 12703 27.81 37.79 89.6 80.54
3-lmbd__sad 0.42 0.04 3.39 33.53 33.33
5_pjm__sad 1.47 0.13 17.45 45.15 33.33
24_ieee_rts__sad 47.90 1.35 64.32 92.94 68.42
29_edin__sad 255.09 5.15 95.13 98.56 97.98
30-as__sad 56.19 1.01 53.73 94.01 73.17
30-ieee__sad 77.53 1.48 38.63 90.24 82.93
73_ieee_rts__sad 537.84 5.50 69.03 94 75.83
118_ieee__sad 1289.59 6.36 72.97 97.85 94.62
162_ieee_dtc__sad 4697.00 18.50 60.7 98.07 70.39
189_edin__sad 2431.62 11.87 25.07 95.2 70.39
300_ieee__sad 10407 30.08 32.94 10.49 80.05

[ Average [[  2107.29 ]| 2.82 ] 32.66 [ 78.86 ] 70.62 ]|

case of asymmetric bounds with models BP and Qtrig where we respectively observe
8% and 14% time reduction on average.

Table 3 presents the optimality gaps. Bound propagation significantly tightens
the relaxations and thus improves the gap.

In Table 4, we compare the gaps yielded by the QC-OTS model and the MISOCP
model [21] on NESTA - v0.3.0 instances.

Finally, Table 5 compares the original QC-OTS model with the strengthened
model which includes all improvements introduced in this paper. Observe that on 10
instances out of 28, the new formulation reduces the optimality gap to less than 1%,
thus marking them as “closed”.

6. Conclusion. This work introduces an explicit formulation of one-dimensional
quadratic disjunctive constraints. The new formulation leads to tighter continuous
relaxations when compared to the standard big-M approach, all while avoiding to add
new variables into the model. This result was applied to the Quadratic Convex (QC)
relaxation of the Optimal Transmission Switching problem. Numerical experiments
showed that the new convex hull formulation leads to an improvement in solution
times. Furthermore, exploiting the new relaxations for trigonometric functions, bound
propagation helped reduce the optimality gap on all test cases, closing 10 out of 28
open instances.
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Table 2: Runtimes (s)

Test Case Qtrig-SQ Qtrig-M BP-SQ BP-M S-SQ S-M
3_Imbd 0.12 0.16 0.13 0.15 0.05 0.07
30_ieee 10.19 9.45 11.25 10.25 2.67 1.36
118_ieee 129.37 451.47 234.15 441.16 55.8 59

162_iece_dtc 285.63 438.28 308.75 496.59 243.03 254
300.ieee 7200 7200 7200 7200 7200 7200
3_1mbd__api 0.13 0.14 0.13 0.13 0.03 0.02
6_ww__api 0.58 0.59 0.58 0.61 0.15 0.14

24 _ieee_rts__api 6.35 6.18 5.49 9.82 2.58 2.84

30-as_.api 7.09 9.34 8.47 8.79 1.13 1.25
5_pjm 0.4 0.39 0.40 0.43 0.12 0.11

30_fsr__api 6.68 7.27 6.01 6.91 5.12 1.48

30_iece__api 4.07 4.79 4.04 4.60 1.33 1.37
39_epri_.api 7.96 10.53 8.60 9.44 4.48 0.03
73_ieee_rts__api 707.51 196.91 87.09 138.13 15.5 53
118_ieee__api 7200 7200 7200 7200 35.39 13.58
189_edin__api 7200 7200 7200 7200 395.41 507
300-ieee__api 1214.01 7200 568.05 || 1435.37 531.5 756
3_lmbd__sad 0.08 0.08 0.08 0.08 0.04 0.03
5_pjm__sad 0.22 0.29 0.25 0.21 0.07 0.08
24 _ieee_rts__sad 70.21 66.90 89.03 82.40 92.64 69
29_edin__sad 7200 7200 7200 7200 7200 7200
30-as_sad 11.16 11.25 14.86 12.70 6.16 13.12
30-ieee_sad 5.67 3.98 4.86 4.05 4.3 2.46
73_ieee_rts__sad 3077.75 2401.42 || 2047.03 || 2676.31 314.88 561
118_ieee_sad 7200 7200 7200 7200 7200 7200
162_iece_dtc_sad 7200 7200 || 1172.38 7200 381.96 613
189sad 251.92 450.72 382.31 298.00 437.46 1366
300-ieee__sad 7200 7200 7200 7200 7200 7200
Average [[  2007.70 [[ 2202.51 [[ 1719.79 ][ 2001.29 || 1118.99 ][ 1181.28 ||

Table 3: Optimality gaps (%)

Test Case AC-OTS cost Qtrig BP S
3_lmbd 5813 1.27 1.28 1.27
30_ieee 194 3.66 3.66 11.49
118_ieee 3690 1.14 1.36 1.39
162_ieee_dtc 4137 2.01 2.03 2.06
300-ieee 16895 2.85 2.82 2.98
3_lmbd_api 367 0.54 0.54 1.63
6_ww_api 252 0.40 0.40 6.03
24 _jeee_rts_api 6055 1.77 1.85 7.39
30-as_api 553 1.27 1.45 1.86
5_pjm 15174 1.05 1.15 1.15
30_fsr_api 205 0.98 0.98 2.15
30_ieee_api 414 0.72 0.72 0.71
39_epri-api 7359 0.49 0.73 1.66
73_ieee_rts_api 17510 0.49 0.86 1.20
118_ieee_api 6018 3.42 3.56 4.14
189_edin_api 1947 5.19 4.93 5.31
300_ieee_api 22825 0.83 0.83 1.03
3-lmbd_sad 5990 0.03 0.03 1.20
5_pjm_sad 26423 0.51 0.14 1.22
24 _ieee_rts_sad 78346 2.23 1.58 4.09
29_edin_sad 38061 18.82 18.93 18.96
30-as_sad 907 1.43 1.43 2.32
30-ieee_sad 205 0.98 1.46 4.84
73 ieee_rts_sad 226046 0.08 1.02 1.66
118_ieee_sad 3932 3.81 3.97 3.97
162_ieee_dtc_sad 4147 0.60 2.22 2.24
189_edin_sad 906 1.77 2.76 2.54
300_ieee_sad 16912 2.77 2.78 2.93

[ Average “ “ 2.18 “ 2.34 “ 3.55 ”
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Table 4: Comparing results with the MISOCP model [21]

Test Case AC-OTS cost Gap - QC-OTS (%) Gap - MISOCP (%)
3_lmbd_api 367 0.62 1.17
4_gs_api 767 0.00 0.00
5_pjm_api 2987 0.02 0.02
6_ww_api 252 0.54 1.05
9_wscc_api 656 0.00 0.00
14 _ieee_api 321 0.31 0.41
29_edin_api 295160 0.21 0.33
30-as_api 553 0.31 0.34
30_ieee_api 409 0.18 0.15
30_fsr_api 204 0.14 0.03
39_epri_api 7359 0.41 0.70
57_ieee_api 1429 0.10 0.09
118_ieee_api 6018 3.80 7.50
162_ieee_dtc_api 6018 0.36 0.60
189_edin_api 1947 3.36 5.58
300_ieee_api 22825 1.04 0.61

[ Average | T 0.73 1.16 ]

Table 5: Comparing the original QC-OTS model with the strengthened model
including all improvements.

Test Case Runtime (s) Runtime (s) Gap (%) Gap (%)
(original) (strengthened) (original) (strengthened)
3-lmbd 0.07 0.10 1.27 0.24
30_ieee 1.36 8.75 11.49 2.88
118_ieee 59 208.51 1.39 1.16
162_ieee_dtc 254 779.39 2.06 2.01
300_ieee 7200 7200 2.98 2.85
3-lmbd__api 0.02 0.12 1.63 0.42
6_ww__api 0.14 0.38 6.03 0.01
24 _jeee_rts__api 2.84 6.32 7.39 1.56
30_as__api 1.25 7.80 1.86 1.25
5_pjm 0.11 0.29 1.15 1.14
30_fsr__api 1.48 6.24 2.15 0.63
30_-ieee__api 1.37 5.56 0.71 0.36
39_epri-_api 0.03 9.19 1.66 0.42
T3_ieee_rts__api 53 94.93 1.20 0.25
118_ieee__api 13.58 7200 4.14 3.28
189_edin__api 507 7200 5.31 4.94
300_ieee__api 756 7200 1.03 0.83
3-lmbd__sad 0.03 0.12 1.20 0.00
5_pjm__sad 0.08 0.19 1.22 0.98
24 _jeee_rts__sad 69 65.63 4.09 2.21
29_edin__sad 7200 7200 18.96 18.57
30.as__sad 13.12 8.48 2.32 1.34
30_ieee__sad 2.46 5.85 4.84 1.20
73_ieee_rts__sad 561 2518.75 1.66 0.87
118_ieee__sad 7200 7200 3.97 3.81
162_ieee_dtc__sad 613 7200 2.24 2.20
189sad 1366 274.54 2.54 1.77
300_ieee__sad 7200 7200 2.93 2.77
[ Average || 1181.28 || 2205.15 | 3.55 ]| 2.18 |
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