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Abstract

Recently increasing penetration of renewable energy generation brings challenges for power

system operators to perform efficient power generation daily scheduling, due to the intermittent

nature of the renewable generation and discrete decisions of each generation unit. Among all

aspects to be considered, unit commitment polytope is fundamental and embedded in the models

at different stages of power system planning and operations. In this paper, we focus on deriving

polynomial time algorithms for the unit commitment problems with general convex cost function

and piecewise linear cost function respectively. We refine an O(T 3) time, where T represents the

number of time periods, algorithm for the deterministic unit commitment problem with general

convex cost function and accordingly develop an extended formulation in a higher dimensional

space that provides integral solutions in which the physical meanings of the decision variables

are described. Furthermore, for the case in which the cost function is piecewise linear, by

exploring the optimality conditions, we derive more efficient algorithms for both deterministic

(i.e., O(T ) time) and stochastic (i.e., O(N) time, where N represents the number of nodes in

the stochastic scenario tree) unit commitment problems. We also develop the corresponding

extended formulations for both deterministic and stochastic unit commitment problems that

provide integral solutions. Similarly, physical meanings of the decision variables are explored to

show the insights of the new modeling approach.
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1 Introduction

Unit commitment (UC) is fundamental in power system operations. It decides the unit commitment

status (online/offline) and power generation amount at each time period for each unit over a finite

discrete time horizon, with the objective of minimizing the total cost while satisfying the load

(energy demand). Each unit should satisfy associated physical restrictions, such as generation

upper/lower limits, ramp-rate limits, and minimum-up/-down time limits.

Due to its significant importance in power system operations, UC has brought broad attention

in academic and industry. In early 1960s, a dynamic programming algorithm was developed in [16]

to formulate and solve the unit commitment problem, in which the generation amount is discretized

and the algorithm itself is not polynomial. Later on, in [25], a more general dynamic programming

approximation algorithm was developed to solve the problem with multiple units. Since these

algorithms are not polynomial time, it is almost intractable. To target large size problems, other

solution approaches such as Lagrangian relaxation (see, e.g., [28, 5]), genetic algorithms (see, e.g.,

[13, 26]), and simulated annealing (see, e.g., [29, 17]), have been developed to solve the problem.

Detailed reviews of these approaches to solve the UC problem can be found in [20] and [23]. Among

these approaches, the Lagrangian relaxation approach has been broadly adopted in industry, due

to its advantages of decomposing the network constrained UC problem into a master problem and

a group of subproblems where each subproblem solves an individual UC problem.

However, the Lagrangian relaxation approach does have limitation. For instance, it cannot

guarantee to provide an optimal or even a feasible solution at the termination, in particular, when

there are transmission network constraints currently faced by most wholesale markets, operated by

Independent System Operators (ISOs), in US. On the other hand, advanced mixed-integer-linear

programming (MILP) techniques have been improved significantly during the past decades, and

meanwhile MILP in general has advantages in terms of ease of development and maintenance, ability

to specify accurate solutions, and exact modeling of complex functionality (cf. [18]). Thus, recently,

optimization algorithm developments for power system operations are switching from Lagrangian

relaxation to MILP approaches. For instance, MILP approaches have been adopted by all ISOs in

US (see, e.g., [11, 4]) and creates more than 500 million annual savings (cf. [18]). Among different

approaches MILP can contribute to the power system operations, one particularly important one

is to formulate and solve the transmission network-constrained unit commitment problem (cf. [3]).

The earliest MILP UC formulation was proposed in the 1960s as described in [10], and further

improvements have been developed until recently. For instance, in [7], an exact and computationally
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efficient MILP formulation is provided to address the single-generator self-scheduling unit commit-

ment problem in order to maximize the total profit. In [9], security-constrained UC problems are

modeled and solved through the MILP approach for large-scale power systems with multiple gen-

erators. Considering the fact of large-scale instances to be solved in practice, it is crucial to further

develop efficient approaches to speed up the branch-and-cut algorithm for MILP so as to obtain an

optimal mixed-integer solution in short time. As indicated in [11] and [27], a strong (tight) MILP

formulation plays a significant role in speeding up the solution procedure, as strong formulations

reduce the feasible region of the linear programming (LP) relaxation of the original problem and

improve the LP relaxation bounds.

There has been research progress on developing strong formulations for the unit commitment

problem by exploring its special structure. For instance, in [15], alternating up/down inequalities

are proposed to strengthen the minimum-up/-down time polytope of the unit commitment prob-

lem. In [22], the convex hull of the minimum-up/-down time polytope considering start-up costs

is provided, in which additional start-up and shut-down variables are introduced to provide the

integral formulation. Recently, new families of strong valid inequalities are proposed in [19], [6],

and [21] to tighten the ramping polytope of the unit commitment problem.

In many situations the assumption of known, deterministic data (such as load or price) is not

necessarily realistic for the UC problem. In addition, recently, renewable generation has been

increasingly penetrating into the power grid system. Due to its intermittent nature and generation

amount dependency among time periods, recently, a formulation of the stochastic version of the

deterministic UC which allows generation amount or price dependence were proposed in [12]. In this

approach, the extension of the deterministic UC was studied in which a stochastic programming

approach (see, e.g., [24]) is adopted to address uncertain problem parameters. We refer to the

resulting model as the stochastic UC problem. The advantage of utilizing stochastic UC modeling

approaches can help make decisions adaptively.

In general, both the deterministic UC and stochastic UC problems can eventually formulated

as MIPs, with general convex (typically quadratic) cost function (leading to MIQPs) or with piece-

wise linear cost function approximations (leading to MILPs). The perfect cases are to (1) derive

polynomial time algorithms to solve the problems and/or (2) discover extended formulations in

the form of linear programs that can provide integral solutions. Developing efficient polynomial

time algorithms is very important because this will help speed up the algorithm to solve each

subproblem in the Lagrangian relaxation approach and meanwhile it can help solve self-scheduling
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unit commitment problems efficiently. In addition, the derived extended formulations can also

be embedded into the network-constrained unit commitment and help solve it efficiently. For the

polynomial time algorithms, a beautiful algorithm for the deterministic UC with general convex

cost function was studied in [8] in which an O(T 3) time, where T represents the number of time

periods, algorithm is developed. In this paper, we first refine the O(T 3) time algorithm in [8] for the

deterministic UC problem with general convex cost function by reducing the computational time

to solve the problem from O(T 3) time in [8] to O(T 2) time, when economic dispatch problem has

been presolved. More importantly, our developed O(T 3) time dynamic programming algorithm can

help derive an extended formulation that provides integral solutions. Then, we study the problems

with piecewise linear cost functions, which is common in practice. For these cases, we discover the

optimality conditions for the generation amounts in optimal solution at each time period for both

the deterministic and stochastic UC problems. This key observation helps reduce the search space

significantly and thus leads to a very efficient polynomial time algorithm. Accordingly, we develop

efficient dynamic programming algorithms, different from the ones described in [16] and [25], that

takes only O(T ) time to solve the deterministic UC problem and O(N) time to solve the stochastic

one, where N represents the number of nodes in the scenario tree. Towards the extended formu-

lation of UC, a recent study was provided in [14], in which an integral formulation is provided by

using the theorem described in [1, 2]. In this paper, we provide extended formulations based on

the innovative dynamic programming algorithms we developed and furthermore physical meanings

of the decision variables in the extended formulations are elaborated. To summarize, the main

contributions of this paper can be described as follows:

(1) We refine an O(T 3) time algorithm for the deterministic UC problem with general convex

cost function, which solve the problem in O(T 2) time when the economic dispatch problem

has been presolved.

(2) When the general convex cost function is approximated by a piecewise linear function, by ex-

ploring the optimality conditions for the deterministic unit commitment with piecewise linear

cost function, we derive a more efficient polynomial time dynamic programming algorithm

that runs in O(T ) time.

(3) When uncertainty is considered, by exploring the optimality conditions for the corresponding

derived multistage stochastic unit commitment with piecewise linear cost function, we derive

an efficient polynomial time dynamic programming algorithm that runs in O(N) time.
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(4) Motivated by the dynamic programming algorithms described in (1), (2), and (3), we derive

extended formulations for both the deterministic and stochastic UCs in the high dimensional

space which can be solved as linear programs.

To the best of our knowledge, in this paper, we provide the most efficient polynomial time

algorithms to solve the deterministic UC and the first studies on the polynomial time algorithm

development and extended formulations for stochastic unit commitment problems. The remaining

part of this paper is organized as follows. In Section 2, we propose an efficient dynamic program-

ming algorithm to solve the deterministic unit commitment problem with ramping constraints and

general convex cost function. We also derive an extended formulation that can provide integral

solutions. In Section 3, we derive the optimality conditions for the deterministic unit commitment

problem with piecewise linear cost function and accordingly develop a more efficient polynomial

time dynamic programming algorithm to solve the problem. This study is extended to the case

in which uncertainty is considered and accordingly a stochastic unit commitment is formulated in

Section 4. In this section, we also explore the optimality conditions for the stochastic unit commit-

ment problem and develop an efficient polynomial time algorithm to solve the problem. Extended

formulations, which can also provide integral solutions, are provided for both the deterministic and

stochastic UC models. Finally we conclude this paper in Section 5.

2 Deterministic Unit Commitment with General Convex Cost
Function

We first introduce the notation and describe the deterministic unit commitment problem. We let

T be the number of time periods for the whole operational horizon, L (`) be the minimum-up

(-down) time limit, C (C) be the generation upper (lower) bound when the machine is online, V

be the start-up/shut-down ramp rate (which is usually between C and C, i.e., C ≤ V ≤ C), and

V be the ramp-up/-down rate in the stable generation region. In addition, we let binary decision

variable y represent the machine’s online (i.e., yt = 1) or offline (i.e., yt = 0) status, binary decision

variable u to represent whether the machine starts up (i.e., ut = 1) or not (i.e., ut = 0), and

continuous decision variable x represent the generation amount. Moreover, we define two more

continuous variables, i.e., SUt and SDt, to represent the start-up and shut-down costs respectively.

In particular, we let SUt denote the start-up cost at stage t following the start-up profile and SDt

denote the shut-down cost at stage t + 1. We let a general convex cost function f(·) denote the

fuel cost minus revenue as a function of its electricity generation amount, online/offline status, and
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electricity price. We assume that the machine has been offline for s0 time periods (s0 ≥ `) before

time 1. Therefore, the corresponding deterministic unit commitment problem can be described as

follows:

min
T∑
t=1

(
SUt + ft(xt, yt)

)
+
T−1∑
t=L

SDt (1a)

s.t.
t∑

i=t−L+1

ui ≤ yt, ∀t ∈ [L, T ]Z, (1b)

t∑
i=t−`+1

ui ≤ 1− yt−`, ∀t ∈ [`, T ]Z, (1c)

yt − yt−1 − ut ≤ 0, ∀t ∈ [1, T ]Z, (1d)

−xt + Cyt ≤ 0, ∀t ∈ [1, T ]Z, (1e)

xt − Cyt ≤ 0, ∀t ∈ [1, T ]Z, (1f)

xt − xt−1 ≤ V yt−1 + V (1− yt−1), ∀t ∈ [1, T ]Z, (1g)

xt−1 − xt ≤ V yt + V (1− yt), ∀t ∈ [1, T ]Z, (1h)

SUt ≥ SU(t+ s0 − 1)(ut −
k−1∑
s=1

ys), ∀t ∈ [1, T ]Z, (1i)

SUt ≥ SU(t− k − 1)(ut −
t−1∑

s=k+1

ys),

∀t ∈ [L+ `+ 1, T ]Z, k ∈ [L, t− `− 1]Z, (1j)

SDt ≥ SD(t− k + 1)(uk −
t∑

s=k

(1− ys)),

∀t ∈ [L, T − 1]Z, k ∈ [1, t− L+ 1]Z, (1k)

yt, ut ∈ {0, 1}, SUt, SDt ≥ 0, x0 = y0 = 0; (1l)

where constraints (1b) and (1c) describe the minimum-up and minimum-down time limits, respec-

tively (if the machine starts up at time t − L + 1, i.e., the machine is online at time t − L + 1, it

should stay online in the following L consecutive time periods until time t; if the machine shuts

down at time t − ` + 1, i.e., the machine is offline at time t − ` + 1 and online at time t − `, it

should stay offline in the following ` consecutive time periods until time t), constraints (1d) describe

the logical relationship between y and u, constraints (1e) and (1f) describe the generation lower

and upper bounds, and constraints (1g) and (1h) describe the generation ramp-up and ramp-down

rate limits. Constraints (1i) describe the start-up cost if the machine starts up for the first time,

where SU(·) is a start-up cost function whose variable is the offline time length before starting
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up. Constraints (1j) describe the start-up cost when the machine starts up some time later after a

shut-down. Constraints (1k) describe the shut-down cost, where SD(·) is a shut-down cost function

whose variable is the online time length before shutting down. Typically SD(·) is a constant func-

tion. In the above formulation, the objective is to minimize the total cost minus the revenue. For

notation convenience, we define [a, b]Z with a < b as the set of integer numbers between integers a

and b, i.e., {a, a+ 1, · · · , b}.

2.1 A Refined O(T 3) Time Dynamic Programming Algorithm

The polynomial time algorithm for the unit commitment problem with general convex cost function

was first developed in [8], where an O(T 3) time dynamic programming algorithm is proposed.

This nice algorithm keeps tracking the “on” periods for the machine and use backward dynamic

programming to solve the problem. In this algorithm, each state space (h, k) for h, k ∈ [1, T ]Z, k ≥

h + τ+ − 1, where τ+ denotes the minimum-up time limit, represents the machine is on during

the period [h, k]Z, i.e., the machine is turned on at time h and turned off at time k + 1. Then the

Bellman equation can be written as follows:

V
(
(h, k)

)
= EDhk + min

r≥k+τ−+1
{Ckr + V

(
(r, q)

)
, 0},

for all possible (h, k), (r, q) in the state space. In this equation, EDhk represents the optimal value

of economic dispatch problem for state (h, k), τ− denotes the minimum-down time limit and Ckr

corresponds to the start-up cost when the machine shuts down at time k+ 1 and starts up at time

r. We call this “part II” of the algorithm. An efficient shortest path algorithm was developed in

[8] to solve this “part II” in O(T 3). To speed up the algorithm, the economic dispatch problem for

all possible “on” intervals can be precalculated. We call this “part I” of this algorithm. In [8], an

intelligent algorithm was developed to solve “part I” problem in O(T 3) time as well.

As compared to [8], we propose a more efficient polynomial-time dynamic programming al-

gorithm for “part II”. We first define the optimal value function and then develop the Bellman

equations accordingly. The key difference as compared to [8] is that we use different state spaces

and double value functions corresponding to each time period t. For instance, we let V↑(t) represent

the cost from time t to the end when the machine starts up at time t and V↓(t) represent the cost

from time t to the end when the machine shuts down at time t + 1 (i.e., t is the last “on” period

for the current “on” interval). Thus, we have the following dynamic programming equations:

V↑(t) = min
k∈[min{t+L−1,T−1},T−1]Z

{
SD(k − t+ 1) + C(t, k) + V↓(k), C(t, T ) + V↓(T )

}
,
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∀t ∈ [1, T ]Z, (2a)

V↓(t) = min
k∈[t+L+1,T ]Z

{
SU(k − t− 1) + V↑(k), 0

}
, ∀t ∈ [L, T − `− 1]Z, (2b)

V↓(t) = 0, ∀t ∈ [T − `, T ]Z, (2c)

where C(t, k) represents the optimal generation cost (i.e., the objective value of economic dispatch

problem) if the machine starts up at time t and shuts down at time k + 1 (i.e., online at k).

Equations (2a) indicates that when the machine starts up at time t, it can keep online until time k

when k − t+ 1 ≥ L. Equations (2b) indicates that when the machine shuts down at time t, it can

keep offline to the end or starts up again when minimum-down time limit is satisfied. Following the

start-up (resp. shut-down) profile, our start-up (resp. shut-down) function can capture the length

of offline (resp. online) time before starting up (resp. shutting down). Equations (2c) describe that

the machine cannot start up again due to minimum-down time limit.

As we consider the unit commitment problem from time period 1 to T and assume the machine

is kept offline for s0 time periods, our goal is to find out the value of the following function:

z = V↓(−s0) := min
t∈[1,T ]Z

{
SU(s0 + t− 1) + V↑(t), 0

}
. (3)

In order to obtain the optimal objective value and corresponding optimal solution, we calculate

V↑(t) and V↓(t) for all t and record the optimal candidate for them. To calculate the value of

each optimal value function in Bellman equations (2a) – (2c) when t is given with t ≤ T , we

search among the candidate solution for each k ≤ T , which takes O(T ) time. Thus, the total

time to calculate V↓(−s0) is O(T 2) for “part II”. The optimal solution for UC can be obtained

by tracing the optimal candidate for the optimal value function starting from V↓(−s0), and this

takes O(T ) time in total. In summary, our backward induction dynamic programming algorithm

for the deterministic unit commitment problem takes O(T 2) time for “part II” (i.e., if all C(t, k)

are presolved). Our algorithm refines the algorithm in [8]. More importantly, our algorithm is very

beautiful to derive a better reformulation in the following section.

2.2 Linear Program Reformulation for Dynamic Programming

In this section, we reformulate the dynamic program in Section 2.1 into a linear program and

derive its dual formulation to approach the final extended formulation. By incorporating the

dynamic equations (i.e., (2a) - (2c) and (3)) as constraints, we obtain the following equivalent

linear program:

max z (4a)
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s.t. z ≤ SU(s0 + t− 1) + V↑(t), ∀t ∈ [1, T ]Z, (4b)

V↑(t) ≤ SD(k − t+ 1) + C(t, k) + V↓(k),

∀k ∈ [min{t+ L− 1, T − 1}, T − 1]Z, ∀t ∈ [1, T ]Z, (4c)

V↑(t) ≤ C(t, T ) + V↓(T ), ∀t ∈ [1, T ]Z, (4d)

V↓(t) ≤ SU(k − t− 1) + V↑(k), ∀k ∈ [t+ `+ 1, T ]Z,∀t ∈ [L, T − `− 1]Z, (4e)

V↓(t) = 0, ∀t ∈ [T − `, T ]Z, (4f)

z ≤ 0, V↓(t) ≤ 0, ∀t ∈ [L, T − `− 1]Z. (4g)

Note here that the optimal value functions in the dynamic program become decision variables in

the above formulation and to obtain the value V↓(−s0) under the dynamic programming framework

it is equivalent to maximize the variable z in the linear program.

Since the above linear program cannot be solved directly as C(t, k) (the objective value of

economic dispatch problem) are unknown, we first show how to obtain the value of C(t, k) by

discussing two cases, i.e., the cases k ≤ T − 1 and k = T .

When k ≤ T − 1, we have the following formulation to calculate C(t, k) with (t, k) given:

C(t, k) = min

k∑
s=t

φs (5a)

s.t. −xs ≤ −C, ∀s ∈ [t, k]Z, (5b)

xs ≤ C, ∀s ∈ [t, k]Z, (5c)

xt ≤ V , (5d)

xk ≤ V , (5e)

xs − xs−1 ≤ V, ∀s ∈ [t+ 1, k]Z, (5f)

xs−1 − xs ≤ V, ∀s ∈ [t+ 1, k]Z, (5g)

φs ≥ ajxs + bj , ∀s ∈ [t, k]Z, j ∈ [1, N ]Z. (5h)

When k = T , we have the corresponding formulation by removing constraint (5e) as the machine is

not required to shut down at time T + 1 if it stays online until time T . Note here that we assume

the generation cost function to be piecewise linear at this moment in order to reformulate model

4, but we return it back to be the general convex function in the final extended formulation.

Next, to incorporate the economic dispatch constraints (e.g., (5b) - (5h)) into our proposed linear

program (4), we take the dual of the economic dispatch model and embed its dual formulation into
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model 4. For instance, for k ≤ T − 1 we have the dual formulation as follows.

C(t, k) = max

k∑
s=t

(λ+s C − λ−s C) + V (µt + µk) +

k∑
s=t+1

V (σ+s + σ−s ) +
k∑
s=t

N∑
j=1

bjδsj (6a)

s.t. λ+t − λ
−
t + µt − σ−t+1 + σ+t+1 −

N∑
j=1

ajδtj = 0, (6b)

λ+k − λ
−
k + µk + σ−k − σ

+
k −

N∑
j=1

ajδkj = 0, (6c)

λ+s − λ−s + σ−s − σ−s+1 − σ
+
s + σ+s+1 −

N∑
j=1

ajδsj = 0,

∀s ∈ [t+ 1, k − 1]Z, (6d)
N∑
j=1

δsj = 1, ∀s ∈ [t, k]Z, (6e)

λ±s ≤ 0,∀s ∈ [t, k]Z, µt ≤ 0, σ±s ≤ 0, ∀s ∈ [t+ 1, k]Z,

δsj ≥ 0, ∀j ∈ [1, N ]Z, s ∈ [t, k]Z, (6f)

where λ+s and λ−s are dual variables corresponding to constraints (5b) and (5c), µt and µk are the

dual variables corresponding to constraint (5d) and (5e), σ+s and σ−s are dual variables corresponding

to constraints (5f) and (5g), and δsj are dual variables corresponding to constraints (5h). For k = T ,

we obtain the corresponding dual formulation by removing the dual variable µk from model (6).

Now we obtain an integrated linear program, as shown in the following, by plugging the dual

formulation of economic dispatch problem and redefine C(t, k) to be a decision variable in the

following model.

max z (7a)

s.t. (4b)− (4g), (7b)

C(t, k) ≤
k∑
s=t

(λ+s C − λ−s C) + V (µt + µk) +

k∑
s=t+1

V (σ+s + σ−s ) +

k∑
s=t

N∑
j=1

bjδsj ,

∀k ∈ [min{t+ L− 1, T − 1}, T − 1]Z,∀t ∈ [1, T ]Z, (7c)

C(t, T ) ≤
T∑
s=t

(λ+s C − λ−s C) + V µt +
T∑

s=t+1

V (σ+s + σ−s ) +

T∑
s=t

N∑
j=1

bjδsj ,

∀t ∈ [1, T ]Z, (7d)

(6b)− (6f), ∀k ∈ [min{t+ L− 1, T}, T ]Z,∀t ∈ [1, T ]Z. (7e)

Note here that the right-hand-side of constraints (7c) and (7d) correspond to the objective function

in (6a).
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In the following, we try to obtain the extended formulation of the original MIP model (1).

Before that, we take the dual of the above linear program (7) and obtain the following dual linear

program:

min
T∑
t=1

SU(s0 + t− 1)αt +
T∑
t=1

T−1∑
k=t+L−1

SD(k − t+ 1)βtk +

T−`−1∑
t=L

T∑
k=t+`+1

SU(k − t− 1)γtk +
∑
tk∈T K

k∑
s=t

wstk (8a)

s.t.

T∑
t=1

αt ≤ 1, (8b)

−αt +

T∑
k=t+L−1

βtk = 0, ∀t ∈ [1, L+ `]Z, (8c)

−αt +
T∑

k=t+L−1
βtk −

t−`−1∑
k=L

γkt = 0, ∀t ∈ [L+ `+ 1, T ]Z, (8d)

−
t−L+1∑
k=1

βkt +

T∑
k=t+`+1

γtk ≤ 0, ∀t ∈ [L, T − `− 1]Z, (8e)

θt −
t−L+1∑
k=1

βkt = 0, ∀t ∈ [T − `, T ]Z, (8f)

ptk − βtk = 0, ∀tk ∈ T K, (8g)

qstk ≤ Cptk, ∀s ∈ [t, k]Z, ∀tk ∈ T K, (8h)

−qstk ≤ −Cptk, ∀s ∈ [t, k]Z,∀tk ∈ T K, (8i)

qttk ≤ V ptk, ∀tk ∈ T K, (8j)

qktk ≤ V ptk, ∀tk ∈ T K, k ≤ T − 1 (8k)

qs−1tk − q
s
tk ≤ V ptk, ∀s ∈ [t+ 1, k]Z, ∀tk ∈ T K, (8l)

qstk − qs−1tk ≤ V ptk, ∀s ∈ [t+ 1, k]Z, ∀tk ∈ T K, (8m)

wstk − ajqstk ≥ bjptk, ∀s ∈ [t, k]Z, j ∈ [1, N ]Z,∀tk ∈ T K, (8n)

α, β, γ, p ≥ 0, (8o)

where T K represents the set of all possible combination of t ∈ [1, T ]Z, k ∈ [min{t+ L− 1, T}, T ]Z.

In the above dual formulation, dual variables α, β, γ, θ correspond to constraints (4b) – (4f) respec-

tively, and dual variables p, q, w correspond to constraints (7c) – (7e) for each tk ∈ T K respectively.

Note here that we can remove constraints (8n) by letting N →∞ and consider wstk as a general

convex cost function of qstk and βtk. In the following, we will remove constraints (8n) and consider
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wstk as a general convex cost function.

After replacing p with β (due to (8g)) in the dual formulation (8), we obtain the following

simplified model:

min

T∑
t=1

SU(s0 + t− 1)αt +

T∑
t=1

T−1∑
k=t+L−1

SD(k − t+ 1)βtk +

T−`−1∑
t=L

T∑
k=t+`+1

SU(k − t− 1)γtk +
∑
tk∈T K

k∑
s=t

wstk (9a)

s.t.
T∑
t=1

αt ≤ 1, (9b)

−αt +

T∑
k=t+L−1

βtk −
t−`−1∑
k=L

γkt = 0, ∀t ∈ [1, T ]Z, (9c)

−
t−L+1∑
k=1

βkt +

T∑
k=t+`+1

γtk ≤ 0, ∀t ∈ [L, T − `− 1]Z, (9d)

θt −
t−L+1∑
k=1

βkt = 0, ∀t ∈ [T − `, T ]Z, (9e)

Cβtk ≤ qstk ≤ Cβtk, ∀s ∈ [t, k]Z,∀tk ∈ T K, (9f)

qttk ≤ V βtk, ∀tk ∈ T K, (9g)

qktk ≤ V βtk, ∀tk ∈ T K, k ≤ T − 1 (9h)

qs−1tk − q
s
tk ≤ V βtk, ∀s ∈ [t+ 1, k]Z,∀tk ∈ T K, (9i)

qstk − qs−1tk ≤ V βtk, ∀s ∈ [t+ 1, k]Z,∀tk ∈ T K, (9j)

α, β, γ ≥ 0. (9k)

In the next section, we will prove that an extended formulation for MIP model (1) can be derived

based on linear program reformulation (9).

2.3 Extended Formulation for Deterministic Unit Commitment with General
Convex Cost Function

We first show that the polytope (9b) – (9k) is an integral polytope in the following lemma.

Lemma 1 The extreme points of the polytope (9b) – (9k) are binary with respect to decision vari-

ables α, β, γ, θ.

Proof: To prove Lemma 1, we assume a linear objective function so that the optimal solution lies

in the extreme point set. Thus, we make the following assumption without modifying the polytope

(9b) – (9k).

11



• wstk = astkq
s
tk + bstkβtk, where astk and bstk are pre-specified parameters;

• V↓(t) = Et, ∀t ∈ [T − `, T ]Z, where Et is a pre-specified cost.

Based on the above assumptions, here we consider the objective function as

min
T∑
t=1

SU(s0 + t− 1)αt +
T∑
t=1

T−1∑
k=t+L−1

SD(k − t+ 1)βtk +
T−`−1∑
t=L

T∑
k=t+`+1

SU(k − t− 1)γtk

+
T∑

t=T−`
Etθt +

∑
tk∈T K

k∑
s=t

astkq
s
tk + bstkβtk (10)

For notation brevity, we denote (10) as min cT (α, β, γ, θ, q) where c is the column vector including

all coefficients in (10). Now we prove that for any value of c, we can provide an optimal solution

that is integral with respect to α, β, γ, θ to the linear program with (10) as the objective function

and (9b) – (9k) as constraints, which means that Lemma 1 holds.

Considering the assumptions we make, we can obtain an optimal solution with the dynamic

programming algorithm (2) – (3). Under this optimal solution, we let α∗t = 1 if the machine starts

up for the first time at time t; otherwise, we let α∗t = 0. β∗tk = 1 if the machine starts up at time t

and shuts down at time k+ 1; otherwise, we let β∗tk = 0. γ∗tk = 1 if the machine shuts down at time

t+ 1 and starts up at time k; otherwise, we let γ∗tk = 0. θ∗t = 1 if the machine shuts down at time

t+ 1 and stays offline to the end; otherwise, we let θ∗tk = 0. We also let qs∗tk for each s ∈ [t, k]Z take

the value of optimal generation output if the machine starts up at time t and shuts down at time

k + 1; otherwise, qs∗tk = 0. Now we claim our constructed (α∗, β∗, γ∗, θ∗, q∗) is an optimal solution

to the linear program with (10) as the objective function and (9b) – (9k) as constraints.

We first verify the feasibility. Since at most one α∗t = 1, constraint (9b) is satisfied. For each t

in constraints (9c), if all β∗tk = 0, by definition, α∗t = 0 and all γ∗kt = 0. When one β∗tk = 1, then if

the machine starts up at time t for the first time, α∗t = 1 and all γ∗kt = 0; otherwise, α∗t = 0 and

there exists exactly one γ∗kt = 1. For all these cases, constraints (9c) are satisfied. For each t in

constraints (9d), if one β∗kt = 1, then it may start up again after shutting down at time t + 1 and

the minimum-down time limit should be satisfied, which indicates
∑T

k=t+`+1 γtk = 1; moreover, the

machine may stay offline after shutting down at t + 1, which indicates
∑T

k=t+`+1 γtk = 0. If all

β∗kt = 0, then all γtk should be 0. Thus, constraints (9d) are satisfied. For each t in constraints (9e),

if one β∗kt = 1, due to the minimum-down time limit, the machine cannot start up again after then,

so θt should be 1. If all β∗kt = 0, θt should be 0. So constraints (9e) are satisfied. For constraints

(9f) – (9j), they are immediately satisfied by the construction of our solution and the definition of

the economic dispatch problem. Also, (9k) is satisfied obviously.
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We then verify the optimality. We claim that the objective function (10) under the constructed

solution equals to the objective value of the dynamic programming algorithm (2) – (3) as follows.

T∑
t=1

SU(s0 + t− 1)α∗t +

T∑
t=1

T−1∑
k=t+L−1

SD(k − t+ 1)β∗tk +

T−`−1∑
t=L

T∑
k=t+`+1

SU(k − t− 1)γ∗tk

+
T∑

t=T−`
Etθ

∗
t +

∑
tk∈T K

k∑
s=t

(astkq
s∗
tk + bstkβ

∗
tk)

= SU(s0 + t1 − 1) +
∑

tk:β∗
tk=1,k≤T−1

SD(k − t+ 1) +
∑

tk:γ∗tk=1

SU(k − t− 1) + Et2

+
∑

tk:β∗
tk=1

k∑
s=t

astkq
s∗
tk + bstk (11a)

= SU(s0 + t1 − 1) +
∑

tk:β∗
tk=1,k≤T−1

SD(k − t+ 1) +
∑

tk:γ∗tk=1

SU(k − t− 1) + Et2

+
∑

tk:β∗
tk=1

C(t, k) (11b)

= V↓(−s0), (11c)

where t1 and t2 in (11a) represent α∗t1 = 0 and θ∗t2 = 0 respectively, (11b) is based on our assumption

at the beginning of the proof, and (11c) is based on the construction of our solution. By the Strong

Duality Theorem, the constructed solution (α∗, β∗, γ∗, θ∗, q∗) is an optimal solution for model (9).

From the above analysis, we notice that (α∗, β∗, γ∗, θ∗, q∗) is binary with respect to α, β, γ, θ

and optimal for the dual program for all possible cost coefficient c. Thus, we have proved our claim.

From Lemma 1, we can further observe that this formulation itself has specific physical mean-

ings. In particular, we notice that the optimal solution α∗t in the dual program represents whether

in stage t the machine starts up for the first time or not. If yes, then α∗t = 1; otherwise, α∗t = 0.

Similarly, if the machine starts up from stage t and shuts down at stage k + 1, β∗tk = 1; otherwise,

β∗tk = 0. If the machine shuts down at stage t+1 and starts up again at stage k, γ∗tk = 1; otherwise,

γ∗tk = 0. If the machine shuts down at stage t + 1 and stays offline to the end, θ∗t = 1; otherwise,

θ∗t = 0. That is, the lemma provides insight to formulate the problem in a different way. In the

following, we present the detailed extended formulation for the problem in this way and justify

the correctness of the model. Before that, we have the following Corollary holds, which shows the

property of the optimal solution of model (9).

Corollary 1 The optimal solution of model (9) are binary with respect to decision variables α, β, γ, θ.
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Proof: The detailed proof is omitted here since we can follow the same proof in Lemma 1 to

construct a solution for the dual program (9) and show its feasibility and optimality.

Proposition 1 If (α∗, β∗, γ∗, θ∗, q∗) is an optimal solution to dual program (9), then

x∗s =
∑

tk∈T K,t≤s≤k
qs∗tk , y

∗
s =

∑
tk∈T K,t≤s≤k

β∗tk, u
∗
s =

∑
tk∈T K,k=s

γ∗tk, ∀s ∈ [1, T ]Z (12)

is an optimal solution to the deterministic UC problem (1).

Proof: From Corollary 1 and constraints (9f) – (9j), we can easily conclude that y∗ and u∗ are

binary and x∗, y∗, u∗ satisfy constraints (1b) – (1h). That is, x∗, y∗, u∗ are feasible to the unit

commitment problem. Meanwhile, through plugging x∗, y∗, u∗ into (1a), we can observe that

T∑
t=1

(
SUt + ft(x

∗
t , y
∗
t )
)

+
T−1∑
t=L

SDt

=
T∑
t=1

SU(s0 + t− 1)α∗t +
∑

tk:β∗
tk=1,k≤T−1

SD(k − t+ 1)

+
T−`−1∑
t=L

T∑
k=t+`+1

SU(k − t− 1)γ∗tk +
∑
tk∈T K

k∑
s=t

ws∗tk (13)

Thus, x∗, y∗, u∗ are optimal to the unit commitment problem.

Now we are ready to establish the extended formulations for deterministic unit commitment prob-

lem. We replace the constraints (1b) – (1l) with constraints (9b) – (9k) and add equations (12) to

represent the relation between original decisions and the dual decision variables.

Theorem 1 The extended formulation of the deterministic unit commitment problem can be writ-

ten as follows:

min
T∑
t=1

(
SUt + ft(xt, yt)

)
+
T−1∑
t=L

SDt (14a)

s.t. xs =
∑

tk∈T K,t≤s≤k
qstk, ys =

∑
tk∈T K,t≤s≤k

βtk,

us =
∑

tk∈T K,k=s
γtk, ∀s ∈ [1, T ]Z, (14b)

(1i)− (1k), (14c)

(9b)− (9k), (14d)

and if (x∗, y∗, u∗, α∗, β∗, γ∗, θ∗, q∗) is an optimal solution to the extended formulation, then (x∗, y∗, u∗)

is an optimal solution to the deterministic UC problem (1).
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Proof: The conclusion holds immediately by replacing (x∗, y∗, u∗) in the objective function and

constraints (14c) with the expressions in (12) and following the proof described in Proposition 1

and the conclusion described in Corollary 1.

Remark 1 From the reformulation described above, we can observe that our extended formulation

not only provides integral optimal solution to UC problem (1), but also is an integral formulation

with respect to variables y, u, α, β, γ, θ due to Lemma 1.

3 Deterministic Unit Commitment with Piecewise Linear Cost
Function

In practice, the general convex cost function is usually approximated by a piecewise linear func-

tion. In this section, we propose a more efficient dynamic programming algorithm for this type of

problems. To explore the property more conveniently, we consider simplified start-up/shut-down

cost first. That is, we consider objective function in the following way.

min
∑T

t=1 Uut + U(yt−1 − yt + ut) + ft(xt, yt). (15)

Thus, here we have constraints (1b) - (1h) plus (1l) and decision variables x, y, u. We first explore

the optimality condition of this problem and develop a new algorithm to solve the deterministic

UC problem. In addition, extended formulation in a higher dimensional space is derived from our

proposed algorithm.

3.1 An Optimality Condition

We denote D = {(x, y, u) ∈ RT × B2T : (1b) − (1h)}, α1 = max{n ∈ [1, T ]Z : C + nV ≤ C},

α2 = max{n ∈ [1, T ]Z : V +nV ≤ C}, and Q = {0, (C+nV )α1
n=0, (V +nV )α2

n=0, (C−nV )α1
n=0}. Note

here that α2 ≤ α1 ≤ T because V ≥ C. We let conv(D) represent the convex hull description of D.

Proposition 2 For any extreme point (x̄, ȳ, ū) of conv(D), x̄t ∈ Q for all t ∈ [1, T ]Z.

Proof: By contradiction. Suppose that there exists some t ∈ [1, T ]Z such that x̄t /∈ Q for an

extreme point (x̄, ȳ, ū) of conv(D), i.e., x̄t ∈ (C,C) \ Q. In the following we construct two feasible

points of conv(D) to represent (x̄, ȳ, ū) in a convex combination of these two points, leading to the

contradiction. If t ≥ 2 and |x̄t − x̄t−1| = V , we let s1 ≤ t − 1 be the smallest index such that

|x̄s1+1 − x̄s1 | = |x̄s1+2 − x̄s1+1| = · · · = |x̄t − x̄t−1| = V ; otherwise, we let s1 = t. If t ≤ T − 1 and

|x̄t+1 − x̄t| = V , we let s2 ≥ t+ 1 be the largest index such that |x̄t+1 − x̄t| = |x̄t+2 − x̄t+1| = · · · =
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|x̄s2 − x̄s2−1| = V ; otherwise, we let s2 = t. We construct two points (x̄1, ȳ, ū) and (x̄2, ȳ, ū) such

that x̄1r = x̄r + ε for r ∈ [s1, s2]Z, x̄2r = x̄r − ε for r ∈ [s1, s2]Z, and x̄1r = x̄2r = x̄r for r /∈ [s1, s2]Z,

where ε is an arbitrarily small positive number.

Now we show these two points constructed are feasible for conv(D) by considering the following

three possible cases.

(1) If x̄s1−1 = 0, then we have C < x̄s1 < V . Otherwise, 1) If x̄s1 = C, it follows that x̄t = C + kV

for some k ∈ [0, t − s1]Z due to |x̄s1+1 − x̄s1 | = |x̄s1+2 − x̄s1+1| = · · · = |x̄t − x̄t−1| = V . Since

x̄t /∈ Q, it further follows that k ≥ α1 + 1 = min{T, b(C−C)/V c}+ 1, which contradicts to the

fact that k ≤ T and x̄t < C. 2) If x̄s1 = V , it follows that x̄t = V +kV for some k ∈ [0, t− s1]Z
due to |x̄s1+1 − x̄s1 | = |x̄s1+2 − x̄s1+1| = · · · = |x̄t − x̄t−1| = V . Since x̄t /∈ Q, it further follows

that k ≥ α2 + 1 = min{T, b(C − V )/V c} + 1, which contradicts to the fact that k ≤ T and

x̄t < C. Similarly, if x̄s2+1 = 0, then we have C < x̄s2 < V . Therefore, in either case, it is

feasible to increase or decrease x̄s1 and x̄s2 by ε.

(2) If x̄s1−1 > 0, then we have C < x̄s1 < C. Otherwise, 1) If x̄s1 = C, we can similarly show the

contradiction as above. 2) If x̄s1 = C, it follows that x̄t = C − kV for some k ∈ [0, t − s1]Z
due to |x̄s1+1 − x̄s1 | = |x̄s1+2 − x̄s1+1| = · · · = |x̄t − x̄t−1| = V . Since x̄t /∈ Q, it further follows

that k ≥ α1 + 1 = min{T, b(C − C)/V c} + 1, which contradicts to the fact that k ≤ T and

x̄t > C. Similarly, if x̄s2+1 > 0, then we have C < x̄s2 < C. Therefore, in either case, it is

feasible to increase or decrease x̄s1 and x̄s2 by ε since |x̄s1 − x̄s1−1| < V and |x̄s2+1 − x̄s2 | < V

by definition.

(3) If s1 − 1, s2 + 1 /∈ [1, T ]Z, i.e., s1 = 1 or s2 = T , then similarly we can follow the arguments

above to show that C < x̄s1 < C and C < x̄s2 < C. It follows that it is feasible to increase or

decrease x̄s1 and x̄s2 by ε.

In summary, we show that in all cases it is feasible to increase or decrease x̄s1 and x̄s2 by ε and

thus feasible to increase or decrease x̄r by ε for all r ∈ [s1, s2]Z. It follows that both (x̄1, ȳ, ū) and

(x̄2, ȳ, ū) are feasible points of conv(D), and (x̄, ȳ, ū) = 1
2(x̄1, ȳ, ū) + 1

2(x̄2, ȳ, ū). Therefore, (x̄, ȳ, ū)

is not an extreme point of conv(D), which is a contradiction.

Now, we begin to characterize the optimality condition for Problem (15). Generally ft(xt, yt) =

ax2t + bxt + cyt− qtxt, where (a, b, c) is determined by the generator physics, and it is often approx-

imated by a K−piece piecewise linear function ϕt = ft(xt, yt) ≥ µtkxt + νkyt,∀1 ≤ k ≤ K so that
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the unit commitment problem can be formulated as a mixed-integer linear programming model,

where µtk = 2ax̃k + b− qt and νk = c− ax̃k with x̃k being the x−value corresponding to the k−th

supporting node on the curve of ft(xt, yt) at each time period t and x̃1 = C, x̃K = C. Therefore

Model (15) can be reformulated as

min

T∑
t=1

Uut + U(yt−1 − yt + ut) + ϕt

s.t. (x, y, u) ∈ D.

ϕt ≥ µtkxt + νkyt,∀k ∈ [1,K]Z, ∀t ∈ [1, T ]Z. (16)

Note here that the cost function ϕt is a linear function if there is only one piece, i.e., K = 1. It

is easy to observe that any two adjacent pieces at each time period t, e.g., ϕt ≥ µtkxt + νkyt and

ϕt ≥ µtk+1xt+νk+1yt, intersect at Ak = (x̃k+x̃k+1)/2. Therefore, we can obtain K−1 turning points

with x−value Ak, ∀k ∈ [1,K − 1]Z on the K−piece piecewise linear function for each time period.

We denote χk = {n ∈ [1, T ]Z : C ≤ Ak+nV ≤ C} and Qd = Q∪{(Ak+nV )n∈χk
, ∀k ∈ [1,K−1]Z}.

Proposition 3 Problem (15) has at least one optimal solution (x̄, ȳ, ū) with x̄t ∈ Qd for all t ∈

[1, T ]Z.

Proof: By contradiction. Suppose that there exists some t ∈ [1, T ]Z such that x̄t /∈ Qd for

the optimal solution (x̄, ȳ, ū) of Problem (15), i.e., x̄t ∈ (C,C) \ Qd, with the optimal value z̄ =∑T
t=1 Uūt + U(ȳt−1 − ȳt + ūt) + ϕ̄t. In the following we construct a feasible solution to obtain a

better objective value. If t ≥ 2 and |x̄t− x̄t−1| = V , we let s1 ≤ t−1 be the smallest index such that

|x̄s1+1 − x̄s1 | = |x̄s1+2 − x̄s1+1| = · · · = |x̄t − x̄t−1| = V ; otherwise, we let s1 = t. If t ≤ T − 1 and

|x̄t+1 − x̄t| = V , we let s2 ≥ t+ 1 be the largest index such that |x̄t+1 − x̄t| = |x̄t+2 − x̄t+1| = · · · =

|x̄s2 − x̄s2−1| = V ; otherwise, we let s2 = t. Following the proof in Proposition 2, we can always

construct two feasible points of D, (x̄1, ȳ, ū) and (x̄2, ȳ, ū), such that x̄1r = x̄r + ε for r ∈ [s1, s2]Z,

x̄2r = x̄r − ε for r ∈ [s1, s2]Z, and x̄1r = x̄2r = x̄r for r /∈ [s1, s2]Z, where ε is an arbitrarily small

positive number.

Now we show one of (x̄1, ȳ, ū) and (x̄2, ȳ, ū) produces a better objective value and is also feasible

for constraints (16). It is easy to observe that for each time period s, if x̄s > 0, then at most two

adjacent pieces of linear functions of constraints (16) are tight; otherwise, it leads to x̄s = 0. Since

x̄t /∈ Qd, there is at most one piece of linear function of constraints (16), e.g., piece kr, is tight

for each time period r ∈ [s1, s2]Z, as two adjacent pieces (e.g., pieces k and k + 1) intersect at

Ak, which belongs to Qd. Note that if there exist two adjacent pieces (e.g., pieces k and k + 1)
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intersecting at Ak for some time period r ∈ [s1, s2]Z, then x̄r = Ak and it follows that x̄t = Ak+sV

for some s ∈ [−|s − r|, |s − r|]Z by definition, which contradicts the fact that x̄t /∈ Qd and s ≤ T .

Therefore, we can increase or decrease x̄r by ε for r ∈ [s1, s2]Z to decrease the optimal value by

at least |
∑s2

r=s1
µrkr |ε and the resulting solution, (x̄1, ȳ, ū) or (x̄2, ȳ, ū), is feasible for both D and

constraints (16), which is a contradiction.

In other words, in order to find an optimal solution to the UC problem (1), we only need to

consider the feasible solutions (x, y, u) where xt ∈ Qd for all t ∈ [1, T ]Z.

3.2 An O(T ) Time Dynamic Programming Algorithm

As Qd is a finite set and the cardinality of Qd, denoted as ℵd, does not depend on the total time

period T , rather than solve the original MILP model (15), we can explore a backward induction

dynamic programming framework by defining the corresponding states and decisions for each stage

t. We first define the state space for the dynamic programming algorithm and then describe the

state-decision relation through a directed graph, as shown in Figure 1, associated with predeter-

mined parameters of the UC problem. The Bellman equations can be derived accordingly based

on the state space and the directed graph.

To begin with, we define the state space as S = S∗ ∪S0 ∪S1. In detail, S∗ consists of a dummy

state that we consider it as a “source” here, which is used as initial state for the decision maker at

stage 1. S0 ∪ S1 represent all the other states that have the structure of (x, y, u, d) where x, y, u

here have the same meaning as the notation defined in the beginning of Section 2 except that here

they are variables for any single time period and the variable d represents the duration for current

online/offline status. S0 = {(x, y, u, d) ∈ Qd × B × B × [1, `]Z : x = 0, y = 0, u = 0}, representing

the set of all states when the generator is offline. Note here that the candidate decisions for the

decision maker remain the same whenever the duration for offline status d ≥ `, so it is enough to

set the upper bound for duration variable d as minimum-down time limit `. S1 = {(x, y, u, d) ∈

Qd × B × B × [1, L]Z : x > 0, y = 1, u = 1 when d = 1;x > 0; y = 1, u = 0 when d > 1} represents

the set of all states when the generator stays online. To be specific, we let d = 1, if the generator

just starts up at its current state so we have x > 0, y = 1, u = 1; we let d > 1 if the generator has

been online for at least two time periods so we have x > 0, y = 1, u = 0. Note here that it is also

enough to set the upper bound for the duration variable d as minimum-up time limit L when it is

online since the candidate decisions remain the same whenever d ≥ L.

Based on our construction of state space, we can observe that S is a finite set and does not
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depend on the number of time periods T . To formulate the Bellman equations, we construct a

directed graph where the nodes consist of all the elements in the state space and the arcs represent

possible decisions from one state to another (i.e., correspondingly from one time period to the

next). More specifically, we add directed arcs from the “source” node to (0, 0, 0, `) and all possible

(x, 1, 0, L). These nodes form the set of decision candidates at stage 1. We also add possible

directed arcs between any two nodes in S0 ∪ S1. For example, there are arcs from (0, 0, 0, 1) to

(0, 0, 0, 2), from (0, 0, 0, 2) to (0, 0, 0, 3), . . ., from (0, 0, 0, `−1) to (0, 0, 0, `), from (0, 0, 0, `) to itself

and all possible (x, 1, 1, 1) ∈ S1 that satisfies start-up ramp constraint x ≤ V . Note here that

self-loop arc is allowed since, as mentioned above, it is enough to take d as ` if the offline status

d lasts longer than the minimum-down time limit. For node (x, y, u, d) ∈ S1 with d < L, we add

an arc from it to all possible (x′, y′, u′, d′) ∈ S1 satisfying ramp-up/down constraints |x − x′| ≤ V

and logical constraint d′ = d + 1. For node (x, y, u, L) ∈ S1, we add an arc from it to all possible

(x′, y′, u′, L) ∈ S1 satisfying ramp-up/down constraints |x − x′| ≤ V . Self-loop arc is also allowed

here. For node (x, y, u, L) ∈ S1 with x ≤ V , i.e., shut-down ramp constraint is satisfied, we add

an arc from it to (0, 0, 0, 1). Furthermore, we label the nodes with positive integers starting from

the “source” node with index 1 and denote all the direct successors of node i as S(i) and all the

immediate predecessors of node i as P (i). We denote the values of x, y, u in node i as ix, iy, iu.

Now we are ready to establish the dynamic programming framework. Let Ft(i) represent the

optimal value function for stage t considering node i as the state of the previous stage. Based on

Proposition 3, an optimal decision for current stage lies in S(i). The Bellman equations can be

formulated as follows:

Ft(i) = min
j∈S(i)

Uju + U(iy − jy + ju) + ft(jx, jy) + Ft+1(j),

∀i ∈ S, ∀t ∈ [1, T − 1]Z, (17a)

FT (i) = min
j∈S(i)

Uju + U(iy − jy + ju) + fT (jx, jy), ∀i ∈ S, (17b)

where ft(jx, jy) describes the generation cost minus revenue, Uju represents the start-up cost, and

U(iy − jy + ju) represents the shut-down cost. For notation brevity, we let Etij = Uju + U(iy −

jy + ju) + ft(jx, jy) for t ∈ [1, T ]Z. Accordingly, the objective of our backward induction dynamic

programming is to find out the value of F1(1).

In order to obtain the optimal objective value and optimal solution, we need to calculate Ft(i)

for all possible t and i and record the optimal candidate for them. To calculate the value of each

optimal value function in the Bellman equations (17), we search among the candidate solution
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· · · · · ·

· · · · · ·

Figure 1: Directed graph

j ∈ S(i) for each i and this step takes O(ℵd) time. Since there are in total ℵdL + ` number of

nodes in the state graph, the computational time at each time period is O(ℵd(ℵdL + `)). Thus,

the total time to calculate the value of objective F1(1) is O(ℵd(ℵdL + `)T ). The optimal solution

for UC can be obtained by tracing the optimal candidate for the optimal value function starting

from F1(1), and this takes O(T ) time in total. Because ℵd, L, ` are constant numbers with respect

to the physical parameters of UC problem, we conclude that our backward induction dynamic

programming algorithm for the deterministic unit commitment problem is an O(T ) time algorithm.

When start-up profile is considered, we have the following observations.

Remark 2 If the start-up profile is taken into account in the UC model (15), then we need to

extend the upper bound of the offline duration variable d from ` to T , which as a result will increase

the computational complexity from O(T ) time to O(T 2) time.

3.3 Extended Formulation for Deterministic Unit Commitment with Piecewise
Linear Cost Function

Based on the Bellman equations (17) for the deterministic UC model, now in this section, we re-

formulate the problem as a linear program incorporating dynamic programming Bellman equations
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as constraints. The incentive for the reformulation is to develop a linear program that can provide

integral solutions to the unit commitment problem in a higher dimensional space. The primal form

of our linear program can be formulated as follows:

max F1(1) (18a)

s.t. Ft(i) ≤ Etij + Ft+1(j), ∀i ∈ S, j ∈ S(i), ∀t ∈ [1, T − 1]Z, (18b)

FT (i) ≤ ET ij , ∀i ∈ S, j ∈ S(i), (18c)

where the parameters Etij = Uju + U(iy − jy + ju) + ft(jx, jy) as defined under equations (17).

But the primal linear program cannot provide solutions to the UC problem directly. Although

we can solve the primal linear program and search for tight constraints to find solutions for unit

commitment, this takes us back to the dynamic program framework. Thus, we resort to the dual

formulation and then provide an extended linear formulation, which we show can provide solution

to the deterministic UC problem directly.

By taking Lagrangian duality, we can obtain the dual formulation for the linear program (18)

as follows:

min
∑

t∈[1,T ]Z,i∈S,j∈S(i)

Etijwtij (19a)

s.t.
∑
j∈S(1)

w11j = 1, (19b)

∑
j∈S(i)

w1ij = 0, ∀i ∈ S \ S∗, (19c)

∑
j∈S(i)

wtij −
∑
k∈P (i)

wt−1,ki = 0, ∀i ∈ S,∀t ∈ [2, T ]Z, (19d)

wtij ≥ 0, ∀i ∈ S, j ∈ S(i), ∀t ∈ [1, T ]Z, (19e)

where wtij are dual variables corresponding to each constraint in the primal linear program.

In the following lemma, we demonstrate that the above dual linear program can automatically

generate integral solutions for w. Furthermore, we explore physical meaning of these dual variables.

Lemma 2 The extreme points of the polytope (19b) – (19e) are binary.

Proof: To prove the lemma, it is equivalent to prove that for ∀Etij ∈ (−∞,+∞), there exists

at least one optimal solution to the dual program (19) that is binary. First of all, by solving the

UC problem with dynamic program approach with respect to a given E, we can obtain an optimal

decision of (x, y, u). We then construct ŵ, which is binary, to represent the optimal decision. For
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a given optimal decision (x, y, u) ∈ QTd × B2T , we can correspondingly draw a path in the graph

starting from the node 1. If in step t of the path the state of the generator goes from node i to

node j, we let ŵtij = 1. Otherwise, ŵtij = 0. In the following, we prove that this generated ŵ is an

optimal solution to the dual program (19), which is sufficient to prove our claim.

To verify the feasibility, we plug ŵ into constraints (19b) – (19e). For constraint (19b), since in

step 1 the state of the generator goes from node 1 to one node in S(1), exactly one ŵ11j = 1 and

all the other ŵ11j = 0. Constraint (19c) is satisfied since all ŵ1ij = 0, ∀i ∈ S \ S∗. In step t ≥ 2,

only when it goes from node i to one node in S(i), exactly one ŵtij = 1 and other ŵtij = 0. As a

result, in step t − 1, it should go from one node in P (i) to node i so exactly one ŵt−1,ki = 1 and

other ŵt−1,ki = 0. It follows that
∑

j∈S(i)wtij −
∑

k∈P (i)wt−1,ki = 1 − 1 = 0. For all other cases,

ŵtij = 0, and (19d) is also satisfied. Constraint (19e) is satisfied by definition. Thus, ŵ is feasible

for the dual program.

To verify the optimality, we denote the optimal objective value obtained by dynamic program

as F ∗ and the objective value of dual program (19) with respect to ŵ as H(ŵ). We want to prove

H(ŵ) = F ∗. Recalling the definition of ŵ, we use a path, denoted as (i0, i1, i2, . . . , iT ), to determine

ŵ. Thus, we have

H(ŵ) =
∑

t∈[1,T ]Z,i∈S,j∈S(i)

Etijŵtij (20a)

=
T∑
t=1

Etit−1itŵtit−1it (20b)

=
T∑
t=1

Etit−1it , (20c)

F ∗ = F1(1) = min
j∈S(1)

{
E11j + F2(j)

}
(21a)

= E1i0i1 + F2(i1) (21b)

= E1i0i1 + min
j∈S(i1)

{
E2i1j + F3(j)

}
(21c)

= E1i0i1 + E2i1i2 + F3(i2) (21d)

= · · · (21e)

=

T∑
t=1

Etit−1it (21f)

= H(ŵ). (21g)

Therefore, we claim that ŵ is the optimal solution to the dual program.
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From the above analysis, we notice that ŵ is binary and optimal for the dual program for any

possible cost coefficient E. Thus, we have proved our claim.

From Lemma 2, we can further observe that this formulation itself has specific physical mean-

ings. In particular, we notice that the optimal solution w∗tij in the dual program represents whether

in stage t the UC optimal decision corresponds to a state change from node i (in stage t−1) to node

j (in stage t) or not. If yes, then w∗tij = 1; otherwise, w∗tij = 0. That is, the lemma provides insight

to formulate the problem in a different way. In the following, we present the detailed extended

formulation for the problem in this way and justify the correctness of the model.

Proposition 4 If w∗ is an optimal solution to dual program (19), then

x∗t =
∑

i∈S,j∈S(i)

jxw
∗
tij , y

∗
t =

∑
i∈S,j∈S(i)

jyw
∗
tij , u

∗
t =

∑
i∈S,j∈S(i)

juw
∗
tij , ∀t ∈ [1, T ]Z, (22)

is an optimal solution to the deterministic UC problem (15).

Proof: From the proof of Lemma 2, we can observe that for a given t, exactly one w∗tij = 1 and all

other w∗tij = 0. Thus x∗t , y
∗
t , u
∗
t are the values included in a certain node along a path which starts

from node 1 in the directed graph. If we denote the entire path as (i0, i1, i2, . . . , iT ), then we have

that x∗t = (it)x, y
∗
t = (it)y, and u∗t = (it)u for each t ∈ [1, T ]Z. Recalling the definition of the graph

we can conclude that any “T-step” path (i.e., a path for the whole time horizon) starting from

node 1 results in a feasible solution to the UC problem. Thus, the solution (x∗, y∗, u∗) is feasible.

If we plug (x∗, y∗, u∗) with expressions in (22) into the objective function of the deterministic

UC problem (15), we have

T∑
t=1

Uu∗t + U(y∗t−1 − y∗t + u∗t ) + f(x∗t , y
∗
t ) =

∑
t∈[1,T ]Z,i∈S,j∈S(i)

Etijw
∗
tij .

Hence, (x∗, y∗, u∗) is the optimal solution to the deterministic UC problem.

Now we are ready to establish the extended formulation for deterministic unit commitment

problem. We replace constraints (1b) - (1h) plus (1l) with constraints (19b) – (19e) and add

equations (22) to represent the relation between original decisions and the dual decision variables.

Theorem 2 The extended formulation of the deterministic unit commitment problem (15) can be

written as follows:

min

T∑
t=1

Uut + U(yt−1 − yt + ut) + ft(xt, yt) (23a)
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s.t. xt =
∑

i∈S,j∈S(i)

jxwtij , yt =
∑

i∈S,j∈S(i)

jywtij ,

ut =
∑

i∈S,j∈S(i)

juwtij , ∀t ∈ [1, T ]Z, (23b)

(19b)− (19e), (23c)

and if (x∗, y∗, u∗, w∗) is an optimal solution to the extended formulation, then (x∗, y∗, u∗) is an

optimal solution to the deterministic UC problem.

Proof: The conclusion holds immediately by replacing (x∗, y∗, u∗) in the objective function with the

expressions in (22) and following the proof described in Proposition 4 and the conclusion described

in Lemma 2.

4 Stochastic Unit Commitment with Piecewise Linear Cost Func-
tion

In this section, we extend our study to the multistage stochastic UC setting to incorporate un-

certainty. With the consideration of renewable generation and/or price uncertainties, as well as

dependency among different time periods, scenario-tree based stochastic UC is introduced in [12].

Under this setting, the uncertain problem parameters are assumed to follow a discrete-time stochas-

tic process with finite probability space and a scenario tree T = (V, E) is utilized to describe the

resulting information structure, as shown in Figure 2. Each node i ∈ V at time t of the tree

provides the state of the system that can be distinguished by information available up to time

t (corresponding to a scenario realization from time 1 to time t). Accordingly, corresponding to

each node i ∈ V, we let t(i) be its time period, P(i) be the set of nodes along the path from

the root node (denoted as node 1) to node i, and pi be the probability associated with the state

represented by node i. We also denote V∗ as the set of root node, i.e., V∗ = {1}. In addition, each

node i in the scenario tree has a unique parent i− and could have multiple children, denoted as

set C∗(i). Meanwhile, we define C(i) = C∗(i) ∪ {i}. Moreover, we let i−0 = i, i−1 = i−, and i−k be

the unique parent node of i−k−1, for k ≥ 2. In other words, we define i−k be the k-fold parent of

node i. We let V(i) represent the set of all descendants of node i, including itself. Finally, we let

Hr(i) = {k ∈ V(i) : 0 ≤ t(k)− t(i) ≤ r − 1} be the set of nodes used to describe minimum-up and

minimum-down time constraints (e.g., in Figure 2, r = t(j) − t(i)). The decisions corresponding

to each node i are assumed to be made after observing the realizations of the problem parameters

along the path from the root node to this node i, but are nonanticipative with respect to future

realizations.
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Figure 2: Multistage stochastic scenario tree

For the multistage stochastic unit commitment problem, following the notation described above,

we let U (U) denote its start-up (shut-down) cost and a nondecreasing convex function f(·) de-

note the generation cost minus the revenue as a function of its electricity generation amount,

online/offline status, and electricity price. The decision variables include the online/offline status,

start-up decision, and the generation amount at each node in the scenario tree. Accordingly, for

each node i, we let binary variables (yi, ui) denote the unit commitment decisions: (1) yi represents

if the generator is online or offline at node i (i.e., yi = 1 if yes; yi = 0 otherwise) and (2) ui

represents if the generator starts up or not at node i (i.e., ui = 1 if yes; ui = 0 otherwise). We also

let continuous variable xi denote the electricity generation amount at node i. We also assume the

generator has been offline for s0 time periods (s0 ≥ `).

Based on the notation described above, the formulation for this problem can be described as

follows:

min
∑
i∈V

Uui + U(yi− − yi + ui) + fi(xi, yi) (24a)

s.t. yi − yi− ≤ yk, ∀i ∈ V,∀k ∈ HL(i), (24b)

yi− − yi ≤ 1− yk, ∀i ∈ V,∀k ∈ H`(i), (24c)

yi − yi− ≤ ui, ∀i ∈ V, (24d)

ui ≤ min{yi, 1− yi−}, ∀i ∈ V, (24e)

Cyi ≤ xi ≤ Cyi, ∀i ∈ V, (24f)
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xi − xi− ≤ V yi− + V (1− yi−), ∀i ∈ V, (24g)

xi− − xi ≤ V yi + V (1− yi), ∀i ∈ V, (24h)

yi, ui ∈ {0, 1}, ∀i ∈ V, x1− = y1− = 0. (24i)

In the above formulation, the objective is to minimize the expected total cost, which is equal

to the total generation cost (i.e., start-up, shut-down, and fuel costs) minus the revenue, where

fi(xi, yi) indicates the fuel cost minus the revenue. Constraints (24b) represent the minimum-up

time limits for the generator. That is, if the generator starts up at node i, then it should stay online

for all the nodes in HL(i). Similarly, constraints (24c) represent the minimum-down time limits.

If the generator shuts down at node i, then it should be kept offline for all the nodes in H`(i).

Constraints (24d) and (24e) describe the relationship between u and y. Constraints (24f) describe

the upper and lower bounds of electricity generation amount if the generator is online at node i.

Constraints (24g) and (24h) describe the ramp-up rate and ramp-down rate limits, respectively.

Typically the function f(·) is quadratic and can be approximated by a piecewise linear function.

With this approximation, the deterministic equivalent formulation above can be reformulated as

an MILP formulation.

4.1 An Optimality Condition

We denote W = {(x, y, u) ∈ R|V| × B2|V| : (24b) − (24h)}, β1 = max{n ∈ [1, 2T ]Z : C + nV ≤ C},

β2 = max{n ∈ [1, 2T ]Z : V + nV ≤ C}, and Q̂ = {0, (C + nV )β1n=0, (V + nV )β2n=0, (C − nV )β1n=0}.

Note that β2 ≤ β1 ≤ 2T because V ≥ C.

Proposition 5 For any extreme point (x̄, ȳ, ū) of conv(W), x̄i ∈ Q̂ for all i ∈ V.

Proof: By contradiction. Suppose that there exists some i ∈ V such that x̄i /∈ Q̂ for an extreme

point (x̄, ȳ, ū) of conv(W), i.e., x̄i ∈ (C,C) \ Q̂. In the following we construct two feasible points

of conv(W) to represent (x̄, ȳ, ū) in a convex combination of these two points, leading to the

contradiction. Before that, we first construct a subtree of V. If one of or all of the following

conditions hold,

• t(i) ≥ 2 and |xi − xi− | = V ,

• t(i) ≤ T − 1 and |xi − xj | = V for some j such that i = j−,

then we construct a subtree of V that consists of nodes around node i (e.g., the subtree that consists

of blue nodes in Figure 3), denoted as K(i), such that for ∀n1, n2 ∈ K(i) with n−1 = n2 or n2 = n−1 ,
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|xn1 − xn2 | = V , and for some node n ∈ K(i) (denoted as boundary node of K(i)), t(n) ∈ {1, T} or

∃m ∈ V \ K(i) with n = m− or m = n− such that |xm − xn| 6= V . Otherwise, we let K(i) = {i}.

It is easy to observe that for any node s ∈ K(i) with s 6= i, there exists a unique shortest path to

connect nodes s and i, and we define the distance between nodes s and i, denoted as dist(s, i), as

the number of edges on this unique path, i.e., the number of nodes on this unique path minus one.

For example, in Figure 3, dist(s, i) = 4. We consider two points (x̄1, ȳ, ū) and (x̄2, ȳ, ū) such that

x̄1r = x̄r + ε for r ∈ K(i), x̄2r = x̄r − ε for r ∈ K(i), and x̄1r = x̄2r = x̄r for r /∈ K(i), where ε is an

arbitrarily small positive number.

1

i

s

Figure 3: Subtree representation

Now we show these two points constructed are feasible for conv(W) by considering the following

three possible cases.

(1) If there exists some boundary node n of K(i) such that x̄m = 0 with m = n− or n = m−,

then we have C < x̄n < V . Otherwise, 1) If x̄n = C, it follows that x̄i = C + kV for

some k ∈ [0, dist(n, i)]Z by definition. Since x̄i /∈ Q̂, it further follows that k ≥ α1 + 1 =

min{2T, b(C − C)/V c} + 1, which contradicts to the fact that k ≤ 2T and x̄t < C. 2) If

x̄n = V , it follows that x̄i = V + kV for some k ∈ [0, dist(n, i)]Z by definition. Since x̄i /∈ Q̂,

it further follows that k ≥ α2 + 1 = min{2T, b(C − V )/V c}+ 1, which contradicts to the fact

that k ≤ 2T and x̄i < C. Therefore, it is feasible to increase or decrease x̄n by ε.

(2) If there exists some boundary node n of K(i) such that x̄m > 0 with m = n− or n = m−, then

we have C < x̄n < C. Otherwise, 1) If x̄n = C, we can similarly show the contradiction as

above. 2) If x̄n = C, it follows that x̄i = C − kV for some k ∈ [0, dist(n, i)]Z by definition.
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Since x̄i /∈ Q̂, it further follows that k ≥ α1 +1 = min{2T, b(C−C)/V c}+1, which contradicts

to the fact that k ≤ 2T and x̄t > C. Therefore, it is feasible to increase or decrease x̄n by ε

since |x̄n − x̄m| < V by definition.

(3) If there does not exist node m ∈ V with m = n− or n = m− for some boundary node n of K(i),

i.e., t(n) ∈ {1, T}, then similarly we can follow the arguments above to show that C < x̄n < C.

It follows that it is feasible to increase or decrease x̄n by ε.

In summary, we show that in all cases it is feasible to increase or decrease x̄n by ε for each

boundary node n of K(i) and thus feasible to increase or decrease x̄r by ε for all r ∈ K(i). It follows

that both (x̄1, ȳ, ū) and (x̄2, ȳ, ū) are feasible points of conv(W), and (x̄, ȳ, ū) = 1
2(x̄1, ȳ, ū) +

1
2(x̄2, ȳ, ū). Therefore, (x̄, ȳ, ū) is not an extreme point of conv(W), which is a contradiction.

Now, we begin to characterize the optimality condition for Problem (24). Similar to the deter-

ministic unit commitment problem, fi(xi, yi) = ax2i + bxi + cyi − qixi is often approximated by a

K−piece piecewise linear function ϕi = fi(xi, yi) ≥ µikxi+νkyi, ∀1 ≤ k ≤ K, where µik = 2ax̃i+b−qi
and νi = c − ax̃i with x̃i is the x−value corresponding to the k−th supporting node on the curve

of fi(xi, yi) at node i and x̃1 = C, x̃K = C. Therefore Problem (24) can be reformulated as

min
∑
i∈V

Uui + U(yi− − yi + ui) + ϕi

s.t. (x, y, u) ∈ W.

ϕi ≥ µikxi + νkyi,∀k ∈ [1,K]Z,∀i ∈ V. (25)

Note that the cost function ϕi is a linear function if there is only one piece, i.e., K = 1. It is easy

to observe that any two adjacent pieces at node i, e.g., ϕi ≥ µikxi + νiyi and ϕi ≥ µik+1xi + νk+1yi,

intersect at Ak = (x̃k + x̃k+1)/2. Therefore, we can obtain K − 1 turning points with x−value

Ak,∀k ∈ [1,K − 1]Z on the K−piece piecewise linear function for each node. We denote χ̂k = {n ∈

[1, 2T ]Z : C ≤ Ak + nV ≤ C} and Qs = Q̂ ∪ {(Ak + nV )n∈χ̂k
,∀k ∈ [1,K − 1]Z}.

Proposition 6 Problem (24) has at least one optimal solution (x̄, ȳ, ū) with x̄i ∈ Qs for all i ∈ V.

Proof: By contradiction. Suppose that there exists some i ∈ V such that x̄i /∈ Qs for the

optimal solution (x̄, ȳ, ū) of Problem (24), i.e., x̄i ∈ (C,C) \ Qs, with the optimal value z̄ =∑
i∈V Uūi + U(ȳi− − ȳi + ūi) + ϕ̄i. In the following we construct a feasible solution to obtain a

better objective value. Following the proof in Proposition 5, we construct a subtree K(i) as shown
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in Figure 3 and we can always construct two feasible points of W, (x̄1, ȳ, ū) and (x̄2, ȳ, ū), such

that x̄1r = x̄r + ε for r ∈ K(i), x̄2r = x̄r − ε for r ∈ K(i), and x̄1r = x̄2r = x̄r for r /∈ K(i), where

ε is an arbitrarily small positive number. Similar to the proof in Proposition 3, we can increase

or decrease x̄r by ε for r ∈ K(i) to decrease the optimal value by at least |
∑

r∈K(i) µ
r
kr
|ε and the

resulting solution, (x̄1, ȳ, ū) or (x̄2, ȳ, ū), is feasible for both W and constraints (25), where there is

at most one piece of linear function of constraints (25), e.g., piece kr, is tight for each node r ∈ K(i).

Therefore we obtain the contradiction.

In other words, in order to find an optimal solution to the multistage stochastic UC problem,

we only need to consider the feasible solutions (x, y, u) where xi ∈ Qs for all i ∈ V.

4.2 An O(N) Time Dynamic Programming Algorithm

As Qs is a finite set and the cardinality of Qs, denoted as ℵs, does not depend on the total number

of nodes in the scenario tree, rather than solve the MILP model (24), we can again explore the

backward induction dynamic programming framework by reusing the directed graph we defined in

Section 3.2. More specifically, we use a similar state space S except that the optimal generation

candidate set Qd there is replaced by Qs here, and the same state-decision relationship as shown

in Figure 1.

Now we are ready to establish the dynamic programming framework. Let Fm(i) represent the

optimal value function for node m ∈ V in the scenario tree considering state i as the state of m−

in the scenario tree. Based on Proposition 6, an optimal decision for current scenario lies in S(i).

The Bellman equations can be formulated as follows:

Fm(i) = min
j∈S(i)

Emij +
∑

n∈C∗(m)

Fn(j), ∀i ∈ S,∀m ∈ V, (26)

where node m, replacing the stage t in (18), represents a scenario tree node. Emij = pm(Uju+U(iy−

jy+ju)+fm(jx, jy)) describes the total generation cost minus the revenue at node m ∈ V, including

start-up cost Uju and shut-down cost U(iy − jy + ju). Moreover, probability pm is incorporated

in each parameter Emij . Note here that when m is a leaf node, C∗(m) = ∅ and correspondingly∑
n∈C∗(m) Fn(j) = 0. The objective is to find out the value of F1(1) where the 1 in the subscript

represents the root node in the scenario tree while the 1 in the bracket represents the “source” node

in the state space.

In order to obtain the optimal objective value and optimal solution for the scenario-tree based

multistage stochastic unit commitment problem, we need to calculate Fm(i) for all possible m and
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i and record the optimal candidate for them. To calculate the value of each optimal value function

Fm(i) in the Bellman equations (26), we search among the candidate solution j ∈ S(i) and this

step takes O(ℵs|C∗(m)|) time. Since there are in total ℵsL+ ` number of nodes in the state graph,

the computational time at each node m is O(ℵs(ℵsL+ `)|C∗(m)|). Thus, the total time to calculate

the value of objective F1(1) is O(ℵs(ℵsL+ `)N), where N represents the total number of nodes of

the scenario tree. The optimal solution for UC can be obtained by tracing the optimal candidate

for the optimal value function from F1(1), and this takes O(N) time in total. Because ℵs, L, ` are

constant numbers with respect to the physical parameters of UC problem, we conclude that our

backward induction dynamic programming algorithm for the stochastic unit commitment problem

is an O(N) time algorithm. Similarly, when start-up profile is considered, we have the following

observations.

Remark 3 If the start-up profile is taken into account in the UC model (24), then we need to

extend the upper bound of the offline duration variable d from ` to T , which as a result will increase

the computational complexity from O(N) time to O(N2) time.

4.3 Extended Formulation for Stochastic Unit Commitment with Piecewise Lin-
ear Cost Function

Following the same approach as that in Section 3.3, we develop an extended formulation in linear

program form for multistage stochastic unit commitment problem, which is proved to provide

integral solutions. By incorporating the Bellman equations (26) as constraints, we can derive the

following primal linear program similarly:

max F1(1) (27a)

s.t. Fm(i) ≤ Emij +
∑

n∈C∗(m)

Fn(j), ∀i ∈ S, j ∈ S(i),∀m ∈ V, (27b)

where Emij are parameters defined under equations (26) and Fm(i) are decision variables.

Similar to the deterministic case in Section 18, here the primal linear program cannot provide

solutions to the UC problem directly either. Thus, we also resort to the dual formulation and

then provide an extended linear program, which we show can provide solution to the stochastic UC

problem directly.

The dual formulation can be derived accordingly as follows:

min
∑

m∈V,i∈S,j∈S(i)

Emijwmij (28a)

30



s.t.
∑
j∈S(1)

w11j = 1, (28b)

∑
j∈S(i)

w1ij = 0, ∀i ∈ S \ S∗, (28c)

∑
j∈S(i)

wmij −
∑
k∈P (i)

wm−,ki = 0, ∀i ∈ S, ∀m ∈ V \ V∗, (28d)

wmij ≥ 0, ∀i ∈ S, j ∈ S(i),∀m ∈ V, (28e)

where wmij are dual variables corresponding to each constraint in the primal linear program (27).

In the following, we first prove in a similar way to show that an extended formulation in linear

form can be developed that provides integral solutions to the stochastic UC problem (24).

Lemma 3 The extreme points of the polytope (28b) – (28e) are binary.

Proof: The proof is similar to that in Lemma 2. For any Emij ∈ (−∞,+∞), we prove there exists

at least one optimal solution to the dual program (28) that is binary. By solving the dynamic

program for the stochastic UC model, we can obtain an optimal decision of (x, y, u). We then

construct ŵ, which is binary, to represent the optimal solution. We let ŵmij = 1 if on the scenario

tree node m the optimal dynamic programming solution shows the decision from state i to state j

in the state space. Otherwise, we let ŵmij = 0.

We can prove that the constructed ŵ is feasible to the dual program by verifying that it satisfies

constraints (28b) – (28e). The optimality can also be proved following the same approach in Lemma

2. As ŵ is binary and optimal to the dual program any possible cost coefficient E, we have proved

our claim.

Next, we show that an optimal solution to the stochastic UC problem (24) can be obtained in

terms of the dual variables.

Proposition 7 If w∗ is an optimal solution to dual program (28), then

x∗m =
∑

i∈S,j∈S(i)

jxw
∗
mij , y

∗
m =

∑
i∈S,j∈S(i)

jyw
∗
mij , u

∗
t =

∑
i∈S,j∈S(i)

juw
∗
mij , m ∈ V, (29)

is an optimal solution to the stochastic UC problem (24).

Proof: The proof is similar to that in Proposition 4. The feasibility is satisfied because, from the

proof of Proposition 4, for each scenario we can consider the multistage decision as a path in the

directed graph and thus it satisfies all the physical and logical constraints. The optimality can be
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proved by replacing the decision x∗, y∗, u∗ with the corresponding expressions in equations (29) in

the objective function and verify that∑
m∈V

Uu∗m + U(y∗m− − y∗m + u∗m) + fm(x∗m, y
∗
m) =

∑
m∈V,i∈S,j∈S(i)

Emijw
∗
mij . (30)

Hence, (x∗, y∗, u∗) is the optimal solution to the stochastic UC problem.

Now we are ready to establish the extended formulations for stochastic unit commitment prob-

lem. We replace constraints (24b) – (24i) with constraints (28b) – (28e) and add equations (29) to

represent the relation between original decisions and the dual decision variables.

Theorem 3 The extended formulation of the stochastic UC problem (24) can be written as follows:

max
∑
i∈V

Uui + U(yi− − yi + ui) + fi(xi, yi) (31a)

s.t. xm =
∑

i∈S,j∈S(i)

jxwmij , ym =
∑

i∈S,j∈S(i)

jywmij ,

um =
∑

i∈S,j∈S(i)

juwmij , ∀m ∈ V, (31b)

(28b)− (28e), (31c)

and if (x∗, y∗, u∗, w∗) is an optimal solution to the extended formulation, then (x∗, y∗, u∗) is an

optimal solution to the stochastic UC problem.

Proof: The proof is similar to that in Theorem 2. The conclusion holds immediately by replacing

(x∗, y∗, u∗) in the objective function with the expressions in (29) and following the proof described

in Proposition 7 and the conclusion described in Lemma 3.

5 Conclusion

In this paper, efficient dynamic programming algorithms and linear program reformulations were

proposed to solve the deterministic and stochastic unit commitment problems. We started with

deriving a more efficient dynamic programming algorithm to solve the deterministic unit commit-

ment problem with general convex cost function. Our proposed algorithm refines a previous work

by enhancing the computational time for unit commitment from O(T 3) time to O(T 2) time when

economic dispatch problems are solved in advance. Motivated by this, we obtained an efficient

extended reformulation in a higher dimensional space that can provide integral solutions. In ad-

dition, for the most common cases in which piecewise linear cost function is taken, by exploiting
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the optimality condition for the deterministic UC problem, we proposed a more efficient dynamic

programming algorithm that runs in O(T ) time and furthermore, our study was adapted to solve

the stochastic unit commitment problem with a scenario tree in O(N) time by also deriving the

corresponding optimality condition. Extended formulations were further derived for both deter-

ministic and stochastic UC problems and integral solutions for both of them were provided in a

similar way.

Our studies provide efficient polynomial time algorithms for a class of unit commitment prob-

lems, especially linear time for certain cases. Furthermore, we provide one of the first studies on

deriving extended formulations for various unit commitment problems based on efficient dynamic

programming algorithms. Besides solving single generator bidding problems, the proposed polyno-

mial time algorithms and/or extended formulations could have impact on speeding up the MILP

and Lagrangian Relaxation approaches.
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