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Abstract. The alternating direction method of multipliers (ADMM) is being widely used for various
convex minimization models with separable structures arising in a variety of areas. In the literature,
the proximal version of ADMM which allows ADMM’s subproblems to be proximally regularized has
been well studied. Particularly the linearized version of ADMM can be yielded when the proximal terms
are appropriately chosen; and for some applications it could alleviate an ADMM subproblem as easy
as estimating the proximity operator of a function in the objective. This feature is significant in easing
the numerical implementation and it makes the linearized version of ADMM very popular in a broad
spectrum of application domains. To ensure the convergence of the proximal version of ADMM, however,
existing results conventionally need to guarantee the positive definiteness of the corresponding proximal
matrix. For some cases, this essentially results in small step sizes (or, over-regularization effectiveness) for
the subproblems and thus inevitably decelerates the overall convergence speed of the linearized version
of ADMM. In this paper, we investigate the possibility of relaxing the positive definiteness requirement
of the proximal version of ADMM and show affirmatively that it is not necessary to ensure the positive
definiteness of the proximal matrix. A new linearized ADMM with larger step sizes is thus proposed via
choosing a positive-indefinite proximal regularization term. The global convergence of the new linearized
ADMM is proved; and its worst-case convergence rate measured by the iteration complexity is also
established. Since the ADMM can be regarded as a splitting version of the augmented Lagrangian
method (ALM), a byproduct of our analysis is a new linearized version of ALM generated by choosing
a positive-indefinite proximal regularization term for its subproblems.

Keywords: Convex programming, augmented Lagrangian method, alternating direction method of
multipliers, positive indefinite proximal, convergence rate

1 Introduction

We consider the convex minimization problem with linear constraints and an objective function in
form of the sum of two functions without coupled variables

min{6;(z) + 62(y) | Az + By =b, x € X,y € V}, (1.1)

where 61(z) : R" — R and 62(y) : R" — R are convex (but not necessarily smooth) functions,

AeR™™M and B e RM*"™2, b e ™, X C 1™ and Y C R™2 are given closed convex sets. The model

(1.1) is general enough to capture a variety of applications; a particular case arising often in many

scientific computing areas is where one function in its objective represents a data fidelity term while

the other is a regularization term. Throughout, the solution set of (1.1) is assumed to be nonempty.
Let the augmented Lagrangian function of (1.1) be

L5(,y,A) = 0u(x) + O2(y) = N (Ax + By = b) + Squ + By = b|*, (1.2)
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with A € R™ the Lagrange multiplier and 8 > 0 a penalty parameter. Then, a benchmark solver
for (1.1) is the alternating direction method of multipliers (ADMM) that was originally proposed in
[10]. With a given iterate (y*, \¥), the ADMM generates a new iterate w*+l = (xF+1 yF+1 \k+1)
via the scheme

= argmin{ﬁ%(:{:,yk, AF) |z e X}, (1.3a)
(ADMM) P = arg min{ﬁ%(ﬂskH, y, \") ‘ yeV}, (1.3b)
AL F L B(AZRHL 4 Byt p). (1.3¢)

A meaningful advantage of the ADMM is that the functions #; and 6, are treated individually in
its iterations and the subproblems in (1.3) are usually much easier than the original problem (1.1).
We refer the reader to, e.g. [2, 8, 9, 11, 13], for some earlier study on the ADMM in the partial
differential equations community. Recently, the ADMM has found successful applications in a broad
spectrum of fields such as image processing, statistical learning, computer vision, wireless network,
distributed network, etc. We refer to [1, 5, 12] for some review papers of the ADMM. Note that we
assume the penalty parameter 3 is fixed throughout our discussion.

Among various research spotlights of the ADMM in the literature, a particular one is the inves-
tigation of how to solve ADMM'’s subproblems (i.e., the problems (1.3a) and (1.3b)) more efficiently
for different scenarios where the functions 6; and 0y, and/or the coefficient matrices A and B may
have some special properties or structures that can help us better design application-tailored specific
algorithms based on the prototype ADMM scheme (1.3); while theoretically the convergence should
be still guaranteed. This principle accounts for the importance of how to effectively apply the ADMM
to many specific applications arising in various areas. To further elaborate, let us take a closer look
at the subproblem (1.3b) that can be written respectively as

1
it — arg min{0s(y) + §||By +(Aght B)\k)H? |y eV} (1.4)

Certainly, how to solve this subproblem depends on the function 2(y), matrix B and set ). We
refer to, e.g., [4, 16, 26], for some detailed discussions on the generic case where the function, matrix
and set are general and a solution of (1.4) can only be approximated by certain iterative processes.
On the other hand, for concrete applications, the function, matrix and set in the subproblem (1.4)
may be special enough to inspire us to consider more efficient ways to tackle it. When B is not an
identity matrix and ) = R"2, the subproblem (1.4) is specified as

. 1 n
y* ! = argmin{6s(y) + gIIBy + (AP — b — EAk)H2 |y € R} (1.5)

We can further linearize the quadratic term || By + (Az*+t — b — %)\k)Hz in (1.5) and alleviate the
subproblem (1.5) as an easier one

. T 1
y* = argmin{fs(y) + S lly — (" + —an)” [y € R, (1.6)

where
qr = BT[N} — B(Az*T! 4 ByF — b)) (1.7)

is a constant vector and r > 0 is a constant. That is, the linearized subproblem (1.6) reduces to
estimating the proximity operator of 03(y) given by

: 1 n
1o, (y) = argmin{ 02(2) + 5 [l2 =yl | = € R, (18)

with v > 0. A representative case where 6(y) = ||y||1 arises often in sparsity-driven applications
such as the problems of basis pursuit, total variational image restoration and variable selection for



high-dimensional datasets. For this case, the proximity operator of ||y||; has a closed-form that can
be represented by the so-called shrinkage operator whose definition is given component-wisely by

(T(y)i := (lyil — v)+sign(y:)

with v > 0. Hence, replacing the original ADMM subproblem (1.3b) with its linearized surrogate,
we obtain the linearized version of ADMM:

ot = argmin{ﬁ%(x,yk, AF) |z e X}, (1.9a)

. . 1
(Linearized ADMM) Yt = arg min{Hg(y) + gHy — (yF + ;%)HQ Y€ y}, (1.9b)
AL = \F _ B(AZMTY 4 Byt — ), (1.9¢)

where g, is given in (1.7). The scheme (1.9) has been widely used in areas such as compressive sensing
statistical learning, image processing, etc. We refer to, e.g. [25, 28, 29, 30], for some references. Note
that the linearized subproblem (1.9b), after ignoring some constants in the objective function, can
be further rewritten as

. 1
y* = argmin{ L3 (a1, y, M) + Slly = ¥ 15 |y € Y, (1.10)

with D € R"2*"2 = r[,, — 3BT B and the quadratic term %Hy - yk||% serves as a proximal regular-
ization term. Indeed, the more general proximal version of ADMM can be written as

= argmin{ﬁ%(aﬁ,yk,)\k) ‘ z e X}, (1.11a)

(PD-ADMM) Yt = argmin{ﬁ%(wk+1,y, Y+ é”y —*1% |y eV}, (1.11b)

AL = Nk (AR 1 ByR L ). (1.11c)

where D € R"2*"2 ig positive definite. It is easy to see that the linearized version of ADMM (1.9)

is just a special case of the general proximal ADMM (1.11) with the particular positive-definite
proximal regularization:
D =rl,, — BBTB and r > g||BTB|. (1.12)

Since for many applications it suffices to linearize one subproblem of the ADMM (1.3), without
loss of generality, we just discuss the case where only the y-subproblem is linearized /proximally
regularized in (1.11). Technically, it is still possible to consider the case where both the subproblems
are linearized /proximally regularized, see, e.g., [16].

As well shown in the literature, the positive definiteness of the proximal matrix D is crucial for
ensuring the convergence of the proximal ADMM (1.11). This can also be easily observed by our
analysis in Section 4. For the case where || BT B|| is large (see [14] for such an application in image
processing), the constant r in the linearized version of ADMM (1.11) with D chosen by (1.12) is
also forced to be large and thus tiny step sizes inevitably occur. The overall convergence speed
of (1.11) thus may be substantially decelerated. A large value of r in (1.12) can be regarded as a
over-regularization for the subproblem (1.11b) because the proximal term has a too high weight in
the objective function and thus it deviates the original objective function in (1.3b) too much. A
practical strategy for implementing the linearized ADMM (1.9) is to choose 7’s value larger than but
extremely close to the lower bound || BT B||, as empirically used in, e.g., [6, 18]. Therefore, for the
linearized ADMM (1.9), there is a dilemma that theoretically the constant r should be large enough
to ensure the convergence while numerically smaller values of r are preferred.

An important question is thus how to further relax the positive-definiteness requirement of the
proximal matrix D in (1.11b) while the convergence can be still theoretically ensured — without
additional assumptions on the model (1.1). The main purpose of this paper is to answer this question.



More specifically, we show that the matrix D in (1.11b) could be positive-indefinite, thus its positive-
definiteness is not necessary. To remain the possibility of alleviating this subproblem as estimating
the proximity operator of 65(y) for some applications, we are also interested in the particular choice
of (1.12), i.e., the linearized version of ADMM, but with a smaller value of r. That is, we investigate
the choice of

Do = 1rl,, — BBTB with > g|BTB| (1.13)

and 0 < 7 < 1 to replace the positive definite matrix D in (1.11b). Indeed, as analyzed in Section
4, we can choose any value of 7 € [0.8,1) and 0.8 is an “optimal” choice in sense of the inequality
(4.21) to be proved. Thus, we propose the scheme

gF Tt = argmin{ﬁ%(m,yk,)\k) ‘ T € X}, (1.14a)

, 1
(IP-LADMM) y* T = argmin{£3(z" T, y, AF) + 5Hy — ¥, | v € VI, (1.14b)
AL = Ak B(AghHL 4 Byt _p). (1.14c)

where Dy is given by (1.13) with 7 = 0.8. In this case, ignoring some constants, the subproblem
(1.14b) can be written as

_ " 1
y" = argmin{0s(y) + 5 lly = W+ —a)* [y € V),

with g given in (1.7), which also reduces to estimating the proximity operator of f5(y) if J = R"2.
Clearly the matrix Dy defined in (1.13) with 7 = 0.8 is not necessarily positive-definite. Thus, the
new linearized ADMM (1.14) can be generated by the proximal ADMM (1.11) but with a positive-
indefinite proximal regularization term. We also call the scheme (1.14) more succinctly as “indefinite
proximal linearized ADMM”, or abbreviated as “IP-LADMM?”. Note that the subproblem (1.14b)
is still convex even though the proximal matrix Dy is positive indefinite. Also, we slightly abuse the
notation Hy||%0 := yT Doy when Dy is not positive definite.

The rest of this paper is organized as follows. We first summarize some preliminary results
in Section 2. Then we reformulate the IP-LADMM (1.14) in a prediction-correction framework in
Section 3 and discuss how to determine the value of 7 in Section 4. Then, in Section 5 we provide
some insights on how to choose 7 and show by an example that it is not possible to shrink the value of
7 as small as 0.75. In Section 6, the convergence of (1.14) is proved. Its worst-case convergence rate
measured by the iteration complexity is established in Section 7. In Section 8, we extend our analysis
to the augmented Lagrangian method (ALM) proposed in [23, 27] and propose a new linearized ALM
via positive-indefinite proximal regularization, followed by some necessary details for establishing its
convergence. Some conclusions are draw in Section 9.

2 Preliminaries

In this section, we recall some preliminaries and state some simple results that will be used in our
analysis.
Let the Lagrangian function of (1.1) defined on X x ) x R™ be

L*(z,y,\) = 01(x) + 02(y) — A" (Az + By — b)

with A € R™ the Lagrange multiplier. A pair ((z*,y*), \*) is called a saddle point of the Lagrangian
function if it satisfies

Lie%m(‘r*’y*?)‘) < L2($*,y*, A*) < Lieé\f,yey(xaya A*)



We can rewrite them as the variational inequalities:

¥ e X, O1(x) —01(z) + (z — )T (=ATA) >0, Ve e,
y* €Y,  ba(y) —O2(y") + (y —y" ) (=BTX) 20, Vye, (2.1)
A e R™, A= X)T(Az* + By* —b) >0, YIeR™,
or in the more compact form:
w* e, Ou) —0(u*) + (w—w)Flw*) >0, YweQ, (2.2a)
where
x —AT)
u = ( ‘ ) , O(u)=01(x)+02(y), w=]| vy |, Flw)= —BT) (2.2b)
Y A Az + By —b
Q=X xYxR™. (2.2¢)

We denote by Q* the solution set of (2.2). Note that the operator F' defined in (2.2b) is affine with
a skew-symmetric matrix. Thus we have

(w— o) (F(w) — F(w)) =0, Yw,w. (2.3)
The following lemma will be frequently used later; its proof is elementary and thus omitted.

Lemma 2.1 Let X C R" be a closed convex set, O(x) and f(x) be convex functions. Assume that f
is differentiable and the solution set of the problem min{6(z) + f(x)|x € X'} is nonempty. Then we
have

z* € argmin{f(z) + f(z) |z € X'}, (2.4a)

if and only if
e X, O(x)—0(z*)+ (x—2")Vf(z*) >0, VreX. (2.4b)

3 A prediction-correction reformulation of the IP-LADMM (1.14)

In this section, we revisit the IP-LADMM (1.14) from the variational inequality perspective and
show that it can be rewritten as a prediction-correction framework. The prediction-correction refor-
mulation helps us discern the main difficulty in the convergence proof and plays a pivotal role in our
analysis.

As mentioned in [1], for the ADMM schemes (1.3) (also (1.14)), only (y*, A\¥F) is used to generate
the next iteration and z* is just in an “intermediate” role in the iteration. This is also why the
convergence result of ADMM is established in terms of only the variables (y, A) in the literature,
see, e.g., [1, 3, 10, 16, 19, 20]. Thus, the variables x and (y, A) are called intermediate and essential
variables, respectively. To distinguish the essential variables, parallel to the notation in (2.2), we
further denote the following notation

v = ( :l)/\ ) , V=YX §Rm7 and V¥ = {(y*’)\*) ’ (CE*,y*,)\*) c Q*} (31)

First, from the optimality conditions of the subproblems (1.14a) and (1.14b), we respectively
have

e X, 01(x) — 012 + (z — 2P THT{—ATAY 4 gAT (A2 4+ By? — )} >0, Ve € X, (3.2)



and

_ BTk + 5BT(A.TUk+1 4 Byk+1 _ b)

k+1 k+1 k+1\T
Yy e, Oa(y)—0a(y )+ (y—y" )
+Do(y* ! — y¥)

) >0, Vy €Y. (3.3)

Recall that Dy = 771, — BT B (see (1.13)). The inequality (3.3) can be further written as

—BTX\F + BBT (Az*+! + ByF — b)

k+1 k+1 k+1\T
ey, 0 -0 +(y—
Y 2(1/) 2(2! )+ (y—y ) < _H_T(ykJrl _ yk)

) >0, Vye). (3.4)
With the given (y*, A\F), let (z¥*1,y**1) be the output of the IP-LADMM (1.14). If we rename
them as 7% = z**1 and §* = y**1, respectively, and further define an auxiliary variable
AF = AP — B(AzFTL + ByF — b)), (3.5)
then accordingly we have @wF = (%, §*, \F) given by
Fh— gkt gk = BT Xk = N gAML 4 Byk ), (3.6)
and % = (j*, \F). Therefore, the inequalities (3.2) and (3.4) can be rewritten respectively as
Fex, 01(x)- 6, + (@ —-T(—ATN) >0, Veex, (3.7a)

and
P e, 02(y) = 0) + (y— 7T (BTN + (7" — 7)) >0, Vye . (3.7b)

Note that A* defined in (3.5) can be also written as the variational inequality

Merm (A= IMT{(Az* + B§* —b) — B@G" — %) + ;(X’f — X1 >0, YAeR™ (3.7¢)

Thus, using the notation of (2.2), we can rewrite the inequalities (3.7a)-(3.7c) as the variational
inequality:

€ Q, O(u) —0(aF) + (w— T F@F) > (v -8 TQM* — %), YweQ, (3.8a)
where
Trln, 0
Q=< 3 glm) (3.8b)

Then, using the notation in (3.6), we further have

- 1
(A.TkJrl + Byk+1 _ b) — _B(yk _ yk+1) + (A.CEkJrl + Byk _ b) — _B(yk _ yk) + E(Ak . )\k)
and ~
)\k+1 — )\k o B(Aﬂfk—H + Byk—l-l _ b) — )\k _ [—BB(yk _ gk) + ()\k o )\k)]

Recall **! = ¢* and the notation in (3.1). The essential variables updated by the IP-LADMM
(1.14) are given by
P = oF — M(F — %), (3.9a)

M:< Ing 0 ) (3.9b)
_/BB Im

where



Overall, the iteration of IP-LADMM (1.14) can be conceptually explained by a two-stage manner,
first generating a predictor satisfying the variational inequality (3.8) and then correcting it via the
correction step (3.9). We would emphasize that this prediction-correction reformulation only serves
for the theoretical analysis and there is no need to decompose the iterative scheme into these two
stages separately when implementing the IP-LADMM (1.14). Indeed, we see that @" satisfying (3.8)
is not a solution point of the variational inequality (2.2) unless it ensures (v —o*)7Q(v* — %) = 0 for
all w € Q and this fact inspires us to intensively analyze the term (v —*)TQ(v* — %) in convergence
analysis.

4 How to determine 7

We have mentioned that it is interesting to consider the IP-LADMM (1.14) but the proximal matrix
Dy is given by (1.13) with 0 < 7 < 1, instead of 7 = 1 as (1.12). That is, we focus on shrinking the
value of 7 for the linearized ADMM (1.9) that can be generated by the proximal ADMM (1.11) with
the positive-definite proximal regularization (1.12). Then, the central problem is investigating the
restriction of 7 can ensure the convergence of the IP-LADMM (1.14). In this section, we focus on
the predictor @w* characterized by (3.8) and conduct a more elaborated analysis; some inequalities
regarding @w* will be derived and they are the clue for determining the value of 7. These inequalities
are also essential for the convergence analysis of the IP-LADMM (1.14). Thus, the results in this
section are also the preparation of the main convergence results to be established in Sections 6 and
7.
First of all, for any given positive constants 7, r and 3, we define a matrix

Trln, 0
H= . (4.1)
0 %Im

Obviously, H is positive definite. For the matrices ) and M defined respectively in (3.8) and (3.9),
we have

HM = Q. (4.2)

Moreover, if we define
G=Q"+Q—-MTHM, (4.3)

then we have the following proposition.

Proposition 4.1 For the matrices Q, M and H defined in (3.8), (3.9) and (4.1), respectively, the
matriz G defined in (4.3) is not positive definite when 0 < 7 < 1.

Proof. Because of HM = Q and MTHM = M™Q), it follows from (3.8b) that
MTHM — I,, —BBT L, 0 I + sBTB —-BT
0 I -B %Im -B 17
Consequently, we have

2rrl,, —BT I, BTB —BT
B T i I )

-B I, -B 51m
I.,—BBTB 0 , Dy 0
_ [ I =B 1 (1) (Do ' (4.4)
0 EIm 0 Blm
Note that we can rewrite Dg as
Dy=7D—(1-7)3BTB, (4.5)
where D is given by (1.12). Thus, Dy is not positive indefinite, nor is G. O



Lemma 4.1 Let {w*} be the sequence generated by (1.14) for the problem (1.1) and w* be defined
in (3.6). Then we have w* € Q and

O(u) — 0(a") + (w — ") F(w)

1
> S (llv = oI = llv = 0¥ ) + 50" =TGR -5, vweQ, (4.6)

N

where G is defined in (4.3).

Proof. Using @ = HM (see (4.2)) and the relation (3.9a), we can rewrite the right-hand side of
(3.8a), i.e., (v —*)TQ(vF — %), as (v — oF)T H(v¥ — vF+1). Hence, (3.8a) can be written as

w* € Q, O(u) —0(a") + (w— "V F(@*) > (v — ) TH@P - oF 1), Yw e Q. (4.7)
Applying the identity
(a— D) H(c—d) = 3 {lla— iy lla — el + 5 {lle = bl — l1d — b3}
to the right-hand side of (4.7) with
a=v, b=19" c¢=0F and d="",
we obtain

- 1 - -
(v =0"TH " = ") = 2 (v = o™ — o = o* ) + 5" = 057 = 10" = 2%]F). (4.8)

N |

For the last term of (4.8), we have
k_ o~k k ~; k_ =k k_ o~k k_ .k
[ e [ S e e [ R O i

=0 o = — (0 =) - Mo =M
= 20 —MTHM@W* — %) — (W — " MTHM (v* — &%)

(4:2) (T}k o 2~)k)T(QT +Q— MTHM)(Uk _ ”Dk)
Wk TGk — 7). (4.9)
Substituting (4.9) into (4.8), we get
. 1 1 . -
(0 — )V H@F =) = 2 (o = oF U — o — o) + S0~ TG0k - ). (410)

It follows from (2.3) that
(w — T F (k) = (w — ") T F(w).

Using this fact, the assertion of this lemma follows from (4.7) and (4.10) directly. O

In existing literature of the linearized ADMM such as [25, 28, 29, 30], the matrix D in (1.11b)
is chosen by (1.12) with 7 = 1. Thus, the corresponding matrix G defined by (4.3) is ensured to
be positive definite and the inequality (4.6) essentially implies the convergence and its worst-case
convergence rate. We refer to, e.g., [17, 22], for more details. A tutorial proof can also be found in
[15] (Section 4.3 and Section 5 therein). Here, because we aim at smaller values of 7 and the matrix
G given by (4.3) is not necessarily positive-definite, the inequality (4.6) cannot be used directly to
derive the convergence and convergence rate. This difficulty makes the convergence analysis for the
IP-LADMM (1.14) more challenging than that for the existing linearized ADMM (1.9).



To tackle this difficulty caused by the positive-indefiniteness of the matrix G in (4.3), our idea is
to bound the term (v* — #%)TG(vF — o) as

(" =TGP = 0%) 2 PP, ") — (0 0F) 4 p(of, oM, (4.11)

where (-,-) and ¢(-,-) are both non-negative functions. The first two terms v (v*,v*+1) and
Y (v*~1 o) in the right-hand side of (4.11) can be manipulated consecutively between iterates and
the last term (v*,v**1) should be such an error bound that can measure how much w**! fails to
be a solution point of (2.2). If we find such functions that guarantee the assertion (4.11), then we
can substitute it into (4.6) and obtain

O(u) — O(a*) + (w — ™)1 F(w)

1 1
> i(HU — 0" (o, oF ) — §(||U — "5 + (o)
1
+§g0(vk,vk+1), Yw € Q. (4.12)

As we shall show, all the components of the right-hand side of (4.12) in parentheses should be positive
to establish the convergence and convergence rate of the IP-LADMM (1.14). The following lemmas
are for this purpose; and similar techniques can be referred to [11, 19].

Lemma 4.2 Let {w*} be the sequence generated by (1.14) for the problem (1.1) and w* be defined
by (3.6). Then we have

1
(WF = MTGW" = %) = rlly* — "2+ 5!\” = AHHE 200" - ARDTB(F — ). (4.13)
Proof. First, it follows from (4.4) and §* = y**! that
- - - 1 < -
(" =G =) = Trlly* - 7P + BH/\k = M2 = BIB(Y" =) (4.14)
Because ¥ = zF*1 and §* = 3**1, we have
< 1
AN = B(A* 4 Byf —b) and AT 4 Byt — b= B(Ak — \FFL),

and further

1 -
B”Ak =2 = Bll(AZT 4+ ByMTt —b) + B(yF - yF )2
1
= BHE(A’“—A’“+1)+B(y’“—y’“+1)H?

1 _
= BHA’“ = A 20 = NEHTB(R — M) + BB (Y - 5017

Substituting it into the right-hand side of (4.14), the assertion of this lemma follows directly. O

Recall that D = rl,, — BBTB and D is positive definite when r > B||BTB||. The inequality
(4.13) can be rewritten as

N i 1
(0 =TGP %) = lly* = B + BB - IR+ BIIA’c — A2
+2NE — MDOT Bk — gty (4.15)

Now, we treat the crossing term of the right-hand side of (4.15).



Lemma 4.3 Let {w*} be the sequence generated by (1.14) for the problem (1.1) and w* be defined
by (3.6). Then we have

2" — AT B(yF — yF ) > 7l — G =y = R
=31 —7)BIBW" — y*™)|? — 1 — 7)B| B — y)||*(4.16)

Proof. First, according to A*1 = A\ — g(AzF+1 4 ByF*1 — 1), the inequality (3.3) can be written as

e, Oa(y) — Oa(y") + (y — " (BTN 4 Doy — ) 20, Vyey.  (4.17)
Analogously, for the previous iterate, we have

v eV, ba(y) = Oa(y") + (y =y (BTN + Doy —y* 1)) 20, vyey.  (418)
Setting y = 3" and y = y**! in (4.17) and (4.18), respectively, and adding them, we get
(y* — yFHT (BT(/\k — M) 4 Do [P = k) — (F - ykq)}) >0,
and thus
2y — YT BT (A — ARF1) > a(yk — M1 D (g% — yF 1) — (yh=1 — b)),

Consequently, by using Dy = 7D —(1—7)8BT B (see (4.5)) and Cauchy-Schwarz inequality, it follows
from the above inequality that

2(yk _ yk—i-l)TBT()\k _ )\k+1)
> 2(yF — T [ D—(1- )BBTB} (" =" = =b))
> 27llyF — B = 2r(yF — F D = oF)
—2(1 = 7)BIB" — " ™H|? + 201 - 7)BW" — )T (BT B)(y* — )

> 7lly* =y D - Tyt =t
=31 = 7)BIBW" —y" I — 1= 7)BIB" " —y")I*
We get (4.16) and the lemma is proved. O

Now, it follows from (4.15) and (4.16) that
- - _ 1
(F —MTGE" =% = 27y — TG Tyt = I B\\/\k — AR
+(4m = 3)BIBW" — g I = (1= )BIBE T =M (4.19)

In order to obtain the desired form (4.11) based on the proved inequality (4.19), we collect the
negative terms in the right-hand side of (4.19) and set

P o) =l =M B + (= 7)BIBE T — )P
This also means that

G, M) =yt — gD + (L= 7)BIBGE - yFTYIP
Thus, if we define

1
P(F, o) = 7y — D o SINE X 4 (57 - BB - o)

then the inequality (4.19) is in the form of (4.11). We summarize the deduction in the following
lemma.
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Lemma 4.4 Let {w*} be the sequence generated by (1.14) for the problem (1.1) and w* be defined
by (3.6). Then we have

W =M TGWF — %) > (rlly* —yFTHL + (L= 7)BIBWY — yF)?)
"t —yF 1D + (L =7)BIBE " —y")|]?)
|y

,(7—|
1

Hrlly® =" B + B”/\k — N2 (57 = 4)B] By" — y*IP). (4.20)

As mentioned, we need to ensure that ¢ (-,-) and ¢(-,-) are both nonnegative in (4.11). Hence,
the coefficients in (4.20) should be all nonnegative. This requirement indeed implies the restriction
of 7 as [0.8,1). It is easy to see that our analysis in Sections 6 and 7 is valid for any value of
7 € [0.8,1). But, as mentioned, we prefer smaller value of 7 as long as the convergence is ensured.
Thus we suggest choosing 7 = 0.8 for the IP-LADMM (1.14). For the case where 7 = 0.8, the term

(v* — ")TG(v* — o*) is bounded by the specific bound:

- - 4 1
(=TGR o) = (G -y R + SBIBGE - I

5
O e R T e
5 ) YD 5 Y )
4 1
(Gl =D+ I NP, (4.21)

This result is summarized in the following theorem.

Theorem 4.1 Let {w*} be the sequence generated by (1.14) for the problem (1.1) and w* be defined
by (3.6). Setting T = % in (4.5), we have

O(u) — 0(@") + (w — w")" F(w)
1 . 2 1
> (2l — k12 ik kL2 & ko k+1y)2
> (= Glyt = B + AIBWE -y )
1 _ 1 _
(5l = o 1 + Gly™" = 1% + 1B = )IP))

2
)

20k k12 Lok kL2

k- IXE = A 2), 4.22
(Gl =9 + 550 H (4:22)

5 More comments on 7

In Section 4, we show that 7 € [0.8,1) is sufficient to ensure the convergence of the IP-LADMM (1.14)
and we suggest choosing 7 = 0.8 because of the inequality (4.20). It worths to mention that our
analysis is based on performing some inequalities and the lower bound 0.8 is a sufficient condition to
ensure the convergence of (1.14); it is thus of conservative nature and practically it could be further
relaxed when implementing (1.14). Meanwhile, because of the philosophy of preferring smaller values
of 7 as long as the convergence of (1.14) can be theoretically ensured, it is interesting to ask whether
or not 0.8 is the smallest value to ensure the convergence of the IP-LADMM (1.14). This question
seems to be too challenging to be answered rigorously; but we can show by an extremely simple
example that the smallest value of 7 cannot be smaller than 0.75. Therefore, the bound 0.8 of 7
established in Section 4 is nearly optimal, even it may not be the truly optimal value.

Let us consider the simplest equation y = 0 in R; and show that the IP-LADMM (1.14) is not
necessarily convergent when 7 < 0.75. Obviously, y = 0 is a special case of the model (1.1) as:

min{0-z+0-y|0-2+y=0, z € {0},y € R}. (5.1)

11



Without loss of generality, we take 5 = 1 and thus the augmented Lagrangian function of the problem
(5.1) is

1
L2y, ) = =Ny + S [yl

The iterative scheme of the IP-LADMM (1.14) for (5.1) is

gkt = argmin{ﬁz(x,yk,)\k) } z € {0}}, (5.2a)

. 1 1
(IP-LADMM) {1 = argmin{—y"X + Iyl + Ly~ 3, [ve R}, (520)
ML — \F (R, (5.2¢)

Since 8 =1 and BT B = 1, it follows from (4.5) and (1.12) that
Dy=7D—(1—-1) and D=r—-1>0.

We thus have
Do=7r—1, Vr>1

and the recursion (5.2) becomes

zF =0,

N B (e — 1) (YR — F) =0, (5.3)
)\k+1 — )\k . yk—I—l‘

For any k > 0, we have 2* = 0. We thus just need to study the iterative sequence {v* = (y* A\F)}.
For any given 7 < 0.75, there exists r > 1 such that 7r < 0.75 holds. Setting @ = 7, the iterative
scheme for v = (y, A) can be written as

k1 _ Nk — 1)k
)\k+1 — )\k _ yk—i-l‘
With elementary manipulations, we get
a—1 1
v = 5.5
)\k+1:1_ak+a_1/\k '
which can be written as
1 -1 1
= Playt  with  Pla)=-[ ¢ . (5.6)
a\l—-a a—1

Let fi(a) and fa(cr) be the two eigenvalues of the matrix P(a). Then we have

fl(a):(a—l)l—\/l—a, and f2(a):(04—1); 1—04.

For the function f(c), we have f2(0.75) = —1 and

1 -1

filo) = g((1- 5=l (0= 1)~vi-a))

— 0}2<(Q+2\/1a—7a) —|—(1—a)+\/1—a) >0, Vae(0,0.75).
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Therefore, we have

fola) = (o= 1); 172 1 vVae (0,0.75).

That is, for any a € (0,0.75), the matrix P(«) in (5.6) has an eigenvalue less than —1 and the
iterative scheme (5.5) is divergent. Hence, the IP-LADMM (1.14) is not necessarily convergent for
any 7 € (0,0.75).

6 Convergence

In this section, we explicitly prove the convergence of the IP-LADMM (1.14). With the assertion in
Theorem 4.1, the proof is subroutine.

Lemma 6.1 Let {w*} be the sequence generated by (1.14) for the problem (1.1). Then we have

\ 1
[o* = o[ + f(ﬁIIB( Fy P+ 4lly® - D)

< (=o' H+ < (5||B( — I+ 41y = yMI1D))
4
—(g”yk y* B + = H)\k )\kHHz)- (6.1)

Proof. Setting w = w* in (4.22) and performing simple manipulations, we get
*Hv —v ||H+ (BIIB( —y"IIP + 41" = 1D)
1
> (SRt o+ o ww< — g2+ 4yt - )

+(ZI" - hﬂb+ IV =AY (o) — o) + (0 — )P, (62)

\%

For a solution point of (2.2), we have
0(a*) — 0(u”) + (@* — w*)" F(w") > 0.
Thus, the assertion (6.1) follows from (6.2) directly. O

Theorem 6.1 Let {w"} be the sequence generated by (1.14) for the problem (1.1). Then the sequence
{v*} converges to v™ € V*.

Proof. First, it follows from (6.1) that

Sl =y A X

5 g

s(w-wwH+(mw< — P+ 4y - ) )

(4 = "3+ (BIBGF I + 4l — o)) (6.3)
Summarizing the last inequality over k = 1,2, ..., we obtain
=4 1
(510F = 91 + I = NFR) < ot = oIy + 2 (BIBGP — oI + 4l — o' 1).

k=1
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Because D is positive definite, it follows from the above inequality that

lim [o* — " = 0. (6.4)
k—o0
For an arbitrarily fixed v* € V*, it follows from (6.1) that

1
k k_ k— k = g
e N T = e O [ R A 1)

IN

. 1
o' — o1 F + g(BHB(yO —yHIIP+4lly° - y'[D), VE> 1. (6.5)

Thus, the sequence {v*} is bounded. Because M is non-singular, according to (3.9), {o*} is also
bounded. Let v be a cluster point of {#*} and {#*i} be the subsequence converging to v>°. Let
x> be the vector accompanied with (y>°, A*°) € V. Then, it follows from (4.7) and (6.4) that

w>® e Q, Ou)—0u®) + (w—w)TFw>) >0, YweQ,

which means that w® is a solution point of (2.2) and its essential part v>° € V*. Since v>° € V*, it
follows from (6.5) that

[ =l < ot = o+ (BB -y + 4l - D). (6.6)

U] =

Note that v is also the limit point of {v¥i}. Together with (6.4), this fact means that it is impossible
for the sequence {v*} to have more than one cluster point. Therefore, the sequence {v*} converges
to v>° and the proof is complete. O

7 Convergence rate

In this section, we establish the worst-case O(1/t) convergence rate measured by the iteration com-
plexity for the IP-LADMM (1.14), where ¢ is the iteration counter. Recall that the worst-case O(1/t)
convergence rate for the original ADMM (1.3) and its linearized version (1.9) generated by the prox-
imal ADMM (1.11) with the positive definite proximal regularization (1.12) (actually, the matrix D
in (1.11) could be relaxed as positive semidefinite) has been established in [21].

We first elaborate on how to define an approximate solution of the variational inequality (2.2).
According to (2.2), if w satisfies

weQ, Ou)—0(a)+ (w—u) F(w) >0, Vw e Q,

then 1 is a solution point of (2.2). By using (w —w)T F (@) = (w —@)T F(w) (see (2.3)), the solution
point w can be also characterized by

W e Q, Ou)—0(a)+ (w—0) Fw) >0, Yw e Q.

Hence, we can use this characterization to define an approximate solution of the variational inequality
(2.2). More specifically, for given € > 0, w € Q is called an e-approximate solution of the variational
inequality (2.2) if it satisfies

weQ, O(u)—0(@)+ (w—b) Flw) > —€, Vwe Dy,

where
D(u;) ={we Q|||w—-wu| <1}
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We refer to [7, 21] for more details of this definition. Below, we show that after ¢ iterations of the
IP-LADMM (1.14), we can find @ such that

GeR and  sup {0(@) — 0(u) + (0~ w) Flw)} < e~ 0(%). (7.1)
WED (1)

Theorem 4.1 is again the starting point of the analysis.

Theorem 7.1 Let {w*} be the sequence generated by (1.14) for the problem (1.1) and w* be defined
by (3.6). Then for any integer t, we have

Olii) — 6(u) + (i — w) F(w) < o (o =o' + 2 (BIBG )P+ 410~ y'13)),  (72)

where

m—\»ﬂ

> a* (7.3)
k=1

Proof. First, it follows from (4.22) that

O(u) — (") + (w — )TF( )

1
> (o= o+ £ (BB ’f+1>|r2+4uy’f—yk+1||%))
1 _
5 (o= 0¥ + £ (BIBGA" — I + 4l — 5413)).

Thus, we have

0(") — 0(u) + (@* - w)TF<w> - %(nv — oM+ 2 (BIBGY — MR + 4l — 1))

< (o= M3+ L (BIBEF — M) + 4l = 1)) (7.4)
Summarizing the inequality(7.4) over k = 1,2,...,t, we obtain
t t
Do 0@ = t0(u) + (D" - (w) < HU — ol + 45 (ﬂHB(y —yOI7 + 4y’ = y'1D).
= k=1
and thus
1, 1
SO 0(4) — 0) + (i — ) F(w) < o (o =o'+ £ (BIBG ) + 4l ~4'13))- (7.5)
k=1
Since #(u) is convex and
t
-1 ke
Ut E(ZU ),
k=1
we have that ,
_ 1 -
O(uy) < E( Q(uk))
k=1
Substituting it into (7.5), the assertion of this theorem follows directly. a

For a given compact set D(g) C €2, let
1
d := sup{|lv — o' |[F + g(BHB(yO —y")I?+4lly° = y'ID) [w € Dy}
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with v0 = (%, A?) and v! = (y',A!) the initial point and the first computed iterate, respectively.
Then, after ¢ iterations of the IP-LADMM (1.14), the point w; defined in (7.3) satisfies

weN and s%p {9(11) —0(u) + (w — w)TF(w)} < 2% = O(%),
we (@)

which means w; is an approximate solution of the variational inequality (2.2) with an accuracy of
O(1/t) (recall (7.1)). Since wy; is defined in (7.3), the worst-case O(1/t) convergence rate in Theorem
7.1 is in the ergodic sense.

8 Linearized augmented Lagrangian method via positive-indefinite
proximal regularization

The original ADMM (1.3) can be regarded as a splitting version of the ALM proposed in [23, 27].

Our analysis for the IP-LADMM (1.14) can be easily simplified to the ALM and thus a linearized

ALM via choosing a positive-indefinite proximal regularization can be proposed. In this section, we

provide some necessary details and skip those similar as the analysis in Sections 3-7. We purposively

reuse some notation for a clearer comparison with the analysis in Sections 3-7. Explanations and

definitions of some notation having the same meaning as those in previous sections are also skipped
for succinctness.

8.1 Brief review of the ALM

To start the discussion of ALM, we consider the canonical convex minimization model with linear
constraints:

min{f2(y) | By = b, y € Y}, (81)

which can be regarded as a special case of the model (1.1) with #;(z) = 0 and A = 0. Let the
Lagrangian and augmented Lagrangian functions of the problem (8.1) be

L(y,\) = 6(y) — A" (By — b), (8.2)

and 5
Ls(y, \) = Oa(y) = X' (By = b) + 5 || By — b, (8.3)

respectively. A saddle point of L(y, ), denoted by v* = (y*, A\*), can be characterized by the
variational inequality

vt eV, 0(y) —0(y*) + (v—v)TF@*) >0, Yve, (8.4)

vz(i), F(U):<;yBi)l\)> and V=) xR". (8.5)

The iteration of the ALM originally proposed in [23, 27] for (8.1) reads as

where

yk‘H = arg min{ﬁg(y, /\k) ‘ yE€ y}, (8.6a)

(ALM) { ML= \F _ B(By*tt —b). (8.6b)
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8.2 ALM with positive-definite proximal regularization
Similar as the proximal ADMM (1.11), the subproblem (8.6a) can be proximally regularized and the
resulting scheme is

) 1
yt = argmin{Ls(y, \) + Slly = o*I1D [ v € V), (8.7a)
Ml — 2k g(ByFTt — 1), (8.7b)

(PD-ALM)

where D € R"2*"2 ig required to be positive definite. The convergence of (8.7) can be easily derived.
Indeed, similar as Section 4, skipping the details, we can rewrite the scheme (8.7) as the variational
inequality:

T
k+1 T \k+1 k+1 _ k
(L y—y —B7A D0 ¥ -y
0y) —0(y™"") + (AAM) {(Byk+1b> + (0 17, ) Lt >0,VveV. (88)
Setting v = v* in (8.8) and using the notations in (8.5), we get
yH =y ‘(D0 y* -yttt k1 k+1 T o, k1
)\k+1 —\* 0 %Im )\k _ )\k+1 > H(y ) - H(y ) + (U -V ) F(’U )

Because (vF+1 — )T F(vFF1) = (0F*! — v*)TF(v*) (see (8.5)), and v* is a solution point, the right-
hand side of the last inequality is non-negative. It is easy to see that we have

(vk+1 _ ’U*)TH(Uk _ vk+1) >0, (89)

D 0
H= oo
0 1o,

The matrix H is positive definite because D is assumed to be so. Then, it follows from (8.9) that

where

[ [/ A [V R /A L (8.10)

which essentially implies the convergence of the proximal ALM (8.7) via positive-definite proximal
regularization.

8.3 Linearized ALM via positive-definite proximal regularization
If the matrix D in (8.7) is chosen by
D =rl,, — BBTB with r > g|BTB|, (8.11)

then the ALM with positive-definite proximal regularization (8.7) is specified as the linearized version
of ALM whose y-subproblem reduces to

. r 1 2
y* = argmin{0s(y) + 5 lly = [v* + S BT = B(By" - b)]|” |y € ¥}
Again, this problem reduces to estimating the proximity operator of #3(y) when Y = R™2. We

refer to, e.g., [29] for some efficient applications of the linearized version of ALM to sparse- and
low-rank-driven models.
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8.4 Linearized ALM via positive-indefinite proximal regularization

Similar as Section 4, we relax the positive definiteness requirement of D in (8.7) and propose the
linearized ALM via positive-indefinite proximal regularization:

1
k+1 __ . k 1 kg2
ap-LaLM) ¢V T argmin{Ls(y, \") + S lly =", | v € ¥}, (8.12a)
L= N — BBy — 1), (8.12D)
where

We call the scheme (8.12) succinctly as “indefinite proximal linearized ALM”, further abbreviated
as “IP-LALM?”. It is trivial to see that with some constants ignored, the subproblem (8.12a) can be
written as

Yt = argmin{fa(y) + %THy - [yk + %BT(Ak — B(By" — b))] H2 | y eV}, (8.14)

which also reduces to estimating the proximity operator of 02(y) when ) = R"2.

8.5 Convergence analysis of the IP-LALM

Similar as Section 3, we define the artificial vector ¥ = (¥, \¥) by
g =yt and AP =\ — B(ByF —b), (8.15)

where y**1 is the output of (8.12a) from the given (y*, A\¥). Then, following the steps in Section 3, we
can easily see that the IP-LALM (8.12) can be reformulated as the prediction-correction framework

* eV, y) —0@") + (v —TF@EF) > (v —*)TQWF — o), Yve,
Uk-i-l — vk _ M(vk o ﬁk)7

where @) and M are the same as (3.8b) and (3.9b), respectively. Then, the remaining part of
establishing the global convergence and worst-case O(1/t) convergence rate for the IP-LALM (8.12)
immediately follows from the analysis in Sections 6 and 7. We omit the details for succinctness.

9 Conclusions

In this paper, we propose a new linearized version of the alternating direction method of multipliers
(ADMM) via choosing a positive-indefinite proximal regularization for solving a convex minimiza-
tion model with linear constraints and an objective function represented as the sum of two convex
functions without coupled variables. Without any additional condition on the model itself, we re-
lax the positive-definiteness requirement that is popularly required in existing literature of proximal
versions of ADMM. Compared with well-studied linearized versions of ADMM in existing litera-
ture, the new linearized ADMM still can alleviate an ADMM subproblem as easy as estimating
the proximity operator of a function for some applications while it allows larger step sizes. This is
an important feature to ensure faster convergence for various applications. The global convergence
and worst-case O(1/t) convergence rate measured by the iteration complexity are established for
the new linearized ADMM. As a byproduct, we also propose a linearized version of the augmented
Lagrangian method via choosing positive-indefinite proximal regularization; this algorithm itself is
useful for many applications.

Finally, we would mention that, to expose the main idea more clearly, our discussion only focuses
on the original prototype ADMM scheme (1.3) with a constant parameter ; and only one subproblem
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is proximally regularized. Our discussion based on the proximal-indefinite proximal regularization
can be further extended to many variants of ADMM such as the strictly contractive version of the
symmetric ADMM (also known as the Peaceman-Rachford splitting method) in [17], the case with
dynamically-adjusted penalty parameters in [20], the case where both the subproblems are proximally
regularized in [16], the case where the proximal matrix can be dynamically adjusted in [16], and even
some more complicated cases where the mentioned variants are merged such as [24, 25]. But the
discussion in our current setting still represents the simplest yet most fundamental case that is the
basis of discussing the possibility of relaxing the positive definiteness requirement for other more
complicated cases.
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