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Abstract—Due to the increased utilization of gas-fired
combined-cycle units for power generation in the U.S., accurate
and computationally efficient models are more and more needed.
The recently proposed edge-based formulation for combined-
cycle units helps accurately describe the operations of combined-
cycle units including capturing the transition processes and
physical constraints for each turbine. In this paper, we derive
tighter constraints and several families of strong valid inequalities
to strengthen the edge-based model, by exploring the physical
characteristics of combined-cycle units and utilizing the edge-
based modeling framework. Meanwhile, we provide the valid-
ity and facet-defining proofs for certain inequalities. Finally,
the computational experiment results indicate that our derived
formulation significantly reduces the computational time, as the
improved linear programming relaxation of our proposed formu-
lation reduces the root-node gap significantly, which verifies the
effectiveness of proposed constraints and strong valid inequalities.

Index Terms—Combined-Cycle Units, Unit Commitment,
Strong Valid Inequalities, Strong MILP Formulation.

I. NOMENCLATURE

A. Sets

A Arcs in the state transition graph.

A3 Arcs linked to configuration & in the state transi-
tion graph.

A Incoming arcs of configuration & in the state tran-

sition graph.

A Outgoing arcs of configuration % in the state tran-
sition graph.

Aj, Self-loop arcs of configuration % in the state tran-
sition graph.

A Arcs indicating turbine 4 shuts down.

A Arcs indicating turbine ¢ starts up.

Uu Combustion turbines (CTs) in a combined-cycle
unit.

Uusr Steam turbines (STs) in a combined-cycle unit.

C Configurations in the state transition graph.

" Configurations indicating turbine ¢ is offline.

c Configurations indicating turbine 7 is online.

T Scheduling time periods.
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Quick start capacity of a combined-cycle unit.
Minimal power output of configuration k& of a
combined-cycle unit.

Maximal power output of configuration k£ of a
combined-cycle unit.

Total capacity of a combined-cycle unit.
Ramping down limit of arc a in the transition
graph.

Ramping up limit of arc a in the transition graph.
Sustained ramping limit of configuration £k
(MW/min).

Hot start-up cost of turbine 3.

Warm start-up cost of turbine i.

Cold start-up cost of turbine .

Shut-down cost of turbine .

Cold start time of turbine <.

Warm start time of turbine i.

Minimum online time for turbine 7.

Minimum offline time for turbine <.

C. Binary Decision Variables

a
2t

Indicating the status of arc a at time period .

D. Continuous Decision Variables
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STt

Operating cost of a combined-cycle unit.
Operating reserve amount of a combined-cycle unit
at time period t¢.

Generation amount of configuration k at time
period t.

Generation amount of a combined-cycle unit at
time period .

Generation cost of a combined-cycle unit at time
period t.

Generation cost of a combined-cycle unit on con-
figuration k at time period ¢.

Status change cost (transition cost) of a combined-
cycle unit at time period ¢.

Start-up cost of turbine ¢ at time period .
Shut-down cost of turbine ¢ at time period ¢.
Spinning reserve amount of a combined-cycle unit
at time period t.

II. INTRODUCTION

Several factors such as fuel prices, environmental regu-
lations, flexibility, and energy policies increase U.S. ISOs
dependence on natural gas generation. For instance, MISO
includes natural gas combined-cycle units in its future gener-
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ation capacity expansions [1]. As the share of combined-cycle
units in ISOs’ generation portfolio increases, U.S. ISOs start
to improve the model of combined-cycle units in their unit
commitment models [2].

U.S. ISOs face two challenges when incorporating the
combined-cycle unit models into traditional thermal unit
commitment problems: (1) deriving an accurate model and
(2) computational efficiency. The combined-cycle unit model
is expected to accurately describe the operations of the
combined-cycle unit. However, a more accurate model is usu-
ally more complicated, which leads to a heavy computational
burden. Accordingly, it is challenging to keep a satisfac-
tory computational performance when the accurate model of
combined-cycle units is included in the traditional thermal unit
commitment model.

In most circumstances, U.S. ISOs reduce the computational
burden to solve a problem by reducing the accuracy of the
combined-cycle unit model. This is the reason why current
U.S. ISOs use an aggregated model or a pseudo unit approach
to formulate the combined-cycle units [3]. However, these two
modeling approaches oversimplify the coupling relationships
among CTs and STs in a combined-cycle unit. For instance,
the aggregated model uses a traditional thermal unit com-
mitment model to represent the whole combined-cycle unit
by ignoring the relationships among CTs and STs. Although
the pseudo unit approach makes progress by considering the
generation amount relationships among STs and CTs, this
approach cannot capture the transition process of the combina-
tions of CTs and STs [4]. As a result, these less accurate mod-
els bring challenges to the feasibility of operations. For exam-
ple, prohibited transitions may appear in the optimal solutions
obtained by the aggregated model and pseudo unit approaches.
Therefore, some ISOs start to develop a configuration-based
modeling approach (see, e.g., the pioneer works in [5] and [6]
for the dynamic programming and MILP formulations) which
can clearly describe the transition process of combined-cycle
units among different modes (configurations). CAISO and ER-
COT have implemented the configuration-based model in their
markets [7] and [8]. As compared to the aggregated model
and pseudo unit approaches, the configuration-based model
significantly increases the computational time to solve the
integrated unit commitment problem including both combined-
cycle and traditional thermal units [9]. Recently, research
progress has been made in providing tight MIP formulations of
configuration-based combined-cycle units (see [7] and [10]).
However, the configuration-based model still faces challenges
in terms of accuracy because this approach cannot capture the
operating constraints and costs for each turbine, as indicated
in [11].

In order to improve the computational performance and
accuracy of the combined-cycle unit model, an edge-based
model is proposed in [12] to provide an accurate model for the
problem. This model tracks the operating status of each turbine
by using arcs in the transition graph as decision variables in
the mathematical programming formulation. These arcs can
also clearly represent the transition relationships among CTs
and STs. This new modeling framework can exactly describe
the operating physical constraints including the min-up/-down

time requirements and time dependent start-up costs of each
CT and ST in a combined-cycle unit by tracking its start-up
and shut-down processes.

In this paper, we focus on improving the computational
efficiency. More specifically, we improve the computational
performance by taking advantage of the characteristics of
current commercial MILP solvers, such as CPLEX, and the
special structure of the transition graph for the problem. MILP
solvers have been used to solve unit commitment problems
by ISOs in the U.S. [13]. Following the branch-and-bound
framework, advanced MILP solvers introduce cutting plane
approaches, heuristic strategies, and presolve techniques [14]
to solve the problem more quickly. Recent research progress in
new techniques makes advanced MILP solvers a breakthrough
to quickly solve large-sized problems.

Most MILP solvers implement the branch-and-bound algo-
rithm associated with the linear programming (LP) relaxation
at each branching node, including the root node. The optimal
values of these LP relaxation problems at each node are impor-
tant performance indicators for the solvers. Based on current
LP relaxation optimal value and feasible integer solutions,
the solvers decide the heuristic and branching strategies. In
addition, the root-node LP relaxation has a significant impact
on the choice of heuristic strategies and cutting planes. For a
minimization MILP problem, a better root-node LP relaxation,
which usually corresponds to a tighter MILP formulation, can
provide a better lower bound, which helps obtain a better solu-
tion in a short time during the branch-and-bound process. Sig-
nificant research progress has been made on how to strengthen
the traditional thermal unit commitment formulation. For in-
stance in [15], a classic MILP formulation is developed with
three binary variables (start-up, shut-down, and the unit status).
In [16], the min-up/-down time polytope based on two binary
variables is strengthened. In [17], a computationally efficient
MILP formulation with a single binary variable for each
unit status is proposed. Recently, in [18] perspective cuts are
proposed to approximate the quadratic generation cost curve.
In [13], a tight unit commitment formulation is studied by the
polyhedral approximation of the perspective reformulation. In
[19], several families of strong valid ramping rate inequalities
are derived to tighten the formulation. Furthermore in [20],
a new set of decision variables is introduced to form a tight
formulation.

Moving in a similar direction, we strengthen the edge-
based formulation for combined-cycle units to improve its
computational performance. We summarize our contributions
as follows:

1) We derive tighter min-up/-down and ramping rate con-

straints for the edge-based combined-cycle unit model.

2) We provide several families of strong valid inequalities

in terms of ramping rates for a combined-cycle unit by
exploring the special structure of the transition graph
of the problem. We show that the inequalities are valid
for the whole problem and facet-defining under mild
conditions.

3) We conduct computational experiments on different data

sets, which verify the effectiveness of our proposed
formulation.
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The remaining part of our paper is organized as follows. In
Section III, we describe the original edge-based formulation.
In Section IV, we describe and explain our innovative tighter
constraints and strong valid inequalities for combined-cycle
units. In Section V we report and analyze our computational
results. Finally, we conclude this study in Section VI.

III. EDGE-BASED FORMULATION OF A COMBINED-CYCLE

UNIT
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Fig. 1. Configuration Transition Graph

In this section, we first introduce the basic principle of
edge-based formulation for combined-cycle units as described
in [12]. Then we summarize the mathematical formulation of
the edge-based formulation of a combined-cycle unit.

Fig. 1 displays all possible combinations of CTs and STs
(i.e., configurations) and related transitions among different
configurations in a combined-cycle unit with 2 CTs and 1
ST, which works on one of the configurations at each time
period. In the edge-based formulation, each configuration is
considered as a pseudo thermal unit, and each transition arc
in the graph is designed corresponding to a decision variable
to track the transition process within a combined-cycle unit.
This edge-based formulation can be summarized as follows:

DTS

281, Vk € C, Vi, (1)

ac( A U A}) ac(AP U AY)

oc = Z(pct + s¢), 2
teT

pey = chf,Vt, €)]
keC

scp = Z (sul + sdb), Vt, “)
€Ut

sdi = SDC; Y 2,Vi € U7V, (5)

acAY
sui > SUC], Z 2y, Vi € U, Vt, (6)
ac Ay
T'L

warm

sui > SUCfm( Z 2y — Z Z zta_T),

ac A} T=T},+1ac Al
Vi e UT, Vi, @)

i
Tcnld

sup = SUCL (D == Y 3w,

a€ A} T=T}+1ac Al
Vi € U, Vt, ®)
Yo=Y Vi eUTuld,
a€lU, g cott A acAY

Vre{t+1, - min{T,, T +t—1}},Vt, )

Z 22 <1— Z zg Vi e UTUUT,

a€Uyecm A ac A
re{t+ 1, min{T, T +t— 1}},Vt, (10)
pr=Y iV, (1)
keC
P Y ) <phvkecw, (12)
a€(ARUA})
<P Y a) ke, (13)
ac(ARUAY)
mrsre <> RB(Y ) (14)
kec a€(Af U AY)
s <y 10R;§5( 3 zg),\ﬁ, (15)
kec ac(APUAY)
ory — 514 < PQS( 3 zg),k —0,Vt, (16)
ae(.A;SU.A;i)
pe41 —pe < RUazfy + M(1 = 2¢4),Va € AVt (17)
Pt — pe+1 < RDazfyy + M(1 — 2{44),Va € AVt (18)

By considering the initial stage of the combined-cycle unit,
logical constraints (1) keep tracking the transition process
corresponding to each time period ¢t and configuration k.
Constraint (2) describes the operating cost of a combined-
cycle unit, which includes the production and transition costs.
Constraints (3) indicate that the production cost is the sum
of the production costs corresponding to each configuration
since the combined-cycle unit works on only one configura-
tion at each time period. Note here that typically pcF is a
nondecreasing quadratic function, which can be approximated
by a piecewise linear function. Constraints (4) describe the
transition cost at each time period, which is equal to the
sum of the start-up and shut-down costs of a combined-cycle
unit. More specifically, the shut-down costs are described
in constraints (5). The time dependent start-up costs are
described in constraints (6) - (8) with the assumption that
SUC!, < SUC! < SUC!,,. Constraints (9) and (10) enforce
the min-up/-down time requirements for each turbine in a
combined-cycle unit respectively. Since each configuration
is a pseudo thermal unit, the operating restrictions of these
pseudo thermal units are represented in constraints (11) - (13).
Equations (11) provide the representation of the generation
amount of a combined-cycle unit. Constraints (12) and (13)
restrict the generation amount of each configuration from
below and above respectively. Constraints (14) - (16) describe
the spinning reserve and operating reserve requirements for
a combined-cycle unit. Finally, constraints (17) and (18)
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describe ramping up/down rate restrictions. The M in each
of these constraints is equal to the capacity of the combined-
cycle unit (P*).

Finally by considering the initial status of the combined-
cycle unit, it is easy to observe that all arcs in the transition
graph have the following relationship, which are implied by

constraints (1).
Z zg¢ = 1,Vt.
acA

19)

IV. STRENGTHENED FORMULATION

In this section, we first explore the relationship between
the statuses of the units and the transition graph. Then, we
derive tighter constraints and several families of strong valid
inequalities to improve the computational efficiency to solve
the problem.

A. Transition Statuses of Units

In the edge-based formulation, we use the edge variables to
track the states of each turbine. As we know, each turbine has
four transition statuses, which are start-up, shut-down, keeping
on-line, and keeping off-line. Accordingly, all these edges can
be divided into four groups for each turbine. We use CT; as an
example to explain these four groups as shown in Fig.2. The
dash dotted edges represent the shut-down process of turbine
CT;. The dash edges represent the start-up process of turbine
CT;. The solid edges represent CT; keeps online. The dotted
edges represent CT; keeps offline. Mathematically, these four
groups have the following relationships as shown in (20) -
(23).
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Fig. 2. Divided Groups

B. Tighter Constraints
1) Min-up Time Constraints:

T} -1
P A D DI S
k=1 acAY a€lU, ¢ corr A

Vi€ UTUUT, Vit € {T?

mu?

o 77:nd}'

Motivated by the logic developed by [16] for the traditional
thermal generation units, we develop tighter minimum up
requirement constraints for each turbine in a combined-cycle
unit as shown in (24). This logic can be described as that if
turbine ¢ is online at time period ¢, then this turbine starts up
at most once during time interval [t — T + 1,¢ — 1]. In other

words, if turbine i starts up at time interval [t —T¢ + 1, — 1],
then the configurations without turbine ¢ cannot be online at
time period t. In the transition graph, if one of the arcs in
Ay, representing the start-up process of turbine ¢, is active
during time interval [t — T + 1,t — 1], then arcs Ukecor Ax
connected to the configurations (C;") without turbine ¢ cannot
be active. In the following part, we show that constraints (24)
are tighter than constraints (9).
To begin with, we rewrite constraints (9) as follows:

Yol ) ANVieuTuuT, (25
acAY a€lUy cooft Al
Vre{s+1, - min{T,, T +s—1}},Vs€T.
By introducing x € {1,---,7T% — 1}, we reformulate con-
straints (25) as (26).
o<1 ) L VieUuTuuT,  (26)
ced el cop 4
Vee{l,- T, —1},s + K < Toy, Vs € T.
Then, we replace s 4 x with ¢ to obtain (27).
Yo <1— > pMieuTuuT, (@)

ecAY

Veell,-,

e€Uj e coft A
T -1}t —k > 1,V € {2, To}.

Therefore, we only need to show inequalities (24) are tighter
than inequalities (27) in the following two cases.
First, we consider ¢t € {T?,---,T..}. Then we can remove

the condition ¢t — k > 1 and obtain (28) from (27) as follows.
Sz <1— > FMeUTuuT,  (28)

su all
eed] eEUkecgff Aj,

Ve e{l,--- T —1},vt € {T!

mu mu?

o 77:nd}'

It is easy to observe that constraints (28) are dominated by
constraints (24).

Next, we consider ¢ € {2, T¢
be rewritten as follows.

Zztefmgl_

eCAY

— 1}. Note here that (27) can

26V EUTUUT,  (29)

>

. all
EEUkechf ‘Ak

Ve € {l,---,t—1}Vt € {2, T} —1}.

mu



SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS, AUGUST 2016

In constraints (29), we can have k € {1,--- ,¢ — 1} due to
t—1< Tnfu — 1 and Kk <t — 1. Then, it is easy to check that
constraints (29) are dominated by (30), which are equivalent
to (31).

t—1

IPIETIE

K=1ec A}

(30)

>

. Aall
eEUkecgft Al

26 Vi € UTUU,

vt e {2,T —1}.

mu
t—1

DI

w=1ec A}

vt € {2,T —1}.

mu

2 Vi EUTUUT,  (31)

>

, all
eeUkecgg ‘Ak

Now we show an equivalent formulation of constraints (31) is
dominated by (24). To that end, we first rewrite the left hand
side (LHS) of constraints (31) by using the following logic
relationship as shown in constraints (32), which are further
equivalent to (33) by taking summation over w € [2,¢].

e e e e
P D I D D S D

GEA;-“UO" EGA?‘UO" eE.szd EEA?‘

Vi e T,VielUdT uU.

) SD ST SIS SENE o Sp

(32)

w=2 e€ AN e AgUon e€ AL w=2ec Ay

Vte T, Vi cUTuUU™ (33)
t t

PIDIEEED T DD

w=1e€ A} e€ AL eCAY w=2cec Ay

YVte T, Vi cUT UUT (34)

By moving the item ) . A z{ to the LHS of constraints
(33), we obtain (34). Therefore, we can reformulate constraints
(31) as constraints (35) at given time period ¢ by moving the
item ) A z¢ in (31) to the LHS based on the relationships
indicated by constraints (22). Furthermore, we can rewrite
constraints (35) as (36) by using constraints (34).

€
PO

e AYUAN
—1LVi e UTuU™,

t

Sy st

w=1ec A}

vt € {2,T"

mu
t
2 d= D A+) Y Asl- D, A
CGA;UUOH eGASi”U“ w=2 CGA? eEA?dUAgﬂ

Vte {2, —1},Vi e UT UU. (36)

mu

(35)

Based on (19) and (21), we can observe that constraints (36)
are equivalent to constraints (37).

ST

w=2ec Ay e€ Aron

vt € {2, T —1},Vi c U UU™".

mu

(37

By following the similar process to obtain constraints (37),
we get an equivalent formulation (38) of constraints (24) when

t = T . Obviously, the constraints in (37) at given time period
t € {2,T¢ — 1} are dominated by constraints (38).

Thu
Z Z 25 < Z 2{,Vi e UTUU.

w=2 eeAz_d eeAsiqun

(38)

Hence, we finished the proof by discussing two cases.

2) Min-down Time Constraints: We can formulate tighter
constraints for min-down time requirements following the sim-
ilar idea as the reformulation of minimum up time requirement
constraints.

Ti—1
a a
E E zp . <1— E zg,
r=1 aeAy a€Ujecon AY
i

Vi € UTUUSTVEE{TE - Toa)- (39)

Constraints (39) indicate that if one of the arcs in A’
representing the shut-down process of turbine ¢, is active
during time interval [t — 77/, + 1,¢ — 1], then arcs Uy ccom Aj!
connected to the configurations (C;") with turbine ¢ cannot
be active. This means the configurations with turbine ¢ must
be offline at time period ¢ when turbine ¢ shuts down at
time interval [t — T¢ + 1,¢ —1]. Similarly, following the
arguments as described in the previous part, we can observe
that constraints (39) are tighter than constraints (10).

3) Ramping Rate Constraints: As mentioned previously,
the edge-based formulation tracks the transition process of
a combined-cycle unit by recording the status of each arc.
The status of each arc indicates the operating status of the
combined-cycle unit, which further determines which ramping
rate limit (corresponding to each arc) affects the change of the
generation amount at each time period. Hence, ramping rate
constraints (17) and (18) use the arc decision variables to make
the choice of ramping rate limits. Instead of using big-M, we
propose the following ramping rate constraints (40) and (41).

P —pr < Y RUG, VEET, (40)
acA

pr—pir1 < Y RDgzfy V€ T. 1)
ac€A

Because only one of the arcs in the transition graph can be
active at each time period ¢ as shown in (19), only one item
in the right-hand side of (40) can be positive and all others
would be zero. This positive item represents the active arc that
provides the ramping up rate limit. The same analysis can be
applied to ramping down constraints (41).

By considering constraints (19) and the fact that M >
max{RU,,RD,}, Va, it is easy to check that constraints (40)
and (41) dominate constraints (17) and (18), respectively.

Next, we show that inequality (40) is facet-defining for the
projection of the whole feasible space (denoted as Q) onto S =
{2 1,pt41,pt Va € A} when P, < P, +RU,,,, < P,. As
there are [ A|+2 variables and . 4 2., = 1, the dimension
of S is | A| + 1. In order to prove that inequality (40) is facet-
defining for S, we need |A| + 1 affinely independent points
which satisfy p;1 —p: = >, 4 RUa2{; at time period ¢+ 1
as shown in Table I. Similarly, we can show inequality (41)
is facet-defining for the space S under mild conditions.
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TABLE I
|A| + 1 AFFINELY INDEPENDENT POINTS

2 Pt+1 Pt
Arc i
la(m1,n1)a(ms, n2) la(myaj—1,myaj—1a(m ), na))
(m1,n1) 1 0 0 0 0 P +RUs(my ng) | By
(m2,n2) 0 1 0 0 0 Py FRUa(mgng) | Loy
0 0 0 0
Pt
(myaj-1,m4-1)] 0 0 0 1 0 HA -
RUa(m 41 1.m4) 1)
Pyt
(mya;n4)) 0 0 0 0 1 E,”‘A‘
RUa(m, 4 .14
P, +
(m1,m1) 1 0 0 0 0 P, +c
RUq(myny) €

C. Strong Valid Inequalities

1) Single-Arc Ramping Rate Inequalities: In the previous
section, inequalities (40) and (41) focus on the change of
generation amount p; for the whole combined-cycle unit.
Notice that equations (11) indicate that only the online con-
figuration of the combined-cycle unit provides the generation
amount. Now, we focus on the change of generation amount
pk at each configuration of the combined-cycle unit. Given a
specific arc a(n,m), the combined-cycle unit transitions from
Configurations n to m. Accordingly, we focus on ramping
rates and propose strong valid inequalities corresponding to
this arc a(n,m), named single-arc ramping rate inequalities
as follows:

Py —pp SRUCmZ™ 4 B (0 Y Ay
a€(AR, U AL
~ (Y ) (B - Pa)E ™,
a€(AR U AY)
Va(n,m) € ANt €T, (42)

PP = pity SRDUVZE™ 4 B,

>

ac(Ap, U A3
Va(n,m) € AVt € T.

> )

ac(AR UAY)

- P, ) + (B — P)z T,

(43)

Note here that it is not necessary to distinguish Configuration
n from Configuration m in both inequalities (42) and (43).
When n = m, it means the combined-cycle unit keeps working
on one configuration, where the ramping rate is within the
corresponding configuration. When n # m, it means the
combined-cycle unit transitions from one configuration to
another. In this case, the ramping rate is between these two
configurations.

First, we show the validity of ramping up inequalities (42)
for a given arc a(n,m) by discussing four possible cases as
follows.

Case 1: the combined-cycle unit works on Configuration
n at time period ¢t and works on Configuration m at time
period ¢t + 1. It follows that arc a(n,m) is active at ¢ + 1
in this case, and the ramping rate limit corresponding to arc

a(n,m) is selected to limit the change of the generation
amount of the combined-cycle unit from ¢ to ¢t + 1. Accord-
ingly, we have zfﬁ’m) = 1, Zae(AinUAs])Zta 1, and
Zae( Ain A3 ) z¢y1 = 1. Then inequaTitiesn(42) convert to
Py —pf < RU%(™™) which is valid due to constraints 7).

Case 2: the combined-cycle unit works on Configuration n
at time period ¢ and does not work on Configuration m at
time period ¢t 4 1. It follows that arc a(n,m) is not active at
time period ¢ + 1 in this case, and the ramping rate limit
corresponding to arc a(n,m) will not be selected to limit
the change of generation amount of the combined-cycle unit.
Accordingly, we have zfﬂm) =0, Ypeanyas) # = L
and Zae( Ain A ziy1 = 0. Then inequalities (42) convert
to —py < —P, which is valid due to constraints (12).

Case 3: the combined-cycle unit does not work on Configu-
ration n at time period t. However, it works on Configuration

m at time period ¢+ 1. Similar to Case 2, we have szﬁ’m) =0,

Zae(Ai;;UA;L) z¢ = 0, and ZGE(A‘?,“,LUA%L) zfy; = 1 in this
case. Then inequalities (42) become pi’}; < F,,, which is
valid due to constraints (13).

Case 4: the combined-cycle unit neither works on Config-
uration n at time period ¢, nor works on Configuration m

at time period ¢ + 1. It follows that we have zfﬂ’m) =0,

Zae(Ai;; Uz =0, and Zae(Ai;;L U Ay 241 = 0. Inequal-
ities (42) become 0 < 0.

These four cases cover all scenarios of inequalities (42)
for a given arc a(n,m). To make it clearer, we summarize
this analysis in Table II. Similar analysis can be applied to
inequalities (43) and is summarized in Table III.

TABLE I
VALIDITY OF RAMPING UP INEQUALITIES (42)

Value of Binary Variables Inequality
Case a(n,m)
D ae(An UA) % | Doae(AnUAs) 21 | 21 LHS RHS
1 1 1 1 p;n+1 _ p;z RU“ n,m)
2 1 0 0 —pf -P,
3 0 1 0 jou P,
4 0 0 0 0 0
TABLE III
VALIDITY OF RAMPING DOWN INEQUALITIES (43)
Value of Binary Variables Inequality
Case a(n,m)
Dac(An UA) % | Doae(dinUAs) 241 | 21 LHS RHS
1 1 1 1 p? _ p;‘il RD{I(MJH)
2 1 0 0 P P,
3 0 1 0 it | —E,
4 0 0 0 0 0

Next, for each (n,m) € A at t + 1, we show inequality
(42) is facet-defining for the projection of the whole feasible
space (denoted as Q) onto S = {zf, 2 |,p}, pihy, Va €
A} when P, < P, +RU*™™ < P and P, — P, <
RU(™™) V/(n,m) € A, where S consists of all the variables
describing inequality (42). As there are 2(|.A| + |C|) variables
in S, > ieanyan 2 = Lae(amy.ay) g1, Vk € C, and
> acA z¢ =1, the dimension of the projection of O onto S is
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2| A| 4 |C| — 1. In the following part, we show 2|A| + |C| — 1
affinely independent points which satisfy the equality of (42)
to prove the facet-defining property. We let € be an arbitrarily
small positive number in the following part of this paper. As
shown in Table IV, we divided these 2|.4|+|C| — 1 points into
14 separated groups. Each row in this table represents a point
satisfying equality and each column represents a variable. To
better construct points regarding variable z{', ;, we divided the
arc set A into 6 separated sets by giving arc (n,m) as shown
in (44). Similar, we divided the arc set A for variable z{ as
shown in (45). In this table, I represents the identity matrix,
E represents the vector with 1 at each component. In addition,
E; represents the vector with 1 at the first component and 0O
at others. For given arc (n,m), we construct these points as
follows:

A=A UA UA3 U AL UA; U Ag
A = {(n,m)}
Ay = {(k,m),k € Cypn, k #n}
3—{( $),8 € Cpsyy s £ m}
={(k
(

(44)

, 1), Vk € Cym, k #n,Vr € Cxy, 7 # m}
As = {(z,2),x €C,x #n,x # k}
-AG:{(l‘7y)avyecw—)ax#nax#k7y7éx}

A=A UAUA3U A UAs U Ag (45)
Ay ={(n,n)}

Ay = {(u,n),u € C_op,u # n}

Az = {(k, k), k € Cypn, k #n}

Ay = {(0, k), k € Coom, k # 1,0 # kyv € Coyp}

As ={(z,2),2 €Cox #n,x £k}

Ag = {(w,z),w € Cypyw # x,x #n,x # k} (46)

In Group 1, we construct one point based on the arc (n, m) by
letting zfﬂ R =1,p, = P, +RU“"™™) p, =
P,,. In Group 2, we construct |C_,,,| — 1 points based on the
incoming arcs of Configuration m except the arc (n,m) (1 e.
Ay) by letting zt(k R A | oy = P oph =
Pm — RUF™) for each k € C_ypm, k % m. In Group 3, we
let Z?J(FTIL,S) =1,z a(n n) _ _ 1»Pf+1 _ Bn + RU“(“S),p? _ Bn
for each outgomg arc of Configuration n except arc (n, m)(i.e.
{Va € A3}), where |C,,_,| — 1 points are generated. In Group
4, we study the outgoing arcs of Configuration k, which can
transition to Configuration m except configuration n as shown
in A,. Notice that arcs (k,m) are not in the set A,. Then,
ktn ([Ck| = 1) (ie. |A4]) points by

we generate Y, o
= 1Y =1, = P+ RUMED, pb =

letting 2,y
P,.. In Group 5, we focus on the self-looping arcs for each
configuration except the configurations which can transition
to Configuration m (i.e. As). Accordingly, |C| — |C—,,| points
are constructed by letting zfﬁ’w),zf@’m) =1,pf, =P, +
RU(®®) pr — P . Furthermore, we study the arcs in Ag.
Al = [Cl+1 =3 hec,., kzn (ICks| = 1) — |Cps | points are
generated by letting za(zy =1, za(m ) =1 D =P, +

RU®Y), py =P,. From Group 1 to Group 6, we generated
|A| points in total.

In Group 7, we construct one point similar to the point
in Group 1 by letting zfﬂ ™ = 1, za(" "= i =P, +
RU™™) 4 ¢ p, = P, 4. In Group 8, we study the incoming
arcs of Configuration n except the arc (n,n). [C_,| — 1 points
are constructed by letting zfﬁ’m) = 1,200 =1 p;’j_l =
P, +RU*™™) 4, — P InGroup 9, we construct ICom| —
points by using the p01nts in Group 2 as zf& ™ 1,z a(k -
Lpft, = P pf = P —RU*E™ 4 e Tn Group 10, we
continue studying the configurations k& which can transition
to Configuration m. Here, we don’t include Configuration
n and the self-looping arcs for Configuration k. We con-
struct Y pce sy, (ICok| — 1) points by letting zt(+’m) =
1,zt(" k) =1 Py =P, pl =P, — RU*F™) 1n Group 11,
we construct |C| — |C_,,| points by using the points in Group
5 as Zf 00 2000 pr = P4 RUYE) 4o pr =

P, + €. In Group 12, we study the arcs in Ag. We construct

Al = [Cl +1 = Yhec,, hzn (ICkl = 1) = [Cn| points by
letting 2%, 20" = 1,pr | = P+ RU“@®) pr — P

From Group 7 - 12, we generate A points in total.

Now, we construct the last two group points. In Group
13, we construct |C| — |C,| points by letting sz{””) =
1,200m0" — 1 p2 = P 4+ RUYY 4ep? = P +e
In Group 14, we construct |[C_,,| — 1 points by lettlng
t(ilm) =1, Z(U M= P = Py, pf = P RU“F™) ¢

In summary, we have 2|A4| + |C| — 1 afﬁnely 1ndependent
points satisfying the equality of (42). Similar process can be
applied to inequality (43).

2) Multi-Configuration Ramping Rate Inequalities: In Sub-
section IV-C1, inequalities (42) and (43) study the ramping
rate limits for a given arc. In this subsection, we extend the
study to develop the ramping rate inequalities by considering
a given configuration and its relationships with other configu-
rations, named multi-configuration ramping rate inequalities.

Suppose that the combined-cycle unit works on Configura-
tion m at time period ¢+ 1. As shown in Fig. 3, we know one
of the incoming arcs (@, ,m, Gny,m, Gng,m) OF the self-loop arc
@y, m Must be active at time period ¢ 4 1. On the other hand,
suppose that the combined-cycle unit works on Configuration
n at time period ¢ in Fig. 4. Then, one of the outgoing arcs
(@n,my s On,ma> Gn,mg) or the self-loop arc a,, ,, must be active
at time period t + 1. We develop ramping rate inequalities for
these two scenarios separately.

am.m

Qnym Qny,m

Config ny

Config m

Config ny

Ang,m

Config ny

Fig. 3. Configuration Transition Graph for Configuration m

For the first scenario as shown in Fig. 3, the ramping
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[

Q

Config n

Uy, Uy

Config m,

Config m»

A

Config ms

Fig. 4. Configuration Transition Graph for Configuration n

up/down inequalities can be described as follows:

CHED DN D DI U 47
neC_ym n€Cym
>on(( X)) vmecw
neC_m ac(Aln [J A
Z Py —pita < Z RD* () ?"(‘1 " 45
neCm n€Csm
£y > at) el wme e
nEC m a€ (A% UAR)

In inequalities (47) and (48), C_,,, represents the set of
configurations which can transition to Configuration m. For
example, in Fig. 3, C_,,,, = {n1,n2,ns}. First, we show the
validity of ramping up inequalities (47) by discussing three
possible cases as follows:

Case 1: the combined-cycle unit works on Configuration
m at time period ¢ + 1. In this case one of the incoming
arcs or the self-loop arc of Configuration m is active at
time period ¢t + 1. For instance, in Fig. 3, one of the arcs
{@ny,ms Cng.ms Gng,m, Gm,m } 18 active at time period ¢ + 1.
Suppose that the combined-cycle unit works on Configuration
n at time period t, where n € C_,,,. Consequently, arc
a(fi,m) is active at time period ¢ + 1. In this case, we
have szﬁ ™, ff:{ ™ = 0, D ae(an sz =1, and
an sy 2 = 0, where 7 € Coym \ {12}.'Tt follows that

—pp < RU™™) which is

Zae(
inequalities (47) convert to pyy;
valid due to constraints (17).
Case 2: the combined-cycle unit does not work on Con-
figuration m at time period ¢ + 1. However, the combined-
cycle unit works on Configuration 7 at time period ¢, where
7 € C_yy- In this case, all of the incoming arcs and the self-
loop arc of Configuration m are not active at time period

t + 1, which means szﬁ’m) =0,Vn € C_,y,. In addition, we

have 3¢ anyag) 2t =1and 3 o Ay .asy 2 = 0, where
n e Cﬁm\{n} Then, inequalities (47) reduce to —p' < —P.,
which is valid because of constraints (12).

Case 3: the combined-cycle unit does not work on Config-
uration m at time period ¢ + 1. Meanwhile, it does not work
on any configuration in set C_,,, at time period ¢. In this case,
all decision variables become zero in inequalities (47). Both
the left and right sides of (47) will be equal to zero.

We summarize this analysis in Table V. Furthermore, we list
the analogous analysis for (48) in Table VI. In these two tables,
Y onec,., szr{ "™ indicates whether Configuration m is online

at time period ¢ + 1. In addition, 37, cc >, c(anyan)?
indicates whether any configuration in C_,,, is online. We
specifically let 7 represent the online configuration in C_,,,.

TABLE V
VALIDITY OF RAMPING UP INEQUALITIES (47)

Case Value of Binary Variables Inequality
a(n,m) p
z:nECﬂm 241 ZHECHM Z(LE(A‘“ UAsh Ztl LHS _ RHfS
1 1 1 pﬁ.] _ pzz RU”("'"”'>
2 0 1 —p?’ -
3 0 0 0 0
TABLE VI
VALIDITY OF RAMPING DOWN INEQUALITIES (48)
Case Value of Binary Variables Inequality
a(n,m) a
ZnECﬂ“, 241 ZHECH,,, ZaE(Ai“ UAsh 2t _ LHS RH?
1 1 1 pz? _ pﬁ_] RD(z(n,,m)
3 0 0 0 0

Next, for each m € C and t, we show inequality (47) is
facet-defining for the projection of the whole feasible space
(denoted as Q) onto S = {2f, 2,1, pi, P41, Va € A, Vn €
C} when P,, < P, + RU™™) < P Vn e C_,,,, where
S consists of all the variables describing inequality (47). As
there are 2(|.A| 4 |C|) variables in S, ZaE(Ai,SUAjl)Zg =
Dac(am Ay Zia1, Vh € Coand 30 4 2 = 1, the dimen-
i jecti — 1. In the
following, we provide 2|A| + |C| — 1 affinely independent
points that satisfy (47) at equality to show the property of
facet-defining [21], see Table VIIL.

In Table VII, there are 11 groups of points in total, with each
row representing one point satisfying (47) at equality and each
column representing the value of each variable. Meanwhile,
we let I represent an identity matrix and O represent a zero
matrix. We generate these points in the following ways:

1) In Groups 1 - 3, we construct a lower matrix in terms of
the value of 2, Va € A. In particular, in Group 1, for
each k € C_,,, (totally |C_,,,| points), we let za( mo_ 1,
Zg-(yql ™=, pi* =P, and pilty = P, + RUa(m’m); in
Group 2, for each s € Cy,—y, s # m (totally |Cp—| — 1
points, note that we rule out s = m to avoid duplication),
we let 2/0™ = 1, 2899 — 1 and p; = p;,, = P,:

in Group 3, for each remaining arcs of A (totally |A| —

C_ym| = (|Cims | —1) points), i.e., (z,y), we let 2/ "% =1,
zfﬁy =1,p{ = P,, and p},, = P,. Therefore, in total

we generate |.A| points here.

2) In Groups 4 - 6, we continue to construct a lower matrix
in terms of the value of z{, |, VYa € A, which together
with the lower matrix generated in Groups 1 - 3 can
be easily transformed to a large lower matrix through
Gaussian elimination. In particular, in Group 4, for each
k € Com, k # m (totally |C_,,| — 1 points, note that
we rule out ¥ = m to avoid duplicating one point in

a(k,k) a(k,m) k
group 1), we let z, =1 2z, =1 pf = Py
and pit; = P, + RU“U””); in Group 5, for each
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s € Cno, 8 # m (totally |C,,—,| — 1 points), we let
g —q 0 — 1 pm = P and pi,, = Py; in
Group 6, for each remaining arcs of A\ {(n,n),Vn € C}
(totally | A| —|C| — (|C—m|—1) — (|Cm—| — 1) points, note
that we rule out (n,n),Vn € C to avoid duplication with
Groups 1 - 3), i.e., (x,y) with z # y, we let z?(x’z) =1,
fﬂ”) =1, pf = P,, and p},, = P,. Therefore, in total
we generate | A| — |C| points here.

3) In Groups 7 - 9, we generate |C| points by utilizing the
points in Groups 1 - 3 so that the points in these groups
together with the points above can be easily transformed
to a lower matrix. In particular, in Group 7 (totally one

point), we choose one k£ € C_,,, (e.g., k = m) and let

2 = e = g = P te, and Yy =

Bm—Q—RU“(m’m) +¢; in Group 8, foreach s € C,,,,, s #m

(totally |C,,—s| — 1 points), we let z?(m’s) =1, szl’s) =1,

and pj = p;{,; = P, + ¢ in Group 9, for each remaining

configuration of C (totally |C|—1—(|C,,—|—1) points), i.e.,

(z,y) with y € C\ {Cy,,— } for some z, we let zf(x’y) =1,
zfﬁy) =1,p{ =P, +¢ and p{,, = P, + ¢. Therefore,
in total we generate |C| points here. We can easily observe
that the points in Groups 7-9 together with the points in
Groups 1-3 can be transformed to a lower matrix in terms
of the values of z{, Va € A and p},,, Vn € C.

4) In Groups 10 - 11, we generate |C| — 1 points by utilizing
the points in Groups 4 - 6 so that the points in these groups
together with the points above can be easily transformed
to a lower matrix. In particular, in Group 10, for each k €
C_ym, k # m (totally |C_,,,|—1 points), we let zf(k’k) =1

2™ = 1, pf = Py +e and ity = Py + RUAE™ 4 ¢

in Group 11, for each remaining configuration of C \ C_,,,

(totally |C| — (|C—m| — 1) — 1 points), i.e., (z,y) with z €

C\ C_ym, for some y and o € {m,y}, we let 2" = 1,

zfﬁy) =1,pf =P, +¢and p/,;, = P, + e Thus, in

total we generate |C|— 1 points here. We can easily observe
that the points in Groups 10-11 together with the points in

Groups 4-6 can be transformed to a lower matrix in terms

of the values of z{, |, Va € A and p}, Vn € C\ {m}.

s

In summary, it is clear that 2|.4| 4+ |C| — 1 points generated
above satisfy (47) at equality and can easily be transformed to
a lower matrix with dimension at least 2|.A| + |C| — 2, which
means that these points are affinely independent.

Inequalities (48) and the following inequalities (49) and
(50) can be similarly shown to be facet-defining under mild
conditions and thus we omit the corresponding facet-defining
proofs due to page limit and only provide the validity proofs.

For the scenario captured in Fig. 4, we develop ramping
up/down inequalities (49) and (50). In these inequalities, C,,_,
represents the set of configurations to which Configuration n
can transition. For instance, in Fig. 4, C,,—, = {m1,ma, m3}.
In order to verify the validity of inequalities (49), we analyze
three possible cases. A similar procedure can be applied to
verify the validity of inequalities (50).

ST oy —pp < Y Ruetimgpn)

meCn— meC,

(49)

+ 3 Pm(( 3

zfﬂ) — zﬂﬁ’m)),Vn e C,Vt,

meCy ac(An JAS)
P Y s Y RDUEET
meCp_, meCn
_ Z Bm(( Z sz) —zfﬁ’m)),VnEC,Vt.
meECn_, a€ (Al U As,)

Case 1: the combined-cycle unit works on Configuration n
at time period ¢ and on one of the configurations (denoted
as m) in C,_, at tiple period ¢ + 1. In this case, we have
™ = 1™ = 0, e yas) #41 = 1. and
Zae(AL";LUAj‘;L)ZgH = 0, where m € C,—, \ {m}. Then
inequalities (49) convert to pj’t; — pp < RU"™™) which is
valid due to constraints (17).

Case 2: the combined-cycle unit does not work on Con-
figuration n at time period t. However, it works on one
of the configurations (denoted as m) in C,_, at time pe-

riod ¢ + 1. In this case, we have szﬁ’m) = szfﬁ’m)

0.2 e, uag) 21 = Loand Dloccam a2 = 0,
where m € C,_, \ {m}. Then inequalities (49) convert to
pﬁ_l < Py, which is valid due to constraints (13).

Case 3: the combined-cycle unit neither works on Config-
uration n at time period ¢, nor works on any configuration in
Cp—s at time period ¢ + 1. In this case, all decision variables
in inequalities (49) take zeros.

TABLE VIII
VALIDITY OF RAMPING UP INEQUALITIES (49)

i Value of Binary Variables Inequality
ase Z a(n,m) Z Z a LHS RHS
meC, 21 meCp ac(An|JA) Zi+1
1 1 1 Py — pi [RUZE
0 ! po | Pa
3 0 0 0 0
TABLE IX
VALIDITY OF RAMPING DOWN INEQUALITIES (50)
Case Value of Binary Variables Inequality
ZWEC,H Z;l«(:]L,m) ZWEC,H ZaE(.Al“ UAY) Z;Lrl LHSf RHSﬁ
1 1 1 p? _ Izﬁl RDa(n,m)
2 0 1 _péu _Bm
3 0 0 0 0

Tables VIII and IX show the validity analysis of ramping
rate inequalities (49) and (50), respectively. In the second
row of these tables, item ) . zfﬂm) represents the
status of Configuration n at time period ¢. In addition, if
D omec,_, 2aac(An Jad) %41 = 1, then one of the config-
urations in C,_, is online at time period ¢+ 1. We specifically
let m represent this online configuration. Otherwise, all con-

figurations in C,,_, are offline at time period ¢ + 1.

V. COMPUTATIONAL RESULTS
In this section, we test the performance of our strengthened
edge-based formulation (SEBF) on a modified IEEE 118-bus
power system [22] by solving a unit commitment (UC) prob-
lem with combined-cycle units. The objective is to minimize
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TABLE X
ROOT NODE INFORMATION

Case MIP Objective Values ($) LP Objective Values ($) Integrality Gap (10— %)
EBF TEBF REBF SEBF EBF TEBF REBF SEBF EBF TEBF | REBF | SEBF
1 1881741 | 1881738 | 1881740 | 1881741 | 1879876 | 1880212 | 1880451 | 1880774 | 9.92 8.11 6.85 5.14
2 1881012 | 1881017 | 1881032 | 1881034 | 1879103 | 1879456 | 1879698 | 1880031 | 10.15 8.30 7.10 5.34
3 1887049 | 1887052 | 1887046 | 1887049 | 1885160 | 1885489 | 1885739 | 1886056 | 10.01 8.29 6.93 5.26
4 1878048 | 1878051 | 1878045 | 1878036 | 1876169 | 1876512 | 1876746 | 1877070 | 10.01 8.19 6.96 5.15
One-day 5 1888911 | 1888950 | 1888948 | 1888927 | 1887136 | 1887470 | 1887715 | 1888032 9.39 7.84 6.53 4.74
6 1882816 | 1882810 | 1882829 | 1882829 | 1881003 | 1881349 | 1881587 | 1881917 9.63 7.76 6.60 4.85
7 1885035 | 1885046 | 1885037 | 1885032 | 1883170 | 1883519 | 1883780 | 1884109 9.89 8.09 6.67 4.90
8 1894861 | 1894858 | 1894877 | 1894871 | 1893035 | 1893377 | 1893613 | 1893933 9.63 7.82 6.67 4.95
9 1882781 | 1882797 | 1882765 | 1882792 | 1880881 | 1881227 | 1881447 | 1881777 | 10.09 8.34 6.99 5.39
10 | 1889614 | 1889610 | 1889603 | 1889614 | 1887748 | 1888090 | 1888332 | 1888656 9.88 8.05 6.73 5.07
1 3618451 | 3618497 | 3618534 | 3618859 | 3615129 | 3615571 | 3616036 | 3616440 | 9.18 8.08 6.90 6.68
2 3610532 | 3610156 | 3610275 | 3610458 | 3606929 | 3607372 | 3607865 | 3608274 | 9.98 7.72 6.68 6.05
3 3606894 | 3606396 | 3606304 | 3606337 | 3602757 | 3603224 | 3603670 | 3604094 | 11.47 8.79 7.30 6.2
4 3612798 | 3612972 | 3612785 3613001 3609224 | 3609688 3610134 | 3610562 9.89 9.09 7.34 6.75
Two-day 5 3611288 | 3610916 | 3610919 | 3610702 | 3607151 | 3607576 | 3608070 | 3608472 | 11.45 9.25 7.89 6.17
6 3615004 | 3614481 | 3614156 | 3614315 | 3611081 | 3611530 | 3611981 | 3612397 | 10.85 8.16 6.02 5.30
7 3608393 | 3608558 | 3608302 | 3608537 | 3605084 | 3605514 | 3605995 | 3606396 9.16 8.43 6.39 5.93
8 3603924 | 3603867 | 3604570 | 3604011 | 3600694 | 3601132 | 3601625 | 3602030 8.96 7.58 8.17 549
9 3609562 | 3608981 | 3609269 | 3609336 | 3605444 | 3605881 | 3606415 | 3606817 | 11.41 8.59 7.90 6.97
10 | 3604755 | 3605234 | 3605078 | 3605172 | 3601242 | 3601700 | 3602198 | 3602625 9.75 9.80 7.98 7.06
TABLE XI
COMPUTATIONAL TIMES
case Time Number of Nodes
EBF TEBF REBF SEBF EBF TEBF | REBF | SEBF
1 1668.92 | 1478.32 | 1208.08 | 650.23 | 4526 3315 2537 1064
2 1383.41 985.74 538.77 604.61 | 4570 | 2562 644 828
3 147476 | 1569.19 | 483.59 | 400.15 | 3683 5895 1218 952
4 1282.29 903.13 502.99 335.69 | 2899 | 2471 640 442
One-day 5 1240.13 811.17 317.38 407.5 4375 2154 299 572
6 1681.18 | 1041.25 580.17 368.52 | 2335 2250 707 564
7 2203.59 | 1430.54 | 446.23 541.81 | 3142 | 2324 643 821
8 1472.71 | 1122.58 559.77 677.3 3442 3832 763 1044
9 1518.68 | 1440.45 703.16 741.07 | 2715 | 4614 2120 1363
10 1604.68 1577.81 516.85 507.5 5659 5547 1000 1139
1 1114.08 945.24 999.92 797.65 1184 1197 377 316
2 wokk 884.34 489.7 666.86 | 1206 1248 0 0
3 ok otk 833.12 828.68 | 1213 1190 174 126
4 2512.31 3411.7 1820.3 798.59 1251 1233 1134 204
Two-day 5 ok 3231.19 702.01 834.63 | 1157 1486 0 152
6 ok 760.43 604.99 546.57 | 1207 834 0 0
7 951.65 3240.92 661.56 583.51 | 1214 | 2431 0 0
8 3485.08 | 1091.31 | 1056.46 | 751.69 | 1212 1275 248 130
9 ok ook 941.09 803.88 | 1144 1177 221 4
10 ok otk 807.13 857.56 | 1148 1241 187 174

the total costs including the start-up/shut-down, and generation
costs for both traditional thermal and combined-cycle units.
Physical constraints for combined-cycle units, as described
in Sections III and IV, are captured. The detailed traditional
thermal unit formulation is provided in [12]. In this system,
there are 54 traditional thermal units and 12 combined-cycle
units. As a comparison, we also test three other formulations:
1) “EBF”, the edge-based formulation (EBF) proposed in [12];
2) “TEBF”, the edge-based formulation with min-up/-down
constraints (9) and (10) replaced by tighter min-up/-down con-
straints (24) and (39); 3) “REBF”, the edge-based formulation
with the ramping constraints (17) and (18) replaced by tighter
ramping constraints (40) - (50). All instances are solved by
CPLEX 12.5 at Intel(R) Core(TM) 17-4500U 1.8GHz with 8G
memory.

We study two groups of unit commitment problems: one-day
and two-day unit commitment problems, respectively. For the

one-day unit commitment problem, we use the default setting
in CPLEX. For the two-day unit commitment problem, we set
the optimality gap to be 0.05% and the time limit to be 3,600
seconds per run. For each problem, we generate ten different
load profiles based on the forecast load following the method
described in [12].

In Table X, we report the root-node information to show
the effectiveness of our proposed strengthened formulation
in tightening the LP relaxation gap. We first report the final
MIP objective values and the root-node LP relaxation objective
values for these four models (EBF, TEBF, REBF, and SEBF) at
the root-node. For the same objective function of minimizing
the total operating cost, the tighter the formulation is, the larger
the LP relaxation objective value is. Then, we measure the
tightness of the formulation by calculating the integrality gap,
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Fig. 5. Convergence evolution of Case 1 in One-Day UC

which is defined as
CMIP - CLP
CMIP ’

where C,, represents the objective value corresponding to
the best integer solution obtained from these four models
(EBF, TEBF, REBF, and SEBF), and C, represents the LP
relaxation objective value at the root node. Currently, most
commercial MILP solvers solve the LP relaxation problems
when they implement the branch-and-bound method. A small
integrality gap can help reduce the searching time from the
LP relaxation solution to the optimal integer solution and thus
reduce the total computational time. From Table X, we can
observe that for each instance the SEBF model provides a
better lower bound (i.e., a larger LP relaxation objective value)
than that provided by the EBF model. This results in a reduced
integrality gap for the SEBF model.

In Table XI, we report the computational performances
for all these models. We first report the computational time
required to solve each instance. If CPLEX cannot solve the
instance to optimality within the time limit, we use ‘“***”
to represent the corresponding computational time. We then
report the number of branch-and-bound nodes explored. From
Table XI, we can observe that our proposed tighter constraints
and strong valid inequalities help reduce the computational
time significantly. Meanwhile, the SEBF model leads to a
much smaller number of branch-and-bound nodes than the
EBF model does for most instances.

In Table XI, we can observe that solving the problem
becomes more difficult as the size of the instance increases.
In some instances (e.g., Cases 2, 3, 5, 6, 9, and 10 in two-day
unit commitment), the EBF model cannot solve the problem to
optimality within the time limit. In contrast, the SEBF model
can solve all the instances under the same setting. Notice that
it is unnecessary to branch in Cases 2, 6, and 7 for the SEBF
model because CPLEX uses heuristic strategies and the cutting
plane approach to find an optimal solution due to the small
integrality gap and better LP relaxation lower bound.
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Fig. 6. Convergence evolution of Case 1 in Two-Day UC

In addition, we report the convergence process in Figs. 5
and 6. In these figures, the solid (resp. dashed, dotted, and
dashdotted) line represents the convergence of the upper bound
gap (denoted as “UBG”) and lower bound gap (denoted as
“LBG”) of the SEBF (resp. EBF, TEBF, and REBF) model.
The upper bound gap represents the difference between the
upper bound (denoted as “UB”) of MIP model at each iteration
and the optimal objective value (denoted as “OBJ”) of the MIP
model. Correspondingly, the lower bound gap represents the
difference between the lower bound (denoted as “LB”) of the
MIP model at each iteration and the optimal objective value
(denoted as “OBJ”) of the MIP model. In summary, we have
the following relationships:

AUBG = UB — OBJ,
ALBG = LB — OBJ.

From Figs. 5 and 6, we can observe that the SEBF model
converges faster than the EBF model does. Meanwhile, we
can observe that the SEBF model provides not only a better
lower bound but also a better upper bound, since the proposed
tighter constraints and strong valid inequalities help find better
feasible integer solutions during the solution process.

VI. CONCLUSIONS

In this paper, we focused on improving the computational
performance to solve the unit commitment problems with
combined-cycle units. We derived tighter min-up/-down time
and ramping rate constraints. These constraints are tighter
than the ones in the original formulation. Furthermore, we
developed several families of strong valid inequalities focusing
on strengthening ramping rate requirements to further reduce
the searching space. Finally, the case studies demonstrated
the effectiveness of our proposed strengthened edge-based
formulation in reducing the computational time when solving
the corresponding problems.
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