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Abstract

In this paper, we first consider the stability analysis of a convex quadratic programming
problem and its restricted Wolfe dual in which all parameters in the problem are perturbed.
We demonstrate the upper semi-continuity of solution mappings for the primal problem and
the restricted Wolfe dual problem and establish the Hadamard directionally differentiability
of the optimal value function. By expressing the optimal value function as a min-max
optimization problem over two compact convex sets, we present the asymptotic distribution
of a SAA estimator of the optimal value for a two stage program whose second stage problem
is a convex quadratic programming problem and all parameters in the quadratic program
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1 Introduction

Consider the two-stage stochastic optimization problem of the following form:

min g(x) + E(0(z,€))

st. relX,
0z,€) = mingey q(z,y) (1.1)
s.t. Wy + Tz = h,
Ay + Bz < b,

where x € R" is the first stage decision variable and X C R", y € R™ is the second stage

decision variable and Y C R™, ¢ : R” — R and ¢ : R™ — R are real-valued functions.

Shapiro and Homem-de-Mello (1998) [12] considered Problem (1.1) with no inequality con-
straints in the second stage and g(x) = ', q(y) = ¢’y and Y = R, and recourse matrix
W and ¢ are deterministic. They proposed Monte Carlo simulation based approaches to a
numerical solution of this two-stage stochastic programming problem. Different from Prob-
lem (1.1), Robinson and Wets (1987) [6] studied the continuity of the optimal value function
Qp,z,&) =inf, {(h*,y) : Wy =t(p,x,£),y > 0} and the upper semicontinuity of its correspond-
ing solution set-valued mapping in which the probability distribution is regarded as a parameter

and recourse matrix W is deterministic.

Most of works about the stability of two stage stochastic programming study the stability
of optimal values and solution sets when the underlying probability distribution varies in some
metric space of probability measures. Now we cite some of these results. Romisch and Schultz
[8] considered two second stage problems. One is Problem (1.1) with no inequality constraints
in the second stage and g(z) = ¢z, q(z,y) = ¢'y and Y = R7* with recourse matrix W being
deterministic; Another one is Problem (1.1) with no equality constraints in the second stage
and g(z) = 'z, q(z,y) = %yTHy —(a—Tx)Tyand Y = R with A and H being determinis-
tic. They derived Holder continuity of optimal value function with respect to a Lipschitz metric
B(u,v). Furthermore, in [9] Rémisch and Schultz studied the above two second stage problems in
which ¢’z is replaced by a general convex function g(x) and obtained the upper semi-continuity
of solution set-valued mapping and Lipschitz continuity of optimal value function with respect
to the L,-Wasserstein metric. Dentcheva and Romisch [2] proved that optimal value function
and solution set mapping of two-stage stochastic programs with random right-hand side, un-
der certain conditions, to be directionally differentiable and semidifferentiable on appropriate
functional spaces. Rachev and Rémisch [5] studied quantitative stability of optimal values and

solution sets to stochastic programming problems with respect to a minimal information (m.i.)



probability metric and applied the results to Problem (1.1) with no inequality constraints in
the second stage and g(z) = Tz, g(z,y) = ¢'y and Y = R7 with recourse matrix W being

deterministic.

In each of the above second stage problems, the recourse matrix W is deterministic. There are
a few papers about the stability of two stage programming in which recourse costs, the technology
matrix, the recourse matrix and the right-hand side vector are all random. For example, in
Section 3 of [10], Romisch and Wets, considered a two-stage stochastic linear programs, namely
Problem (1.1) with no inequality constraints in the second stage and g(z) = ¢, q(x,y) = ¢y
and Y = " with ¢, h,T and W being random variables. They obtained the Lipschitz continuity
of the optimal value and the e-approximate solution sets in Huasdorff distance with respect to
Fortet-Mourier metric of probability distributions. Their analysis was based on the general
perturbation results for optimization models in [7, Section 7J]. Recently Han and Chen [3]
considered the same linear two-stage stochastic program as in [10]. Based on stability theory of
linear programming, they derived new forms of quantitative stability results of the optimal value

function and the optimal solution set with respect to the Fortet-Mourier probability metric.

In this paper, we consider a two-stage stochastic optimization problem whose second stage
is a convex quadratic programming problem:
min g(z) + E(0(z,§))
s.t. xe X,

. (1.2)

0(x,&) = min &y + §yTC~¥y

s.t. /le + Bz > l~),
where x € R" is the decision variable, g : " — R is a continuous convex function, ¢ € R™
and G € ST with G = [G1,-+,Gp )T, A € R with A = [a1,---,a]T, B € R*" with

B=[B, - ,B]T, and b e R

Here we consider the case where all parameters in the second stage are random, namely
¢ = (e, G, A, B, 5), and discuss the asymptotical properties of a SAA estimator of the optimal
value for Problem (1.2). Since G is positively semi-definite, different from linear programming,
we can not have an explicit formulation for the Lagrage dual of the quadratic programming
problem in the second stage. Hence we can not use Lagrange duality theory, like the way of
Chapter 2 of [11] for linear two stage problems, to study the second stage problem in (1.2).
The main point in this paper is to express the optimal value 6(z,£) as a min-max of a convex-
concave function over two compact convex nonempty sets and employ Theorem 7.24 Shapiro,
Dentcheva and Ruszczynski (2009) to express the directional derivative of (z,&). After that

we use Theorem 7.59 of [11], the delta theorem, to analyze the the asymptotical properties of a



SAA estimator of the optimal value for Problem (1.2). Here the so-called Wolfe dual of convex

quadratic programming play an important role for the min-max expression of 6(z, &).

The paper is organized as follows. In Section 2, we demonstrate upper semi-continuity of
the optimal solution mappings for both the quadratic programming problem and its strict Wolfe
dual. In Section 3, we establish the Hadamard directional differentiability of 6(z,&). In Section
4, we discuss the asymptotical distribution of a SAA estimator for optimal value of the two stage
problem (1.2).

2 Upper semi-continuity of optimal solution mappings

In this section we discuss the continuity properties about the solution set of the second stage
problem and it’s dual problem with respect to £ and z. Let u = (z,¢,G, A, B,b) and @ = (Z, §).

Consider quadratic programming problem in the second stage of problem (1.2):

1 e

P min &y + ~y'G

(QP) ~y ~2y ~y 2.1)
s.t. Ay+ Bx >b.

We denote by ®(u) the feasible set of problem (2.1), namely
®(a) = {y € R™ : Ay + Bi > b}.

1
We denote f(y, ) = ¢l y + inGy the objective function for Problem (2.1) and by Y*(u) the
set of optimal solutions when z = Z. For a given parameter (c¢,G, A, B,b), we discuss the

corresponding quadratic programming problem
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(QPo) min ¢ty + oy Gy (2.9)

s.t. Ay -+ Bz > b,

and analyze the stability of the optimal solutions when (¢, G, A, B, b) is perturbed to (¢, G,A, B, 5)

For this purpose we make the following assumptions about problem (2.2):
Assumption 2.1. The set X C R"™ is a nonempty compact convezr set.

Assumption 2.2. For each x € X, the optimal value of QP problem (2.2) is finite and the

solution set for problem (2.2) is compact.
Assumption 2.3. The following two conditions hold:
A1 The slater condition holds for each x € X, namely for each x € R", there exists y, such

that
Ay, + Bx > b.



A2 The matriz G € S™ is positively semi-definite.

If the optimal value of QP problem (2.2) is finite and conditions of Assumption 2.3 are
satisfied, then the Wolfe dual of problem (2.2)
T L
max A (b— Bzx) — Y. Gy
st. c—ATA+Gy =0, (2.3)
A>0

has a non-empty solution set.

In the following, we use B to denote the unit ball and B,.(z) to denote the closed ball centered
at z with radius r > 0 in a finite dimensional Hilbert space. We now recall continuity notions

of set-valued mappings [7].

Definition 2.1. [7, 5.4 Definition] A set-valued mapping S : R = R™ is outer semicontinuous
(osc) at T if
limsup S(z) C S(z),

T—T

or equivalently lim sup S(x) = S(z), where limsup,_,, S(x) is the outer limit of S at Z:
T—T

limsup S(z) = {u: IzF = &, " € S(zF), with u* — u}.
T—T

The mapping S is inner semicontinuous (isc) at T if

liminf S(x) = S(z),

Tr—T

where liminf, ,z S(x) is the inner limit of S at x:

lim_}i;lf S(z) = {u:Ve* = z,3u” € S(z) for large enough k with u* — u}.

The mapping S is continuous at T if

limsup S(z) = S(z) = liminf S(z).
T—T T2z
The following proposition tells us that Slater condition is stable when (¢, G, A, B, b) is per-
turbed to (&, G, A, B,b) with G e ST

Proposition 2.1. For fizxed ¢, G, A, B and b, if Assumption 2.1 and A1 of Assumption 2.3 hold,
then there exists 69 > 0 such that for any x € X, Slater condition for Problem (2.1) holds when
1(&,G, A, B,b) — (¢,G, A, B,b)|| < & with G € ST



Proof. From condition Al of Assumption 2.3, we have that there exist y, € R™ and ¢, > 0
such that
Ay, + Bx — b > e,.1;.

- = = £
Let M, := max{||yz||, [|z]|,1}. When 1II<1?2{l{HACLiH, |AB;]], | Ab]|} < —Z and
=t xX

6M,

-1
~ Ex
—z|l < 6| B —
o~ ol <. [slBl+ 2]

we have for i =1,--- [,
a;fryx+BiT:x—bi > e
> [lai — aillllyell + 1Bi = Billllz |l + [| Billllz — Z[| + [|b: — b
> (a; — ;) ys + Blx — BF'% — (b — b;).

or equivalently,

d?yx+£~3fi—l~)i>0, i=1,--- 1

Thus the Slater condition for problem (2.1) corresponding to & € X holds when || (¢, G,A,B,b)—
-1

(¢, G, A, B,b)|| < 8, for 6, = —= and |7 — 2| < wy with wy := & |6]|B]| + 2| . For such
6M, M,
wy >0 at z € X, we have

X C UxeXsz (.T)

From Assumption 2.1, X is compact, we have from the finite covering theorem that there are a

finite number of points x!, ..., 2™ and positive numbers w1, . ..,wyno such that
X C UL B, (7).

Let wp = min{w,; : j = 1,...,n0} and dp = min{d,, : j = 1,...,n0}. Then for any » € X, the
Slater condition for problem (2.1) holds when ||(¢, G, A4, B,b) — (¢, G, A, B,b)|| < do. O

Next we prove that the solution set Y*(@) of Problem (2.1) is upper semicontinuous at u
under Assumption 2.1, Assumption 2.2 and Assumption 2.3. For this purpose, we first establish

two lemmas. For fixed ¢, G, A, B, b, let § > 0 be the positive number, define
Us(c,G,A,B,b) ={(¢,G,A B,b,%) : ||(¢,G, A, B,b) — (¢,G, A, B,b)|| < 6,G eSS, ze X}

Lemma 2.1. For given A, B and b, let condition A1 in Assumption 2.8 hold. Then for any
u € Us,(c,G, A, B,b), where &y is defined in Proposition 2.1,

lim ®() = 3(aQ).

U—Uu



Proof. As the following inclusion

limsup ®(a) C ®(u)

u—u

is obvious, we only need to verify that

liminf ®(a) D ®(u).

uU—u

For arbitrary ¢ € ®(u), we now prove gy € liminf ®(a). By Proposition 2.1, we have that

U—u

3 ¥ such that A§+§£—BZ€11.

Let a(t) = (¢+tAe, GHEAG, A+tAA, B+tAB, b+tAb, #+t(i—%)), y(t) = j+t(F—1), and
we obviously have @(t) — @ and y(t) — ¢, t | 0. Then for Au = (Ac, AG,ANA, AB, Ab, Ax)
we have that

A(t)y(t) + B()#(t) — b(t)

= (A+tAA) G+ (1 = 1)§) + (B +tAB)(& + tAz) — (b + tAD)

= t(A( — ) + BAz 4+ AAj + ABi — Ab) + 2(AA(G — §) + ABAz) + Aj+ B — b

. A (2.4)
=t(Ay+ Bt — b+ BAxz + AAy + ABz — Ab)
+12(AA®G — §) + ABAz) 4 (1 — t)(Aj + B — b)
> t{(e1; + BAz + AAj + ABE — Ab) + t(AA(Y — §)) + ABAx)}.
Therefore we have that for ||Au|| small enough, one has that there exits ¢ > 0 such that
A(t)y(t) + B(t)z(t) — b(t) = 0,vt € [0,1),
This implies § € liminf; ,; ®(@). This proof is completed. O
Define
U(a,a) = ®(a) Nleven f(-,a)
with

levgaf('aa) = {y € R f(yaﬂ) < Oé},Oé eR.

Lemma 2.2. For fized c,G, A, B,b, let Assumptions 2.1, 2.2 and condition A2 of Assumption
2.3 hold. Then for any a € R, there exist §1 > 0 and a bounded set B C R™ such that

U(a,a) C B,Va' < a,Va e Uy, (c,G, A, B,b).



Proof. Without loss of generality, we assume that W(a, o) # ). Because ¥(a, ') C ¥(a, a), Vo' <
a, we only need to prove ¥ (@, a) C B. We prove the result by contradiction. Suppose that there
exist a sequence " = (¥, &%) €€ Us, (¢, G, A, B,b) such that ¥ € X and ¢ — (¢,G, A, B,b)
and y* € U(@*, a) with ||y*| — co. Let d’; = 5*/|l¥*|, and notice X is compact, we can find a

k

subsequence kj; such that 2z — x and d];j — dy for some z € X and dy € bdryB. In view of

y¥ € (ks o), one has

kiTyki 4 %yijékjykj <a

yh + By

ke T T 7k; (2:5)
a;’ ahi = >0,i=1,--- L.

Dividing both sides of the above inequality by ||y*i]|?> and ||y*/ || respectively, we obtain

T ok L oeT Ak .
Ty [|yh ]+ 5dy' " Gody’ < o ||yt

a’ "y + Bt M = By 2 0,0 =1L

From the definition of € U, (¢, G, A, B,b), we know that GFi = so that the first inequality of
(2.5) implies
ildy < afllyt].

Taking the limits by 57 — oo in the above three inequalities, we obtain
1
?ﬁ&@ﬁ&A%ZOJQ@SQ
and this contradicts with the compactness of solution set in Assumption 2.2. The proof is

completed. O

In the following discussions, we need to adopt Proposition 4.4 of Bonnans and Shapiro(2000)

[1]. For this, we consider the parameterized optimization problem of the form

(Py) ;Iél)r(l flx,u) st. G(z,u) € K, (2.6)

where u € U, X, Y and U are Banach spaces, K is a closed convex subset of Y. f: X XY — R
and G : X x U = Y are continuous. We denote by

O(u) :={r e X :G(z,u) € K}
the feasible set of problem (P,) and the optimal value function is

= inf
v(u) zgwﬂ%w,

and the associated solution set

S(u) := argmin f(z,u).
€D (u)



Proposition 2.2. [1, Proposition 4.4] Let ug be a given point in the parameter space U. Suppose
that

(i) the function f(z,u) is continuous on X x U,
(ii) the multifunction ®(-) is closed,

(iii) there exist « € R and a compact set C C X such that every u in a neighborhood of ug, the

level set

leveo f(,u) = {x € ®(u) : f(z,u) < a}
is nonempty and contained in C,

(iv) for any neighborhood Vx of the set S(ug) there exists a neighborhood Vy of ug such that
Vx N ®(u) is nonempty for all u € Vy.

Then:

(a) the optimal value function v(u) is continuous at u = uy,
(b) the multifunction S(u) is upper semicontinuous at ug.

Theorem 2.4. For given (c,G, A, B,b), let Assumptions 2.1, 2.2 and 2.3 hold. For any u €
Us, (¢, G, A, B,b) with 01 defined in Lemma 2.2, one has that 0(-) is continuous at u and the
solution set mapping Y* is upper semi-continuous at u, namely for € > 0 there exists a number
b2 > 0 such that

Y*(i) C Y*(@) + eB, Vi € Bs,(0) with G € ST

Proof. Let
1 - - -
fly, ) =ély+ §yTGy, G(y,u) = Ay+ BT —band K = §Rl+

Then the constraint set ®(u) is expressed as
B(@) = {y € R - G(y,3) € K)

and the problem is expressed in the setting of Proposition 2.2. Obviously we have that f(y,a)
is continuous in R™ x Us, (¢, G, A, B,b), namely condition (i) of Proposition 2.2 holds. From
Lemma 2.1 and noticing the equivalence between the outer semi-continuity and the closedness
for set-value mappings, we have that ® is a closed set-value mapping so that (ii) of Proposition

2.2 holds. Condition (iii) of Proposition 2.2 comes from Lemma 2.2. Since Assumption 2.3



implies Mangsarian-Fromovitz constraint qualification for ®(u) at any point y¥ € Y*(u). Then

it follows form Theorem 2.87 in [1] that
dist(y, ®(a)) < s(dist (G(y, @), K)) < £[|G(y, ) — G(y, v (2.7)
for @ € Vy, where Vy is some neighborhood of @ in R" x ST x RIxm s RIX 5 B and k > 0.

Since G is Lipschitz continuous, we have that condition (iv) of Proposition 2.2 holds.

Therefore, we have from Proposition 2.2 that the optimal value function 6 is continuous at
at 4 and the solution set Y*(@) is upper semicontinuous at @ in R x ST x RX™ x R x RE

namely for € > 0 there exists a number d2 > 0 such that
Y*(it) C Y*(@) + €B, Vi € Bs,(4) with G € ST

The proof is completed. O
Now we consider the dual of the QP problem (2.1). The Wolfe dual of problem (2.1) is
- 1 =
max M'(b— Bx) — inGy
st. é—ATA+Gy =0, (2.8)
A>0.
The restricted Wolfe dual of problem (2.1) is defined by
- 1 a
max A(b— Bx) — inGy
st. é—ATA+Gy =0, (2.9)
y € Range G, A > 0.

Remark 2.1. The Lagrangian function of Problem (2.9) is defined by

Ly, z) =24 2TGy — (A2)T A+ (b — Bx)Th — %yTéy

Then the Lagrangian dual of Problem (2.9) is
min max L\ y,z2)
z€R" \>0,ycRange G

- 1 s . -
= min max &l z4 (2TGy — =yTGy) + (b — Bz — Az)T A
z€R™ x>0,ycRange G 2
= min &z +=2TGz
zeR™ 2
s.t. Az+ Bx > b,

which is just Problem (2.1). From this observation, we have from the duality theory for convex

optimization that Assumption 2.2 implies that Slater condition for Problem (2.9) holds.

10



We denote the feasible set for Problem (2.8) by
@G A) ={(y,\) eR" xR e~ ATA+ Gy =0}

Proposition 2.3. Let (¢, G, A) be given. If Assumption 2.2 holds, then there exists 3 > 0 such
that Slater condition for Problem (2.8) holds when ||(¢,G, A) — (¢,G, A)|| < 83 with G € ST,

namely there exists (g, ) such that
c—ATX+Gj=0, 1>0
when ||(¢,G, A) — (¢, G, A)|| < &3 with G € ST

Proof. By Remark 2.1, we know that Slater condition of Problem (2.3) holds, namely there
exists a A depending on (¢, G, A) such that

c—ATA+Gy=0, A>0.

Namely there exists 1 > 0, such that A > £11;. What’s more, matrix [~AT G] is of row full
rank when Assumption 2.2 holds. In fact, suppose that there exist d, € ™ such that

_Ad—O
a )V

which implies that Ad, = 0, Gd, = 0 and chy =0, or dy € Y*(u)*. Therefore we must have
that d, = 0 because otherwise Y*(u) is unbounded, a contradiction with Assumption 2.2. Thus
we have that matrix [~ AT, G] is of row full rank. The validity of slater condition for problem

(2.8) is equivalent to the solvability of the following system in variable (g, A):
c—ATN+Gj=0, A>0. (2.10)

For (Ac, AA,AG) = (¢,4,G) — (¢, A,G) with G € ST and (Ay, AN) = (§ — y, A — \), the first
equality in (2.10) is equivalent to

0=2¢— AT\ + AN + Gy + Ay)
—¢— ATX— ATAN + Gy + GAy,
= Ac— AATN + AGy — ATAN + GAy
or
O AN
(_ATv G)
Ay
We define M = (—AT,G) and M = (=AT,Q), for AM = (~AAT AG), let AN = AMMT +
MAMT + AMAMT, then when AM is small enough, MMT = MMT + AN is nonsingular.

) = (—Ac+AATX — AGY) (2.11)

11



We assume 83 > 0 satisfies that M M7 is nonsingular when ||AM| < &5. Then we obtain from

Sherman-Morrison-Woodbury formula that
MT = MT(MMT)—I
=(M+AM)T(MMT + AN)~1
= (M+AM)T[(MMT)™t — (MMT)"YAN[L, + (MMT)"TAN]"Y (M MT)7Y
=MT + AY,

where AY, satisfies [|AX|| = O(|AM]|). Since M M7 is nonsingular when ||AM]| < 83, we have

that
( AN (AM)

= Mt (=Ac+ AAT) — AGYy)
Ay*(AM)

(2.12)
= [M* + AX](-Ac+ AATX — AGy)

is the least square norm solution to (2.11). From the expression for (Ay*, AN*) in (2.12), we may

assume that d3 > 0 small enough such that [[AXN*(AM)| < ||A||/2 when ||(¢,G, A) — (¢, G, A)|| <

83 with G € ST, Therefore
( by ) ( A ) AN (AM)
= +
y Y Ay*(AM)

satisfies (2.10). The proof is completed. O

-~

Lemma 2.3. Let (¢, G, A) be given with Assumption 2.2 being satisfied. Then, for any (&, é, A) €
Bs, (¢, G, A) with Ge S, where 03 defined in Proposition 2.3,

Proof. As the following inclusion

limsup  £(¢ G, A) C £(¢,G, A).
. Gesp
(67G?A) *) (E7G’A)
is obvious, we only need to verify that
liminf  £(5,G,A) D EGE G, A).
L. GesT
(C’G?A) H (C7G)A)

For arbitrary (7, /)\\) € &(c, @, A), we now prove (7, /)\\) S lim inf &le, G, A). By Proposi-

tion 2.3, we have that there exists (7, \) such that
c—ATX+Gy=0, X>0.

12



For (Ac, AG, AA) with AG € RST(@) let (&(t), G(t), A(t)) = (+ tAc, G +tAG, A+ tAA),
we obviously have (¢(t), G(t), A(t)) — (&, G, A) as ¢ | 0 and G(t) € S for t > 0. Define

(), A(6) = (@A) + G — T, A — X) + 1(dy (t), dr (1)) (2.13)

We consider the system
&ty — A@®)IA() + G(t)y(t) = 0. (2.14)

Define
M) =[-A—tAA G+tAG], x=A+t(A=A), Gt =7+ t{7— 7).

Then the equation (2.14) is equivalent to
d)\(t) T -
M (t) = —[Ac— AA" N + AGT. (2.15)
Let (d3(t),dy(t)) be the following least square norm solution to (2.15):

dy(t -
D) _ —M (@) [Ac— AATX, + AGT). (2.16)
dy (1)

Similar to the analysis in the proof of Proposition 2.3, we obtain M(t)" = M+ O(t|AM]|).
Thus we assume that || M (£)T|| < 2||MT| for (¢, G, A) € By, (¢, G, A). Let

Al
A M| max{1, 11, [0 AL I}

€=

Then for [|(Ac, AA, AG)|| < € with AG € Rgn(G), one has

I( Z ) < [IM@®)T||I[Ac — AAT X + AGH]|

< 2| MY max{1, [[7ll, [, [l [N} (Ac, A4, AG)|
< [IAll/2.

(5" (0, X' (1) = (3, X) + 17 = 5 A = X) + t{dy (1), d3(1). (2.17)
Then (y*(t), \*(t)) satisfies equation (2.14) and for ¢ > 0 small enough,

N () =A+thA = A) +tdi() = (1 — A+ t(X + di(t) > 0.
Therefore, for small ¢ > 0,

(y* (1), \*(t)) € E(@+tAc, G +tAG, A+ tAA)

13



and (y*(t), \*(t)) = (7, A). This implies

and the proof is completed. |
Now we come back to Problem (2.9), the restricted Wolfe dual of problem (2.1). Denote the
feasible set of Problem (2.9) by R(%), namely
R G, A) = £(¢,G,A) NRange G x R
- 1 -
Denote the objective function by ¢(y, \,4) = AT (b — Bx) — EyTGy and by A*(a) the set of
A-part optimal solutions of Problem (2.9) when z = z.
The following corollary is from Lemma 2.3.

Corollary 2.1. Let (¢,G,A) be given with Assumption 2.2 being satisfied. Then, for any
(c, @,A\) € Bs,(c,G, A) with Ge S, where 63 defined in Proposition 2.3,

~ o~

lim R(¢, G, A) = R(¢,G, A).

Define
T(i,a) = R(& G, A) Nlevsq¢(-, @)
with
levsad(- 1) = {(y,\) € R™x € R : ¢(y, \, @) > a},a € R.
Lemma 2.4. For given (c¢,G, A, B,b), let Assumptions 2.1,2.2 and 2.3 hold. Then for any
a € R, there exists 63 > 0 and a bounded set D C R™ x R such that

[(@,a") C D,Vd' > a,Va € Us,(c,G, A, B,b).

Proof. Without loss of generality, we assume that I'(a, ) # (0. Because I'(a, ') C T'(a, ), Vo' <
a, we only need to prove I'(a,a) C D.

We first prove that, for any (y,A) € I'(4, &), A is bounded by contradiction. Suppose that
there exist a sequence @* = (2, &%) with G* € S’ such that zF € X and € = (¢, G, A, B,b)
and (y*,\F) € T(@", a) with |A*|| — oco. Let df = N/|IX¥||, db = y*/||A\¥||, and notice X is
compact, we can find a subsequence k; such that ¥ — 2 and d];j — d) for some x € X with,
dy € bdryB. In view of (3%, \*) € T'(@*7, ), one has

N T (Bk3 — Brighi) — %yijékjykj > q,
cki — A’“J‘T/\’fj~+ GFiyki =0, (2.18)
y* € Range G,

i >0
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Dividing the first inequality in (2.19) by ||A¥i||?, we obtain from the positive semi-definiteness
G5 that

1 k7~ . ~ -
02 —d T GRdl = af |92 = T — Bl /NG

Taking the limits by j — oo, we have d’;jTékjdl;j — 0 or ékj%d’;j — 0, this implies G*s d’;j =
Gliz Gki %dlycj — 0 when j — oo. Combining the positive semi-definiteness of G and the
inequalities in (2.19), we have
AT Bk — BRighi) > a,
ki — ART Nk 1 GRigks = 0,
y*i € Range Gk,
AR > 0.
Dividing the above inequalities by ||\, we get
dy" (B — Bhiaks) > af| b))
&5 J|| Nk || — ART ST 4 GRdy = o,
d) € Range G*,
dy’ >0,
Taking the limits by 7 — oo, we have

dy(b— Bx) >0, ATdy =0, d\ >0, |dy]| =1,

which contradicts with the compactness of the optimal solution set assumed in Assumption 2.2.

Now we prove that, for any (y,\) € I'(a,a), y is bounded by contradiction. Suppose that
there exist a sequence @* = (2%, &¥) such that 2% € X, &8 — (¢,G, A, B,b) and (y*,\F) €
I'(@*, o) with ||y*|| — oo. From the first part of this lemma, we know that {\¥} is bounded.
Let df = X/||IA%||, db = */|ly*||, and notice X is compact, we can find a subsequence k;
such that o — x, di — d, and d) — 0 for some z € X with d, € bdryB. In view of
(y%i, \ki) € T'(@¥, o), one has

)\k‘jT(Ek‘j _ Bkjivkj) _ %yijék]‘ykj 2 Q,

ki Ak;Tkj o (ks k;

¢ — AN NN 4 Gyt = 0,

T (2.19)

y% € Range G,

i >0
Dividing the first inequality in (2.19) by ||*7]|?, taking the limit for j — oo, we obtain from
the positive semi-definiteness G*i that dZGdy = 0 and Gdy = 0. From the third inclusion in
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(2.19), we obtain d, € Range G. The relations Gd, = 0 and d, € Range G imply d,, = 0. This
contradicts with ||dy|| = 1. The proof is completed. O

Theorem 2.5. For given (¢,G, A, B,b), let Assumptions 2.1,2.2 and 2.3 hold. For any u €
Us, (¢, A, G, B, b) with 03 defined above, one has that the solution set mapping A* is upper semi-

continuous at u, namely for € > 0 there exists a number 6 > 0 such that
A*() € A*(@) + B, Vi € Bg, (@) with G € ST.

Proof. The results in this theorem can be proved by Corollary 2.1 and Lemma 2.4. The proof

is similar to that of Theorem 2.4. We omit it here. |

3 Differentiability of the optimal value function

In this section we discuss the differential properties of the optimal value of the lower level

problem. The Lagrangian function of problem (2.1) is defined by
1 - - -
Ly, ;1) = &y + inGy + AT (b— Ay — B%). (3.1)
Define
O, ) = {\ € R : FJy € R™ such that (y,\) € ['(4,a)}.
From Lemma 2.2 and Lemma 2.4, we assume that for some 4 > 0, o € R, and bounded sets
B, € R™, By C R,
U(a, o) C By, O(u,a) C By

for any for any € X and [|{ — (¢, G, A, B,b)|| < d4. From Theorem 2.4 and Theorem 2.5, 6(-)
is continuous at 4 when Z € X and ||€ — (¢, G, A, B,b)|| < d1, we may assume that J; < d; and

o € R such that
Y*(u) C ¥(u,a), A*(a) C O(a4, a).

Therefore, by the Lagrange duality theory, the optimal value can be written as

0(i,¢,G, A, B,b) = max min L(y, \; @). (3.2)
AeEBy yEB,

The next proposition shows that the optimal value function 6(z, é, G, A, B,b, ) is locally Lipschitz

continuous.

Proposition 3.1. For given (¢,G, A, B,b) and x € X, let Assumptions 2.1, 2.2 and 2.3 hold.
Then 0(%,¢ G, A, B,b) in X x R" x ST x R R 5 R s locally Lipschitz continuous around

(z,c,G, A, B,b), namely there exists some k > 0 depending on (z,c,G, A, B,b) such that

16(a) - 0(u)| < klla — v, (3.3)
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when u,u € Bs,(z,c,G, A, B,b

) w th G,G' € € S for some positive constant d5 > 0 depending
on (z,c,G, A, B,b). Here u=(Z,¢, C~¥ A,

B)b), v = (z',,G', A", B',V) and
la— | =lle =l + G =G| + A=Al + |B =Bl + b= V|| + & — 2.

Proof. Since L(-,-; @) is continuous, the max-min values for parameters @ and «’ can be arrived.

Assume that
0() = L(g,\; @), 0(u') =Ly, N;u')

for (7,A), (v, N') € B, x By. Without less of generality, we assume that (i) < 6(u’). Then we

have
0(@) — 0(u)]
= |sup inf L(y,\, @) — sup inf L(y,\,u’
|/\eLI§)dy€Bp (y, A, @) sup inf (y )|
= |L(g, \;a) — (z/,X Ol
= |L(g, \;u) — L(g, N a) + L(g, N'; @) — L(y', N5 ') (3.4)

< |L(g,)\/7’(~t) - L(yla)‘/;u/”
’L(ga )\,; ﬂ) - L(Zja A/; 'LL/)‘

Sup Sup ’L(y) A; ’EL) - L(ya A; ’U,/)’
yeBp AeBy

Choose 05 < d4 and define

<
<

1
% = max{Diam(B,), §(Diam(8p))2, {1, || B|| + 65, Diam(X), Diam(B,)} x Diam(By)}.
Then, when ||a — /|| < d5, for y € B, and A € By, we have

( 7Aﬁ’) _L<ya)‘aul)‘
E—)Ty+iyT(G -Gy~ NT(A—A)y —\T(B— B2’ = \'B(E —a') + \T(b— 1)
{le =l +1G =G+ 1A= A +11B = B + b —v'|| + 13 — /|| }

= klla — /.

1L
<
<k

Combing the above inequality with (3.4), we obtain the inequality (3.3) when @, v’ € Bs,(z, ¢, G, A, B, b).
O

We recall the perturbation result about the minimax problem from Theorem 7.24 Shapiro,

Dentcheva and Ruszczynski (2009) [11]. Consider the following min-max problem:

min{$(z) := sup f(z,9)} (3.5)
and its dual:

sup{(y) := min f(z,y)}. (3.6)

yey xe
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We assume that the set X C R" and ¥ C R™ are convex and compact and the function
f: X xY — Ris continuous. Moreover, we assume that f(z,y) is convex in z € X and concave

in y € Y. Consider the perturbation of the minimax problem (3.5):

gggzg{f(x, y) +tm(z,y)}, (3.7)

where 7, (z,y) is continuous in X x Y, ¢t > 0. Denoted by v(¢) the optimal value of the above
problem (5). Clearly v(0) is the optimal value of the unperturbed problem (3.5). Then the

following lemma holds.

Lemma 3.1. [11, Theorem 7.24] Suppose that:

(i) The sets X C R"™ andY C R™ are convex and compact,

(i) For all t > 0 the function (; == f + tn is continuous on X XY, conver in x € X and

concave iny €Y,

(iii) ne converges uniformly ast ] 0 to a function y(z,y) € C(X,Y).

Then

t) —v(0
lim v(t) —v(0) = inf sup v(x,y).
t—0 t reX* yGY*

Theorem 3.1. For given (¢,G,A,B,b) and x € X, let Assumptions 2.1, 2.2 and 2.3 hold.
Then the optimal value function 0 is directionally differentiable at (x,c,G, A, B,b) along any
(Az,Ac, AG,AA, AB, Ab) € R" x R" x RgT(G) X REXM o R RE Moreover, 0 is Hadamard
directionally differentiable at (x,c,G, A, B,b) in " x " x ST x REm 5 R 5 RE Thus we
obtain the following Taylor expansion of O(u) with Ge ST atu=(x,c,G, A, B,b):

+ inf  sup {AcTy + 1yTAGy + ATAb — AT[AAy + ABx + BAm]} (3.8)
YEY* (u) AeA* (u) 2
Fo([la — ul]),

where @ = (%,¢,G, A,B,i)) with G € ST, u = (z,¢,G,A,B,b) and Au = @ — u satisfying
|Aul| < dy4.

Proof. In the setting of Lemma 3.1, for the direction 4 — u, we define
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where uy = u+t(a—u), o = (Z,¢, G, A,B,Z;), u=(z,¢,G,A,B,b) and Au = @ —u. It is obvious

that (; is convex in y and concave in A. Since

WA, 8) 2= 21y, A, ) — (3, Ao, )

= L(y, A\yur) — L(y, As u)]

= Acly + 3yTAGy + A\TAb — \T[AAy + ABx + BAz + tABAx]

— ATy + %yTAGy + ATAb — M[AAy + ABx + BAz] =: y(y, A\, u, @)

and the convergence is uniform with respect to ¢, we have that condition (iii) in Lemma 3.1 is

satsified. Therefore all conditions in Lemma 3.1 are satisfied and in turn we obtain

lim Out t(@ —w)) = 6(w) = inf  sup (y,\u, 1)
tl0 t YEY ™ (u) AeA* (u)

1
= inf  sup {AcTy + —yT'AGy + \TAb— M [AAy + ABx + BA$]} ,
YEY ™ (1) AeA* (u) 2

(3.10)

which means that  is differentiable at u, and the directional derivative of # at u along @ — u is
given by
1
0 (u;t—u) = inf  sup {AcTy + —yTAGy + \TAb — \T[AAy + ABx + BAx]} .
YEY ™ (u) AeA* (u) 2
From Proposition 3.1, we know that 6 is locally Lipschitz continuous, thus it follows from

Proposition 2.49 of [1] that § is Hadmard directionally differentiable at (z,c, G, A, B,b) and the
Taylor expansion of 6(u) at u = (z,¢, G, A, B,b) can be expressed as in formula (3.8). O

Remark 3.1. In the book Lee, Tam and Yen (2005) [/], a similar expression for 6'(u; Au) is
given, but the assumptions it adopts are strict when G s positively semi-definite. In Theorem
14.2 of this book, the similar result is obtained under three conditions: (1) the system Ay > b
is regular, namely Slater condition holds; (2) min, 27 Gz s.t. Az > 0 has only zero solution; (3)
condition (G) (see Page 246 of [4]). If G is positively semi-definite, Condition (G) holds auto-
matically, but in this case the following example shows that our assumptions for the erpression
of 0'(u; Au) are weaker than those used in Theorem 14.2 of [4]. Let us consider the following
quadratic program problem.:

min %yTGy +cTy

st. Ay >b,

where

0 01

o o O

0

111
0 7A:< )70:[07172]T7b:[370]T'
0
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The unique optimal solution is (%, %,O)T with optimal value %. The quadratic programming

problem

min %ZTGZ
st. Az >0.

has not only zero solution, but also monzero solutions. For example, any point (0,t,0)T with
t > 0 is a solution to this problem. This means that the second condition in Theorem 14.2 of Lee
et. al (2005) fails and we can not derive the expression for 6'(u; Au). However, conditions 2.2
and 2.3 are satisfied for this example and we can still obtain the expression for 0'(u; Au) from

Theorem 3.1.

4 Asymptotical distribution of an SAA estimator for optimal

value

In this section, we consider the asymptotic properties of the optimal value of the two stage
problem (1.2). For 0(z,¢) with € = (&, G, A, B, b) being a random variable, define

f(2,8) = g(x) + 0(x,9),

then the two stage stochastic optimization problem is expressed as

min - E[f(z,¢)]
(4.1)
s.t. xzeX.
Let &',..., &N be an i.i.d. sample, then the sample average approximation problem is defined
by
min  fy(z)
(4.2)
st. xeX,
where

~ 1N 1N
In@) =fla, <> &) =g@)+0 |z, =D ¢.
N i=1 N i=1
We denote the optimal value and the solution set of the two stage stochastic optimization

problem, namely the optimal value of problem (4.1) by v* and S*, respectively, and the optimal
value of problem (4.2) by Uy.

Assumption 4.1. Assume any two random elements in {¢, G, A,B,B} with G € ST are inde-
pendent to each other. The expectation of & = (E,G,A,B,i)) isp=(¢,G,A,B,b) with G € S,

20



ie., B(€) = p. Let £',...,6N be an i.i.d. sample. For & = (éi,é",fli,gi,i)i) with G € ST,
i=1,...,N and
N

én = (én,Gn, Ay, By, by) = ]i,;(é",éi,fli,éi,éi).
Assume that
VN[en —d 5 N(0,%),
VN[[Gily — [Gi]]l % N(O,2F), i=1,....m,
VN[[Bily — [Bi)] 5 N(O.%P), i=1,...1
VN[aiy —ai] % NO,34), i=1,...,1,
VN[by —b] 5 N(0,37),

d . . . .
where — denotes convergence in distribution.

The following lemma is Theorem 7.59 of [1], the delta theorem, which will be used to analyze
the first order asymptotical property of the SAA optimal value vy.

Lemma 4.1. [1, Theorem 7.59] Let By and Ba be Banach spaces, equipped with their Borel
o-algebras, Zn be a sequence of random elements of B1, G : By — Ba, be a mapping, Suppose
that:

(i) the space By is separable,
(ii) the mapping G is Hadamard directionally differentiable at a point u € By,

(i1i) for some sequence TN of positive numbers tending to infinity, as N — oo,the sequence

Xy :=7n(ZN — p) converges in distribution to a random element Z of Bj.

Then
™G (Zn) - G(w)] % G (s 2).

Now we are in a position to present the main theorem about the asymptotical property of
the SAA optimal value vy.

Theorem 4.2. Let Assumption 4.1 hold. Then

NY2@y —v) S inf  inf  sup {V(z,y,\)}, (4.3)
T€S5* yeY* (p) xeA*(p)

where V(x,y, \) is the random variable depending on (z,y,\):

1 m l
Viz,y,A) ~ N (0, YISy + 3D iy Sy ATSA L Y NSy + fETZiB$]> L (49)
=1 i=1
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Moreover, if S* = {z},Y*(p) = {y}, A*(P) = {\}, we have

R 1 m B B l B
NY2@oy — ) 4 N (0, 7EY Y WS+ NEX S X sy + xTzin]> . (4.5)
=1 i=1

Proof. First, we use Lemma 4.1 to analyze the asymptotical property of Nl/z(ﬁv (2)—E(f(z,8)).
Let By = R™ x RMX™ x RIXM 5 R R By = C(X), and G : By — Ba:

G(§) = g(x) +0(,¢).

Let Ty = NY2.Zy = §N, = Dp. Then we have v (Zn — 1) % 7 from Assumption 4.1 with

Z¢ ~ N(0,%°),
ZIG] ~ N(0,2F), i=1,...,m,
ZIBil ~ N(0,2B), i =1,....1, (4.6)
7% ~ N(0,5M,i=1,...,1,

7t~ N(0,%%)

Then (i) in Lemma 4.1 is obvious and (iii) in Lemma 4.1 is guaranteed by Assumption 4.1. It
follows from Theorem 3.1 that G is Hadamard directionally differentiable at a point g, namely

(ii) in Lemma 4.1 is satisfied. Therefore, we have from Lemma 4.1 that
= d,

Noting that G(u; Z) = 6'(u; Z), one has from Theorem 3.1 that

1 e :
G'(wZ2)= inf_sup «Z%y+o % wiz%Ty+ NTZ0 =) N[Z7%Ty + ZPTa
yEY™*(P) AeA* (p) 2 ; ' ; Z

Let V(z,y,\) = {ZCTy + I3y 2Ty + T 20 — S n[Z2% Ty + ZBiTx]}, then we have
from (4.6) that

1 m l
V(,y,\) ~ N (0, yTEy+ 1D iy S0y NTEPA YN Sy TP 931) :
=1 =1

Property (4.3) follows from Theorem 5.7 of [11] directly. Obviously, when S* = {7}, Y*(p) = {y},
A*(p) = {)\}, we obtain (4.5) from (4.3). The proof is completed. O
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5 Conclusion

Based on the upper semi-continuity of solution mappings for a convex quadratic programming
problem and its restricted dual under some conditions of the primal quadratic programming
problem, we establish the Hadamard directionally differentiability of the optimal value function
of all parameters in the quadratic programming problem. Using a delta theorem developed in
[11], we derive the asymptotic distribution of a SAA estimator for the optimal value of a two
stage program whose second stage problem is a convex quadratic programming problem and all
parameters in the quadratic program are random variables. There are several issues should be
considered in the future study. The first problem arises in Assumption 4.1, in which we assume
that {¢, é, fl, B , 5} with G € S are independent to each other, this is a very strict assumption
and should be weakened. The second problem is the study about the rate of convergence for
the SAA approach for solving Problem (1.2). Noting that the SAA estimator in Section 4 is
different from the one studied in [12], we would like know the asymptotical distribution of the
estimator in [12], this is the third problem needed to be addressed.
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