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Abstract

In this paper, we first consider the stability analysis of a convex quadratic programming

problem and its restricted Wolfe dual in which all parameters in the problem are perturbed.

We demonstrate the upper semi-continuity of solution mappings for the primal problem and

the restricted Wolfe dual problem and establish the Hadamard directionally differentiability

of the optimal value function. By expressing the optimal value function as a min-max

optimization problem over two compact convex sets, we present the asymptotic distribution

of a SAA estimator of the optimal value for a two stage program whose second stage problem

is a convex quadratic programming problem and all parameters in the quadratic program

are random variables.
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1 Introduction

Consider the two-stage stochastic optimization problem of the following form:

min g(x) + E(θ(x, ξ))

s.t. x ∈ X,

θ(x, ξ) = miny∈Y q(x, y)

s.t. Wy + Tx = h,

Ay +Bx ≤ b,

(1.1)

where x ∈ <n is the first stage decision variable and X ⊂ <n, y ∈ <m is the second stage

decision variable and Y ⊂ <m, q : <n → < and g : <m → < are real-valued functions.

Shapiro and Homem-de-Mello (1998) [12] considered Problem (1.1) with no inequality con-

straints in the second stage and g(x) = cTx, q(y) = qT y and Y = <m+ , and recourse matrix

W and q are deterministic. They proposed Monte Carlo simulation based approaches to a

numerical solution of this two-stage stochastic programming problem. Different from Prob-

lem (1.1), Robinson and Wets (1987) [6] studied the continuity of the optimal value function

Q(p, x, ξ) = infy{〈h∗, y〉 : Wy = t(p, x, ξ), y ≥ 0} and the upper semicontinuity of its correspond-

ing solution set-valued mapping in which the probability distribution is regarded as a parameter

and recourse matrix W is deterministic.

Most of works about the stability of two stage stochastic programming study the stability

of optimal values and solution sets when the underlying probability distribution varies in some

metric space of probability measures. Now we cite some of these results. Römisch and Schultz

[8] considered two second stage problems. One is Problem (1.1) with no inequality constraints

in the second stage and g(x) = cTx, q(x, y) = qT y and Y = <m+ with recourse matrix W being

deterministic; Another one is Problem (1.1) with no equality constraints in the second stage

and g(x) = cTx, q(x, y) =
1

2
yTHy − (a− Tx)T y and Y = <m+ with A and H being determinis-

tic. They derived Hölder continuity of optimal value function with respect to a Lipschitz metric

β(µ, ν). Furthermore, in [9] Römisch and Schultz studied the above two second stage problems in

which cTx is replaced by a general convex function g(x) and obtained the upper semi-continuity

of solution set-valued mapping and Lipschitz continuity of optimal value function with respect

to the Lp-Wasserstein metric. Dentcheva and Römisch [2] proved that optimal value function

and solution set mapping of two-stage stochastic programs with random right-hand side, un-

der certain conditions, to be directionally differentiable and semidifferentiable on appropriate

functional spaces. Rachev and Römisch [5] studied quantitative stability of optimal values and

solution sets to stochastic programming problems with respect to a minimal information (m.i.)
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probability metric and applied the results to Problem (1.1) with no inequality constraints in

the second stage and g(x) = cTx, q(x, y) = qT y and Y = <m+ with recourse matrix W being

deterministic.

In each of the above second stage problems, the recourse matrixW is deterministic. There are

a few papers about the stability of two stage programming in which recourse costs, the technology

matrix, the recourse matrix and the right-hand side vector are all random. For example, in

Section 3 of [10], Römisch and Wets, considered a two-stage stochastic linear programs, namely

Problem (1.1) with no inequality constraints in the second stage and g(x) = cTx, q(x, y) = qT y

and Y = <m+ with q, h, T and W being random variables. They obtained the Lipschitz continuity

of the optimal value and the ε-approximate solution sets in Huasdorff distance with respect to

Fortet-Mourier metric of probability distributions. Their analysis was based on the general

perturbation results for optimization models in [7, Section 7J]. Recently Han and Chen [3]

considered the same linear two-stage stochastic program as in [10]. Based on stability theory of

linear programming, they derived new forms of quantitative stability results of the optimal value

function and the optimal solution set with respect to the Fortet-Mourier probability metric.

In this paper, we consider a two-stage stochastic optimization problem whose second stage

is a convex quadratic programming problem:

min g(x) + E(θ(x, ξ))

s.t. x ∈ X,

θ(x, ξ) = min c̃T y +
1

2
yT G̃y

s.t. Ãy + B̃x ≥ b̃,

(1.2)

where x ∈ <n is the decision variable, g : <n → < is a continuous convex function, c̃ ∈ <m

and G̃ ∈ Sm+ with G̃ = [G̃1., · · · , G̃m.]T , Ã ∈ <l×m with Ã = [ã1, · · · , ãl]T , B̃ ∈ <l×n with

B̃ = [B̃1., · · · , B̃l.]T , and b̃ ∈ <l.

Here we consider the case where all parameters in the second stage are random, namely

ξ = (c̃, G̃, Ã, B̃, b̃), and discuss the asymptotical properties of a SAA estimator of the optimal

value for Problem (1.2). Since G̃ is positively semi-definite, different from linear programming,

we can not have an explicit formulation for the Lagrage dual of the quadratic programming

problem in the second stage. Hence we can not use Lagrange duality theory, like the way of

Chapter 2 of [11] for linear two stage problems, to study the second stage problem in (1.2).

The main point in this paper is to express the optimal value θ(x, ξ) as a min-max of a convex-

concave function over two compact convex nonempty sets and employ Theorem 7.24 Shapiro,

Dentcheva and Ruszczynski (2009) to express the directional derivative of θ(x, ξ). After that

we use Theorem 7.59 of [11], the delta theorem, to analyze the the asymptotical properties of a
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SAA estimator of the optimal value for Problem (1.2). Here the so-called Wolfe dual of convex

quadratic programming play an important role for the min-max expression of θ(x, ξ).

The paper is organized as follows. In Section 2, we demonstrate upper semi-continuity of

the optimal solution mappings for both the quadratic programming problem and its strict Wolfe

dual. In Section 3, we establish the Hadamard directional differentiability of θ(x, ξ). In Section

4, we discuss the asymptotical distribution of a SAA estimator for optimal value of the two stage

problem (1.2).

2 Upper semi-continuity of optimal solution mappings

In this section we discuss the continuity properties about the solution set of the second stage

problem and it’s dual problem with respect to ξ and x. Let u = (x, c,G,A,B, b) and ũ = (x̃, ξ).

Consider quadratic programming problem in the second stage of problem (1.2):

(QP) min c̃T y +
1

2
yT G̃y

s.t. Ãy + B̃x ≥ b̃.
(2.1)

We denote by Φ(ũ) the feasible set of problem (2.1), namely

Φ(ũ) = {y ∈ <m : Ãy + B̃x̃ ≥ b̃}.

We denote f(y, ũ) = c̃T y +
1

2
yT G̃y the objective function for Problem (2.1) and by Y ∗(ũ) the

set of optimal solutions when x = x̃. For a given parameter (c,G,A,B, b), we discuss the

corresponding quadratic programming problem

(QP0) min cT y +
1

2
yTGy

s.t. Ay +Bx ≥ b,
(2.2)

and analyze the stability of the optimal solutions when (c,G,A,B, b) is perturbed to (c̃, G̃, Ã, B̃, b̃).

For this purpose we make the following assumptions about problem (2.2):

Assumption 2.1. The set X ⊂ <n is a nonempty compact convex set.

Assumption 2.2. For each x ∈ X, the optimal value of QP problem (2.2) is finite and the

solution set for problem (2.2) is compact.

Assumption 2.3. The following two conditions hold:

A1 The slater condition holds for each x ∈ X, namely for each x ∈ <n, there exists yx such

that

Ayx +Bx > b.
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A2 The matrix G ∈ Sm is positively semi-definite.

If the optimal value of QP problem (2.2) is finite and conditions of Assumption 2.3 are

satisfied, then the Wolfe dual of problem (2.2)

max
λ

λT (b−Bx)− 1

2
yTGy

s.t. c−ATλ+Gy = 0,

λ ≥ 0

(2.3)

has a non-empty solution set.

In the following, we use B to denote the unit ball and Br(z) to denote the closed ball centered

at z with radius r > 0 in a finite dimensional Hilbert space. We now recall continuity notions

of set-valued mappings [7].

Definition 2.1. [7, 5.4 Definition] A set-valued mapping S : <n ⇒ <m is outer semicontinuous

(osc) at x̄ if

lim sup
x→x̄

S(x) ⊂ S(x̄),

or equivalently lim sup
x→x̄

S(x) = S(x̄), where lim supx→x̄ S(x) is the outer limit of S at x̄:

lim sup
x→x̄

S(x) = {u : ∃xk → x̄,∃uk ∈ S(xk), with uk → u}.

The mapping S is inner semicontinuous (isc) at x̄ if

lim inf
x→x̄

S(x) = S(x̄),

where lim infx→x̄ S(x) is the inner limit of S at x̄:

lim inf
x→x̄

S(x) = {u : ∀xk → x̄,∃uk ∈ S(xk) for large enough k with uk → u}.

The mapping S is continuous at x̄ if

lim sup
x→x̄

S(x) = S(x̄) = lim inf
x→x̄

S(x).

The following proposition tells us that Slater condition is stable when (c,G,A,B, b) is per-

turbed to (c̃, G̃, Ã, B̃, b̃) with G̃ ∈ Sm+ .

Proposition 2.1. For fixed c,G,A,B and b, if Assumption 2.1 and A1 of Assumption 2.3 hold,

then there exists δ0 > 0 such that for any x ∈ X, Slater condition for Problem (2.1) holds when

‖(c̃, G̃, Ã, B̃, b̃)− (c,G,A,B, b)‖ ≤ δ0 with G̃ ∈ Sm+ .
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Proof. From condition A1 of Assumption 2.3, we have that there exist yx ∈ <m and εx > 0

such that

Ayx +Bx− b ≥ εx1l.

Let Mx := max{‖yx‖, ‖x‖, 1}. When max
1≤i≤l

{‖∆ãi‖, ‖∆B̃i‖, ‖∆b̃i‖} ≤
εx

6Mx
and

‖x̃− x‖ ≤ εx
[
6‖B‖+

εx
Mx

]−1

,

we have for i = 1, · · · , l,

aTi yx +BT
i x− bi ≥ ε

> ‖ãi − ai‖‖yx‖+ ‖B̃i −Bi‖‖x‖+ ‖B̃i‖‖x− x̃‖+ ‖b̃i − bi‖

≥ (ai − ãi)T yx +BT
i x− B̃T

i x̃− (bi − b̃i).

or equivalently,

ãTi yx + B̃T
i x̃− b̃i > 0, i = 1, · · · , l.

Thus the Slater condition for problem (2.1) corresponding to x̃ ∈ X holds when ‖(c̃, G̃, Ã, B̃, b̃)−

(c,G,A,B, b)‖ ≤ δx for δx =
εx

6Mx
and ‖x̃ − x‖ ≤ ωx with ωx := εx

[
6‖B‖+

εx
Mx

]−1

. For such

ωx > 0 at x ∈ X, we have

X ⊂ ∪x∈XBωx(x).

From Assumption 2.1, X is compact, we have from the finite covering theorem that there are a

finite number of points x1, . . . , xn0 and positive numbers ωx1 , . . . , ωxn0 such that

X ⊂ ∪n0
j=1Bωxj

(xj).

Let ω0 = min{ωxj : j = 1, . . . , n0} and δ0 = min{δxj : j = 1, . . . , n0}. Then for any x ∈ X, the

Slater condition for problem (2.1) holds when ‖(c̃, G̃, Ã, B̃, b̃)− (c,G,A,B, b)‖ ≤ δ0. 2

Next we prove that the solution set Y ∗(ũ) of Problem (2.1) is upper semicontinuous at u

under Assumption 2.1, Assumption 2.2 and Assumption 2.3. For this purpose, we first establish

two lemmas. For fixed c,G,A,B, b, let δ > 0 be the positive number, define

Uδ(c,G,A,B, b) = {(c̃, G̃, Ã, B̃, b̃, x̃) : ‖(c̃, G̃, Ã, B̃, b̃)− (c,G,A,B, b)‖ ≤ δ, G̃ ∈ Sm+ , x̃ ∈ X}.

Lemma 2.1. For given A,B and b, let condition A1 in Assumption 2.3 hold. Then for any

û ∈ Uδ0(c,G,A,B, b), where δ0 is defined in Proposition 2.1,

lim
ũ→û

Φ(ũ) = Φ(û).
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Proof. As the following inclusion

lim sup
ũ→û

Φ(ũ) ⊂ Φ(û)

is obvious, we only need to verify that

lim inf
ũ→û

Φ(ũ) ⊃ Φ(û).

For arbitrary ŷ ∈ Φ(û), we now prove ŷ ∈ lim inf
ũ→û

Φ(ũ). By Proposition 2.1, we have that

∃ y such that Ây + B̂x̂− b̂ ≥ ε̂1l.

Let ũ(t) = (ĉ+t4c, Ĝ+t4G, Â+t4A, B̂+t4B, b̂+t4b, x̂+t(x̃−x̂)), y(t) = ŷ+t(y− ŷ), and

we obviously have ũ(t) → û and y(t) → ŷ, t ↓ 0. Then for 4u = (4c,4G,4A,4B,4b,4x)

we have that

Ã(t)y(t) + B̃(t)x̃(t)− b̃(t)

= (Â+ t4A)(ty + (1− t)ŷ) + (B̂ + t4B)(x̂+ t4x)− (b̂+ t4b)

= t(Â(y − ŷ) + B̂4x+4Aŷ +4Bx̂−4b) + t2(4A(y − ŷ) +4B4x) + Âŷ + B̂x̂− b̂

= t(Ây + B̂x̂− b̂+ B̂4x+4Aŷ +4Bx̂−4b)

+t2(4A(y − ŷ) +4B4x) + (1− t)(Âŷ + B̂x̂− b̂)

≥ t{(ε̂1l + B̂4x+4Aŷ +4Bx̂−4b) + t(4A(y − ŷ) +4B4x)}.

(2.4)

Therefore we have that for ‖4u‖ small enough, one has that there exits t̂ > 0 such that

Ã(t)y(t) + B̃(t)x̃(t)− b̃(t) ≥ 0, ∀t ∈ [0, t̂),

This implies ŷ ∈ lim inf ũ→û Φ(ũ). This proof is completed. 2

Define

Ψ(ũ, α) = Φ(ũ) ∩ lev≤αf(·, ũ)

with

lev≤αf(·, ũ) = {y ∈ <m : f(y, ũ) ≤ α}, α ∈ <.

Lemma 2.2. For fixed c,G,A,B, b, let Assumptions 2.1, 2.2 and condition A2 of Assumption

2.3 hold. Then for any α ∈ <, there exist δ1 > 0 and a bounded set B ⊂ <m such that

Ψ(ũ, α′) ⊂ B,∀α′ ≤ α,∀ũ ∈ Uδ1(c,G,A,B, b).
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Proof. Without loss of generality, we assume that Ψ(ũ, α) 6= ∅. Because Ψ(ũ, α′) ⊂ Ψ(ũ, α),∀α′ ≤
α, we only need to prove Ψ(ũ, α) ⊂ B. We prove the result by contradiction. Suppose that there

exist a sequence ũk = (xk, ξk) ∈∈ Uδ1(c,G,A,B, b) such that xk ∈ X and ξk → (c,G,A,B, b)

and yk ∈ Ψ(ũk, α) with ‖yk‖ → ∞. Let dky = yk/‖yk‖, and notice X is compact, we can find a

subsequence kj such that xkj → x and d
kj
y → dy for some x ∈ X and dy ∈ bdryB. In view of

ykj ∈ Ψ(ũkj , α), one has

c̃kjT ykj +
1

2
ykjT G̃kjykj ≤ α

ã
kjT
i ykj + B̃

kjT
i xkj − b̃kji ≥ 0, i = 1, · · · , l.

(2.5)

Dividing both sides of the above inequality by ‖ykj‖2 and ‖ykj‖ respectively, we obtain

c̃kjTd
kj
y /‖ykj‖+

1

2
d
kjT
y G̃jd

kj
y ≤ α/‖ykj‖2

ã
kjT
i d

kj
y + B̃

kjT
i xkj/‖ykj‖ − b̃kji /‖ykj‖ ≥ 0, i = 1, · · · , l.

From the definition of ∈ Uδ1(c,G,A,B, b), we know that G̃kj � so that the first inequality of

(2.5) implies

c̃kjTd
kj
y ≤ α/‖ykj‖.

Taking the limits by j →∞ in the above three inequalities, we obtain

1

2
dTyGdy ≤ 0, Ady ≥ 0, cTdy ≤ 0,

and this contradicts with the compactness of solution set in Assumption 2.2. The proof is

completed. 2

In the following discussions, we need to adopt Proposition 4.4 of Bonnans and Shapiro(2000)

[1]. For this, we consider the parameterized optimization problem of the form

(Pu) min
x∈X

f(x, u) s.t. G(x, u) ∈ K, (2.6)

where u ∈ U , X, Y and U are Banach spaces, K is a closed convex subset of Y . f : X ×Y → <
and G : X × U → Y are continuous. We denote by

Φ(u) := {x ∈ X : G(x, u) ∈ K}

the feasible set of problem (Pu) and the optimal value function is

ν(u) := inf
x∈Φ(u)

f(x, u),

and the associated solution set

S(u) := argmin
x∈Φ(u)

f(x, u).
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Proposition 2.2. [1, Proposition 4.4] Let u0 be a given point in the parameter space U . Suppose

that

(i) the function f(x, u) is continuous on X × U ,

(ii) the multifunction Φ(·) is closed,

(iii) there exist α ∈ < and a compact set C ⊂ X such that every u in a neighborhood of u0, the

level set

lev≤αf(·, u) := {x ∈ Φ(u) : f(x, u) ≤ α}

is nonempty and contained in C,

(iv) for any neighborhood VX of the set S(u0) there exists a neighborhood VU of u0 such that

VX ∩ Φ(u) is nonempty for all u ∈ VU .

Then:

(a) the optimal value function ν(u) is continuous at u = u0,

(b) the multifunction S(u) is upper semicontinuous at u0.

Theorem 2.4. For given (c,G,A,B, b), let Assumptions 2.1, 2.2 and 2.3 hold. For any û ∈
Uδ1(c,G,A,B, b) with δ1 defined in Lemma 2.2, one has that θ(·) is continuous at û and the

solution set mapping Y ∗ is upper semi-continuous at û, namely for ε > 0 there exists a number

δ2 > 0 such that

Y ∗(ũ) ⊂ Y ∗(û) + εB, ∀ũ ∈ Bδ2(û) with G̃ ∈ Sm+ .

Proof. Let

f(y, ũ) = c̃T y +
1

2
yT G̃y, G(y, ũ) = Ãy + B̃x̃− b̃ and K = <l+.

Then the constraint set Φ(ũ) is expressed as

Φ(ũ) = {y ∈ <m : G(y, ũ) ∈ K}

and the problem is expressed in the setting of Proposition 2.2. Obviously we have that f(y, ũ)

is continuous in <m × Uδ1(c,G,A,B, b), namely condition (i) of Proposition 2.2 holds. From

Lemma 2.1 and noticing the equivalence between the outer semi-continuity and the closedness

for set-value mappings, we have that Φ is a closed set-value mapping so that (ii) of Proposition

2.2 holds. Condition (iii) of Proposition 2.2 comes from Lemma 2.2. Since Assumption 2.3
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implies Mangsarian-Fromovitz constraint qualification for Φ(û) at any point ŷ ∈ Y ∗(û). Then

it follows form Theorem 2.87 in [1] that

dist(ŷ,Φ(ũ)) ≤ κ(dist (G(ŷ, ũ),K)) ≤ κ‖G(ŷ, ũ)− G(ŷ, û)‖ (2.7)

for ũ ∈ VU , where VU is some neighborhood of û in <n × Sm+ × <l×m × <l×n × <l and κ > 0.

Since G is Lipschitz continuous, we have that condition (iv) of Proposition 2.2 holds.

Therefore, we have from Proposition 2.2 that the optimal value function θ is continuous at

at û and the solution set Y ∗(ũ) is upper semicontinuous at û in <n × Sm+ × <l×m × <l×n × <l,
namely for ε > 0 there exists a number δ2 > 0 such that

Y ∗(ũ) ⊂ Y ∗(û) + εB, ∀ũ ∈ Bδ2(û) with G̃ ∈ Sm+ .

The proof is completed. 2

Now we consider the dual of the QP problem (2.1). The Wolfe dual of problem (2.1) is

max
λ

λT (b̃− B̃x)− 1

2
yT G̃y

s.t. c̃− ÃTλ+ G̃y = 0,

λ ≥ 0.

(2.8)

The restricted Wolfe dual of problem (2.1) is defined by

max
λ

λT (b̃− B̃x)− 1

2
yT G̃y

s.t. c̃− ÃTλ+ G̃y = 0,

y ∈ Range G̃, λ ≥ 0.

(2.9)

Remark 2.1. The Lagrangian function of Problem (2.9) is defined by

L(λ, y, x) = c̃T z + zT G̃y − (Ãz)Tλ+ (b̃− B̃x)Tλ− 1

2
yT G̃y.

Then the Lagrangian dual of Problem (2.9) is

min
z∈<n

max
λ≥0,y∈Range G̃

L(λ, y, z)

= min
z∈<n

max
λ≥0,y∈Range G̃

c̃T z + (zT G̃y − 1

2
yT G̃y) + (b̃− B̃x− Ãz)Tλ

= min
z∈<n

c̃T z +
1

2
zT G̃z

s.t. Ãz + B̃x ≥ b̃,

which is just Problem (2.1). From this observation, we have from the duality theory for convex

optimization that Assumption 2.2 implies that Slater condition for Problem (2.9) holds.
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We denote the feasible set for Problem (2.8) by

E(c̃, G̃, Ã) = {(y, λ) ∈ <m ×<l+ : c̃− ÃTλ+ G̃y = 0}.

Proposition 2.3. Let (c,G,A) be given. If Assumption 2.2 holds, then there exists δ3 > 0 such

that Slater condition for Problem (2.8) holds when ‖(c̃, G̃, Ã) − (c,G,A)‖ ≤ δ3 with G̃ ∈ Sm+ ,

namely there exists (ỹ, λ̃) such that

c̃− ÃT λ̃+ G̃ỹ = 0, λ̃ > 0

when ‖(c̃, G̃, Ã)− (c,G,A)‖ ≤ δ3 with G̃ ∈ Sm+ .

Proof. By Remark 2.1, we know that Slater condition of Problem (2.3) holds, namely there

exists a λ depending on (c,G,A) such that

c−ATλ+Gy = 0, λ > 0.

Namely there exists ε1 > 0, such that λ ≥ ε11l. What’s more, matrix [−AT , G] is of row full

rank when Assumption 2.2 holds. In fact, suppose that there exist dy ∈ <m such that(
−A
G

)
dy = 0,

which implies that Ady = 0, Gdy = 0 and cTdy = 0, or dy ∈ Y ∗(u)∞. Therefore we must have

that dy = 0 because otherwise Y ∗(u) is unbounded, a contradiction with Assumption 2.2. Thus

we have that matrix [−AT , G] is of row full rank. The validity of slater condition for problem

(2.8) is equivalent to the solvability of the following system in variable (ỹ, λ̃):

c̃− ÃT λ̃+ G̃ỹ = 0, λ̃ > 0. (2.10)

For (∆c,∆A,∆G) = (c̃, Ã, G̃)− (c, A,G) with G̃ ∈ Sm+ and (∆y,∆λ) = (ỹ − y, λ̃ − λ), the first

equality in (2.10) is equivalent to

0 = c̃− ÃT (λ+ ∆λ) + G̃(y + ∆y)

= c̃− ÃTλ−AT∆λ+ G̃y + G̃∆y,

= ∆c−∆ATλ+ ∆Gy − ÃT∆λ+ G̃∆y

or

(−ÃT , G̃)

(
∆λ

∆y

)
= (−∆c+ ∆ATλ−∆Gy) (2.11)

We define M = (−AT , G) and M̃ = (−ÃT , G̃), for ∆M = (−∆AT ,∆G), let ∆N = ∆MMT +

M∆MT + ∆M∆MT , then when ∆M is small enough, M̃M̃T = MMT + ∆N is nonsingular.
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We assume δ3 > 0 satisfies that M̃M̃T is nonsingular when ‖∆M‖ ≤ δ3. Then we obtain from

Sherman-Morrison-Woodbury formula that

M̃+ = M̃T (M̃M̃T )−1

= (M + ∆M)T (MMT + ∆N)−1

= (M + ∆M)T [(MMT )−1 − (MMT )−1∆N [Im + (MMT )−1∆N ]−1(MMT )−1]

= M+ + ∆Σ,

where ∆Σ satisfies ‖∆Σ‖ = O(‖∆M‖). Since M̃M̃T is nonsingular when ‖∆M‖ ≤ δ3, we have

that (
∆λ∗(∆M)

∆y∗(∆M)

)
:= M̃+(−∆c+ ∆ATλ−∆Gy)

= [M+ + ∆Σ](−∆c+ ∆ATλ−∆Gy)

(2.12)

is the least square norm solution to (2.11). From the expression for (∆y∗,∆λ∗) in (2.12), we may

assume that δ3 > 0 small enough such that ‖∆λ∗(∆M)‖ ≤ ‖λ‖/2 when ‖(c̃, G̃, Ã)− (c,G,A)‖ ≤
δ3 with G̃ ∈ Sm+ . Therefore (

λ̃

ỹ

)
:=

(
λ

y

)
+

 ∆λ∗(∆M)

∆y∗(∆M)


satisfies (2.10). The proof is completed. 2

Lemma 2.3. Let (c,G,A) be given with Assumption 2.2 being satisfied. Then, for any (ĉ, Ĝ, Â) ∈
Bδ3(c,G,A) with Ĝ ∈ Sm+ , where δ3 defined in Proposition 2.3,

lim

(c̃,G̃,Ã)
G̃∈Sm+−→ (ĉ,Ĝ,Â)

E(c̃, G̃, Ã) = E(ĉ, Ĝ, Â).

Proof. As the following inclusion

lim sup

(c̃,G̃,Ã)
G̃∈Sm+−→ (ĉ,Ĝ,Â)

E(c̃, G̃, Ã) ⊂ E(ĉ, Ĝ, Â).

is obvious, we only need to verify that

lim inf

(c̃,G̃,Ã)
G̃∈Sm+−→ (ĉ,Ĝ,Â)

E(c̃, G̃, Ã) ⊃ E(ĉ, Ĝ, Â).

For arbitrary (ŷ, λ̂) ∈ E(ĉ, Ĝ, Â), we now prove (ŷ, λ̂) ∈ lim inf

(c̃,G̃,Ã)
G̃∈Sm+−→ (ĉ,Ĝ,Â)

E(c̃, G̃, Ã). By Proposi-

tion 2.3, we have that there exists (y, λ) such that

ĉ− ÂTλ+ Ĝy = 0, λ > 0.
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For (∆c,∆G,∆A) with ∆G ∈ RSm+ (Ĝ), let (c̃(t), G̃(t), Ã(t)) = (ĉ + t∆c, Ĝ + t∆G, Â + t∆A),

we obviously have (c̃(t), G̃(t), Ã(t))→ (ĉ, Ĝ, Â) as t ↓ 0 and G̃(t) ∈ Sm+ for t > 0. Define

(y(t), λ(t)) = (ŷ, λ̂) + t(y − ŷ, λ− λ̂) + t(dy(t), dλ(t)). (2.13)

We consider the system

c̃(t)− Ã(t)Tλ(t) + G̃(t)y(t) = 0. (2.14)

Define

M(t) = [−Â− t∆A Ĝ+ t∆G], λ̃t = λ̂+ t(λ− λ̂), ỹt = ŷ + t(y − ŷ).

Then the equation (2.14) is equivalent to

M(t)

 dλ(t)

dy(t)

 = −[∆c−∆AT λ̃t + ∆Gỹt]. (2.15)

Let (d∗λ(t), d∗y(t)) be the following least square norm solution to (2.15): d∗λ(t)

d∗y(t)

 = −M(t)†[∆c−∆AT λ̃t + ∆Gỹt]. (2.16)

Similar to the analysis in the proof of Proposition 2.3, we obtain M(t)† = M̂ † + O(t‖∆M‖).
Thus we assume that ‖M(t)†‖ ≤ 2‖M̂ †‖ for (c̃, G̃, Ã) ∈ Bδ3(ĉ, Ĝ, Â). Let

ε̂ =
‖λ‖

4‖M̂ †‖max{1, ‖ŷ‖, ‖y‖, ‖λ̂‖, ‖λ‖}
.

Then for ‖(∆c,∆A,∆G)‖ < ε̂ with ∆G ∈ RSm+ (Ĝ), one has∥∥∥∥∥∥
 d∗λ(t)

d∗y(t)

∥∥∥∥∥∥ ≤ ‖M(t)†‖‖[∆c−∆AT λ̃t + ∆Gỹt]‖

≤ 2‖M̂ †‖max{1, ‖ŷ‖, ‖y‖, ‖λ̂‖, ‖λ‖}‖(∆c,∆A,∆G)‖

≤ ‖λ‖/2.

(y∗(t), λ∗(t)) = (ŷ, λ̂) + t(y − ŷ, λ− λ̂) + t(d∗y(t), d
∗
λ(t)). (2.17)

Then (y∗(t), λ∗(t)) satisfies equation (2.14) and for t > 0 small enough,

λ∗(t) = λ̂+ t(λ− λ̂) + td∗λ(t)) = (1− t)λ̂+ t(λ+ d∗λ(t)) > 0.

Therefore, for small t > 0,

(y∗(t), λ∗(t)) ∈ E(ĉ+ t∆c, Ĝ+ t∆G, Â+ t∆A)
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and (y∗(t), λ∗(t))→ (ŷ, λ̂). This implies

(ŷ, λ̂) ∈ lim inf

(c̃,G̃,Ã)
G̃∈Sm+−→ (ĉ,Ĝ,Â)

E(c̃, G̃, Ã),

and the proof is completed. 2

Now we come back to Problem (2.9), the restricted Wolfe dual of problem (2.1). Denote the

feasible set of Problem (2.9) by R(ũ), namely

R(c̃, G̃, Ã) = E(c̃, G̃, Ã) ∩ Range G̃×<l.

Denote the objective function by φ(y, λ, ũ) = λT (b̃ − B̃x) − 1

2
yT G̃y and by Λ∗(ũ) the set of

λ-part optimal solutions of Problem (2.9) when x = x̃.

The following corollary is from Lemma 2.3.

Corollary 2.1. Let (c,G,A) be given with Assumption 2.2 being satisfied. Then, for any

(ĉ, Ĝ, Â) ∈ Bδ3(c,G,A) with Ĝ ∈ Sm+ , where δ3 defined in Proposition 2.3,

lim

(c̃,G̃,Ã)
G̃∈Sm+−→ (ĉ,Ĝ,Â)

R(c̃, G̃, Ã) = R(ĉ, Ĝ, Â).

Define

Γ(ũ, α) = R(c̃, G̃, Ã) ∩ lev≥αφ(·, ũ)

with

lev≥αφ(·, ũ) = {(y, λ) ∈ <m× ∈ <l : φ(y, λ, ũ) ≥ α}, α ∈ <.

Lemma 2.4. For given (c,G,A,B, b), let Assumptions 2.1,2.2 and 2.3 hold. Then for any

α ∈ <n, there exists δ3 > 0 and a bounded set D ⊂ <m ×<l such that

Γ(ũ, α′) ⊂ D, ∀α′ ≥ α,∀ũ ∈ Uδ3(c,G,A,B, b).

Proof. Without loss of generality, we assume that Γ(ũ, α) 6= ∅. Because Γ(ũ, α′) ⊂ Γ(ũ, α),∀α′ ≤
α, we only need to prove Γ(ũ, α) ⊂ D.

We first prove that, for any (y, λ) ∈ Γ(ũ, α), λ is bounded by contradiction. Suppose that

there exist a sequence ũk = (xk, ξk) with Gk ∈ Sm+ such that xk ∈ X and ξk → (c,G,A,B, b)

and (yk, λk) ∈ Γ(ũk, α) with ‖λk‖ → ∞. Let dkλ = λk/‖λk‖, dky = yk/‖λk‖, and notice X is

compact, we can find a subsequence kj such that xkj → x and d
kj
λ → dλ for some x ∈ X with,

dλ ∈ bdryB. In view of (ykj , λkj ) ∈ Γ(ũkj , α), one has

λkjT (b̃kj − B̃kjxkj )− 1

2
ykjT G̃kjykj ≥ α,

c̃kj − ÃkjTλkj + G̃kjykj = 0,

ykj ∈ Range G̃kj ,

λkj ≥ 0

(2.18)
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Dividing the first inequality in (2.19) by ‖λkj‖2, we obtain from the positive semi-definiteness

G̃kj that

0 ≥ −1

2
d
kjT
y G̃kjd

kj
y ≥ α/‖λkj‖2 − λkjT (b̃kj − B̃kjxkj )/‖λkj‖2,

Taking the limits by j → ∞, we have d
kjT
y G̃kjd

kj
y → 0 or G̃kj

1
2d
kj
y → 0, this implies G̃kjd

kj
y =

G̃kj
1
2 G̃kj

1
2d
kj
y → 0 when j → ∞. Combining the positive semi-definiteness of G̃kj and the

inequalities in (2.19), we have

λkjT (b̃kj − B̃kjxkj ) ≥ α,

c̃kj − ÃkjTλkj +Gkjykj = 0,

ykj ∈ Range G̃kj ,

λkj ≥ 0.

Dividing the above inequalities by ‖λkj‖, we get

d
kjT
λ (b̃kj − B̃kjxkj ) ≥ α/‖λkj‖,

c̃kj/‖λkj‖ − ÃkjTdkjλ +Gkjd
kj
y = 0,

d
kj
y ∈ Range G̃kj ,

d
kj
λ ≥ 0,

Taking the limits by j →∞, we have

dTλ (b−Bx) ≥ 0, ATdλ = 0, dλ ≥ 0, ‖dλ‖ = 1,

which contradicts with the compactness of the optimal solution set assumed in Assumption 2.2.

Now we prove that, for any (y, λ) ∈ Γ(ũ, α), y is bounded by contradiction. Suppose that

there exist a sequence ũk = (xk, ξk) such that xk ∈ X, ξk → (c,G,A,B, b) and (yk, λk) ∈
Γ(ũk, α) with ‖yk‖ → ∞. From the first part of this lemma, we know that {λk} is bounded.

Let dkλ = λk/‖λk‖, dky = yk/‖yk‖, and notice X is compact, we can find a subsequence kj

such that xkj → x, d
kj
y → dy and d

kj
λ → 0 for some x ∈ X with dy ∈ bdryB. In view of

(ykj , λkj ) ∈ Γ(ũkj , α), one has

λkjT (b̃kj − B̃kjxkj )− 1

2
ykjT G̃kjykj ≥ α,

c̃kj − ÃkjTλkj + G̃kjykj = 0,

ykj ∈ Range G̃kj ,

λkj ≥ 0

(2.19)

Dividing the first inequality in (2.19) by ‖ykj‖2, taking the limit for j → ∞, we obtain from

the positive semi-definiteness G̃kj that dTyGdy = 0 and Gdy = 0. From the third inclusion in
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(2.19), we obtain dy ∈ RangeG. The relations Gdy = 0 and dy ∈ RangeG imply dy = 0. This

contradicts with ‖dy‖ = 1. The proof is completed. 2

Theorem 2.5. For given (c,G,A,B, b), let Assumptions 2.1,2.2 and 2.3 hold. For any û ∈
Uδ3(c, A,G,B, b) with δ3 defined above, one has that the solution set mapping Λ∗ is upper semi-

continuous at û, namely for ε > 0 there exists a number δ > 0 such that

Λ∗(ũ) ⊂ Λ∗(û) + εB, ∀ũ ∈ Bδ3(û) with G̃ ∈ Sm+ .

Proof. The results in this theorem can be proved by Corollary 2.1 and Lemma 2.4. The proof

is similar to that of Theorem 2.4. We omit it here. 2

3 Differentiability of the optimal value function

In this section we discuss the differential properties of the optimal value of the lower level

problem. The Lagrangian function of problem (2.1) is defined by

L(y, λ; ũ) = c̃T y +
1

2
yT G̃y + λT (b̃− Ãy − B̃x̃). (3.1)

Define

Θ(ũ, α) = {λ ∈ <l : ∃y ∈ <m such that (y, λ) ∈ Γ(ũ, α)}.

From Lemma 2.2 and Lemma 2.4, we assume that for some δ4 > 0, α ∈ <, and bounded sets

Bp ∈ <m, Bd ⊂ <l,
Ψ(ũ, α) ⊂ Bp, Θ(ũ, α) ⊂ Bd

for any for any x̃ ∈ X and ‖ξ − (c,G,A,B, b)‖ ≤ δ4. From Theorem 2.4 and Theorem 2.5, θ(·)
is continuous at ũ when x̃ ∈ X and ‖ξ − (c,G,A,B, b)‖ ≤ δ1, we may assume that δ4 < δ1 and

α ∈ < such that

Y ∗(ũ) ⊂ Ψ(ũ, α), Λ∗(ũ) ⊂ Θ(ũ, α).

Therefore, by the Lagrange duality theory, the optimal value can be written as

θ(x̃, c̃, G̃, Ã, B̃, b̃) = max
λ∈Bd

min
y∈Bp

L(y, λ; ũ). (3.2)

The next proposition shows that the optimal value function θ(x̃, c̃, G̃, Ã, B̃, b̃, ) is locally Lipschitz

continuous.

Proposition 3.1. For given (c,G,A,B, b) and x ∈ X, let Assumptions 2.1, 2.2 and 2.3 hold.

Then θ(x̃, c̃, G̃, Ã, B̃, b̃) in X×<n×Sm+ ×<l×m×<l×n×<l is locally Lipschitz continuous around

(x, c,G,A,B, b), namely there exists some κ ≥ 0 depending on (x, c,G,A,B, b) such that

|θ(ũ)− θ(u′)| ≤ κ‖ũ− u′‖, (3.3)
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when ũ, u′ ∈ Bδ5(x, c,G,A,B, b) with G̃,G′ ∈ Sm+ for some positive constant δ5 > 0 depending

on (x, c,G,A,B, b). Here ũ = (x̃, c̃, G̃, Ã, B̃, b̃), u′ = (x′, c′, G′, A′, B′, b′) and

‖ũ− u′‖ = ‖c− c′‖+ ‖G̃−G′‖+ ‖Ã−A′‖+ ‖B̃ −B′‖+ ‖b̃− b′‖+ ‖x̃− x′‖.

Proof. Since L(·, ·; ũ) is continuous, the max-min values for parameters ũ and u′ can be arrived.

Assume that

θ(ũ) = L(ỹ, λ̃; ũ), θ(u′) = L(y′, λ′;u′)

for (ỹ, λ̃), (y′, λ′) ∈ Bp × Bd. Without less of generality, we assume that θ(ũ) ≤ θ(u′). Then we

have
|θ(ũ)− θ(u′)|
= | sup

λ∈Bd
inf
y∈Bp

L(y, λ, ũ)− sup
λ∈Bd

inf
y∈Bp

L(y, λ, u′)|

= |L(ỹ, λ̃; ũ)− L(y′, λ′;u′)|
= |L(ỹ, λ̃; ũ)− L(ỹ, λ′; ũ) + L(ỹ, λ′; ũ)− L(y′, λ′;u′)|
≤ |L(ỹ, λ′; ũ)− L(y′, λ′;u′)|
≤ |L(ỹ, λ′; ũ)− L(ỹ, λ′;u′)|
≤ sup

y∈Bp
sup
λ∈Bd

|L(y, λ; ũ)− L(y, λ;u′)|

(3.4)

Choose δ5 ≤ δ4 and define

κ = max{Diam(Bp),
1

2
(Diam(Bp))2, {1, ‖B‖+ δ5,Diam(X),Diam(Bp)} ×Diam(Bd)}.

Then, when ‖ũ− u′‖ ≤ δ5, for y ∈ Bp and λ ∈ Bd, we have

|L(y, λ; ũ)− L(y, λ;u′)|
≤ (c̃− c′)T y + 1

2y
T (G̃−G′)y − λT (Ã−A′)y − λT (B̃ −B′)x′ − λT B̃(x̃− x′) + λT (b̃− b′)|

≤ κ
{
‖c− c′‖+ ‖G̃−G′‖+ ‖Ã−A′‖+ ‖B̃ −B′‖+ ‖b̃− b′‖+ ‖x̃− x′‖

}
= κ‖ũ− u′‖.

Combing the above inequality with (3.4), we obtain the inequality (3.3) when ũ, u′ ∈ Bδ5(x, c,G,A,B, b).

2

We recall the perturbation result about the minimax problem from Theorem 7.24 Shapiro,

Dentcheva and Ruszczynski (2009) [11]. Consider the following min-max problem:

min
x∈X
{φ(x) := sup

y∈Y
f(x, y)}, (3.5)

and its dual:

sup
y∈Y
{ι(y) := min

x∈X
f(x, y)}. (3.6)
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We assume that the set X ⊂ <n and Y ⊂ <m are convex and compact and the function

f : X×Y → < is continuous. Moreover, we assume that f(x, y) is convex in x ∈ X and concave

in y ∈ Y . Consider the perturbation of the minimax problem (3.5):

min
x∈X

sup
y∈Y
{f(x, y) + tηt(x, y)}, (3.7)

where ηt(x, y) is continuous in X × Y , t ≥ 0. Denoted by υ(t) the optimal value of the above

problem (5). Clearly υ(0) is the optimal value of the unperturbed problem (3.5). Then the

following lemma holds.

Lemma 3.1. [11, Theorem 7.24] Suppose that:

(i) The sets X ⊂ Rn and Y ⊂ Rm are convex and compact,

(ii) For all t ≥ 0 the function ζt := f + tηt is continuous on X × Y , convex in x ∈ X and

concave in y ∈ Y ,

(iii) ηt converges uniformly as t ↓ 0 to a function γ(x, y) ∈ C(X,Y ).

Then

lim
t→0

υ(t)− υ(0)

t
= inf

x∈X∗
sup
y∈Y ∗

γ(x, y).

Theorem 3.1. For given (c,G,A,B,b) and x ∈ X, let Assumptions 2.1, 2.2 and 2.3 hold.

Then the optimal value function θ is directionally differentiable at (x, c,G,A,B, b) along any

(∆x,∆c,∆G,∆A,∆B,∆b) ∈ <n×<n×RSm+ (G)×<l×m×<l×n×<l. Moreover, θ is Hadamard

directionally differentiable at (x, c,G,A,B, b) in <n × <n × Sm+ × <l×m × <l×n × <l. Thus we

obtain the following Taylor expansion of θ(ũ) with G̃ ∈ Sm+ at u = (x, c,G,A,B, b):

θ(ũ) = θ(u)+

+ inf
y∈Y ∗(u)

sup
λ∈Λ∗(u)

{
∆cT y +

1

2
yT∆Gy + λT∆b− λT [∆Ay + ∆Bx+B∆x]

}
+o(‖ũ− u‖),

(3.8)

where ũ = (x̃, c̃, G̃, Ã, B̃, b̃) with G̃ ∈ Sm+ , u = (x, c,G,A,B, b) and ∆u = ũ − u satisfying

‖∆u‖ ≤ δ4.

Proof. In the setting of Lemma 3.1, for the direction ũ− u, we define

ζt(y, λ;u, ũ) = L(y, λ;ut), f(y, λ;u, ũ) = L(y, λ;u) (3.9)
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where ut = u+ t(ũ−u), ũ = (x̃, c̃, G̃, Ã, B̃, b̃), u = (x, c,G,A,B, b) and ∆u = ũ−u. It is obvious

that ζt is convex in y and concave in λ. Since

ηt(y, λ, u, ũ) :=
1

t
[ζt(y, λ;u, ũ)− f(y, λ;u, ũ)]

= L(y, λ;ut)− L(y, λ;u)]

= ∆cT y + 1
2y

T∆Gy + λT∆b− λT [∆Ay + ∆Bx+B∆x+ t∆B∆x]

−→ ∆cT y + 1
2y

T∆Gy + λT∆b− λT [∆Ay + ∆Bx+B∆x] =: γ(y, λ, u, ũ)

and the convergence is uniform with respect to t, we have that condition (iii) in Lemma 3.1 is

satsified. Therefore all conditions in Lemma 3.1 are satisfied and in turn we obtain

lim
t↓0

θ(u+ t(ũ− u))− θ(u)

t
= inf

y∈Y ∗(u)
sup

λ∈Λ∗(u)
γ(y, λ;u, ũ)

= inf
y∈Y ∗(u)

sup
λ∈Λ∗(u)

{
∆cT y +

1

2
yT∆Gy + λT∆b− λT [∆Ay + ∆Bx+B∆x]

}
,

(3.10)

which means that θ is differentiable at u, and the directional derivative of θ at u along ũ− u is

given by

θ′(u; ũ− u) = inf
y∈Y ∗(u)

sup
λ∈Λ∗(u)

{
∆cT y +

1

2
yT∆Gy + λT∆b− λT [∆Ay + ∆Bx+B∆x]

}
.

From Proposition 3.1, we know that θ is locally Lipschitz continuous, thus it follows from

Proposition 2.49 of [1] that θ is Hadmard directionally differentiable at (x, c,G,A,B, b) and the

Taylor expansion of θ(ũ) at u = (x, c,G,A,B, b) can be expressed as in formula (3.8). 2

Remark 3.1. In the book Lee, Tam and Yen (2005) [4], a similar expression for θ′(u; ∆u) is

given, but the assumptions it adopts are strict when G is positively semi-definite. In Theorem

14.2 of this book, the similar result is obtained under three conditions: (1) the system Ay ≥ b

is regular, namely Slater condition holds; (2) minz z
TGz s.t. Az ≥ 0 has only zero solution; (3)

condition (G) (see Page 246 of [4]). If G is positively semi-definite, Condition (G) holds auto-

matically, but in this case the following example shows that our assumptions for the expression

of θ′(u; ∆u) are weaker than those used in Theorem 14.2 of [4]. Let us consider the following

quadratic program problem:

min 1
2y

TGy + cT y

s.t. Ay ≥ b,

where

G =


2 0 0

0 0 0

0 0 0

 , A =

(
1 1 1

0 0 1

)
, c = [0, 1, 2]T , b = [3, 0]T .
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The unique optimal solution is (1
2 ,

5
2 , 0)T with optimal value 11

4 . The quadratic programming

problem

min 1
2z
TGz

s.t. Az ≥ 0.

has not only zero solution, but also nonzero solutions. For example, any point (0, t, 0)T with

t > 0 is a solution to this problem. This means that the second condition in Theorem 14.2 of Lee

et. al (2005) fails and we can not derive the expression for θ′(u; ∆u). However, conditions 2.2

and 2.3 are satisfied for this example and we can still obtain the expression for θ′(u; ∆u) from

Theorem 3.1.

4 Asymptotical distribution of an SAA estimator for optimal

value

In this section, we consider the asymptotic properties of the optimal value of the two stage

problem (1.2). For θ(x, ξ) with ξ = (c̃, G̃, Ã, B̃, b̃) being a random variable, define

f(x, ξ) = g(x) + θ(x, ξ),

then the two stage stochastic optimization problem is expressed as

min E[f(x, ξ)]

s.t. x ∈ X.
(4.1)

Let ξ1, . . . , ξN be an i.i.d. sample, then the sample average approximation problem is defined

by

min f̂N (x)

s.t. x ∈ X,
(4.2)

where

f̂N (x) = f

(
x,

1

N

N∑
i=1

ξi

)
= g(x) + θ

(
x,

1

N

N∑
i=1

ξi

)
.

We denote the optimal value and the solution set of the two stage stochastic optimization

problem, namely the optimal value of problem (4.1) by ν∗ and S∗, respectively, and the optimal

value of problem (4.2) by ν̂N .

Assumption 4.1. Assume any two random elements in {c̃, G̃, Ã, B̃, b̃} with G̃ ∈ Sm+ are inde-

pendent to each other. The expectation of ξ = (c̃, G̃, Ã, B̃, b̃) is p = (c,G,A,B, b) with G ∈ Sm+ ,
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i.e., E(ξ) = p. Let ξ1, . . . , ξN be an i.i.d. sample. For ξi = (c̃i, G̃i, Ãi, B̃i, b̃i) with G̃i ∈ Sm+ ,

i = 1, . . . , N and

ξ̂N = (ĉN , ĜN , ÂN , B̂N , b̂N ) =
1

N

N∑
i=1

(c̃i, G̃i, Ãi, B̃i, b̃i).

Assume that √
N [ĉN − c]

d→ N (0,Σc),
√
N [[̂Gi.]N − [Gi.]]

d→ N (0,ΣG
i ), i = 1, . . . ,m,

√
N [[̂Bi.]N − [Bi.]]

d→ N (0,ΣB
i ), i = 1, . . . , l,

√
N [âiN − ai]

d→ N (0,ΣA
i ), i = 1, . . . , l,

√
N [̂bN − b]

d→ N (0,Σb),

where
d→ denotes convergence in distribution.

The following lemma is Theorem 7.59 of [1], the delta theorem, which will be used to analyze

the first order asymptotical property of the SAA optimal value νN .

Lemma 4.1. [1, Theorem 7.59] Let B1 and B2 be Banach spaces, equipped with their Borel

σ-algebras, ZN be a sequence of random elements of B1, G : B1 → B2, be a mapping, Suppose

that:

(i) the space B1 is separable,

(ii) the mapping G is Hadamard directionally differentiable at a point µ ∈ B1,

(iii) for some sequence τN of positive numbers tending to infinity, as N → ∞,the sequence

XN := τN (ZN − µ) converges in distribution to a random element Z of B1.

Then

τN [G(ZN )−G(µ))]
d→ G′(µ;Z).

Now we are in a position to present the main theorem about the asymptotical property of

the SAA optimal value νN .

Theorem 4.2. Let Assumption 4.1 hold. Then

N1/2(ν̂N − ν∗)
d→ inf
x∈S∗

inf
y∈Y ∗(p)

sup
λ∈Λ∗(p)

{V (x, y, λ)}, (4.3)

where V (x, y, λ) is the random variable depending on (x, y, λ):

V (x, y, λ) ∼ N

(
0, yTΣcy +

1

4

m∑
i=1

y2
i y
TΣG

i y + λTΣbλ+

l∑
i=1

λ2
i [y

TΣA
i y + xTΣB

i x]

)
. (4.4)
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Moreover, if S∗ = {x}, Y ∗(p) = {y}, Λ∗(p) = {λ̄}, we have

N1/2(ν̂N − ν∗)
d→ N

(
0, yTΣcy +

1

4

m∑
i=1

y2
i y
TΣG

i y + λ
T

Σbλ+

l∑
i=1

λ
2
i [y

TΣA
i y + xTΣB

i x]

)
. (4.5)

Proof. First, we use Lemma 4.1 to analyze the asymptotical property ofN1/2(f̂N (x)−E(f(x, ξ)).

Let B1 = <m ×<m×m ×<l×m ×<l×n ×<l, B2 = C(X), and G : B1 → B2:

G(ξ) = g(x) + θ(x, ξ).

Let τN = N1/2,ZN = ξ̂N , µ = p. Then we have τN (ZN − µ)
d→ Z from Assumption 4.1 with

Zc ∼ N (0,Σc),

Z [Gi.] ∼ N (0,ΣG
i ), i = 1, . . . ,m,

Z [Bi.] ∼ N (0,ΣB
i ), i = 1, . . . , l,

Zai ∼ N (0,ΣA
i ), i = 1, . . . , l,

Zb ∼ N (0,Σb).

(4.6)

Then (i) in Lemma 4.1 is obvious and (iii) in Lemma 4.1 is guaranteed by Assumption 4.1. It

follows from Theorem 3.1 that G is Hadamard directionally differentiable at a point µ, namely

(ii) in Lemma 4.1 is satisfied. Therefore, we have from Lemma 4.1 that

N1/2[f(x, ξ̂N )− f(x,Eξ)] d→ G′(µ;Z).

Noting that G(µ;Z) = θ′(µ;Z), one has from Theorem 3.1 that

G′(µ;Z) = inf
y∈Y ∗(p)

sup
λ∈Λ∗(p)

{
ZcT y +

1

2

m∑
i=1

yiZ
Gi.T y + λTZb −

l∑
i=1

λi[Z
aiT y + ZBi.Tx]

}

Let V (x, y, λ) =
{
ZcT y + 1

2

∑m
i=1 yiZ

Gi.T y + λTZb −
∑l

i=1 λi[Z
aiT y + ZBi.Tx]

}
, then we have

from (4.6) that

V (x, y, λ) ∼ N

(
0, yTΣcy +

1

4

m∑
i=1

y2
i y
TΣG

i y + λTΣbλ+

l∑
i=1

λ2
i [y

TΣA
i y + xTΣB

i x]

)
.

Property (4.3) follows from Theorem 5.7 of [11] directly. Obviously, when S∗ = {x}, Y ∗(p) = {y},
Λ∗(p) = {λ̄}, we obtain (4.5) from (4.3). The proof is completed. 2
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5 Conclusion

Based on the upper semi-continuity of solution mappings for a convex quadratic programming

problem and its restricted dual under some conditions of the primal quadratic programming

problem, we establish the Hadamard directionally differentiability of the optimal value function

of all parameters in the quadratic programming problem. Using a delta theorem developed in

[11], we derive the asymptotic distribution of a SAA estimator for the optimal value of a two

stage program whose second stage problem is a convex quadratic programming problem and all

parameters in the quadratic program are random variables. There are several issues should be

considered in the future study. The first problem arises in Assumption 4.1, in which we assume

that {c̃, G̃, Ã, B̃, b̃} with G̃ ∈ Sm+ are independent to each other, this is a very strict assumption

and should be weakened. The second problem is the study about the rate of convergence for

the SAA approach for solving Problem (1.2). Noting that the SAA estimator in Section 4 is

different from the one studied in [12], we would like know the asymptotical distribution of the

estimator in [12], this is the third problem needed to be addressed.
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