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Abstract
This paper proposes a complete-search algorithm for solving a class of non-convex, possibly infinite-

dimensional, optimization problems to global optimality. We assume that the optimization variables

are in a bounded subset of a Hilbert space, and we determine worst-case run-time bounds for the

algorithm under certain regularity conditions of the cost functional and the constraint set. Because these

run-time bounds are independent of the number of optimization variables and, in particular, are valid

for optimization problems with infinitely many optimization variables, we prove that the algorithm

converges to an ε-suboptimal global solution within finite run-time for any given termination tolerance

ε > 0. Finally, we illustrate these results for a problem of calculus of variations.
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1 Introduction

Infinite-dimensional optimization problems arise in many research fields, including optimal con-

trol [9, 10, 27, 57], optimization with partial differential equations (PDE) embedded [25], and

shape/topology optimization [7]. In practice, these problems are often solved approximately by applying

discretization techniques; the original infinite-dimensional problem is replaced by a finite-dimensional

approximation that can then be tackled using standard optimization techniques. However, the resulting

discretized optimization problems may comprise a large number of optimization variables, which grows

unbounded as the accuracy of the approximation is refined. Unfortunately, worst-case run-time bounds

for complete-search algorithms in nonlinear programming (NLP) scale rather poorly with the number of

optimization variables. For instance, the worst-case run-time of spatial branch-and-bound [19, 48] scales

exponentially with the number of optimization variables. In contrast, algorithms for solving convex op-

timization problems in polynomial run-time are known [13, 44], e.g. in linear programming (LP) or

convex quadratic programming (QP). While these efficient algorithms enable the solution of very large-

scale convex optimization problems, such as structured or sparse problems, in general their worst-case

run-time bounds also grow unbounded as the number of decision variables tends to infinity.
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Existing theory and algorithms that directly analyze and exploit the infinite-dimensional nature of

an optimization problem are mainly found in the field of convex optimization. For the most part, these

algorithms rely on duality in convex optimization in order to construct upper and lower bounds on

the optimal solution value, although establishing strong duality in infinite-dimensional problems can

prove difficult. In this context, infinite-dimensional linear programming problems have been analyzed

thoroughly [3]. A variety of algorithms are also available for dealing with convex infinite-dimensional

optimization problems, some of which have been analyzed in generic Banach spaces [16], as well as

certain tailored algorithms for continuous linear programming [4, 15, 35].

In the field of non-convex optimization, problems with an infinite number of variables are typically

studied in a local neighborhood of a stationary point. For instance, local optimality in continuous-time

optimal control problems can be analyzed by using Pontryagin’s maximum principle [50], and a number

of local optimal control algorithms are based on this analysis [8, 14, 54, 57]. More generally, approaches

in the classical field of variational analysis [41] rely on local analysis concepts, from which information

about global extrema may not be derived in general. In fact, non-convex infinite-dimensional optimiza-

tion remains an open field of research and, to the best knowledge of the authors, there currently are no

generic, complete search algorithms available for solving such problems to global optimality.

This paper asks the question whether a global optimization algorithm can be constructed, whose

worst-case run-time complexity is independent of the number of optimization variables thereof, such

that this algorithm would remain tractable for infinite-dimensional optimization problems. Clearly, de-

vising such an algorithm may only be possible for a certain class of optimization problems. Interestingly,

the fact that the “complexity” or “hardness” of an optimization problem does not necessarily depend on

the number of optimization variables has been observed – and it is in fact exploited – in state-of-the-art

global optimization solvers for NLP/MINLP, although these observations are still to be analyzed in full

detail. For instance, instead of applying a branch-and-bound algorithm in the original space of opti-

mization variables, global NLP/MINLP solvers such as BARON [52, 55] or ANTIGONE [38] proceed

by lifting the problem to a higher-dimensional space via the introduction of auxiliary variables from the

DAG decomposition of the objective and constraint functions. In a different context, the solution of a

lifted problem in a higher-dimensional space has become popular in numerical optimal control, where

the so-called multiple-shooting methods often outperform their single-shooting counterparts despite the

fact that the former calls for the solution a larger-scale (discretized) NLP problem [9, 10]. This idea

that certain optimization problems become easier to solve than equivalent problems in fewer variables

is also central to the work on lifted Newton methods [2]. To the best of our knowledge, such behaviors

cannot be explained currently with results from the field of complexity analysis, which typically give

monotonically increasing worst-case run-time bounds as the number of optimization variables increases.

In this respect, these run-time bounds therefore predict the opposite behavior to what can sometimes be

observed in practice.
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1.1 Problem Formulation

The focus of this paper is on complete search algorithms for solving non-convex optimization problems

of the form:

inf
x∈C

F (x) , (1)

where F : H → R and C ⊆ H denote the cost functional and the constraint set, respectively; and the

domain H of this problem is a (possibly infinite-dimensional) Hilbert space with respect to the inner

product 〈·, ·〉 : H × H → R. The theoretical considerations in the paper do not assume a separable

Hilbert space, although our various illustrating examples are based on separable spaces.

Definition 1. A feasible point x∗ ∈ C is said to be an ε-suboptimal global solution – or ε-global

optimum – of (1), with ε > 0, if

∀x ∈ C, F (x∗) < F (x) + ε .

We make the following assumptions regarding the geometry of C throughout the paper.

Assumption 1. The constraint set C is convex, has a nonempty relative interior, and is bounded with

respect to the induced norm on H; that is, there exists a constant γ <∞ such that

∀x ∈ C, ‖x‖H :=
√
〈x, x〉 ≤ γ .

The main objective of the paper is to develop an algorithm that can locate an ε-suboptimal global

optimum of Problem (1), in finite run-time for any given accuracy ε > 0, provided that F satisfies certain

regularity conditions alongside Assumption 1.

Remark 1. Certain infinite-dimensional optimization problems are formulated in a Banach space (B, ‖·
‖) rather than a Hilbert space, for instance in the field of optimal control of partial differential equations

in order to analyze the existence of extrema [25]; that is, the optimization problem (1) becomes

inf
x∈Ĉ

F̂ (x) (2)

with F̂ : B → R and Ĉ a convex bounded subset of B. Nonetheless, provided that:

1. the Hilbert space H ⊆ B is convex and dense in (B, ‖ · ‖);

2. the function F̂ is upper semi-continuous in Ĉ; and

3. the constraint set Ĉ has a nonempty relative interior;

we may consider Problem (1) with C := Ĉ ∩ H instead of (2), for any ε-suboptimal global solution

of the former is also an ε-suboptimal global solution of (2), and both problems have such ε-suboptimal

points. Because Conditions 1-3 are often satisfied in practical applications, it is for the purpose of this

paper not restrictive to assume that the domain of the optimization variables is indeed a Hilbert space.
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1.2 Outline and Contributions

The paper starts by discussing several regularity conditions for sets and functionals defined in a Hilbert

space in Sect. 2, based on which complete-search algorithms can be constructed whose run-time is

independent of the number of optimization variables. Such an algorithm is presented in Sect. 3 and

analyzed in Sect. 4, which constitute the main contributions and novelty. A numerical case study is

presented in Sect. 5 in order to illustrate the main results, before concluding the paper in Sect. 6.

Although certain of these algorithmic ideas are inspired by a recent paper of the authors on global

optimal control [28], the present paper develops a much more general framework for optimization in

Hilbert space. Besides, Sect. 4 derives novel worst-case complexity estimates for the proposed algo-

rithm. We argue that these ideas could help lay the foundations towards new ways of analyzing the com-

plexity of certain optimization problems based on their structural properties rather than their number of

optimization variables. Although the run-time estimates for the proposed algorithm remain conservative,

they indicate that the complexity of numerical optimization does not necessarily depend on whether the

problem is small-scale, large-scale, or even infinite-dimensional.

2 Some Regularity Conditions for Sets and Functionals in Hilbert Space

This section builds upon basic concepts in infinite-dimensional Hilbert spaces in order to arrive at certain

regularity conditions for sets and functionals defined in these spaces. Such a focus on Hilbert spaces is

motivated by their property that an orthogonal basis Φ0,Φ1, . . . ∈ H can be constructed, such that

∀i, j ∈ N,
1

σi
〈Φi,Φj〉 = δi,j :=

{
0 if i 6= j,

1 otherwise,

for some scalars σ0, σ1, . . . ∈ R++. Having such a basis, we can define the associated projection

functions PM : H → H for each M ∈ N as

∀x ∈ H, PM (x) :=

M∑
k=0

〈x,Φk〉
σk

Φk .

A natural question arising at this point is what can be said about the distance between an element x ∈ H
and its projection PM (x) for a given M ∈ N.

Definition 2. We call D(M,x) := ‖x− PM (x) ‖H the distance between an element x ∈ H and its

projection PM (x). Moreover, given the constraint set C ∈ H , we define the bound

DC(M) := sup
x∈C

D(M,x) .

Lemma 1. Under Assumption 1, the function DC(M) is uniformly bounded from above by γ in N.
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Proof. For each M ∈ N, we have

[
DC(M)

]2
= sup

x∈C
‖x− PM (x) ‖2H = sup

x∈C

(
〈x, x〉 −

M∑
k=0

〈x,Φk〉2

σk

)
≤ sup

x∈C
〈x, x〉 .

The result follows by noting that supx∈C 〈x, x〉 ≤ γ2 by Assumption 1.

Although it is uniformly bounded, the function DC(M) does not converge to zero as M → ∞ in

infinite-dimensional Hilbert spaces in general. This behavior is illustrated in the following example.

Example 1. Consider the case that all the basis functions Φ0,Φ1, . . . are in the constraint set C, and

define the sequence {xk}k∈N with xk := Φk+1. We have

∀k ∈ N, 1 = ‖xk ‖H = ‖xk − Pk(xk) ‖H = D(k, xk) ≤ DC(k) ,

and therefore

lim sup
k→∞

DC(k) ≥ 1 .

�

Such a lack of convergence is unfortunate since, without additional regularity assumptions, the existence

of minimizers to Problem (1) may not be asserted. Moreover, for a sequence (xk)k∈N of feasible points

of Problem (1) converging to an infimum, we may have

lim sup
M→∞

lim sup
k→∞

D(M,xk) 6= lim sup
k→∞

lim sup
M→∞

D(M,xk) .

In other words, any attempt to approximate the infimum by constructing a sequence of finite parame-

terizations of the optimization variable x could in principle be unsuccessful. Therefore, a principal aim

of the following sections is to develop an optimization algorithm, whose convergence to an ε-global

optimum of Problem (1) can be certified, yet without assuming anything about the existence, or even the

regularity, of the minimizers of Problem (1). Instead, we shall impose a suitable regularity conditions

on the objective function F in (1).

In preparation for this analysis, we start by formalizing a notion of regularity for the elements of H .

Definition 3. An element a ∈ H is said to be regular for the constraint set C if

lim
M→∞

RC(M,a) = 0 with RC(M,a) := DC(M)D(M,a) . (3)

Moreover, we call the functionRC(·, a) : N→ R+ the convergence rate at a on C.

Theorem 1. For any a ∈ H , we have

∀M ∈ N, sup
x∈C

| 〈a, x− PM (x)〉 | ≤ RC(M,a) . (4)
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Moveover, in the case that the element a is regular for C, we have

lim
M→∞

sup
x∈C

| 〈a, x− PM (x)〉 | = 0 .

Proof. For any given M ∈ N, consider the optimization problem

VM := sup
x∈C
〈a, x− PM (x)〉 = sup

x∈C
〈a,w〉 ,

where we have introduced the variable w := x− PM (x) such that

∀x ∈ C, ‖w‖H ≤ DC(M) .

Since the functions Φ0, . . . ,ΦM are orthogonal, we have 〈Φk, w〉 = 0 for all k ∈ {0, . . . ,M}, and it

follows that

VM ≤ sup
w∈H

〈a,w〉 s.t. 〈Φk, w〉 = 0 , ‖w‖H ≤ DC(M) .

Next, we use duality to obtain

VM ≤ inf
λ∈RM+1

sup
w∈H

〈
a−

M∑
k=0

λkΦk , w

〉
s.t. ‖w‖H ≤ DC(M) ,

where λ ∈ RM+1 denotes the multipliers associated with the constraint 〈Φk, w〉 = 0 for k ∈
{0, . . . ,M}. Applying the Cauchy-Schwarz inequality then gives

∀λ ∈ RM+1, VM ≤

∥∥∥∥∥a−
M∑
k=0

λkΦk

∥∥∥∥∥
H

DC(M) ,

and with the particular choice λ∗k := 〈a,Φk〉
σk

for each k ∈ {0, . . . ,M}, we have

VM ≤ ‖a− PM (a)‖H DC(M) = RC(M,a) .

The optimal value of the minimization problem

VM := inf
x∈H
〈a, x− PM (x)〉 s.t. c ∈ C .

can be estimated analogously, giving VM ≥ −RC(M,a), and the result follows.

The following example establishes the regularity of piecewise smooth functions with a finite num-

ber of singularities in the Hilbert space of square-integrable functions with the orthogonal Legendre

polynomials as basis functions.

Example 2. We consider the Hilbert space H = L2[0, 1] of standard square-integrable functions on

the interval [0, 1] equipped with the standard inner product, 〈f, g〉 :=
∫ 1

0 f(s)g(s)ds, and choose the

orthogonal Legendre polynomials on the interval [0, 1] with weighting factors σk = 1
2k+1 as the basis
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functions (Φk)k∈N. Our focus is on piecewise smooth functions a : [0, 1] → R with a given finite

number of singularities, for which we want to establish regularity in the sense of Definition 3 for a

bounded constraint set C ⊂ L2[0, 1].

There exist many results on approximating functions using polynomials, including convergence rate

estimates [17]. One such result in [51] shows that any piecewise smooth function f : [0, 1]→ R can be

approximated with a polynomial pMf : [0, 1]→ R of degree M such that

∀y ∈ [0, 1],
∥∥f(y)− pMf (y)

∥∥ ≤ K1 exp
(
−K2M

αd(y)β
)
, (5)

for any given α, β > 0 with either α < 1 and β ≥ α, or α = 1 and β > 1; some constants K1,K2 > 0;

and where d(y) denotes the distance to the nearest singularity. In particular, the following convergence

rate estimate can be derived using this result in the present example, for any piecewise smooth functions

a : [0, 1]→ R with a finite number of singularities:

RC(M,a) = ‖a− PM (a)‖2 DC(M) = inf
λ

∥∥∥∥∥ a−
M∑
k=0

λkΦk

∥∥∥∥∥
2

DC(M)

(Lemma 1)
≤ inf

λ

∥∥∥∥∥ a−
M∑
k=0

λkΦk

∥∥∥∥∥
2

γ ≤ K√
M

for some constant K <∞. In order to establish the very last part of the above inequality, it is enough to

consider a function a with a single singularity, e.g., at the mid-point y = 1
2 and using α = β = 1

2 :∗

inf
λ

∥∥∥∥∥ a−
M∑
k=0

λkΦk

∥∥∥∥∥
2

≤

√√√√∫ 1

0
K2

1 exp

(
−2K2

√
M

∣∣∣∣y − 1

2

∣∣∣∣
)

dy (6)

=

√√√√ K2
1[

K2

√
M
]2 + O

(
1√
M

exp
(
−K2

√
M
))

= O

(
1√
M

)
.

Convergence rate estimates for k-times differentiable and piecewise smooth functions can be obtained

in a similar way, using for instance the results in [17, 51]. �

A useful generalization of Definition 3 and corresponding corollary of Theorem 1 are given below.

Definition 4. The set A ⊆ H is said to be regular for C if

lim
M→∞

RC(M,A) = 0 with RC(M,A) := sup
a∈A
RC(M,a) .

Moreover, we call the functionRC(·,A) : N→ R+ the worst-case convergence rate for the set A on C.

∗We have used the integration formula
∫
e
√
ax dx =

2e
√
ax(
√
ax− 1)

a
+ C for the integral term in (6).
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Corollary 1. For any regular set A ⊆ H , we have

lim
M→∞

sup
a∈A,
x∈C

| 〈a, x− PM (x)〉 | = 0 .

Remark 2. While any subset of the Euclidean space Rn is trivially regular for all bounded subsets C ⊂
Rn, only certain subsets/subspaces of infinite-dimensional Hilbert spaces may be regular. In the space

of square-integrable functions H := L2[a, b] for instance, the subspace LCp of p-times differentiable

functions on [a, b], with uniformly Lipschitz continuous p-th derivatives, is regular for any bounded

constraint set C ⊂ L2[a, b]. It can be established – e.g., from the analysis in [30] using the standard

trigonometric Fourier basis, or from the results in [58] using the Legendre polynomials – that

RC(M,LCp) ≤ O
(
log(M)M−p−1

)
≤ O

(
M−p

)
.

This leads to a rather typical situation, whereby the stronger the regularity assumptions on the function

class, the faster convergence of the associated worst-case convergence rate R(·,LCp)—an increase in

the convergence rate order log(M)
Mp+1 with p in this instance. In the limit of C∞ (smooth) functions, it can

even be established – e.g., using standard results from Fourier analysis [21, 31] – that the convergence

rate becomes exponential,

RC(M, C∞) ≤ O (exp(−βM)) with β > 0 .

Example 2 (Continued). Consider the following set of unit-step functions

A := {xt | t ∈ [0, 1]} with ∀τ ∈ [0, 1], xt(τ) :=

{
1 if τ ≤ t,
0 otherwise,

for which we want to establish regularity in the sense of Definition 4. Using earlier results from

Example 2, it is known that the function x0.5 can be approximated with a sequence of polynomials

pM0.5 : [0, 1]→ R of degree M such that

∥∥x0.5 − pM0.5
∥∥

2
≤ O

(
1√
M

)
.

Then, for every t ∈ [0, 1], we can construct the family of polynomials

∀τ ∈ [0, 1], pMt (τ) := pM0.5

(
1− t+ τ

2

)
.

Since the latter satisfy the same property as x0.5 that

∥∥xt − pMt ∥∥2
≤ K√

M
,

where the constant K > 0 is independent of t or M , we haveRC(M,A) ≤ O
(

1√
M

)
.
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This example can be generalized to other classes of functions. For instance, given any smooth

function f ∈ L2[0, 1], the family of functions

A(f) := { a ∈ H | ∃t ∈ [0, 1] : a(τ) = f(τ) if τ ≤ t; a(τ) = 0 otherwise}

is regular in H , and also satisfiesRC(M,A) ≤ O
(

1√
M

)
. This result can be established by writing the

functions inA(f) as the product between the piecewise smooth function f and the function xt, and then

approximating the factors separately. �

In the final part of this section, we introduce and illustrate a regularity condition for the cost func-

tional in Problem (1).

Definition 5. Let C be a bounded subset of H , and let A be a regular subset of H . The functional

F : H → R is said to be A-strongly Lipschitz continuous on C if there exists a constant L < ∞ such

that

∀e ∈ EC , sup
x∈C
|F (x+ e)− F (x)| ≤ L sup

a∈A
| 〈a, e〉| , (7)

where the projection error set EC ⊆ H is given by

EC := {PM (x)− x |x ∈ C, M ∈ N } .

Remark 3. In the special case that F is a linear functional, given by

F (x) := F0 + 〈â, x〉

for some regular element â ∈ H and any other element F0 ∈ H , the condition (7) is trivially satisfied

with L = 1 andA = {â}. In this interpretation, the regularity condition (7) essentially provides a means

of keeping the nonlinear part of F under control.

Remark 4. We may assume L = 1 in Definition 5 without loss of generality, for the set A can always

be rescaled. It is nonetheless natural to retain L in condition (7), since this constant can be interpreted

as a generalized Lipschitz constant, under a proper scaling of A. More precisely, the condition (7) is

satisfied with any global Lipschitz constant L of F on C by choosing the regular set A such that

∀e ∈ EC , ‖e‖H ≤ sup
a∈A
| 〈a, e〉| . (8)

Unfortunately, the construction of regular sets that would satisfy (8) is generally impractical for infinite-

dimensional Hilbert spaces. This is in contrast with the condition (7), which holds for many practical

problems, as illustrated in the new few examples.

Example 3. Consider the finite-dimensional Euclidean space H = Rn and a bounded subset C ⊆ Rn.
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By the mean-value theorem, any continuously-differentiable function F : Rn → R satisfies

∀e ∈ EC , sup
x∈C
|F (x+ e)− F (x)| = sup

x∈C

∣∣∣∣∫ 1

0

〈
∂F

∂x
(x+ ηe), e

〉
dη

∣∣∣∣ ≤ sup
g∈G
| 〈g, e〉 | ,

where G ⊆ Rn denotes the set of gradient values of F on C. Thus, any continuously differentiable

function is G-strongly Lipschitz continuous on C.

A generalization of this result to infinite-dimensional Hilbert space is also possible for certain classes

of functionals. For instance, any Fréchet-differentiable function F : H → R satisfying

∀(x, e) ∈ C × EC , F (x+ e)− F (x) =

∫ 1

0
〈DF (x+ ηe), e〉 dη ,

where the set of Fréchet derivatives G := {DF (x) | x ∈ C} ⊆ H is regular, is G-strongly Lipschitz

continuous on any bounded subset C of H . �

The following two examples investigate strong Lipschitz continuity of certain classes of functionals

in the practical space of square-integrable functions with the orthogonal Legendre polynomials as basis

functions. The first one (Example 4) illustrates the case of a functional that is not strongly Lipschitz

continuous; the second one (Example 5) identifies a broad class of strongly Lipschitz continuous func-

tionals defined via the solution of an embedded ODE system. The objective here is to help the reader

develop an intuition that strongly Lipschitz continuous functions occur naturally in many, although not

all, problems of practical relevance.

Example 4. We consider the Hilbert space H = L2[0, 1] of square-integrable functions on the

interval [0, 1] with the standard inner product, and select the basis functions (Φk)k∈N as the or-

thogonal Legendre polynomials on the interval [0, 1] with weighting factors σk = 1
2k+1 . We in-

vestigate whether the functional F given below is strongly Lipschitz continuous on the set C :=

{x ∈ L2[0, 1] | ∀s ∈ [0, 1], |x(s)| ≤ 1},

∀x ∈ L2[0, 1], F (x) := ‖x‖22 =

∫ 1

0
x(s)2 ds .

Consider the following family of sets

∀M ∈ N, EM := {PM (x)− x | x ∈ C } ⊆ L2[0, 1] ,

such that EC = ∪M∈NEM . If the condition (7) were to hold for some regular set A, we would have by

Theorem 1,

lim
M→∞

sup
e∈EM ,
x∈C

|F (x+ e)− F (x)| ≤ L lim
M→∞

sup
e∈EM ,
a∈A

| 〈a, e〉| ≤ L lim
M→∞

RC(M,A) ,
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and it would follow from Corollary 1 that

lim
M→∞

sup
e∈EM ,
x∈C

|F (x+ e)− F (x)| = 0 .

However, this leads to a contradiction since we also have

lim
M→∞

sup
e∈EM ,
x∈C

|F (x+ e)− F (x)| ≥ lim
M→∞

sup
e∈EM

‖e‖22 = lim
M→∞

sup
x∈C
‖x− PM (x)‖22

and supx∈C ‖x − PM (x)‖22 = 1 for all M ∈ N. Therefore, the regularity condition (7) may not be

satisfied for any choice of the regular set A, and F is not strongly Lipschitz continuous on C. �

Remark 5. The result that the functional F in Example 4 is not strongly Lipschitz continuous on C is

not in contradiction with Example 3. Although F is Fréchet differentiable in L2[0, 1], the set of Fréchet

derivative functions of F fails to be regular on the bounded set C, as it is too big. Nonetheless, strong

Lipschitzness holds for F on the restricted set of uniformly bounded and Lipschitz continuous functions

in L2[0, 1] with uniformly bounded Lipschitz constants.

Example 5. We again consider the Hilbert space H = L2[0, 1] of square-integrable functions on the

interval [0, 1] equipped with the standard inner product, and select the basis functions (Φk)k∈N as the

orthogonal Legendre polynomials on the interval [0, 1] with weighting factors σk = 1
2k+1 . Our focus is

on the ordinary differential equation (ODE)

∀t ∈ [0, 1],
∂x

∂t
(t, u) = f(x(t, u)) +Bu(t) with x(0, u) = 0 , (9)

where B ∈ Rn×n is a constant matrix; and f : Rn → Rn, a continuously differentiable and globally

Lipschitz continuous function, so that the solution trajectory x(·, u) : [0, 1]→ Rn is well-defined for all

u ∈ L2[0, 1]. For simplicity, we consider the functional F given by

F (u) := cTx(1, u) ,

for some real vector c ∈ Rn. Moreover, the constraint set C ⊆ H may be any uniformly bounded

function subset here, such as simple uniform bounds of the form

C := {u ∈ L2[0, 1] | ∀τ ∈ [0, 1], |u(τ)| ≤ 1} .

The following developments aim to establish that F is strongly Lipschitz continuous on C.

By Taylor’s theorem, the difference function δ(t, u, e) := x(t, u+e)−x(t, u) satisfies the differential

equation

∀t ∈ [0, 1],
∂δ

∂t
(t, u, e) = Γ(t, u, e)δ(t, u, e) +Be(t)

with δ(0, u, e) = 0 and Γ(t, u, e) :=
∫ 1

0
∂f
∂x (x(t, u) + η(x(t, u+ e)− x(t, u))) dη. Since f is globally
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Lipschitz continuous, for any given smooth matrix-valued function A : [0, 1]→ Rn×n, we have

∀(t, u, e) ∈ [0, 1]× C × EC , ‖Γ(t, u, e)−A(t)‖ ≤ `1 ,

for some constant `1 < ∞. For a particular choice of A, we can decompose δ(t, u, e) as the sum

δl(t, e) + δn(t, u, e, δl) corresponding to the solution of the ODE system

∀t ∈ [0, 1], δl(t, e) = A(t)δl(t, e) +Be(t) (10)

δn(t, u, e, δl) = Γ(t, u, e)δn(t, u, e, δl) + [Γ(t, u, e)−A(t)]δl(t, e) (11)

with δl(0, e) = δn(0, u, e, δl) = 0. For this decomposition, the left-hand side of (7) satisfies

∀e ∈ EC , sup
u∈C
|F (u+ e)− F (u)| ≤

∣∣∣cTδl(1, e)
∣∣∣+ sup

u∈C

∣∣∣cTδn(1, u, e)
∣∣∣ .

Regarding the linear term δl, we have

∀s ∈ [0, 1], cTδl(s, e) = 〈gs, e〉 (12)

with

∀t ∈ [0, 1], gs(t) :=


∫ t

0 c
TG(t, τ)B dτ if t ≤ s,

0 otherwise,

where G(t, τ) denotes the fundamental solution of the linear ODE (10) such that

∀τ, t ∈ [0, 1],
∂

∂t
G(t, τ) = A(t)G(t, τ) with G(τ, τ) = I .

Since A is smooth, it follows from Example 2 that the set G := {gs | s ∈ [0, 1]} is regular in L2[0, 1]

and satisfies

RC(M,G) ≤ O

(
1√
M

)
.

Regarding the nonlinear term δn, since the function Γ is uniformly bounded, we can apply Gronwall’s

lemma to the ODE (11) to obtain

∀(t, u, e) ∈ [0, 1]× C × EC , cTδn(t, u, e, δl) ≤ ` exp(`) sup
s∈[0,1]

|cTδl(s, e)|

≤ ` exp(`) sup
g∈G
|〈g, e〉| , (13)

for some constant ` <∞. Finally, combining (12) and (13) shows that F satisfies the condition (7) with

L := 1 + ` exp(`), thus F is G-strongly Lipschitz continuous on C. �

Remark 6. The functional F in the previous example is defined implicitly via the solution of an ODE.

The result that such functionals are strongly Lipschitz continuous is particularly significant insofar as

the proposed optimization framework will indeed encompass a broad class of optimal control problems.

In fact, it turns out that strong Lipschitzness still holds in replacing the constant matrixB in (9) with any
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matrix-valued continuously differentiable and globally Lipschitz continuous function of x(t, u), thus

encompassing quite a general class of nonlinear affine-control systems. In the case of general nonlinear

ODEs, however, strong Lipschitzness may be lost unless the constraint set C is further restricted to

uniformly bounded and Lipschitz continuous functions in L2[0, 1] with uniformly bounded Lipschitz

constants; compare Example 4 and Remark 5.

3 Global Optimization in Hilbert Space using Complete Search

The application of complete-search strategies to infinite-dimensional optimization problems such as

(1) calls for an extension of the (spatial) branch-and-bound principle [26] to general Hilbert space.

The approach presented in this section differs from branch-and-bound in that the dimension M of the

search space is adjusted, as necessary, during the iterations of the algorithm, by using a so-called lifting

operation – hence the name branch-and-lift algorithm. The basic idea is to bracket the optimal solution

value of Problem (1) and progressively refine these bounds via this lifting mechanism, combined with

traditional branching and fathoming.

Based on the developments in Sect. 2, the following subsections describe methods for exhaustive

partitioning in infinite-dimensional Hilbert space (Sect. 3.1) and for computing rigorous upper and lower

bounds on given subsets of the variable domain (Sect. 3.2), before presenting the proposed branch-and-

lift algorithm (Sect. 3.3).

3.1 Partitioning in Infinite-Dimensional Hilbert Space

Similar to branch-and-bound search, the proposed branch-and-lift algorithm maintains a partition A :=

{A1, . . . , Ak} of finite-dimensional sets A1, . . . , Ak. This partition is updated through the repeated

application of certain operations, including branching and lifting, in order to close the gap between an

upper and a lower bound on the global solution value of the optimization problem (1). The following

definition is useful in order to formalize these operations:

Definition 6. With each pair (M,A) ∈ N×P(RM+1), we associate a subregion XM (A) of H given by

XM (A) :=

{
x ∈ C

∣∣∣∣∣
(
〈x,Φ0〉
σ0

, . . . ,
〈x,ΦM 〉
σM

)T

∈ A

}
.

Moreover, we say that the set A is infeasible if XM (A) = ∅.

Notice that each subregion XM (A) is a convex set if the sets C and A are themselves convex. For

practical reasons, we restrict ourselves to compact subsets A ∈ SM ⊆ P(RM+1) here, where the class

of sets SM is easily stored and manipulated by a computer. For example, SM could be a set of simple

interval boxes, polytopes, ellipsoids, etc.

The ability to detect infeasibility of a set A ∈ SM is pivotal for complete search. Under the assump-

tion that the constraint set C is convex (Assumption 1), a certificate of infeasibility can be obtained by
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considering the convex optimization problem

dC(A) := min
x,y∈H

‖x− y‖H s.t.
(
〈y,Φ0〉
σ0

, . . . ,
〈y,ΦM 〉
σM

)T

∈ A , x ∈ C . (14)

It readily follows from the Cauchy-Schwarz inequality that

−‖x− y‖H ≤ 〈x,Φk〉 − 〈y,Φk〉 ≤ ‖x− y‖H ,

for any (normalized) basis function Φk, and so ‖x− y‖H = 0 implies 〈x,Φk〉 = 〈y,Φk〉. Consequently,

a set A is infeasible if and only if dC(A) > 0. Because Slater’s constraint qualification holds for Prob-

lem (14) under Assumption 1, one approach to checking infeasibility to within high numerical accuracy

relies on duality for computing lower bounds on the optimal solution value dC(A)—similar in essence

to the infinite-dimensional convex optimization techniques in [4, 16]. For the purpose of this paper, our

focus is on a general class of non-convex objective functionals F , whereas the constraint set C is as-

sumed to be convex and have a simple geometry in order to avoid numerical issues in solving feasibility

problems of the form (14). We shall therefore assume, from this point onwards, that infeasibility can be

verified with high numerical accuracy for any set A ∈ SM .

A branching operation subdivides any set A ∈ SM in the partition A into two compact subsets

Al, Ar ∈ SM such that Al ∪Ar ⊇ A, thereby updating the partition as

A ← A \ {A} ∪ {Al, Ar} .

On the other hand, a lifting operation essentially lifts any set A ∈ SM into a higher-dimensional

space under the function ΓM : SM → SM+1, defined such that

∀A ∈ SM , XM (A) ⊆ XM+1(ΓM (A)) .

The question as to defining the higher-order coefficient 〈x,ΦM+1〉 in such a lifting is related to the so

called moment problem that asks the question under which conditions on a sequence (ak)k∈{1,...,N},

named moment sequence, can we find an associated element x ∈ H with ak = 〈x,Φk〉
σk

for each

k ∈ {1, . . . , N}. Classical examples of such moment problems are Stieltjes’, Hamburger’s, and Legen-

dre’s moment problems [1]. Here, we adopt the modern standpoint on moment problems using convex

optimization [33, 46], by considering the following optimization subproblems:

aM+1(A) ≤ min
x∈XM (A)

〈x,ΦM+1〉
σM+1

and aM+1(A) ≥ max
x∈XM (A)

〈x,ΦM+1〉
σM+1

. (15)

Although both optimization problems in (15) are convex if A and C are convex, they remain infinite-

dimensional, and thus intractable in general. Obtaining lower and upper bounds aM+1(A), aM+1(A) is

nonetheless straightforward under Assumption 1. In case no better approach is available, one can always

use

aM+1(A) := − γ

σM+1
and aM+1(A) :=

γ

σM+1
,
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which follows readily from the Cauchy-Schwarz inequality and the property that ‖ΦM+1‖H = 1. As

already mentioned in the introduction of the paper, a variety of algorithms are now available for tackling

convex infinite dimensional problems both efficiently and reliably [4, 16], which could provide tighter

bounds in practical applications.

A number of remarks are in order:

Remark 7. The idea to introduce a lifting operation to enable partition in infinite-dimensional function

space was originally introduced by the authors in a recently publication [28], focusing on global opti-

mization of optimal control problems. One principal contribution in the present paper is a generalization

of these ideas to global optimization in any Hilbert space, by identifying a set of sufficient regularity con-

ditions on the cost functional and constraint set for the resulting branch-and-lift algorithms to converge

to an ε-global solution in finite run-time.

Remark 8. Many recent optimization techniques for global optimization are based on the theory of

positive polynomials and their associated linear matrix inequality (LMI) approximations [33, 49], which

are also originally inspired by moment problems. Although these LMI techniques may be applied in

the practical implementation of the aforementioned lifting operation, they are not directly related to

the branch-and-lift algorithm that is developed in the following sections. An important motivation for

moving away from the generic LMI framework is that the available implementations scale quite poorly

with the number of optimization variables, due to the combinatorial increase of the number of monomials

in the associated multivariate polynomial. Therefore, a direct approximation of the cost function F with

multivariate polynomials would conflict with our primary objective to develop a global optimization

algorithm whose worst-case run-time does not depend on the number of optimization variables.

3.2 Strategies for Upper and Lower Bounding of Functionals

Besides partitioning, the efficient construction of tight upper and lower bounds on the global solution

value of (1) for given subregions of H is key in a practical implementation of branch-and-lift. Here, we

shall call LM , UM : SM → R lower- and upper-bounding functions of the functional F such that

∀A ∈ SM , LM (A) ≤ inf
x∈XM (A)

F (x) ≤ UM (A) . (16)

A simple approach to constructing these lower and upper bounds relies on the following decomposition:

1. In a first step, we compute bounds L0
M (A) and U0

M (A) on the finite-dimensional approximation

of F as

∀A ∈ SM , L0
M (A) ≤ inf

a∈A
F

(
M∑
i=0

aiΦi

)
≤ U0

M (A) . (17)

Clearly, it depends on the particular expression of F how to determine such bounds in practice. In

the case that F is factorable, various arithmetics can be used to propagate bounds through a DAG

of the function, such as interval arithmetic [40], McCormick relaxations [11, 37] or Taylor model

arithmetic [12, 47]. Moreover, if the expression of F is embedding a dynamic system described
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by differential equations, validated bounds can be obtained by using a variety of set-propagation

techniques as described, e.g., in [29, 34, 42, 53, 56]; see also [24, 32].

2. The second step involves computing a bound ∆M (A) on the approximation errors such that

∀A ∈ SM ,

∣∣∣∣∣ inf
x∈XM (A)

F (x)− inf
a∈A

F

(
M∑
i=0

aiΦi

)∣∣∣∣∣ ≤ ∆M (A) . (18)

In the case that F is G-strongly Lipschitz continuous on C, we can always take ∆M (A) :=

LRC(M,G), where the constant L satisfies the condition (7). Naturally, better bounds may be

derived by exploiting a particular structure or expression of F .

By construction, the lower-bounding function LM (A) := L0
M (A) − ∆M (A) and the upper-bounding

function UM (A) := U0
M (A) + ∆M (A) trivially satisfy (16). Moreover, when the set A ∈ SM is

infeasible—see related discussion in Sect. 3.1—we may set ∆M (A) = LM (A) = UM (A) =∞.

At this point, we consider the following assumption in anticipation of the convergence analysis in

Sect. 4:

Assumption 2. The functional F in Problem (1) is G-strongly Lipschitz continuous on C, where G ∈
H is a regular set for C and with corresponding constant L < ∞ in (7). Moreover, F is Lipschitz

continuous with respect to the norm ‖ · ‖H : H → R+ with corresponding constant K < ∞, and the

basis functions Φk are uniformly bounded with respect to ‖ · ‖H .

Remark 9. Under Assumption 2, any pair (M,A) ∈ N× SM is such that

∀a, a′ ∈ A,

∣∣∣∣∣F
(

M∑
k=0

akΦk

)
− F

(
M∑
k=0

a′kΦk

)∣∣∣∣∣ ≤ K

M∑
k=0

|ak − a′k| ‖Φk‖ ≤ K ′ d1(A)

with K ′ := K supk∈N ‖Φk‖H and d1(A) :=
∑M

i=0 supa,a′∈A |ai − a′i|. It follows that

∀(M,A) ∈ N× SM , UM (A)− LM (A) ≤ K ′ d1(A) + 2LRC(M,G) ,

and therefore the gap UM (A)−LM (A) can be made arbitrarily small under Assumption 2 by choosing

a sufficiently large order M and a sufficiently small diameter for the set A. This observation will be

exploited systematically for the convergence analysis in Sect. 4.

Remark 10. An alternative upper bound UM (A) in (16) may be computed more directly by solving the

following nonconvex optimization problem to local optimality,

min
a∈A

F

(
M∑
k=0

akΦk

)
s.t.

M∑
k=0

akΦk ∈ C . (19)

Without further constraint qualifications or other assumptions on C, however, it is not hard to contrive

examples where
∑M

k=0 akΦk /∈ C for all a ∈ H and all M ∈ N. This upper-bounding approach can

nonetheless be combined with another bounding approach based on set arithmetics in order to prevent
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convergence issues; e.g., use the solution value of (19) as long as it provides a bound that is smaller than

U0
M (A) + ∆M (A).

3.3 Branch-and-Lift Algorithm

The foregoing considerations on partitioning and bounding in Hilbert space can be combined in Algo-

rithm 1 for solving infinite-dimensional optimization problems to ε-global optimality.

Algorithm 1: Branch-and-lift algorithm for global optimization in Hilbert space

Input: Termination tolerance ε > 0; Lifting parameter % > 0

Initialization:

1. Set M = 0 and A = {A0} with A0 ∈ S0, A0 ⊇ {〈x,Φ0〉 | x ∈ C }

Repeat:

2. Select a set A ∈ A

3. Compute upper and lower bounds, LM (A) ≤ inf
x∈XM (A)

F (x) ≤ UM (A)

4. Apply a fathoming operation

5. If the condition min
A∈A

UM (A)−min
A∈A

LM (A) ≤ ε is satisfied, stop

6. If the condition UM (A) − LM (A) ≤ 2(1 + %)∆M (A) holds for all A ∈ A, apply a lifting operation
and set M ←M + 1

7. Apply a branching operation, and return to step 2

Output: An ε-suboptimal solution of Problem (1)

A number of remarks are in order:

• Regarding initialization, the branch-and-lift iterations starts with M = 0. A possible way of

initializing the partition A = {A0} is by noting that

{〈x,Φ0〉 | x ∈ C } ⊆
[
− γ

σ0
,
γ

σ0

]
under Assumption 1.

• Besides the branching and lifting operations introduced earlier in Sect. 3.1, fathoming in Step 4

of Algorithm 1 refers to the process of discarding a given set A ∈ A from the partition if

LM (A) = ∞ or ∃A′ ∈ A : LM (A) > UM (A′) .

• The main idea behind the lifting condition defined in Step 6 of Algorithm 1, namely

∀A ∈ A, UM (A)− LM (A) ≤ 2(1 + %)∆M (A) , (20)
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is that a subset A should be lifted to a higher-dimensional space whenever the approximation

error ∆M (A) due to the finite parameterization becomes of the same order of magnitude as the

current optimality gap UM (A) − LM (A). The aim here is to apply as few lifts as possible, since

it is preferable to branch in a lower dimensional space. The convergence of the branch-and-lift

algorithm under this lifting condition is examined in Sect. 4 below. Notice also that a lifting

operation is applied globally – that is, to all parameter subsets in the partition A – in Algorithm 1,

so all the subsets in A share the same parameterization order at any iteration. In a variant of

Algorithm 1, one could also imagine a family of subsets that would have different parameterization

orders by applying the lifting condition locally instead.

• Finally, it will be established in the following section that, upon termination and under certain

assumptions, Algorithm 1 returns an ε-suboptimal solution of Problem (1). In particular, Assump-

tion 1 rules out the possibility of an infeasible solution.

4 Convergence Analysis of Branch-and-Lift

This section investigates the convergence properties of the branch-and-lift algorithm (Algorithm 1) de-

veloped previously. It is convenient to introduce the following notation in order to conduct the analysis:

Definition 7. Let G ∈ H be a regular set for C, and define the inverse function R−1
C (·,G) : R++ → N

by

∀ε > 0, R−1
C (ε,G) := min

M∈N
M s.t. RC(M,G) ≤ ε .

A direct consequence of the lifting condition (20) in the branch-and-lift algorithm is the following:

Lemma 2. Let F be G-strongly Lipschitz continuous, where G ∈ H is a regular set for C and with

corresponding constant L < ∞ in (7). Suppose that finite bounds L0
M (A), U0

M (A) and ∆M (A) satis-

fying (17)-(18) can be computed for any feasible pair (M,A) ∈ N × SM . Then, the number of lifting

operations in a run of Algorithm 1 as applied to Problem (1) is at most

M := R−1
C

(
ε

2(%+ 1)L
, G
)
,

regardless of whether or not the algorithm terminates finitely.

Proof. Assume that M = M in Algorithm 1, and that the termination condition is not yet satisfied; that

is,

UM (A)− LM (A) > ε

for a certain feasible set A ∈ A. If the lifting condition (20) were to hold for A, then it would follow

from (17)-(18) that

ε− 2∆M (A) < U0
M

(A)− L0
M

(A) ≤ 2%∆M (A) .
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Moreover, F being G-strongly Lipschitz continuous on C by assumption, we would have

RC(M,G) >
ε

2(%+ 1)L
.

This is a contradiction, sinceRC(M,G) ≤ ε
2(%+1)L by Definition 7.

Besides having a finite number of lifting operations, the convergence of Algorithm 1 can be es-

tablished if the elements of a partition can be made arbitrarily small after applying a finite number of

subdivisions.

Definition 8. A partitioning scheme is said to be exhaustive if, given any dimension M ∈ N, any

tolerance η > 0, and any bounded initial partition A = {A0}, we have

diam (A) := max
A∈A

diam (A) < η ,

after finitely many subdivisions, where diam (A) := supa,a′∈A ‖a − a′‖. Moreover, we denoted by

Σ(η,M) an upper bound on the corresponding number of subdivisions in an exhaustive scheme.

The following theorem provides the main convergence result for the proposed branch-and-lift algo-

rithm.

Theorem 2. Let Assumptions 1 and 2 hold, and suppose that finite bounds L0
M (A), U0

M (A) and ∆M (A)

satisfying (17)-(18) can be computed for any feasible pair (M,A) ∈ N×SM . If the partitioning scheme

is exhaustive, then Algorithm 1 terminates after at most Σ iterations, with

Σ ≤ max
0≤M≤M

Σ

(
ε%

K ′(%+ 1)
,M

)
. (21)

Proof. By Lemma 2, the maximal number M of lifting operations during a run of Algorithm 1 is finite,

such that M ≤ M . Therefore, the lifting condition (20) may not be satisfied for any feasible subset

A ∈ A, and we have

∆M (A) ≤
U0
M (A)− L0

M (A)

2 %
.

Since LM (A) = L0
M (A) − ∆M (A) and UM (A) = U0

M (A) + ∆M (A), it follows that the termination

condition UM (A)− LM (A) ≤ ε is satisfied if

U0
M (A)− L0

M (A) ≤ %ε

%+ 1
.

By Assumption 2, we have

U0
M (A)− LM (A) ≤ K ′ diam (A) ,

with K ′ as defined in Remark 9, and the termination condition is thus satisfied if

diam (A) ≤ ε%

K ′(%+ 1)
.
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This latter condition is met after at most Σ
(

ε%
K′(%+1) ,M

)
iterations under the assumption that the parti-

tioning scheme is exhaustive.

Remark 11. In the case that the sets A ∈ A are simple interval boxes and the lifting process is imple-

mented per (15), we have

∀k ∈ {0, . . . ,M}, [ ak(A), ak(A) ] ⊆
[
− γ

σk
,
γ

σk

]
.

Therefore, one can always subdivide these boxes in such a way that the condition diam (A) ≤ η is

satisfied after at most Σ(η,M) subdivisions, with

Σ(η,M) :=
M∏
k=0

⌈
γ

η σk

⌉
∈ N ,

for any given dimensionM . In particular, Σ(η,M) is monotonically increasing inM , and (21) simplifies

to

Σ ≤ Σ

(
ε%

K ′(%+ 1)
,M

)
.

It should be clear, at this point, that the worst-case estimate Σ given in Theorem 2 may be extremely

conservative, and the performance of Algorithm 1 could be much better in practice. Nonetheless, a key

property of this estimate Σ is that it is independent of the actual nature or the number of optimization

variables in Problem (1), be it a finite-dimensional or even an infinite-dimensional optimization problem.

As already pointed in the introduction of the paper, this result is quite remarkable since available run-

time estimates for standard convex and non-convex optimization algorithms do not enjoy this property.

On the other hand, Σ is dependent on:

• the bound γ on the constraint set C;

• the Lipschitz constants K and L of the cost functional F ;

• the uniform bound supk ‖Φk‖H and the scaling factors σk of the chosen orthogonal functions Φk;

and

• the lifting parameter % and the termination tolerance ε in Algorithm 1.

All these dependencies are illustrated in the following example.

Example 6. Consider the space of square-integrable functions H := L2[−π, π], for which it has been

established in Remark 2 that the subspace LCp of p-times differentiable functions on [−π, π] is regular,

with convergence rate RC(M,LCp) ≤ αM−p for some constant α < ∞. On choosing the standard

trigonometric Fourier basis, such that σk = π are constant scaling factors and K ′ := K supk ‖Φk‖2 =

K, and doing the partitioning using simple interval boxes as in Remark 11, a worst-case iteration count
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can be obtained as

Σ =

(⌈
γK(%+ 1)

π % ε

⌉)⌈
(2α(%+1)L/ε)

1
p

⌉
≤ exp

(
O
(

(1/ε)
1
p log(1/ε)

))
.

Now, if the global minimizer of Problem (1) is known to be a smooth function – instead of a more general

p-times differentiable functions – the convergence rate can be expected to be of the form R(M, C∞) =

α exp(−βM), and Theorem 2 then predicts a worst-case iteration count as

Σ ≤ exp
(
O
(
(log(1/ε))2

))
,

which is much more favorable. �

5 Numerical Case Study

We consider the Hilbert space H := L2[0, T ] of square-integrable functions on the interval [0, T ], here

with T = 10. Our focus is on the following nonconvex, infinite-dimensional optimization problem

inf
x∈L2[0,T ]

F (x) :=

∫ T

0

[(∫ T

0
f1(t− t′)x(t′) dt′

)2

−
(∫ T

0
f2(t− t′)x(t′) dt′

)2
]

dt

s.t. x ∈ C := {x ∈ H | ∀t ∈ [0, T ], |x(t)| ≤ 1} , (22)

with the functions f1 and f2 given by

∀t ∈ R, f1(t) =
t

2

(
sin

(
πt

2T

)
+ 1

)
and f2 =

∂f1

∂t
.

Notice the symmetry in the optimization problem (22), as F (x) = F (−x) and x ∈ C iff − x ∈ C.

Thus, if x∗ is a global solution point of (22), then −x∗ is also a global solution point.

Although it might be possible to apply techniques from the field of variational analysis to determine

the set of optimal solutions, our main objective here is to apply Algorithm 1 without exploiting any

particular knowledge about the solution set. For this, we use the Legendre polynomials as basis functions

in L2[0, T ],

∀i ∈ N Φi(t) = (−1)i
i∑

j=0

(
i

j

)(
i+ j

j

)(
− t

T

)j
,

which are orthogonal by construction.

We start by showing that the functional F is G-strongly Lipschitz continuous, with

G :=
{
f t1
∣∣ t ∈ [0, T ]

}
∪
{
f t2
∣∣ t ∈ [0, T ]

}
⊆ H ,

where we use the shorthand notation f t1(τ) := f1(t − τ) and f t2(τ) := f2(t − τ). For all x ∈ L2[0, T ]

21



and all e ∈ EC , we have

|F (x+ e)− F (x)| =

∣∣∣∣∫ T

0
〈f t1, x+ e〉2 − 〈f t1, x〉2 − 〈f t2, x+ e〉2 + 〈f t2, x〉2 dt

∣∣∣∣
=

∣∣∣∣∫ T

0
〈f t1, 2x+ e〉〈f t1, e〉 − 〈f t2, 2x+ e〉〈f t2, e〉 dt

∣∣∣∣
≤ L max

{
sup
t∈[0,T ]

∣∣〈f t1, e〉∣∣ , sup
t∈[0,T ]

∣∣〈f t2, e〉∣∣
}

= sup
g∈G
|〈g, e〉| ,

where L is any upper bound on the term∫ T

0

∣∣〈f t1, 2x+ e〉
∣∣+ ∣∣〈f t2, 2x+ e〉

∣∣ dt

≤ 2

∫ T

0
max
τ∈[0,T ]

(∣∣f t1(τ)
∣∣+
∣∣f t2(τ)

∣∣) dt+ 2T sup
g∈G
|〈g, e〉|

≤ T

(
22 +

π

2
+ 2 sup

g∈G
|〈g, e〉|

)
. (23)

In order to obtain an explicit bound, we need to further analyze the term supg∈G |〈g, e〉|. First of all, we

have

DC(M) ≤ γ = sup
x∈C
‖x‖2 =

√
T .

Next, recalling that the Legendre approximation error for any smooth function g ∈ L2[0, T ] is bounded

as

D(M, g) := ‖g − PM (g)‖2 ≤
µM+1

√
T

(M + 1)!

(
T

M

)M
with µi := sup

ξ∈[0,T ]

∣∣∣∣∂ig∂ti (ξ)

∣∣∣∣
for all M ≥ 1, and working out explicit bounds on the derivatives of the functions f t1 and f t2, we obtain

∀M ∈ N+, sup
g∈G

D(M, g) ≤ T
3
2

(M + 1)!

(
T

M

)M (1

2
+
M

π

)( π

2T

)M
≤ 3

4

T
3
2

(M + 1)!

( π

2M

)M−1
.

It follows by Theorem 1 that

sup
g∈G
|〈g, e〉| ≤ RC(M,G) = sup

g∈G
DC(M)D(M, g) ≤ 3

4

T 2

(M + 1)!

( π

2M

)M−1
.

Combining all the bounds and substituting T = 10 shows that the constant L = 611 satisfies the

condition (23).

Based on the foregoing developments and the considerations in Sect. 3.2, a simple bound ∆M (A)
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on the approximation error satisfying (18) can be obtained as

∀(M,A) ∈ N+ × SM , ∆M (A) =
45825

(M + 1)!

( π

2M

)M−1
.

Although rather loose for very small M , this estimate converges quickly to 0 for larger M ; for

instance, ∆7(A) ≤ 2 · 10−4. Note also that, in a practical implementation, the computation of

∆M (A) – and also to validate the generalized Lipschitz constant L – could be automated using com-

puter algebra programs, such as Chebfun (http://www.chebfun.org/) [18] or MC++ (http:

//omega-icl.bitbucket.org/mcpp/) [39].

With regards to the computation of bounds L0
M (A) and U0

M (A) satisfying (17), we note that F (x)

can be interpreted as a quadratic form in x,

F

(
M∑
i=0

aiΦi

)
= aTQa ,

with the elements of the matrix Q given by

∀j, k ∈ {0, . . . ,M}, qj,k =

∫ T

0

{
〈f t1,Φj〉〈f t1,Φk〉 − 〈f t2,Φj〉〈f t2,Φk〉

}
dt .

Of the available approaches [20, 43, 45] to compute bounds L0
M (A) and U0

M (A) such that

L0
M (A) ≤ min

a∈A
aTQ a ≤ U0

M (A)

for interval boxes A ⊆ RM+1, we use standard LMI relaxation techniques [23] here.

Figure 1: Results of Algorithm 1 applied to Problem (22) for ε = 10−5 and % = 1. Left: Gap be-
tween upper and lower bounds as a function of the lifted subspace dimension M . Right: A globally
ε-suboptimal solution x.

At this point, we have all the elements needed for implementing Algorithm 1 for Problem (22). On

selecting the termination tolerance ε = 10−5 and the lifting parameter % = 1, Algorithm 1 terminates

after less than 100 iterations and applies 8 lifting operations (starting with M = 1). The corresponding

decrease in the gap between upper and lower bounds as a function of the lifted subspace dimension M

– immediately after each lifting operation – is shown on the left plot of Fig. 1. Upon convergence, the
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infimum of (22) is bracketed as

−0.16811 ≤ inf
x∈C

F (x) ≤ −0.16812 ,

and a corresponding ε-global solution x is reported on the right plot of Fig. 1; the symmetric function

(−x) provides another ε-global solution for this problem. Overall, this case study demonstrates that the

proposed branch-and-lift algorithm is thus capable of solving such non-convex and infinite-dimensional

optimization problem to global optimality within reasonable computational effort.

6 Conclusions

This paper has presented a complete search algorithm, called branch-and-lift, for global optimization

of problems with a non-convex cost functional and a bounded and convex constraint sets defined on a

Hilbert space. A key contribution is the determination of run-time complexity bounds for branch-and-lift

that are independent of the number of variables in the optimization problem, as long as the cost functional

is strongly Lipschitz continuous with respect to a regular subset of that Hilbert space. The corresponding

convergence conditions are satisfied for a large class of practically relevant optimal control problems

with embedded ODE or PDE systems. In particular, the complexity analysis in this paper implies that

branch-and-lift can be applied to solve potentially non-convex and infinite-dimensional optimization

problems without needing a-priori knowledge about the existence or regularity of minimizers, as the

run-time bounds solely depend on the structural and regularity properties of the cost functional as well

as the underlying Hilbert space and the geometry of the constraint set. This might pave the way for

a new complexity analysis of optimization problems, whereby the “complexity” or “hardness” of a

problem does not necessarily depend on their number of optimization variables. In order to demonstrate

that these algorithmic ideas and complexity analysis are not of pure theoretical interest only, the practical

applicability of branch-and-lift has been illustrated with a numerical case study for a problem of calculus

of variations. The case study of an optimal control problem in [28] provides another illustration.
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