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Abstract

This paper reveals that a common and central role, played in many error bound (EB) condi-
tions and a variety of gradient-type methods, is a residual measure operator. On one hand, by
linking this operator with other optimality measures, we define a group of abstract EB condi-
tions, and then analyze the interplay between them; On the other hand, by using this operator
as an ascent direction, we propose an abstract gradient-type method, and then figure out EB
conditions that are necessary and sufficient for its linear convergence. Both of these two points
of view are refreshing and useful. The former provides a unified framework that not only al-
lows us to find new connections between many existing EB conditions, but also paves a way to
construct new EB conditions. The latter allows us to claim the weakest conditions guarantee-
ing linear convergence for a number of fundamental algorithms, including the gradient method,
the proximal point algorithm, and the forward-backward splitting algorithm. In addition, we
show linear convergence for the proximal alternating linearized minimization algorithm under
a group of equivalent EB conditions, which are strictly weaker than the traditional strongly
convex condition. Moreover, by defining a new EB condition, we show Q-linear convergence of
the Nesterov’s accelerated forward-backward algorithm without strong convexity. Finally, we
verify EB conditions for a class of dual objective functions.
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1 Introduction

It is well-known that the standard assumption for proving linear convergence of gradient-type
methods is strong convexity [40]. In practice, however, strong convexity is too stringent. Moreover,
various gradient-type methods for solving convex optimization problems have exhibited linear con-
vergence in numerical experiments even when strong convexity is absent; see for example [23, 30, 56].
Thereby, one would wonder whether such a phenomenon can be explained theoretically, and whether
there exist weaker alternatives to strong convexity that retain fast rates.
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A very powerful idea to address these questions is to connect error bound (EB) conditions with
the convergence rate estimation of gradient-type methods. This idea has a long history dating
back to 1963, Polyak introduced an EB inequality as a sufficient condition for gradient descent
to attain linear convergence [42]. In the same year, a wide class of inequalities, which include
Polyak’s as a special case, were introduced by  Lojasiewicz [35]. In the recent manuscript [26],
the EB condition of Polyak- Lojasiewicz’s type was further developed for linear convergence of
gradient and proximal gradient methods. The second type of EB conditions is due to Hoffman,
who proposed an EB inequality for systems of linear inequalities [24] in 1952. Along this line, Luo
and Tseng in the early 90’s contributed several aspects for connecting EB conditions of Hoffman’s
type with convergence analysis of descent methods [37]. Recently, global versions of EB conditions
of Hoffman’s type attracts a lot of attentions [49, 54, 65]. The third type of EB conditions is the
quadratic growth condition (also called zero-order EB condition in [10]), which might go back to
the work [66]. It was recently rediscovered in the special case of convex functions, and widely used
to derive linear convergence for many gradient-type methods as well [34, 22, 39]. In particular,
after this work was submitted to review, we obtained a group of linear convergence results for the
proximal incremental aggregated gradient method under the quadratic growth condition [58].

Moreover, there recently emerges a surge of interests in developing new EB conditions guar-
anteeing (global) linear convergence for various gradient-type methods. For example, the authors
of [30, 64, 61] proposed a restricted secant inequality (RSI), and developed the restricted strong-
ly convex (RSC) property for analyzing linear convergence of (dual) gradient descent methods
and Nesterov’s restart accelerated methods; the authors of [39] proposed several relaxations of
strong convexity that are sufficient for obtaining linear convergence for (projected and accelerated)
gradient-type methods.

Another line of recent works is to find connections between existing EB conditions. For example,
the authors of [19] discussed the relationship between the quadratic growth condition and the
EB condition of Hoffman’s type (also called Luo-Tseng’s type in [31]); Parallel to and partially
influenced by the work [19], the author of [60] established several new types of equivalence between
the RSC property, the quadratic growth condition, and the EB condition of Hoffman’s type; the
authors of [10] showed the equivalence between the zero-order EB condition and the Kurdyka-
 Lojasiewicz inequality. We note that works [39] and [26] also discussed the relationships among
many of these EB conditions.

Based on these two lines of recent developments, two natural questions arise. The first one
is whether there is a unified framework for defining different EB conditions and analyzing the
connection between them. The second one is whether these sufficient conditions guaranteeing
linear convergence for gradient-type methods are also necessary. To answer these two questions,
we will rely on a vital observation: a common and key role, played in many EB conditions and
a variety of gradient-type methods, is a residual measure operator. This observation immediately
leads us to the following discoveries:

1. By linking the residual measure operator with other optimality measures, we define a group
of abstract EB conditions. Then, we comprehensively analyze the interplay between them
by means of technique developed in [10]. The definition of abstract EB conditions not only
unifies many existing EB conditions, but also helps us to construct new ones. The interplay
between the abstract EB conditions allows us find new connections between many existing
EB conditions.

2. By viewing the residual measure operator as an ascent direction, we propose an abstract
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gradient-type method, and then figure out EB conditions that are necessary and sufficient
for its linear convergence. The latter allows us to claim the weakest (or say, necessary and
sufficient) conditions guaranteeing linear convergence for a number of fundamental algorithms,
including the gradient method (applied to possibly nonconvex optimization), the proximal
point algorithm, and the forward-backward splitting algorithm. The sufficiency of these EB
conditions for linear convergence has been widely known. In contrast, less attention has
focused on the discussion of necessity.

In addition, we also make the following contributions, separatively from aspects of block coordinate
gradient descent, Nesterov’s acceleration, and verifying EB conditions:

3. We show linear convergence for the proximal alternating linearized minimization (PALM)
algorithm under a group of equivalent EB conditions. It has been recently shown [48, 25, 32]
that PALM achieves sublinear convergence for convex problems and linear convergence for
strongly convex problems. We in this study show its linear convergence under strictly weaker
conditions than strong convexity.

4. By defining a new EB condition, we obtain Q-linear convergence of the Nesterov’s accelerated
forward-backward algorithm, which generalizes the Q-linear convergence of the Nesterov’s
accelerated gradient method, recently independently discoverd in [28] and [55]. The new
EB condition in some special cases can be viewed as a strictly weaker relaxation of strong
convexity. In such sense, we show Q-linear convergence of the Nesterov’s accelerated method
without strong convexity. Our proof idea is partially inspired by [5] but might be of interest
in its own right.

5. We provide a new proof to show that a class of dual objective functions satisfy EB conditions,
under slightly weaker assumptions, again by means of technique developed in [10]. The
authors of [30] gave the first proof for a special case of this class of functions, and the author
of [47] gave the first general proof by contradiction.

The paper is organized as follows. In Section 2, we present the basic notation and some ele-
mentary preliminaries. In Section 3, we analyze necessary and sufficient conditions guaranteeing
linear convergence of gradient descent. In Section 4, we define a group of abstract EB conditions,
and analyze the interplay between them. In Section 5, we define an abstract gradient-type method,
and figure out EB conditions that are necessary and sufficient guaranteeing its linear convergence.
In Section 6, we study linear convergence of the PALM algorithm. In Section 7, we study linear
convergence of the Nesterov’s accelerated forward-backward algorithm. In Section 8, we verify EB
conditions for a class of dual objective functions. Finally, in Section 9, we give a short summary of
this paper, along with some discussion for future work.

2 Notation and preliminaries

Throughout the paper, Rn will denote an n-dimensional Euclidean space associated with inner-
product 〈·, ·〉 and induced norm ‖ · ‖. For any nonempty Q ⊂ Rn, we define the distant function by
d(x,Q) := infy∈Q ‖x− y‖. For a nonempty set Q ⊂ Rn, we define the indicator function of Q by

δQ(x) :=

{
0, if x ∈ Q;
+∞, otherwise.
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We say that f is gradient-Lipschitz-continuous with modulus L > 0 if

∀x, y ∈ Rn, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,

and f is strongly convex with modulus µ > 0 if for any α ∈ [0, 1],

∀x, y ∈ Rn, f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− 1

2
µα(1− α)‖x− y‖2,

or if (when it is differentiable)

∀x, y ∈ Rn, 〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖2.

We will consider the following classes of functions.

• F1(Rn): the class of continuously differentiable convex functions from Rn → R;

• F1,1
L (Rn): the class of gradient-Lipschitz-continuous convex functions from Rn → R with

Lipschitz modulus L;

• S1,1
µ,L(Rn): the class of gradient-Lipschitz-continuous and strongly convex functions from Rn →

R with Lipschitz modulus L and strongly convex modulus µ;

• Γ(Rn): the class of proper and lower semicontinuous functions from Rn → (−∞,+∞];

• Γ0(Rn): the class of proper and lower semicontinuous convex functions from Rn → (−∞,+∞].

Obviously, we have the following inclusions:

S1,1
µ,L(Rn) ⊆ F1,1

L (Rn) ⊆ F1(Rn), Γ0(Rn) ⊆ Γ(Rn).

It is convenient to denote by Arg min f the set of optimal solutions of minimizing f over Rn, and to
use “arg min f”, if the solution is unique, to stand for the unique solution. If Arg min f is nonempty,
we let min f present the minimum of f over Rn.

The notation of subgradient plays a central role in (non)convex optimization.

Definition 1 (subgradients, [45]). Let f ∈ Γ(Rn). Its domain is defined by

domf := {x ∈ Rn : f(x) < +∞}.

(a) For a given x ∈ domf , the regular subgradient of f at x, written ∂̂f(x), is the set of all
vectors u ∈ Rn which satisfy

lim
y 6=x

inf
y→x

f(y)− f(x)− 〈u, y − x〉
‖y − x‖

≥ 0.

When x /∈ domf , we set ∂̂f(x) = ∅.

(b) The (general) subgradient, of f at x ∈ Rn, written ∂f(x), is defined through the following
closure process

∂f(x) := {u ∈ Rn : ∃xk → x, f(xk)→ f(x) and uk ∈ ∂̂f(xk)→ u as k →∞}.

4



(c) If we further assume that f is convex, then the subgradient of f at x ∈ domf can also be
defined by

∂f(x) := {v ∈ Rn : f(z) ≥ f(x) + 〈v, z − x〉, ∀ z ∈ Rn}.

It should be noted that for each x ∈ domf , ∂f(x) is closed (see Theorem 8.6 in [45]). Moreover,
if f ∈ Γ0(Rn), then for each x ∈ domf , ∂f(x) is a nonempty closed and convex set. In the later case,
we denote by ∂0f(x) the unique least-norm element of ∂f(x). Points whose subgradient contains
0 are called critical points. The set of critical points of f is denoted by critf . If f ∈ Γ0(Rn), then
critf = Arg min f .

Let f ∈ Γ0(Rn); its Fenchel conjugate function f∗ : Rn → (−∞,+∞] is defined by

f∗(x) := sup
y∈Rn
{〈y, x〉 − f(y)},

and the proximal mapping operator by

proxλf (x) := arg min
y∈Rn
{f(y) +

1

2λ
‖y − x‖2}.

For each x ∈ domf , there is a unique absolutely continuous curve χx : [0,∞) → Rn such that
χx(0) = x and for almost every t > 0,

χ̇x(t) ∈ −∂f(χx(t)).

We say that Ω ⊂ Rn is ∂f -invariant if

(∀x ∈ Ω ∩ dom ∂f)(for a.e., t > 0) χx(t) ∈ Ω.

This concept was proposed in [12] and recently used in [21]. There are several types of Ω being
∂f -invariant; see Example 7.2 in [21] and Section IV.4 in [12]. In Sections 5 and 8, we will use the
fact that sublevel Xr := {x : f(x) ≤ r} is always ∂f -invariant for any function f ∈ Γ0(Rn).

At last, we present some variational analysis tools. Let T , E , and Ei, i = 1, 2 be finite-
dimensional Euclidean spaces. The closed ball around x ∈ E with radius r > 0 is denoted by
BE(x, r) := {y ∈ E : ‖x− y‖ ≤ r}. The unit ball is denoted by BE for simplicity, and the open unit
ball around the original in E is by BoE . A muti-function S : E1 ⇒ E2 is a mapping assigning each
point in E1 to a subset of E2. The graph of S is defined by

gph(S) := {(u, v) ∈ E1 × E2 : v ∈ S(u)}.

The inverse map S−1 : E2 ⇒ E1 is defined by setting

S−1(v) := {u ∈ E1 : v ∈ S(u)}.

Calmness and metric subregularity have been considered in various contexts and under various
names. Here, we follow the terminology of Dontchev and Rockafellar [16].

Definition 2 ([16], Chapter 3H). (a) A muti-function S : E1 ⇒ E2 is said to be calm with con-
stant κ > 0 around ū ∈ E1 for v̄ ∈ E2 if (ū, v̄) ∈ gph(S) and there exist constants ε, δ > 0 such
that

S(u) ∩ BE2(v̄, ε) ⊆ S(ū) + κ · ‖u− ū‖2BE2 , ∀u ∈ BE1(ū, δ), (1)

or equivalently,
S(u) ∩ BE2(v̄, ε) ⊆ S(ū) + κ · ‖u− ū‖2BE2 , ∀u ∈ E1. (2)
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(b) A muti-function S : E1 ⇒ E2 is said to be metrically sub-regular with constant κ > 0 around
ū ∈ E1 for v̄ ∈ E2 if (ū, v̄) ∈ gph(S) and there exists a constant δ > 0 such that

d(u, S−1(v̄)) ≤ κ · d(v̄, S(u)), ∀u ∈ BE1(ū, δ). (3)

Note that the calmness defined above is weaker than the locally upper Lipschitz-continuous
property [43]:

S(u) ⊆ S(ū) + κ · ‖u− ū‖2BE2 , ∀u ∈ BE1(ū, δ), (4)

which requires the muti-functions S to be calm around ū ∈ E1 with constant κ > 0 for any
v̄ ∈ E2. Recently, the locally upper Lipschitz-continuous property (4) was employed in [47] as a
main assumption for verifying EB conditions of a class of dual objective functions.

3 The gradient descent: a necessary and sufficient condition for
linear convergence

In this section, we first figure out the weakest condition that ensures gradient descent to converge
linearly, and then we show that a number of existing linear convergence results can be recovered
in a unified and transparent manner. This is a ”warm-up” section for the forthcoming abstract
theory in Sections 4 and 5.

Now, we start by considering the following unconstrained optimization problem

minimize
x∈Rn

f(x),

where f : Rn → R is a differentiable function achieving its minimum min f so that Arg min f 6= ∅.
Note that Arg min f is closed since f is differentiable. For any x ∈ Rn, the set of its projection
points onto Arg min f , denoted by Yf (x), is nonempty. Let {xk}k≥0 be generated by the gradient
descent method

xk+1 = xk − h · ∇f(xk), k ≥ 0, (5)

where h > 0 is the step size. Observe that d(xk,Arg min f) measures how close xk is to Arg min f ,
and the ratio of d(xk+1,Arg min f) to d(xk,Arg min f) measures how fast xk converges to Arg min f .
Now, we analyze the ratio of d(xk+1,Arg min f) to d(xk,Arg min f) as follows

d2(xk+1,Arg min f) = ‖xk+1 − x′k+1‖2 ≤ ‖xk+1 − x′k‖2

= ‖xk − h · ∇f(xk)− x′k‖2

= d2(xk,Arg min f)− 2h〈∇f(xk), xk − x′k〉+ h2‖∇f(xk)‖2,

where x′k+1 ∈ Yf (xk+1) and x′k ∈ Yf (xk). To ensure gradient descent to converge linearly in the
following sense:

d2(xk+1,Arg min f) ≤ τ · d2(xk,Arg min f), k ≥ 0. (6)

it suffices to require that for k ≥ 0, x′k ∈ Yf (xk),

d2(xk,Arg min f)− 2h〈∇f(xk), xk − x′k〉+ h2‖∇f(xk)‖2 ≤ τ · d2(xk,Arg min f),

i.e.,

inf
u∈Yf (xk)

〈∇f(xk), xk − u〉 ≥
1− τ

2h
d2(xk,Arg min f) +

h

2
‖∇f(xk)‖2, k ≥ 0. (7)
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It turns out that this sufficient condition is also necessary when the objective function f belongs
to F1,1

L (Rn) and the step size h lies in some interval.

Proposition 1. Let f be a differentiable function achieving its minimum min f so that Arg min f 6=
∅, and let h > 0 and τ ∈ (0, 1).

(i) If the condition (7) holds, then the sequence {xk}k≥0 generated by the gradient descent method
(5) must converge linearly in the sense of (6).

(ii) Let f(x) ∈ F1,1
L (Rn). If the sequence {xk} generated by the gradient descent method (5) with

0 < h ≤ 1−
√
τ

L converges linearly as (6), then the condition (7) must hold.

Proof. The proof of sufficiency part has been done. We now show the necessity part. Pick uk+1 ∈
Yf (xk+1) to derive that

d(xk,Arg min f) ≤ ‖xk − uk+1‖ ≤ ‖xk+1 − uk+1‖+ ‖xk+1 − xk‖
= d(xk+1,Arg min f) + h‖∇f(xk)‖, k ≥ 0. (8)

Combine (8) and the fact of linear convergence

d(xk+1,Arg min f) ≤
√
τ · d(xk,Arg min f), k ≥ 0

to obtain
(1−

√
τ)d(xk,Arg min f) ≤ h‖∇f(xk)‖, k ≥ 0. (9)

According to Theorem 2.1.5 in [40], we know that f(x) ∈ F1,1
L (Rn) implies

〈∇f(xk), xk − vk〉 ≥
1

L
‖∇f(xk)‖2, vk ∈ Yf (xk), k ≥ 0.

By letting α+ β ≤ 1 and α, β > 0, we have that for any vk ∈ Yf (xk),

〈∇f(xk), xk − vk〉 ≥
α

L
‖∇f(xk)‖2 +

β

L
‖∇f(xk)‖2

≥ α

L
‖∇f(xk)‖2 +

β(1−
√
τ)2

Lh2
d(xk,Arg min f)2, k ≥ 0,

where the last inequality follows by (9). Thus, by letting α
L = h

2 and β(1−
√
τ)2

Lh2
= 1−τ

2h , we get the
condition (7). At last, we need

α+ β =
Lh

2
+

Lh(1− τ)

2(1−
√
τ)2

=
hL

1−
√
τ
≤ 1,

which forces h ≤ 1−
√
τ

L . This completes the proof.

The condition (7) means that if the steepest descent direction −∇f(x) is well correlated to
any desired descent directions u − x, where u ∈ Yf (x), then a linear convergence rate of the

gradient descent method can be ensured. Conversely, when f(x) ∈ F1,1
L (Rn) and if the gradient

descent converges linearly and the step size lies in the interval (0, 1−
√
τ

L ], then −∇f(x) must be well
correlated to u− x. Now, we list some direct applications of this basic observation.

In our first illustrating example, we consider functions in S1,1
µ,L(Rn). First, we introduce an

important property about this type of functions.
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Lemma 1 ([40]). If f ∈ S1,1
µ,L(Rn), then we have

∀x, y ∈ Rn, 〈∇f(x)−∇f(y), x− y〉 ≥ µL

µ+ L
‖x− y‖2 +

1

µ+ L
‖∇f(x)−∇f(y)‖2.

Let x∗ be the unique minimizer of f ∈ S1,1
µ,L(Rn); then Arg min f = {x∗}. Using the inequality

above with x = xk, y = x∗ and noting that ∇f(x∗) = 0 and ‖xk−x∗‖ = d(xk,Arg min f), we obtain

〈∇f(xk), xk − x∗〉 ≥
µL

µ+ L
d2(xk,Arg min f) +

1

µ+ L
‖∇f(xk)‖2, k ≥ 0.

To guarantee the condition (7), we only need

µL

µ+ L
≥ 1− τ

2h
and

1

µ+ L
≥ h

2
,

which implies that
(1− τ)(µ+ L)

2µL
≤ h ≤ 2

µ+ L
, τ ≥ τ0 := (

L− µ
L+ µ

)2.

The optimal linear convergence rate τ0 can be obtained by setting h = 2
µ+L . This gives the

corresponding result in Nesterov’s book; see Theorem 2.1.15 in [40].
In our second illustrating example, we consider RSC functions [64, 61]. The following property

can be viewed as a convex combination of the restricted strong convexity and the gradient-Lipschitz-
continuous property; see Lemma 3 in [61].

Lemma 2 ([61]). If f ∈ F1,1
L (Rn) and f is RSC with 0 < ν < L, then for every θ ∈ [0, 1] it holds:

∀x ∈ Rn, 〈∇f(x), x− x′〉 ≥ θ

L
‖∇f(x)‖2 + (1− θ)νd2(x,Arg min f),

where x′ is the unique projection point of x onto Arg min f since Arg min f is a nonempty closed
convex set.

Similarly, to guarantee the condition (7) , we only need

(1− θ)ν ≥ 1− τ
2h

and
θ

L
≥ h

2
,

which implies that
1− τ

2(1− θ)ν
≤ h ≤ 2θ

L
, τ ≥ 1− 4θ(1− θ)ν

L
≥ 1− ν

L
.

The optimal linear convergence rate 1 − ν
L can be obtained at θ = 1

2 and h = 1
L . This gives the

corresponding result in [61]. The argument here is much simpler than that previously employed to
derive the same result; see the proof of Theorem 2 in [61].

The last example to be illustrated is a nonconvex minimization. The following definition can
be viewed as a local version of Lemma 2. Therefore, it is not difficult to predict a local linear
convergence under such property.
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Definition 3 (Regularity Condition, [14]). Let N be a neighborhood of Arg min f and let α, β > 0.
We say that f satisfies the regularity condition if

∀x ∈ N , inf
u∈Yf (x)

〈∇f(x), x− u〉 ≥ 1

α
d2(x,Arg min f) +

1

β
‖∇f(x)‖2.

Again, to guarantee the condition (7) locally, we only need

1

α
≥ 1− τ

2h
and

1

β
≥ h

2
,

which implies that
(1− τ)α

2
≤ h ≤ 2

β
, τ ≥ τ0 := (1− 4

αβ
).

The optimal linear convergence rate τ0 can be obtained by setting h = 2
β and assuming αβ > 4.

The latter must hold if the regularity condition holds; see the argument below Lemma 7.10 in
[14]. Therefore, we obtain the corresponding result in [14]. Regularity condition provably holds
for nonconvex optimization problems that appear in phase retrieve and low-rank matrix recover;
interested readers can refer to [14] and [53] for details.

Observe that the right-hand side of (7) has two terms. In order to better analyze such condition,
we decompose it into two parts:

inf
u∈Yf (xk)

〈∇f(xk), xk − u〉 ≥ θ1 · d2(xk,Arg min f),

inf
u∈Yf (xk)

〈∇f(xk), xk − u〉 ≥ θ2 · ‖∇f(xk)‖2,

where θi, i = 1, 2 are some positive parameters. This idea of separating the right-hand side of
(7) partially inspires us to consider new and abstract error bound conditions, which are the main
context of next section.

4 Abstract EB conditions: definition and interplay

This section is divided into two parts. In the first part, we define a group of EB conditions in a
unified and abstract way. In the second part, we discuss some interplay between them, along with
new connections between many existing EB conditions.

4.1 Definition of abstract EB conditions

The concept of residual measure operator, given by the following definition, will play a key role in
the forthcoming theory.

Definition 4. Let ϕ ∈ Γ(Rn). We say that Gϕ : Rn → Rn is a residual measure operator related
to ϕ, if it satisfies

{x ∈ Rn : Gϕ(x) = 0} = critϕ.

Especially, if we further assume that ϕ is convex, the above condition can be written as

{x ∈ Rn : Gϕ(x) = 0} = Arg minϕ.
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Now, we define a group of abstract EB conditions.

Definition 5. Let ϕ ∈ Γ(Rn) be such that it achieves its minimum minϕ and that its critical point
set critϕ is nonempty and closed. Let Ω ⊂ Rn and let Gϕ be a residual measure operator related
to ϕ. Define the projection operator Pϕ : Rn → Rn onto critϕ by:

Pϕ(x) := Arg minu∈critϕ‖x− u‖.

We call d(x, critϕ) point value error, ϕ(x) − minϕ objective value error, ‖Gϕ(x)‖ residual value
error, and infxp∈Pϕ(x)〈Gϕ(x), x−xp〉 least correlated error. With these optimality measures, we say
that

1. ϕ satisfies residual-point values EB condition with operator Gϕ and constant κ > 0 on Ω,
abbreviated (Gϕ, κ,Ω)-(res-EB) condition, if:

∀ x ∈ Ω ∩ domϕ, ‖Gϕ(x)‖ ≥ κ · d(x, critϕ); (res-EB)

2. ϕ satisfies correlated-point values EB condition with operator Gϕ and constant ν > 0 on Ω,
abbreviated (Gϕ, ν,Ω)-(cor-EB) condition, if:

∀ x ∈ Ω ∩ domϕ, inf
xp∈Pϕ(x)

〈Gϕ(x), x− xp〉 ≥ ν · d2(x, critϕ); (cor-EB)

3. ϕ satisfies objective-point values EB condition with constant α > 0 on Ω, abbreviated (ϕ, α,Ω)-
(obj-EB) condition, if:

∀ x ∈ Ω ∩ domϕ, ϕ(x)−minϕ ≥ α

2
· d2(x, critϕ); (obj-EB)

4. ϕ satisfies residual-objective values EB condition with operator Gϕ and constant η > 0 on Ω,
abbreviated (Gϕ, η,Ω)-(res-obj-EB) condition, if:

∀ x ∈ Ω ∩ domϕ, ‖Gϕ(x)‖ ≥ η ·
√
ϕ(x)−minϕ; (res-obj-EB)

5. ϕ satisfies correlated-residual values EB condition with operator Gϕ and constant β > 0 on
Ω, abbreviated (Gϕ, β,Ω)-(cor-res-EB) condition, if:

∀ x ∈ Ω ∩ domϕ, inf
xp∈Pϕ(x)

〈Gϕ(x), x− xp〉 ≥ β · ‖Gϕ(x)‖2; (cor-res-EB)

6. ϕ satisfies correlated-objective values EB condition with operator Gϕ and constant ω > 0 on
Ω, abbreviated (Gϕ, ω,Ω)-(cor-obj-EB) condition, if:

∀ x ∈ Ω ∩ domϕ, inf
xp∈Pϕ(x)

〈Gϕ(x), x− xp〉 ≥ ω · (ϕ(x)−minϕ). (cor-obj-EB)

We will refer to these EB conditions as global if Ω = Rn. For global EB conditions, we will omit Ω
for simplicity.
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In order to gain some intuition of the abstract EB conditions, we point out their correspondences
to existing notions: (res-EB) corresponds to the EB condition of Hoffman’s type, (res-obj-EB) to the
Polyak- Lojasiewicz’s type, (obj-EB) to the quadratic growth condition, (cor-EB) to the RSI’s type,
and (cor-obj-EB) to the subgradient inequality of convex function. The (cor-res-EB) condition,
which will be used in Section 5, is a relaxation of the following property:

∀x, y ∈ Rn, 〈∇ϕ(x)−∇ϕ(y), x− y〉 ≥ 1

L
‖∇ϕ(x)−∇ϕ(y)‖2,

which is equivalent to ϕ ∈ F1,1
L (Rn); see Theorem 2.1.5 in [40].

In our early manuscript [59], we only roughly gave global EB conditions in definition 5. By
incorporating the referee’s comments, we present the current version, which is much more accurate
than the previous one.

4.2 Interplay between the EB conditions

We first show the interplay between the abstract EB conditions. The proof of equivalence will rely
heavily on a technical result developed in [10].

Theorem 1. Let ϕ ∈ Γ(Rn) be such that it achieves its minimum minϕ and that critϕ is nonempty
and closed. Let Ω ⊂ Rn and let Gϕ be a residual measure operator related to ϕ. Assume that the
(Gϕ, ω,Ω)-(cor-obj-EB) condition holds. Then, we have the following implications

(obj-EB)⇒ (cor-EB)⇒ (res-EB)⇒ (res-obj-EB).

One can respectively take ν = αω
2 , κ = ν, η =

√
κω. If we further assume that ϕ ∈ Γ0(Rn), Ω is

∂ϕ-invariant, and Gϕ satisfies

∀ x ∈ Ω ∩ domϕ, ‖Gϕ(x)‖ ≤ inf
g∈∂ϕ(x)

‖g‖. (10)

Then, we have the following equivalent relationship

(obj-EB)⇔ (cor-EB)⇔ (res-EB)⇔ (res-obj-EB).

For (res-obj-EB)⇒ (obj-EB), one can take α = 1
2η

2.

Proof. We prove this theorem by showing the following implications

(obj-EB)⇒ (cor-EB)⇒ (res-EB)⇒ (res-obj-EB)⇒ (obj-EB).

Firstly, the implication of (obj-EB)⇒ (cor-EB) follows from that

inf
xp∈Pϕ(x)

〈Gϕ(x), x− xp〉 ≥ ω · (ϕ(x)−minϕ) ≥ αω

2
· d2(x, critϕ),

where the left inequality is (cor-obj-EB) and the right one is (obj-EB).
Secondly, the implication of (cor-EB) ⇒ (res-EB) follows from a direct application of the

Cauchy-Schwartz inequality to (cor-EB).
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Thirdly, we show (res-EB) ⇒ (res-obj-EB). By (cor-obj-EB) and (res-EB), we derive that for
∀ x ∈ Ω ∩ domϕ,

ω · (ϕ(x)−minϕ) ≤ inf
xp∈Pϕ(x)

〈Gϕ(x), x− xp〉

≤ inf
xp∈Pϕ(x)

‖Gϕ(x)‖‖x− xp‖ = ‖Gϕ(x)‖ · d(x, critϕ)

≤ κ−1‖Gϕ(x)‖2.

Thus, it holds that ∀ x ∈ Ω∩domϕ, ‖Gϕ(x)‖ ≥
√
κω ·

√
ϕ(x)−minϕ, which is just (res-obj-EB).

At last, we show (res-obj-EB) ⇒ (obj-EB). The following is based on an argument used
for proving Theorem 27 in [10]. For the sake of completeness, we reproduce that proof in our
particular case. First of all, take x ∈ Ω ∩ domϕ and recall that we have additionally assumed
critϕ = Arg minϕ. Without loss of generality, we assume that minϕ = 0 and x /∈ Arg minϕ.
According to the result about subgradient curves due to Brézis [12] and Bruck [13] and recently
appeared in [10], we can find the unique absolutely continuous curve χx : [0,+∞)→ Rn such that
χx(0) = x and

χ̇x(t) ∈ −∂ϕ(χx(t))

for almost every t > 0. Moreover, χx(t) converges to some point in Arg minϕ as t→ +∞ and the
function t 7→ ϕ(χx(t)) is nonincreasing and

lim
t→+∞

ϕ(χx(t)) = minϕ = 0.

By the ∂ϕ-invariant property of Ω, we have χx(t) ∈ Ω and hence χx(t) ∈ Ω ∩ domϕ due to the
nonincreasing of ϕ(χx(t)). Let

T := inf{t ∈ [0,+∞) : ϕ(χx(t)) = 0}.

We claim that T > 0. Otherwise, T = 0 and then, by the lower semicontinuous property of ϕ, we
can derive that

ϕ(x) = ϕ(χx(0)) ≤ lim inft→0+ϕ(χx(t)) = 0.

This contradicts x /∈ Arg minϕ. Now, combining (10) and (res-obj-EB), we derive that

‖χ̇x(t)‖√
ϕ(χx(t))

≥
infg∈∂ϕ(χx(t)) ‖g‖√

ϕ(χx(t))
≥ ‖Gϕ(χx(t))‖√

ϕ(χx(t))
≥ η, ∀t ∈ [0, T ).

Observe that for p, q ∈ [0, T ),

√
ϕ(χx(p))−

√
ϕ(χx(q)) =

∫ p

q

d
√
ϕ(χx(t))

dt
dt

=
1

2

∫ q

p
(ϕ(χx(p)))−

1
2 ‖χ̇x(t)‖2dt =

1

2

∫ q

p

‖χ̇x(t)‖√
ϕ(χx(t))

‖χ̇x(t)‖dt

≥1

2

∫ q

p
η‖χ̇x(t)‖dt =

η

2
· length(χx(t), p, q) ≥ η

2
· ‖χx(p)− χx(q)‖,

12



where length(χx(t), p, q) stands for the length of subgradient curve from p to q. By letting p = 0
and q → +∞ if T = +∞ and q → T if T < +∞, we obtain√

ϕ(χx(0)) =
√
ϕ(x) ≥ η

2
· ‖x− x̂‖

for some x̂ ∈ Arg minϕ. Therefore, for ∀ x ∈ Ω ∩ domϕ we always have

ϕ(x)−minϕ ≥ η2

4
· ‖x− x̂‖2 ≥ η2

4
· d2(x,Arg minϕ) =

η2

4
· d2(x, critϕ),

which implies that (obj-EB) with α = η2

2 holds. This completes the proof.

As a direct consequence, we have the following corollary.

Corollary 1. Let ϕ ∈ Γ0(Rn) be such that its achieves its minimum minϕ so that Arg minϕ 6= ∅.
Let Ω ⊂ Rn be ∂ϕ-invariant, and Giϕ, i = 1, 2 be two different residual measure operators related to
the same function ϕ. We assume that Giϕ, i = 1, 2 satisfy

∀ x ∈ Ω ∩ domϕ, ‖Giϕ(x)‖ ≤ inf
g∈∂ϕ(x)

‖g‖, (11)

and (Giϕ, ω,Ω)-(cor-obj-EB) conditions hold. Then, we have

(G1
ϕ, κ,Ω)-(res-EB)⇔ (G1

ϕ, ν,Ω)-(cor-EB)⇔ (G1
ϕ, η,Ω)-(res-obj-EB)

⇔(ϕ, α,Ω)-(obj-EB) ⇔
(G2

ϕ, κ,Ω)-(res-EB)⇔ (G2
ϕ, ν,Ω)-(cor-EB)⇔ (G2

ϕ, η,Ω)-(res-obj-EB).

Now, we list some cases where the equivalence between the EB conditions indeed holds.

Corollary 2. The EB conditions (cor-EB), (res-EB), (obj-EB), and (res-obj-EB) are equivalent
under each of the following situations:

case 1: ϕ ∈ F1(Rn) achieves its minimum minϕ, Ω is ∇ϕ-invariant, and Gϕ = ∇ϕ;

case 2: ϕ ∈ Γ0(Rn) achieves its minimum minϕ, Ω is ∂ϕ-invariant, and Gϕ = ∂0ϕ;

case 3: ϕ = f + g, where f ∈ F1,1
L (Rn) and g ∈ Γ0(Rn), achieves its minimum minϕ, Ω is

∂ϕ-invariant, and Gϕ(x) = Rt(x), where

∀ x ∈ domϕ, Rt(x) := t−1
(
x− proxtg(x− t∇f(x))

)
,

with some t ∈ (0, 1
L ]. In addition, we assume that there exists a positive constant ε ≤ 2

t such
that

‖Gϕ(x)‖2 ≥ ε(ϕ(x)− ϕ(x+)), (12)

where x+ = x− t ·Gϕ(x).

Proof. First of all, critϕ is nonempty since critϕ = Arg minϕ 6= ∅, and is closed since ϕ a proper
and lower semicontinuous function, in all the listed cases. Secondly, by optimality conditions, one
can easily verify that Gϕ in all the listed cases are residual measure operators. We only need to
verify the remained assumptions in Theorem 1.
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For both cases 1 and 2, the convexity of ϕ implies the (cor-obj-EB) condition with ω = 1.
In case 1, the assumption (10) holds obviously because of ∂ϕ(x) = {∇ϕ(x)}.
In case 2, the assumption (10) follows from the definition of ∂0ϕ(x).
Now, let us consider the case 3. Since f(x) ∈ F1,1

L (Rn) and g ∈ Γ0(Rn), we have that Gϕ(x)
satisfies the standard result

∀x, y ∈ Rn, ϕ(x+) ≤ ϕ(y) + 〈Gϕ(x), x− y〉 − t

2
‖Gϕ(x)‖2;

see e.g. Lemma 2.3 in [8] or Lemma 2 in the very recent work [4]. Since ϕ also belongs to Γ0(Rn),
we can conclude that Arg minϕ is a nonempty closed convex set. Thus, by the projection theorem,
there exists a unique projection point of x onto Arg minϕ, denoted by xp. Using the inequality
above with y = xp and the assumption (12), we derive that

〈Gϕ(x), x− xp〉 ≥ ϕ(x+)−minϕ+
t

2
‖Gϕ(x)‖2

≥ ϕ(x+)−minϕ+
tε

2
(ϕ(x)− ϕ(x+))

=
tε

2
(ϕ(x)−minϕ) + (1− tε

2
)(ϕ(x+)−minϕ)

≥ tε

2
(ϕ(x)−minϕ),

from which the (Gϕ, ω,Ω)-(cor-obj-EB) condition with ω = tε
2 follows. The assumption (10) in this

case was established in Theorem 3.5 in [19] and Lemma 4.1 in [31]. This completes the proof.

When this work was under review, we note that the authors of [26] independently also recently
obtained the equivalent relationship between the EB conditions (cor-EB), (res-EB), (obj-EB), and
(res-obj-EB) for functions in F1,1

L (Rn), and we also note that the authors of [21] independently
recently obtained the equivalent relationship between the EB conditions (res-EB), (obj-EB), and
(res-obj-EB) for functions in Γ0(Rn). The former is merely limited to F1,1

L (Rn), and the latter
mainly focuses on Γ0(Rn) and does not consider (cor-EB).

Observe that the condition (12) is implied by the (res-obj-EB) condition since

∀x ∈ Rn, ‖Gϕ(x)‖2 ≥ η2(ϕ(x)−minϕ) ≥ η2(ϕ(x)− ϕ(x+)).

And also, note that ϕ = f + g ∈ Γ0(Rn) if f ∈ F1,1
L (Rn) and g ∈ Γ0(Rn). With a little efforts, we

can get the following result.

Corollary 3. Let ϕ = f + g with f ∈ F1,1
L (Rn) and g ∈ Γ0(Rn) achieve its minimum minϕ, and

let Ω ⊂ Rn be ∂ϕ-invariant and t ∈ (0, 1
L ]. If the (Rt, η,Ω)-(res-obj-EB) condition holds, then we

have the following equivalent relationship:

(∂0ϕ, κ,Ω)-(res-EB)⇔ (∂0ϕ, ν,Ω)-(cor-EB)⇔ (∂0ϕ, η,Ω)-(res-obj-EB)
⇔(ϕ, α,Ω)-(obj-EB) ⇔

(Rt, κ,Ω)-(res-EB)⇔ (Rt, ν,Ω)-(cor-EB)⇔ (Rt, η,Ω)-(res-obj-EB),

and each of the equivalent conditions holds.

Based on the relationship established in Theorem 2 in [60], that is (ϕ, α,Ω)-(obj-EB) ⇔
(Rt, κ,Ω)-(res-EB)⇔ (Rt, ν,Ω)-(cor-EB), and together with the case 2 of Corollary 2, we still have
the following result even if we do not take the (Rt, η,Ω)-(res-obj-EB) condition as an assumption.
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Corollary 4. Let ϕ = f + g with f ∈ F1,1
L (Rn) and g ∈ Γ0(Rn) achieve its minimum minϕ, and

let Ω ⊂ Rn be ∂ϕ-invariant and t ∈ (0, 1
L ]. Then, we have

(∂0ϕ, κ,Ω)-(res-EB)⇔ (∂0ϕ, ν,Ω)-(cor-EB)⇔ (∂0ϕ, η,Ω)-(res-obj-EB)
⇔(ϕ, α,Ω)-(obj-EB) ⇔ (Rt, κ,Ω)-(res-EB)⇔ (Rt, ν,Ω)-(cor-EB).

In all corollaries above, parameters involved in different EB conditions can be set explicitly as
Theorem 1, but we omit the details here.

5 An abstract gradient-type method: linear convergence and ap-
plications

In this section, we define an abstract gradient-type method by viewing residual measure operator
as an ascent direction, and then figure out a necessary and sufficient condition for linear conver-
gence based on the abstract EB conditions defined before. The following main result generalizes
Proposition 1.

Theorem 2. Let ϕ ∈ Γ(Rn) be such that it achieves its minimum minϕ and that critϕ is nonempty
closed. Let Ω ⊂ Rn and let Gϕ be a residual measure operator related to ϕ. Suppose that ϕ satisfies
the (Gϕ, β,Ω)-(cor-res-EB) condition. Define the abstract gradient-type method by

xk+1 = xk − h ·Gϕ(xk), k ≥ 0,

with step size h > 0 and arbitrary initial point x0 ∈ Ω. Assume that xk ∈ Ω, k ≥ 0. Let τ, θ ∈ (0, 1).

(i) If ϕ satisfies the (Gϕ, ν,Ω)-(cor-EB) condition with ν < 1
β and the following inequalities hold

1− τ
2θν

≤ h ≤ 2(1− θ)β, τ ≥ 1− 4θ(1− θ)βν, (13)

then the abstract gradient-type method converges linearly in the sense that

d2(xk+1, critϕ) ≤ τ · d2(xk, critϕ), k ≥ 0. (14)

The optimal rate τ0 := 1− βν is obtained at h = β and θ = 1
2 .

(ii) Conversely, if the abstract gradient-type method converges linearly in the sense of (14), then

ϕ satisfies the (Gϕ, ν,Ω)-(cor-EB) condition with ν = β(1−
√
τ)2

h2
.

Proof. First, we repeat the argument before (6) to obtain that for vk ∈ Pϕ(xk),

d2(xk+1, critϕ) ≤ d2(xk, critϕ)− 2h〈Gϕ(xk), xk − vk〉+ h2‖Gϕ(xk)‖2, k ≥ 0.

Take θ ∈ (0, 1) and then use a convex combination of the (cor-res-EB) and (cor-EB) conditions at
x = xk to obtain

inf
vk∈Pϕ(xk)

〈Gϕ(xk), xk − vk〉 ≥ θν · d2(xk, critϕ) + (1− θ)β · ‖Gϕ(xk)‖2, k ≥ 0.
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Therefore, we can derive that

d2(xk+1, critϕ) ≤ (1− 2θνh)d2(xk, critϕ) + (h2 − 2h(1− θ)β)‖Gϕ(xk)‖2

≤ τ · d2(xk, critϕ), k ≥ 0,

where the second inequality follows from the condition (13) on the step size. Obviously, the optimal
linear convergence rate τ0 = 1− βν can be obtained at h = β, θ = 1

2 .
Conversely, pick uk+1 ∈ Pϕ(xk+1) to derive that

d(xk, critϕ) ≤ ‖xk − uk+1‖ ≤ ‖xk+1 − uk+1‖+ ‖xk+1 − xk‖
= d(xk+1, critϕ) + h‖Gϕ(xk)‖, k ≥ 0. (15)

Combine (15) and the fact of linear convergence

d(xk+1, critϕ) ≤
√
τ · d(xk, critϕ), k ≥ 0

to obtain
(1−

√
τ)2d2(xk, critϕ) ≤ h2‖Gϕ(xk)‖2, k ≥ 0.

Thus, together with the (cor-res-EB) condition, we can derive that

inf
vk∈Pϕ(xk)

〈Gϕ(xk), xk − vk〉 ≥ β‖Gϕ(xk)‖2 ≥
β(1−

√
τ)2

h2
d2(xk, critϕ), k ≥ 0.

Observe that the starting point x0 ∈ Ω can be arbitrary. Therefore, the (cor-EB) condition with

ν = β(1−
√
τ)2

h2
holds. This completes the proof.

With Theorem 2 in hand, we now claim the necessary and sufficient EB conditions guarantee-
ing linear convergence for the gradient method, the proximal point algorithm, and the forward-
backward splitting algorithm. These conditions, previously known to be sufficient for linear con-
vergence, are actually necessary. We start by the gradient method, applied to possibly nonconvex
optimization.

Corollary 5. Let f : Rn → R be a gradient-Lipschitz-continuous function with modulus L > 0 and
let Ω ⊂ Rn. Assume that f achieves its minimum min f and critf = Arg min f 6= ∅. Let {xk}k≥0

be generated by the gradient descent method (5) with h = 1
L and assume that xk ∈ Ω, k ≥ 0.

(i) If f satisfies the (∇f, ν,Ω)-(cor-EB) condition with ν < L, then the gradient descent method
(5) with h = 1

L converges linearly in the sense that

f(xk+1)−min f ≤
(

1− (
ν

L
)2
)

(f(xk)−min f), k ≥ 0. (16)

(ii) If we further assume that f is convex, then the gradient descent method (5) with h = 1
L attains

the following linear convergence:

d2(xk+1,Arg min f) ≤ (1− ν

L
) · d2(xk,Arg min f), k ≥ 0. (17)
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(iii) Conversely, if f is convex and if starting from arbitrary initial point x0 ∈ Ω, the gradient
descent method (5) with h = 1

L converges linearly like (17) but replacing 1 − ν
L with τ , then

f satisfies the (∇f, ν,Ω)-(cor-EB) condition with ν = L(1−
√
τ)2.

Proof. We first show (16) by modifying the argument due to Polyak [42] and recently highlighted
in [27, 26]. The gradient-Lipschitz-continuous of f implies

f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L

2
‖y − x‖2, ∀ x, y ∈ Rn. (18)

Using this inequality with y = xk+1 and x = xk and together with the update rule of gradient
descent, we get

f(xk+1)− f(xk) ≤ −
1

2L
‖∇f(xk)‖2, k ≥ 0. (19)

Using again the inequality (18) with y = xk and x = uk ∈ Pf (xk), and noting that uk ∈ critf =
Arg min f and hence f(uk) = min f and ∇f(uk) = 0, we have

f(xk)−min f ≤ L

2
d2(xk, critf), k ≥ 0. (20)

Applying the Cauchy-Schwartz inequality to the (∇f, ν,Ω)-(cor-EB) condition, we obtain

∀x ∈ Ω ∩ domf, ‖∇f(x)‖ ≥ ν · d(x, critf).

Thus, combining the inequalities (19) and (20), we have that

f(xk+1)− f(xk) ≤ −
1

2L
‖∇f(xk)‖2 ≤ −

ν2

L2
(f(xk)−min f), k ≥ 0,

from which (16) follows.
Now, with the additional convex assumption of f , we have f ∈ F1,1

L (Rn), which is equivalent to
the following condition

〈∇f(x)−∇f(y), x− y〉 ≥ 1

L
‖∇f(x)−∇f(y)‖2, x, y ∈ Rn;

see Theorem 2.1.5 [40]. Using this inequality with y ∈ Pf (x), we obtain

inf
y∈Pf (x)

〈∇f(x), x− y〉 ≥ 1

L
‖∇f(x)‖2, x ∈ Rn,

which is just the (∇f, β,Ω)-(cor-res-EB) condition with β = 1
L . Therefore, the remained results

follow from Theorem 2. This completes the proof.

Remark 1. In Example 2 in [61], we constructed a one-dimensional nonconvex function, that sat-
isfies all the conditions in Corollary 5 that ensure (16). In this sense, (16) is one of the few general
results for global linear convegence on non-convex problems. We note that a similar phenomenon
was observed by the authors of [26] under the Polyak- Lojasiewicz condition.

Before we discuss the linear convergence of the proximal point algorithm (PPA), we introduce
the following result.
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Lemma 3 ([7, 46]). Let f ∈ Γ0(Rn) and λ > 0. Let the Moreau-Yosida regularization of f be
defined by

fλ(x) := min
u∈Rn

{
f(u) +

1

2λ
‖x− u‖2

}
.

Then,

• fλ is real-valued, convex, and continuously differentiable and can be formulated as

fλ(x) = f(proxλf (x)) +
1

2λ
‖x− proxλf (x)‖2;

• Its gradient
∇fλ(x) = λ−1(x− proxλf (x))

is λ−1-Lipschitz continuous.

• Arg min fλ = Arg min f and min f = min fλ.

Now, we are ready to present the result of linear convergence for PPA.

Corollary 6. Let f ∈ Γ0(Rn) achieve its minimum min f , Ω ⊂ Rn, and λ > 0. The PPA can be
defined by

xk+1 = proxλf (xk) = xk − λ · ∇fλ(xk), k ≥ 0.

Assume that xk ∈ Ω, k ≥ 0.

(i) If f satisfies the (f, α,Ω)-(obj-EB) condition, then fλ satisfies the (∇fλ, ν,Ω)-(cor-EB) con-
dition with ν = min{α4 ,

1
4λ}, and hence the PPA converges linearly in the sense that

d2(xk+1,Arg min f) ≤
(

1−min{αλ
4
,
1

4
}
)
· d2(xk,Arg min f), k ≥ 0. (21)

(ii) Conversely, if starting from arbitrary initial point x0 ∈ Ω the PPA converges linearly like
(21) but replacing the rate 1 − min{αλ4 ,

1
4} with a constant τ ∈ (0, 1), then f satisfies the

(f, α,Ω)-(obj-EB) condition with α = (1−
√
τ)2

2λ .

Proof. First of all, we remark that

critf = Arg min f = Arg min fλ = critfλ. (22)

From Lemma 3, we have fλ ∈ F1,1
L (Rn) with L = λ−1 and hence the (∇fλ, β,Ω)-(cor-res-EB)

condition with β = λ holds. Now, we first prove that the (f, α,Ω)-(obj-EB) condition implies the
(fλ, c,Ω)-(obj-EB) condition with c = min{α2 ,

1
2λ}. Indeed, letting v = proxλf (x) and v′ ∈ Pf (v),

we derive that

fλ(x)−min fλ = f(proxλf (x)) +
1

2λ
‖x− proxλf (x)‖2 −min f

≥ α

2
d2(proxλf (x), critf) +

1

2λ
‖x− proxλf (x)‖2

=
α

2
‖v − v′‖2 +

1

2λ
‖x− v‖2 ≥ c · (‖v − v′‖2 + ‖x− v‖2)

≥ c

2
(‖v − v′‖+ ‖x− v‖)2 ≥ c

2
‖x− v′‖2 ≥ c

2
d2(x, critfλ),
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where the last inequality follows by v′ ∈ Pf (v) ⊂ critf = critfλ. From case 1 of Corollary 2,
the (fλ, c,Ω)-(obj-EB) condition implies the (∇fλ, ν,Ω)-(cor-EB) condition with ν = min{α4 ,

1
4λ}.

Therefore, (21) follows from Theorem 2 and the fact (22).
Now, we turn to the necessity part. Invoking Theorem 2 again to conclude that fλ satisfies the

(∇fλ, ν,Ω)-(cor-EB) condition with ν = (1−
√
τ)2

λ , that is

∀ x ∈ Ω ∩ domfλ, inf
xp∈Pfλ (x)

〈∇fλ(x), x− xp〉 ≥ ν · d2(x, critfλ). (23)

Together with the fact of critf = critfλ, we can get

∀ x ∈ Ω ∩ domfλ, ‖∇fλ(x)‖ ≥ ν · d(x, critf). (24)

On the other hand, using the definition of v = proxλf (x), which implies 1
λ(x− v) ∈ ∂f(v), and the

convexity of f , we obtain that

∀ x ∈ domf, ∀ g ∈ ∂f(x), 〈 1
λ

(x− v)− g, v − x〉 ≥ 0, (25)

which further implies that

∀ x ∈ domf, inf
g∈∂f(x)

‖g‖ ≥ 1

λ
‖x− v‖ = ‖∇fλ(x)‖. (26)

Thus, combining (24) and (26) and noting that domf ⊂ domfλ, we obtain

∀ x ∈ Ω ∩ domf, ‖∂0f(x)‖ = inf
g∈∂f(x)

‖g‖ ≥ ν · d(x, critf). (27)

This is just the (∂0f, κ,Ω)-(res-EB) condition with κ = ν. Therefore, the (f, α,Ω)-(obj-EB) condi-

tion with α = (1−
√
τ)2

2λ holds by case 2 of Corollary 2.

Remark 2. Linear convergence of PPA was previously provided based on different EB conditions,
such as the  Lojasiewicz inequality (corresponding to (res-obj-EB)) in [2, 3], the quadratic growth
condition (corresponding to (obj-EB)) in Proposition 6.5.2 in [9], and the EB condition of Hoff-
man’s type (corresponding to (res-EB)) in Theorem 2.1 in [38]. Our novelty here mainly lies in the
necessity part, i.e., conclusion (ii).

Finally, we discuss linear convergence for the forward-backward splitting (FBS) algorithm. Re-
call that R1/L(x) = L

(
x− proxtg(x− 1

L∇f(x))
)
.

Corollary 7. Let ϕ = f + g, where f ∈ F1,1
L (Rn) and g ∈ Γ0(Rn), achieve its minimum minϕ,

and let Ω ⊂ Rn. Let the sequence {xk}k≥0 be generated by FBS, that is

xk+1 = prox 1
L
g(xk −

1

L
∇f(xk)) = xk −

1

L
· R1/L(xk), k ≥ 0.

Assume that xk ∈ Ω, k ≥ 0.

(i) If ϕ satisfies the (R1/L, ν,Ω)-(cor-EB) condition with ν < 2L, then FBS converges linearly in
the sense that

ϕ(xk+1)−minϕ ≤ (1− ν

2L
)(ϕ(xk)−minϕ), k ≥ 0. (28)

and
d2(xk+1,Arg minϕ) ≤ (1− ν

2L
) · d2(xk,Arg minϕ), k ≥ 0. (29)
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(ii) Conversely, if starting from arbitrary initial point x0 ∈ Ω, FBS converges linearly like (29)
but replacing 1 − ν

2L with τ , then ϕ satisfies the (R1/L, ν,Ω)-(cor-EB) condition with ν =
L
2 (1−

√
τ)2.

Proof. We rely on the following standard result (see again Lemma 2.3 in [8]):

∀x, y ∈ Rn, 〈R1/L(y), y − x〉 ≥ ϕ(prox 1
L
g(y −

1

L
∇f(y)))− ϕ(x) +

1

2L
‖R1/L(y)‖2. (30)

Using successively this result at x = y = xk, and then at y = xk, x = uk ∈ Pϕ(xk), together with
the fact of xk+1 = prox 1

L
g(xk −

1
L∇f(xk)), we obtain

ϕ(xk+1)− ϕ(xk) ≤ −
1

2L
‖R1/L(xk)‖2, k ≥ 0, (31)

and

ϕ(xk+1)−minϕ+
1

2L
‖R1/L(xk)‖2 ≤ 〈R1/L(xk), xk − uk〉, k ≥ 0.

Applying the Cauchy-Schwartz inequality to the (R1/L, ν,Ω)-(cor-EB) condition, we obtain

∀ x ∈ Ω ∩ domϕ, ‖R1/L(x)‖ ≥ ν · d(x, critϕ),

from which the following inequality follows

〈R1/L(xk), xk − uk〉 ≤
1

ν
‖R1/L(xk)‖2, k ≥ 0.

Thus, we obtain

ϕ(xk+1)−minϕ ≤ (
1

ν
− 1

2L
)‖R1/L(xk)‖2, k ≥ 0. (32)

Combining (31) and (32), we get

ϕ(xk+1)− ϕ(xk) ≤ −
1

2L

(
1

ν
− 1

2L

)−1

(ϕ(xk+1)−minϕ), k ≥ 0,

from which the announced result (28) follows.
Now, using the standard result (30) with x = yp ∈ Pϕ(y) to yield

〈R1/L(y), y − yp〉 ≥ ϕ(prox 1
L
g(y −

1

L
∇f(y)))− ϕ(yp) +

1

2L
‖R1/L(y)‖2, (33)

and noting that

ϕ(prox 1
L
g(y −

1

L
∇f(y)))− ϕ(yp) = ϕ(prox 1

L
g(y −

1

L
∇f(y)))−minϕ ≥ 0,

we obtain

∀y ∈ Rn, 〈R1/L(y), y − yp〉 ≥
1

2L
‖R1/L(y)‖2.

Thus, ϕ satisfies the (R1/L, β,Ω)-(cor-res-EB) condition with β = 1
2L . Therefore, the remained

results follow from Theorem 2 and the fact of critϕ = Arg minϕ.
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Remark 3. The results (28) and (29) were essentially shown in [19] and [60] respectively, with
different methods. Our novelty here lies in conclusion (ii), which was independently also recently
observed by the authors in [21].

We remark that a common assumption employed in Corollaries 5-7 is xk ∈ Ω, k ≥ 0. Note that
each sublevel Xr = {x ∈ Rn : f(x) ≤ r} for any function f ∈ Γ0(Rn) is ∂f -invariant, and Observe
that xk ∈ Xϕ(x0), k ≥ 0 or xk ∈ Xf(x0), k ≥ 0 for the algorithms studied in Corollaries 5-7. Thereby,
if Ω = Xf(x0) or Ω = Xϕ(x0), then the common assumption of xk ∈ Ω, k ≥ 0, holds trivially; for
more details please refer to section 4.2 in [21].

6 Linear convergence of the PALM algorithm

The PALM algorithm was recently introduced by the authors of [11] for a class of composition
optimization problem in the general non-convex and non-smooth setting. The authors developed
a convergence analysis framework relying on the Kurdyka- Lojasiewicz (KL) inequality and proved
that PALM converges globally to a critical point for problem with semi-algebraic data. A global non-
asymptotic sublinear rate of convergence of PALM for convex problems was obtained independently
in [48] and [25]. Very recently, a globally linear convergence of PALM for strongly convex problems
was obtained in [32]. Note that PALM is called block coordinate proximal gradient algorithm
in [25] and cyclic block coordinate descent-type method in [32]. In this section, we show linear
convergence of PALM under EB conditions, which are strictly weaker than strong convexity.

The following is our main result in this section.

Theorem 3. Consider the following composite convex nonsmooth minimization problem

minimize
x∈Rd

ϕ(x) := f(x1, · · · , xp) +

p∑
j=1

gj(xj), (34)

where Rd 3 x = (x1, · · · , xp) with the j-th block xj ∈ Rdj , and d =
∑p

j=1 dj. Set g(x) :=∑p
j=1 gj(xj) so that domg = Πp

j=1domgj. With these notations, the objective function of (34)
reads as ϕ = f + g. Assume that

• f ∈ F1,1
L (Rd), gj ∈ Γ0(Rdj ), j = 1, · · · , p, and Ω ⊂ domg;

• f(x1:(j−1), xj , x(j+1):p) ∈ F
1,1
Lj

(Rdj ) for all x1:(j−1) and x(j+1):p, j = 1, · · · ; p;

• ϕ = f + g is such that it achieves its minimum minϕ;

• ϕ satisfies the (∂0ϕ, η,Ω)-(res-obj-EB) condition (or its equivalent conditions from case 2 of
Corollary 2), which is strictly weaker than strong convexity.

Here, Lj , j = 1, · · · , p and L are positive constants, and x1:k := (x1, x2, · · · , xk). Denote x
(t+1)
1:(j−1) :=

(x
(t+1)
1 , · · · , x(t+1)

j−1 ), x
(t)
(j+1):p := (x

(t)
j+1, · · · , x

(t)
p ), ψ

(t)
j (xj) := f(x

(t+1)
1:(j−1), xj , x

(t)
(j+1):p), and ϕ

(t)
j (xj) :=

ψ
(t)
j (xj) + gj(xj). Start with given initial points {x(0)

j }
p
j=1. PALM generates {x(t+1)

j }pj=1 via solving
a collection of subproblems

x
(t+1)
j = arg min

xj

{
〈xj − x(t)

j ,∇ψ
(t)
j (x

(t)
j )〉+

Lj
2
‖xj − x(t)

j ‖
2 + gj(xj)

}
, j = 1, · · · , p, t ≥ 0.
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Assume that x(t) ∈ Ω, t ≥ 0. Then, PALM converges linearly in the sense that

ϕ(x(t+1))−minϕ ≤
(

η2Lmin

4pL2 + 4L2
max

+ 1

)−1

(ϕ(x(t))−minϕ), t ≥ 0,

where Lmin = minj Lj and Lmax = maxj Lj.

Proof. We divide the proof into three steps.
Step 1. We prove that

ϕ(x(t))− ϕ(x(t+1)) ≥ Lmin

2
‖x(t) − x(t+1)‖2, t ≥ 0. (35)

Let G
(t)
j = Lj(x

(t)
j − x

(t+1)
j ). By the definition of x

(t+1)
j and Lemma 2.3 in [8], we get

ϕ
(t)
j (x

(t)
j )− ϕ(t)

j (x
(t+1)
j ) ≥ 1

2Lj
‖G(t)

j ‖
2 =

L2
j

2Lj
‖x(t)

j − x
(t+1)
j ‖2 =

Lj
2
‖x(t)

j − x
(t+1)
j ‖2.

In addition, note that

p∑
j=1

ϕ
(t)
j (x

(t)
j ) =

p∑
j=1

(
f(x

(t+1)
1:(j−1), x

(t)
j:p) + gj(x

(t)
j )
)

and
p∑
j=1

ϕ
(t)
j (x

(t+1)
j ) =

p∑
j=1

(
f(x

(t+1)
1:j , x

(t)
(j+1):p) + gj(x

(t+1)
j )

)
.

Thus, we derive that for t ≥ 0,

ϕ(x(t))− ϕ(x(t+1)) =

p∑
j=1

ϕ
(t)
j (x

(t)
j )−

p∑
j=1

ϕ
(t)
j (x

(t+1)
j ) ≥

p∑
j=1

Lj
2
‖x(t)

j − x
(t+1)
j ‖2,

from which (35) follows.
Step 2. The (∂0ϕ, η,Ω)-(res-obj-EB) condition at x = x(t+1) reads as

ϕ(x(t+1))−minϕ ≤ ‖∂
0ϕ(x(t+1))‖2

η2
.

At the (t+ 1)-th iteration, there exists ξ
(t+1)
j ∈ ∂gj(x(t+1)

j ) satisfying the optimality condition:

∇jf(x
(t+1)
1:(j−1), x

(t)
j , x

(t)
(j+1):p) + Lj(x

(t+1)
j − x(t)

j ) + ξ
(t+1)
j = 0.

Here and below, we denote the partial gradient ∇xjf(x) by ∇jf(x) for notational simplicity. Let

ξ(t+1) = (ξ
(t+1)
1 , · · · , ξ(t+1)

p ). Then,

∇f(x(t+1)) + ξ(t+1) ∈ ∂ϕ(x(t+1))

and hence

ϕ(x(t+1))−minϕ ≤ ‖∂
0ϕ(x(t+1))‖2

η2
≤ ‖∇f(x(t+1)) + ξ(t+1)‖2

η2
.
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Using the optimality condition and the fact of f(x) ∈ F1,1
L (Rd), we derive that

‖∇f(x(t+1)) + ξ(t+1)‖2 =

p∑
j=1

‖∇jf(x(t+1))−∇jf(x
(t+1)
1:(j−1), x

(t)
j , x

(t)
(j+1):p)− Lj(x

(t+1)
j − x(t)

j )‖2

≤
p∑
j=1

2‖∇jf(x(t+1))−∇jf(x
(t+1)
1:(j−1), x

(t)
j , x

(t)
(j+1):p)‖

2 +

p∑
j=1

2L2
j‖x

(t+1)
j − x(t)

j ‖
2

≤
p∑
j=1

2‖∇f(x(t+1))−∇f(x
(t+1)
1:(j−1), x

(t)
j , x

(t)
(j+1):p)‖

2 +

p∑
j=1

2L2
j‖x

(t+1)
j − x(t)

j ‖
2

≤
p∑
j=1

2L2‖x(t+1)
j:p − x(t)

j:p‖
2 +

p∑
j=1

2L2
j‖x

(t+1)
j − x(t)

j ‖
2

≤(2pL2 + 2L2
max)‖x(t+1) − x(t)‖2.

Therefore, we obtain

ϕ(x(t+1))−minϕ ≤ (2pL2 + 2L2
max)

η2
‖x(t+1) − x(t)‖2. (36)

Step 3. Combining (35) and (36), we derive that

ϕ(x(t))−minϕ =
(
ϕ(x(t))− ϕ(x(t+1))

)
+
(
ϕ(x(t+1))−minϕ

)
≥Lmin

2
‖x(t) − x(t+1)‖2 +

(
ϕ(x(t+1))−minϕ

)
≥
(

η2Lmin

4pL2 + 4L2
max

+ 1

)(
ϕ(x(t+1))−minϕ

)
,

from which the claimed result follows. This completes the proof.

On one hand, the (ϕ, α,Ω)-(obj-EB) condition is obviously weaker than strong convexity. On
the other hand, we can easily construct functions that satisfies (obj-EB) but fail to be strong
convexity. For example, the composition f(Ax), where f(·) is a strongly convex and A is rank
deficient, is such a function. This explains why we say that the (∂0ϕ, η,Ω)-(res-obj-EB) condition,
which is equivalent to the (ϕ, α,Ω)-(obj-EB) condition, is strictly weaker than strong convexity

We note that the authors of [6] very recently showed that the regularized Jacobi algorithm-a
type of cyclic block coordinate descent method-achieves a linear convergence rate under similar
conditions to that of Theorem 3.

7 Linear convergence of Nesterov’s accelerated forward-backward
algorithm

This section is divided into two parts. In the first part, we first introduce a composition optimization
problem, and then we give a new EB condition. In the second part, we introduce the Nesterov’s
accelerated forward-backward algorithm and show its Q-linear convergence.
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7.1 Problem formulation and a new EB condition

Given a nonnegative real sequence {rk}k≥0. Following the terminology from [41], we say that rk
converges:

• Q-linearly if there exists a constant τ ∈ (0, 1) such that ∀k ≥ 0, rk+1 ≤ τ · rk,

• R-linearly if there exists a sequence {sk}k≥0 Q-linearly converging to zero such that ∀k ≥ 0,
rk ≤ sk.

It is well-known that the Nesterov’s accelerated gradient method with the following form
yk = xk +

√
L−√µ√
L+
√
µ

(xk − xk−1)

xk+1 = yk − 1
L∇f(yk),

(37)

converges R-linearly for minimizing f ∈ S1,1
µ,L(Rn) in the sense that {f(xk) −min f}k≥0 converges

R-linearly. Very recently, the following Q-linear convergence was independently discovered in [28]
and [55] by quite different methods:

f(xk+1)−min f +
µ

2
‖wk+1 − x∗‖2 ≤

(
1−

√
µ

L

)(
f(xk)−min f +

µ

2
‖wk − x∗‖2

)
, ∀k ≥ 0, (38)

where wk = (1 +
√

L
µ )yk −

√
L
µxk. In Nesterov’s book [45], via replacing gradient with gradient

mapping, the accelerated scheme (37) was successfully extended to solve the following minimization
problems:

minimize
x∈Q

f(x), (39)

and
minimize

x∈Q
f(x) := max

1≤i≤m
fi(x), (40)

where f, fi ∈ S1,1
µ,L(Rn), i = 1, · · · ,m and Q is a nonempty closed convex set. Similarly, the

accelerated scheme (37) can also be successfully extended to solve

minimize
x∈Rn

ϕ(x) := f(x) + g(x), (41)

where f ∈ S1,1
µ,L(Rn) and g ∈ Γ0(Rn). The extended Nesterov’s accelerated methods have been

proved to achieve R-linear convergence. A natural question arises: Whether there exists Q-linear
convergence for the Nesterov’s accelerated method applied to problems (39)-(41) as well. In order
to study problems (39)-(41) in a unified way, we consider the following composite optimization
problem:

minimize
x

ϕ(x) := f(e(x)) + g(x). (42)

This is a very powerful expression covering many optimization problems, including problems (39)-
(41), as its special cases; see [19, 18]. Now, we introduce a new EB condition, commonly satisfied
by problems (39)-(41). Our forthcoming argument, will heavily rely on this condition.

24



Definition 6. Let ϕ := f ◦e+g be such that f : Rm → R is a closed convex functions, g ∈ Γ0(Rn),
and e : Rn → Rm is a smooth mapping with its Jacobian given by ∇e(x). Let L > 0 and define

`(x; y) := g(x) + f(e(y) +∇e(y)(x− y)) +
L

2
‖x− y‖2,

and

p(y) := arg min
x∈Rn

`(x; y),

G(y) := L(y − p(y)).

We say that ϕ satisfies the composition EB condition with positive constants µ,L obeying µ < L if

∀x, y ∈ Rn, 〈G(y), y − x〉 ≥ ϕ(p(y))− ϕ(x) +
1

2L
‖G(y)‖2 +

µ

2
‖x− y‖2. (43)

Let us give several comments on this definition.

Remark 4. 1. Both p(y) and G(y) are well defined due to the strong convexity of `(x; ·) for any
x ∈ Rn. Moreover, operator G is a residual measure operator related to ϕ. In fact, observe
that the optimality conditions for the proximal subproblem Arg minx∈Rn `(x; y) reads as

G(y) ∈ ∂g(p(y)) +∇e(y)T∂f(e(y) +∇e(y)(p(y)− y)),

which implies y ∈ critϕ if G(y) = 0. On the other hand, by the definition of p(y) and using
the convexity of g and f , we derive that

ϕ(y) = `(y; y) ≥ `(p(y); y)

= g(p(y)) + f(e(y) +∇e(y)(p(y)− y)) +
L

2
‖p(y)− y‖2

≥ (g(y) + 〈z, p(y)− y〉) + (f(e(y)) + 〈w,∇e(y)(p(y)− y)〉) +
L

2
‖p(y)− y‖2

= ϕ(y) + 〈z +∇e(y)Tw, p(y)− y〉+
L

2
‖p(y)− y‖2, (44)

where z ∈ ∂g(y) and w ∈ ∂f(e(y)), and hence z + ∇e(y)Tw ∈ ∂ϕ(y). Thus, if 0 ∈ ∂ϕ(y),
then we can take some z ∈ ∂g(y) and w ∈ ∂f(e(y)) such that z +∇e(y)Tw = 0. Hence, the
inequality (44) implies that G(y) = 0 if y ∈ critϕ. Therefore, we have {x ∈ Rn : G(y) =
0} = critϕ, i.e., G is a residual measure operator related to ϕ.

2. The composition EB condition can be viewed as a relaxation of strong convexity to some
degree. This perspective is in the same spirit of work [39]. Indeed, in case of m = 1, g(x) ≡ 0,
f(t) ≡ t, t ∈ R, and e ∈ F1,1

L (Rn), (43) reads as

∀x, y ∈ Rn, e(x) ≥
(
e(y − 1

L
∇e(y)) +

1

2L
‖∇e(y)‖2

)
+ 〈∇e(y), x− y〉+

µ

2
‖x− y‖2. (45)

On the other hand, e ∈ F1,1
L (Rn) implies that

∀x, y ∈ Rn, e(y) ≥ e(y − 1

L
∇e(y)) +

1

2L
‖∇e(y)‖2.
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Therefore, (45) is a relaxation of strong convexity in the following form:

∀x, y ∈ Rn, e(x) ≥ e(y) + 〈∇e(y), x− y〉+
µ

2
‖x− y‖2.

In the case of f ◦ e(x) ≡ 0 and g ∈ Γ(Rn), (43) reads as

∀x, y ∈ Rn, g(x) ≥ gλ(y) + 〈∇gλ(y), x− y〉+
µ

2
‖x− y‖2, (46)

where λ = 1
L . Recall that gλ is the Moreau-Yosida regularization of g and note that g(x) ≥

gλ(x). We can see that (46) is a relaxation of strong convexity of gλ.

3. Although we have shown that (43) can be viewed as a relaxation of strong convexity, it is still a
very strong property. Now, we construct an example to show that even strongly convex property
of f is not enough to ensure (43) to hold. This example is obtained by setting n = m = 2,
x = (x1, x2)T , e(x) = (x1, x1)T , f(x) = 1

2x
2
1 + 1

2x
2
2, g(x) ≡ 0; then ϕ(x) = f ◦ e(x) = x2

1. It is
obviously to see that f is strongly convex. Let us show that in this special case (43) fails to
hold. Actually, after some simple calculus, we can get

p(y) =

(
L
L+2y1

y2

)
, G(y) =

(
2L
L+2y1

0

)
,

and therefore (43) reads as

L

L+ 2
y1(y1 − x1) ≥(

L

L+ 2
y1)2 − x2

1 +
2L

(L+ 2)2
y2

1

+
µ

2
(x1 − y1)2 +

µ

2
(x2 − y2)2, ∀xi, yi ∈ R, i = 1, 2.

But, if we take x1 = y1 ≡ 0, then it should have

0 ≥ µ

2
(x2 − y2)2, ∀x2, y2 ∈ R.

Obviously, this is impossible for any positive constant µ.

4. Let A ∈ Rm×n with m < n be a given matrix and b ∈ Rm be a given vector. A well-known
fact in the community of EB is that the quadratic function 1

2‖Ax− b‖
2 is not strongly convex

but satisfies EB conditions. Unfortunately, this function fails to satisfy (45). We show this
point by contradiction. It is enough to consider e(x) = 1

2x
TaaTx with ‖a‖2 = L. In this case,

(45) reads as
1

2
(aTx− aT y)2 ≥ µ

2
‖x− y‖2, ∀x, y ∈ Rn.

Let h 6= 0 be an orthogonal vector of a. Now, take y − x = λh, λ ∈ R. Then, we have

0 ≥ µ

2
λ2‖h‖2, ∀λ ∈ R,

which is impossible for any positive constant µ; otherwise, the right-hand side can be arbitrarily
large.
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5. In order to show that (46) can be strictly weaker than strong convexity, we now construct
a one-dimensional example that satisfies (46) but fails to be strongly convex. Define the
shrinkage operator by S(t) := sign(t) ·max{|t| − 1, 0} and the projection operator by [x]+I :=
arg miny∈I ‖x − y‖, where I is some closed interval. Now, we take λ = 1, I = [−2, 2], and
g(x) = |x| + δI(x). Obviously, such g(x) is convex but not strongly convex. Using formula
(14) in [62] and Lemma 3, we have

gλ(x) = |[S(x)]+I |+
1

2
(x− [S(x)]+I )2.

Here, gλ is the Moreau-Yosida regularization of g. Denote `gλ(x; y) := gλ(y)+〈∇gλ(y), x−y〉.
We have the following expression:

`gλ(x; y) =


(y + 2)x− 1

2y
2 + 4, y ≤ −3,

−x− 1
2 , − 3 ≤ y ≤ −1,

yx− 1
2y

2, − 1 ≤ y ≤ 1,
x− 1

2 , 1 ≤ y ≤ 3,
(y − 2)x− 1

2y
2 + 4, y ≥ 3

(47)

Then, one can verify case by case that for any µ ∈ (0, 1
9 ], (46) always holds. For example, in

the case of y ≤ −3, we only need to verify that

|x| ≥ (y + 2)x− 1

2
y2 + 4 +

µ

2
(x− y)2, x ∈ [−2, 2],

i.e., 1−µ
2 (x− y)2 ≥ 1

2x
2 + 2x− |x|+ 4, x ∈ [−2, 2]. Thus, it is sufficient to require that

µ ≤ 1− max
y≤−3,|x|≤2

x2 + 4x− 2|x|+ 8

(x− y)2
.

After some simple calculus, we have µ ∈ (0, 1
9 ]. The other cases can be similarly verified; we

omit the details here. This example shows that the composition EB condition indeed holds for
some non-strongly convex functions.

Now, we explain why we say that the condition (43) is commonly satisfied by problems (39)-(41).

Remark 5. (i) The minimization problem (42) with m = 1, e(x) ∈ S1,1
µ,L(Rn), f(t) ≡ t, t ∈

R, g(x) = δQ(x), and Q being nonempty closed convex, corresponds to problem (39). The
condition (43) holds in this setting; see Theorem 2.2.7 in [40].

(ii) The minimization problem (42) with f(y) = max1≤i≤m{yi}, fi(x) ∈ S1,1
µ,L(Rn), e(x) =

(f1(x), f2(x), · · · , fm(x)), g(x) = δQ(x), and Q being nonempty closed convex, corresponds
to problem (40). The condition (43) holds in this setting; see Corollary 2.3.2 in [40].

(iii) The minimization problem (42) with m = 1, e(x) ∈ S1,1
µ,L(Rn), f(t) ≡ t, t ∈ R, and g(x) ∈

Γ0(Rn), corresponds to problem (41). The condition (43) holds in this setting; see the in-
equality (4.36) in [15].

In general, we have to admit that it is difficulty to verify the composition EB condition, which
therefore deserves further study in the future.
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7.2 Q-linear convergence of the Nesterov’s acceleration

In this part, we show Q-linear convergence of the Nesterov’s acceleration under the composition EB
condition, which is more general than strong convexity. First, in light of the Nesterov accelerated
scheme (2.2.11) in [40], the Nesterov’s accelerated forward-backward algorithm for solving the
problem (42) reads as: choosing x−1 = x0 ∈ Rn, for k ≥ 0,

yk = xk +
√
L−√µ√
L+
√
µ

(xk − xk−1)

xk+1 = yk − 1
LG(yk).

Let

α =

√
L−√µ
√
L+
√
µ
, β =

2
√
µ

√
L+
√
µ
, γ =

1

2L
(1 +

√
L

µ
).

Let
Φk(x

∗; τ) := ϕ(xk)−minϕ+ τ · ‖zk − x∗‖2, k ≥ 0,

where x∗ ∈ Arg minϕ (assumed to be nonempty) and

zk =
1

2
(1 +

√
L

µ
)yk +

1

2
(1−

√
L

µ
)xk, k ≥ 0.

Now, we are ready to present the main result in this section. The proof idea behind is partially
inspired by the argument in [5] but might be of interest in its own right.

Theorem 4. Let ϕ := f◦e+g be such that f : Rm → R is a closed convex functions, g ∈ Γ0(Rn), and
e : Rn → Rm is a smooth mapping with its Jacobian given by ∇e(x). Let ϕ satisfy the composition
EB condition with positive constants µ,L obeying µ < L. Assume that ϕ achieves its minimum
minϕ so that Arg minϕ 6= ∅. Then, there exist a unique vector x∗ such that Arg minϕ = {x∗},
and the Nesterov’s accelerated forward-backward method converges Q-linearly in the sense that there
exists a positive constant θ0 < 1 such that for any θ ∈ [θ0, 1) it holds

Φk+1(x∗; τ) ≤ ρ · Φk(x
∗; τ), k ≥ 0, (48)

where ρ = max{α, θ} < 1 and τ = θβ
2ργ . Especially, by taking θ = max{θ0, α}, we have

Φk+1(x∗;
2Lµ

(
√
L+
√
µ)2

) ≤ max{θ0, α} · Φk(x
∗;

2Lµ

(
√
L+
√
µ)2

), k ≥ 0. (49)

Proof. We first show the uniqueness of optimal solution x∗ of ϕ. In fact, by statement (i) in Remark
4 and the fact of Arg minϕ ⊂ critϕ, we have that G(x∗) = 0 and p(x∗) = x∗, and hence (43) at
y = x∗ reads as

ϕ(x)−minϕ ≥ µ

2
‖x− x∗‖2, ∀x ∈ Rn,

which clearly implies that Arg minϕ = {x∗}.
Now, we analyze rates of linear convergence. Using successively (43) at x = xk and y = yk, and

then at y = yk and x = x∗, together with the fact of xk+1 = p(yk), we obtain

ϕ(xk+1) ≤ ϕ(xk) + 〈G(yk), yk − xk〉 −
1

2L
‖G(yk)‖2 −

µ

2
‖xk − yk‖2
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and

ϕ(xk+1) ≤ ϕ(x∗) + 〈G(yk), yk − x∗〉 −
1

2L
‖G(yk)‖2 −

µ

2
‖x∗ − yk‖2.

Multiplying the first inequality by α and the second one by β, and then adding the two resulting
inequalities, we obtain

ϕ(xk+1) ≤αϕ(xk) + βϕ(x∗) + 〈G(yk), α(yk − xk) + β(yk − x∗)〉

− 1

2L
‖G(yk)‖2 −

µα

2
‖xk − yk‖2 −

µβ

2
‖x∗ − yk‖2.

In order to estimate the right-hand side of the inequality above, we first write down:

α(yk − xk) + β(yk − x∗) = β(zk − x∗). (50)

Secondly, using the expression of yk+1 = xk+1 + α(xk+1 − xk), we get

zk+1 =
1

2
(1 +

√
L

µ
)xk+1 +

1

2
(1−

√
L

µ
)xk. (51)

Then, substitute xk+1 = yk − 1
LG(yk) into formula (51) to obtain

zk+1 − x∗ = zk − x∗ − γ ·G(yk). (52)

Using equality (52), we derive that

〈G(yk), zk − x∗〉 =
1

γ
〈zk − x∗ − (zk+1 − x∗), zk − x∗〉

=
1

γ
‖zk − x∗‖2 −

1

γ
〈zk+1 − x∗, zk − x∗〉

=
1

γ
‖zk − x∗‖2 −

1

γ
〈zk+1 − x∗, zk+1 − x∗ + γ ·G(yk)〉

=
1

γ
‖zk − x∗‖2 −

1

γ
‖zk+1 − x∗‖2 − 〈zk+1 − x∗, G(yk)〉

=
1

γ
‖zk − x∗‖2 −

1

γ
‖zk+1 − x∗‖2 − 〈G(yk), zk − x∗〉+ γ‖G(yk)‖2.

Thus, we have

〈G(yk), zk − x∗〉 =
1

2γ
(‖zk − x∗‖2 − ‖zk+1 − x∗‖2) +

γ

2
‖G(yk)‖2. (53)

Combining formula (53) and formula (50), we derive that

ϕ(xk+1) ≤αϕ(xk) + βϕ(x∗) +
β

2γ
(‖zk − x∗‖2 − ‖zk+1 − x∗‖2)

+ (
βγ

2
− 1

2L
)‖G(yk)‖2 −

µα

2
‖xk − yk‖2 −

µβ

2
‖x∗ − yk‖2

=αϕ(xk) + βϕ(x∗) +
β

2γ
(‖zk − x∗‖2 − ‖zk+1 − x∗‖2)− µα

2
‖xk − yk‖2 −

µβ

2
‖x∗ − yk‖2,
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where the term ‖G(yk)‖2 is eliminated since βγ
2 = 1

2L . Note that (50) can be written as

zk − x∗ = (yk − x∗) +
1

2
(

√
L

µ
− 1)(yk − xk),

with which we further derive that

‖zk − x∗‖2 ≤2‖x∗ − yk‖2 +
1

2
(

√
L

µ
− 1)2‖yk − xk‖2

≤ max

{
2,

1

2
(

√
L

µ
− 1)2

}
(‖x∗ − yk‖2 + ‖yk − xk‖2).

Denote η1 := min
{
µα
2 ,

µβ
2

}
and η2 := max

{
2, 1

2(
√

L
µ − 1)2

}
. Then, we have

ϕ(xk+1) ≤ αϕ(xk) + βϕ(x∗) +
β

2γ
(‖zk − x∗‖2 − ‖zk+1 − x∗‖2)− η1(‖x∗ − yk‖2 + ‖yk − xk‖2)

≤ αϕ(xk) + βϕ(x∗) +
β

2γ
(‖zk − x∗‖2 − ‖zk+1 − x∗‖2)− η1

η2
‖zk − x∗‖2.

Rearrange the terms to obtain

ϕ(xk+1)− ϕ(x∗) +
β

2γ
‖zk+1 − x∗‖2 ≤ α(ϕ(xk)− ϕ(x∗)) + (

β

2γ
− η1

η2
)‖zk − x∗‖2.

Thus, there exists a positive constant θ0 < 1 such that for any θ ∈ [θ0, 1) it holds

ϕ(xk+1)− ϕ(x∗) +
β

2γ
‖zk+1 − x∗‖2 ≤ α(ϕ(xk)− ϕ(x∗)) +

θβ

2γ
‖zk − x∗‖2.

Since ρ = max{α, θ}, we have that ρ < 1 and θ
ρ ≤ 1. Thus, we obtain

ϕ(xk+1)− ϕ(x∗) +
θβ

2ργ
‖zk+1 − x∗‖2 ≤ α(ϕ(xk)− ϕ(x∗)) +

θβ

2γ
‖zk − x∗‖2

≤ ρ
(
ϕ(xk)− ϕ(x∗)) +

θβ

2ργ
‖zk − x∗‖2

)
,

i.e., Φk+1(x∗; τ) ≤ ρ · Φk(x
∗; τ) with τ = θβ

2ργ . This is just the announced result (48).
It remains to show (49). In fact, if θ = max{θ0, α}, then ρ = max{α, θ} = max{θ0, α} = θ and

hence

τ =
θβ

2ργ
=

β

2γ
=

2Lµ

(
√
L+
√
µ)2

.

This completes the proof.

Remark 6. It should be noted that we here only show the existence of rates of linear convergence
for the Nesterov’s accelerated forward-backward method. But, we are not clear whether one can

derive an exact rate of linear convergence as 1 −
√

µ
L as obtained for the Nesterov’s accelerated

gradient method.
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8 A class of dual functions satisfying EB conditions

Verifying EB conditions for functions with certain structure is a difficulty topic. In this section,
we consider a class of dual objective functions, that have achieved many interesting applications in
signal processing and compressive sensing [63, 30]. We first describe the problem, along with some
direct conclusions.

Proposition 2. Consider the linearly constrained optimization problem

minimize
y∈Rm

g(y), subject to Ay = b, (P)

where g : Rm → R is a real-valued closed and strongly convex function with modulus c > 0,
A ∈ Rn×m is a given matrix, and b ∈ R(A) is a given vector. Here, R(A) stands for the range of
A. The dual problem is

minimize
x∈Rn

f(x) := g∗(ATx)− 〈b, x〉. (D)

Then, we have that

• the primal problem (P) has a unique optimal solution ȳ,

• the dual objective function f belongs to F1,1
L (Rn) with L = ‖A‖2

c , and

• the set of optimal solutions of the dual problem,

Arg min f := {x ∈ Rn : A∇g∗(ATx) = b},

is a nonempty convex closed set, and can be characterized by {x ∈ Rn : ATx ∈ ∂g(ȳ)} or
equivalently by {x ∈ Rn : ∇g∗(ATx) = ȳ} .

Proof. The first two statements are standard results which can be found in textbooks on convex
analysis and no proof will be given here. Now, we prove the third statement. First, let the
Lagrangian function be given by L(y, x) = g(y) − 〈Ay − b, x〉. By the assumption of b ∈ R(A)
and the finiteness of the optimal value of the primal problem, according to Proposition 5.3.3 in
[9], for any x̄ ∈ Arg min f we have that ȳ ∈ Arg minL(y, x̄). Hence, AT x̄ ∈ ∂g(ȳ) or equivalently
∇g∗(AT x̄) = ȳ due to (∂g)−1 = ∇g∗, which holds by Corollary 23.5.1 in [44]. This implies that
Arg min f ⊆ {x ∈ Rn : ∇g∗(ATx) = ȳ}. The inverse inclusion is obvious since Aȳ = b. Thereby,

Arg min f = {x ∈ Rn : ∇g∗(ATx) = ȳ} = {x ∈ Rn : ATx ∈ ∂g(ȳ)}.

This completes the proof.

Now, we state the main result of this section.

Theorem 5. Use the same setting as Proposition 2. Denote Xr := {x ∈ Rn : f(x) ≤ min f + r},
and Vr := ATXr. If the following assumptions hold:

(a) ∂g is calm around ȳ for any z̄ ∈ V0,

(b) the collection {∂g(ȳ), R(AT )} is linearly regular with constant γ > 0, that is

d(ATx, ∂g(ȳ)) ≥ γ · d(ATx, ∂g(ȳ) ∩R(AT )), ∀x ∈ Rn,
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then we have that

(i) there exist positive constants r0, τ such that the (f, τ,Xr0)-(obj-EB) condition holds, that is

f(x)−min f ≥ τ

2
· d2(x, critf), ∀x ∈ Xr0 . (54)

Specifically, if ∂g is calm with constant κ > 0 around ȳ for any z̄ ∈ V0, then (54) holds for
all τ ∈ (0, κ−1).

(ii) For any sublevel set Xr, pick r1 ∈ (0, r0) and let cr :=
√

r1
r and

ρr :=

{
cr, when r ≥ r0,
1, when r ≤ r0.

Then, the (∇f, ν,Xr)-(cor-EB) condition with ν = τρ2r
8 holds.

Proof. For simplicity, denote Rm by E . The proof is divided into four steps.
Step 1. First, we prove that V0 = ATX0 is compact. In fact, we have shown that X0 = {x ∈

Rn : ATx ∈ ∂g(ȳ)} in Proposition 2. Hence, V0 = ATX0 ⊆ ∂g(ȳ). Since g is a real-valued convex
function, ∂g(ȳ) must be nonempty and bounded according to Theorem 23.4 in [44] or Proposition
5.4.2 in [9]. Therefore, V0 = ATX0 is bounded and hence compact because of the closedness of X0.
Since ∂g is calm at ȳ for any z̄ ∈ V0 and V0 ⊆ ∂g(ȳ) is compact, by Proposition 2 in [65] we can
conclude that there exist constants κ, ε > 0 such that

∂g(y) ∩ (V0 + εBE) ⊆ ∂g(ȳ) + κ · ‖y − ȳ‖2BE , ∀y ∈ E . (55)

Let r > 0 be small enough such that

ATXr = Vr ⊆ V0 + εBE .

Pick x ∈ Xr and let y = ∇g∗(ATx). Then, ATx ∈ ∂g(y) due to ∂g = (∇g∗)−1 and hence
ATx ∈ ∂g(y) ∩ (V0 + εBE). By the inclusion (55), we obtain

d(ATx, ∂g(ȳ)) ≤ κ‖y − ȳ‖2 = κ · d(ȳ,∇g∗(ATx)), ∀x ∈ Xr. (56)

Step 2. Let z = ATx and note that ∂g = (∇g∗)−1. The inequality (56) can be written as

d(z, (∇g∗)−1(ȳ)) ≤ κ · d(ȳ,∇g∗(z)), ∀z ∈ Vr.

This implies that ∇g∗ is always metrically subregular at each z̄ ∈ V0 for ȳ because that Vr is a
neighborhood for every z̄ ∈ V0. Thus, by Theorem 3.1 in [20], for each z̄ ∈ V0 there exists a
neighborhood z̄ + ε(z̄)BE and a positive constant α(z̄) such that

g∗(z) ≥ g∗(z̄)− 〈ȳ, z̄ − z〉+
α(z̄)

2
· d2(z, (∇g∗)−1(ȳ)), ∀z ∈ E with ‖z − z̄‖2 ≤ ε(z̄), (57)

where the constant α(z̄) can be chosen arbitrarily in (0, κ−1). Note that {z̄+ ε(z̄)BoE}z̄∈V0 forms an
open cover of the compact set V0. Hence, by the Heine-Borel theorem, there exist K points (where
K ≥ 1 is finite) z̄1, · · · , z̄K ∈ V0 such that

V0 ⊆ U :=
K⋃
i=1

(z̄i + ε(z̄i)BoE).
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Let α = min{α(z̄1), · · · , α(z̄K)}, which can be chosen arbitrarily in (0, κ−1), and note that min f =
g∗(z̄)− 〈ȳ, z̄〉, ∀z̄ ∈ V0. By the relationship (57), we thus get

g∗(z)− 〈ȳ, z〉 ≥ min f +
α

2
· d2(z, (∇g∗)−1(ȳ)), ∀z ∈ U.

Finally, letting r be small enough such that Vr ⊆ U and using again the fact of (∇g∗)−1 = ∂g, we
obtain

g∗(z)− 〈ȳ, z〉 ≥ min f +
α

2
· d2(z, ∂g(ȳ)), ∀z ∈ Vr,

or equivalently,

f(x)−min f ≥ α

2
· d2(ATx, ∂g(ȳ)), ∀x ∈ Xr.

Step 3. Using the linear regular property of {∂g(ȳ), R(AT )}, we derive that

d(ATx, ∂g(ȳ)) ≥ γ · d(ATx, ∂g(ȳ) ∩R(AT )) = min
ATu∈∂g(ȳ)

‖ATx−ATu‖

= min
u∈X0

‖ATx−ATu‖ = ‖ATx−AT x̂‖,

where such x̂ ∈ X0 exists since X0 is a nonempty closed set. Now, we follow the argument in [47]
to finish the proof of (i). Denote the null space of AT by N(AT ) and the minimal positive singular
value of A by σ(A). Note that Arg min f +N(AT ) ⊆ Arg min f . We derive that

d(x,Arg min f) ≤ ‖x− (x̂+ PN(AT )(x− x̂))‖ ≤ 1

σ(A)
‖ATx−AT x̂‖ ≤ d(ATx, ∂g(ȳ))

σ(A)
,

where PN(AT ) stands for the orthogonal projection operator onto N(AT ). Note that Arg min f =

critf . Thereby, the (obj-EB) condition follows with τ = α · σ2(A).
Step 4. Let us prove (ii). Without loss of generality, we assume that min f = 0 and r ≥ r0.

Since for any r > 0 the sublevel set Xr is ∇f -invariant, using (54) and together with the equivalence
established in Corollary 2, we can conclude that f satisfies the (∇f, η,Xr0)-(res-obj-EB) conditions
with η =

√
τ
2 , that is

∀ x ∈ Xr0 , ‖∇f(x)‖ ≥ η ·
√
f(x). (58)

Let ϕ(t) := 2η−1t
1
2 . Then, the property (58) can be written as

∀ x ∈ Xr0 , ‖∇f(x)‖ϕ′(f(x)) ≥ 1. (59)

By applying Proposition 30 in [10], a globalization result for KL inequalities, to (59), we have that
for the given r1 ∈ (0, r0), the function given by

φ(t) :=

{
ϕ(t), when t ≤ r1,
ϕ(r1) + (t− r1)ϕ′(r1), when t ≥ r1,

is desingularising for f on all of Rn and hence it holds

∀ x ∈ Xr, ‖∇f(x)‖φ′(f(x)) ≥ 1. (60)

Thereby, we can get
‖∇f(x)‖ ≥ η

√
r1, ∀x ∈ Xr ∩Xc

r1 ,
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where Xc
r1 is the complementary set of Xr1 . By the definition of cr, we can further obtain

‖∇f(x)‖ ≥ ηcr
√
r ≥ ηcr

√
f(x), ∀x ∈ Xr ∩Xc

r1 .

Finally, noting that cr < 1 and together with (58), we have

‖∇f(x)‖ ≥ ηcr
√
f(x), ∀x ∈ Xr,

which is just the (∇f, ηcr, Xr)-(res-obj-EB) condition for r ≥ r0, and hence the (∇f, ηρr, Xr)-
(res-obj-EB) condition holds for r > 0. Thus, the (∇f, ν,Xr)-(cor-EB) condition follows from
Corollary 2. The parameter ν can be established by using the relevant formulas in Theorem 1.
This completes the proof.

Remark 7. By directly invoking Corollary 4.3 in [1], we can derive (57) with the constant satisfying
α(z̄) ∈ (0, 1

4κ), which is slightly worse than that of α(z̄) ∈ (0, κ−1).

Remark 8. The author of [47], with slightly different assumptions, proved by contradiction that the
dual objective function f(x) = g∗(ATx)− 〈b, x〉 satisfies the (∇f, ν,Xr)-(cor-EB) condition. While
the author of [47] requires that ∂g is calm around ȳ for any z̄ ∈ Rm, i.e. the locally upper Lipschitz-
continuous property (4), we only require that ∂g is calm around ȳ for any z̄ ∈ V0, and additionally
assume that g is real-valued closed, which holds trivially for all the cases listed in Example 2.10.
in [47]. Moreover, our proof is by means of the KL inequality globalization technique developed in
[10], and hence quite different from that of [47].

Remark 9. Verifying EB conditions for more general functions with the form f(x) := h(Ax)+ l(x)
was studied recently in [19, 65, 31]. Specialized to the dual objective function f(x) = g∗(ATx) −
〈b, x〉, existing theory usually requires g∗ to be strictly or strongly convex; see e.g. Corollary 4.3
in [19] and Assumption 1 in [65]. In contrast, our study, following the research line of work [47],
relies on exploiting the prime-dual structure, and hence quite different from that in [19, 65, 31].

9 Discussion

In this paper, we provide a new perspective for studying EB conditions and analyzing linear con-
vergence of gradient-type methods. Under our theoretical framework, a group of new technical
results are discovered. Especially, some EB conditions, previously known to be sufficient for linear
convergence, are also necessary; and the Nesterov’s forward-backward algorithm, previously known
to be R-linearly convergent, are also Q-linearly convergent. Finally, we complete this paper with
the following possible future works:

1. We have defined a group of abstract EB conditions of “square type”. But we do not know
whether the idea behind can be extended to that of general types by introducing so-called
desingularizing functions [10], so that the other EB conditions discussed in [21] can be included
in a more general framework.

2. Although we have shown sufficient conditions guaranteeing linear convergence for PALM
and Nesterov’s accelerated forward-backward algorithms, it is still unclear whether they are
necessary. The very recent work [36] might shed light on this topic.
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3. Verifying EB conditions with high probability for non-convex functions has proven to be a
very powerful approach for non-convex optimization; see e.g. [14, 53, 33]. Thus, seeking or
verifying new classes of non-convex functions, satisfying EB condition with high-probility,
deserves future study.

4. What are the optimal rates of linear convergence (or say, exact worst-case convergence rates)
for gradient-type methods under general EB conditions? The method of performance estima-
tion, originally proposed in [17] and further developed in [29, 52, 51], might be useful for this
topic.

5. The ordinary differential equation (ODE) approaches are recently used to study (accelerated)
gradient-type methods [50, 55]. Except one paper [57], existing analyses only consider general
convex and strongly convex conditions, and do not work on general EB conditions. We wonder
whether the EB condition presented in this paper can be embedded in the ODE approaches to
study linear convergence for gradient-type methods. This is also interesting for future work.
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