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Bioattacks, i.e., the intentional release of pathogens or biotoxins against humans to cause serious illness and

death, pose a significant threat to public health and safety due to the availability of pathogens worldwide,

scale of impact, and short treatment time window. In this paper, we focus on the problem of prepositioning

inventory of medical countermeasures (MCM) to defend against such bioattacks. We introduce a two-stage

robust optimization model that considers the policymaker’s static inventory decision, attacker’s move, and

policymaker’s adjustable shipment decision, so as to minimize inventory and life loss costs, subject to pop-

ulation survivability targets. We consider a heuristic solution approach that limits the adjustable decisions

to be affine, which allows us to cast the problem as a tractable linear optimization problem. We prove that,

under mild assumptions, the heuristic is in fact optimal. Experimental evidence suggests that the heuris-

tic’s performance remains near-optimal for general settings as well. We illustrate how our model can serve

as a decision support tool for policy making. In particular, we perform a thorough case study on how to

preposition MCM inventory in the United States to guard against anthrax attacks. We calibrate our model

using data from multiple sources, including publications of the National Academies of Sciences and the U.S.

Census. We find that, for example, if U.S. policymakers want to ensure a 95% survivability target for anthrax

attacks that simultaneously affect at most two cities (in the same or different states), the minimum annual

inventory budget required is approximately $330 million. We also discuss how our model can be applied in

other contexts as well, e.g., to analyze safety-stock placement in supply-chain networks to hedge against

disruptions.
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1. Introduction

In this paper, we study the problem of prepositioning inventory of medical countermeasures (MCM)

in preparation for bioattacks, i.e., the intentional release of pathogens or biotoxins against humans

to cause serious illness and death. Bioattacks have been a rising first-order concern to many coun-
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tries worldwide in the last 15 years; the U.S. alone, for instance, has poured approximately $60

billion into biodefense preparedness since the 9/11 attacks [24]. Bioattacks are considered a major

threat because a minute quantity of pathogens is sufficient to infect humans; furthermore, the

corresponding MCMs need to be administered within a short time window to effectively reduce

casualty. For example, if bioterrorists were to release Bacillus anthracis, i.e., anthrax, over a large

city, hundreds of thousands of people could be at risk, and MCMs would need to be administered

to them within one to two days after the incubation period to have the intended effect [34, 43].

Distributing such large MCM quantities to the general public within such short time periods poses

a considerable operational challenge, which is often compounded by attack detection delays.

In order to be prepared to deliver adequate medication in a timely manner in response to a

bioattack, large amounts of MCMs need to be stockpiled at appropriate locations. Some inventories

can be stored in central locations to take advantage of deployment flexibility, pooling effects,

and scale economies in holding costs, while others can be positioned closer to populous areas,

or even predispensed to the intended users in the form of home medical kits, in order to reduce

transportation time should an adversarial event happen. Given a supply chain network of candidate

storage locations, where and how much MCM inventory should then be prepositioned in order

to cost-effectively defend against bioattacks? Our goal in this paper is to address this research

question and develop a decision support framework that could guide policy design.

In the U.S., the Centers for Disease Control and Prevention (CDC) maintains MCM inventories

within the Strategic National Stockpile (SNS),1 which is a critical component of the national health

security programs managed by the CDC’s Office of Public Health Preparedness and Response

(PHPR) [37, 36]. PHPR receives about $1.4 billion annually from Congress to strengthen the health

security of the country, and three-quarters of the funding are allocated to SNS and the Public

Health Emergency Preparedness (PHEP) cooperative agreements. While SNS holds MCMs under

the command of federal authorities, PHEP provides guidelines and financial support to state and

local public health departments to build more resilient communities in preparation for adverse

health incidents. Therefore, the inventory storage and delivery mechanism of SNS, together with

the preparedness infrastructure of PHEP, form a crucial line of defense for the nation’s public

health security.

For many bioattack threats, SNS stores MCM inventory centrally in order to leverage scale

economies and keep costs low, while maintaining deployment flexibility. In particular, the logistics

1 Apart from MCMs for bioattacks, the SNS includes a wide collection of medicines and medical supplies that provide
disaster relief assets to the public during national emergencies, such as flu outbreaks, terrorist attacks, and natural
disasters. Since its inception in the late 1990s, SNS has been deployed numerous times in a range of situations,
including a 2001 anthrax attack, 9/11, hurricane Katrina, and the 2009 influenza pandemic. During the 2009 pandemic,
for example, SNS successfully delivered 25% of the 44 million regimens of antiviral drugs to all 50 states.
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and transportation infrastructure of the SNS central repositories is designed in a way that allows

it to deploy any amount of stored MCMs to almost any major city in the U.S. within 12 to 36

hours, at negligible shipping costs.

But centrally stored inventories may not be responsive enough for events such as anthrax attacks.

In recent years, public health officials have been increasingly aware of alternatives to centrally stor-

ing and managing SNS, namely the forward-deployment and prepositioning of MCMs to locations

closer to the intended users. This problem has been raised as a first-order issue for the design

and management of SNS and PHPR policymakers have commissioned several studies to examine

different prepositiong strategies, for example, see [43]. To date, several key aspects of the problem

have been identified and analyzed: location and transportation options for inventory preposition-

ing, financial cost of each system component, effects of time delay on health, and important design

inputs such as the target protection level and time between attack and detection. However, a

comprehensive cost-benefit analysis at the system level that integrates all these individual consid-

erations into a practical quantitative decision support tool has been elusive. This gap is indeed

highlighted in the following excerpt from a report [22] prepared by the Board of Scientific Coun-

selors [35] for PHPR:

“Both analytic and simulation (experimental) modeling activities should be increased sub-

stantially. Modeling will allow [the Division of] SNS to make quantitatively-based decisions on

how much inventory to hold and where to hold it. An end-to-end model capturing the flow of

materials in the SNS, as well as costs and logistical and health measures, should begin at the

SNS-managed inventory site and go all the way to the point of dispensing to the public. Using

such models will reveal bottlenecks, provide cost estimates, and help SNS properly evaluate

the costs and consequences of alternative Response Supply Chain configurations.”

The absence of an integrated model for MCM inventory prepositioning, both in practice and

in the academic literature, attests to the underlying technical challenges, which stem primarily

from the multiplicity of decisions facing policymakers—both strategic and operational—and the

subtle way prepositioning could influence bioattackers’ actions. In particular, on the strategic level,

policymakers need to decide how much inventory to store among thousands of possible locations in

anticipation of an attack. On the operational level, in the event a specific attack takes place, appro-

priate shipment decisions need to be made to efficiently dispense MCMs in a way that reflects the

specific demand and supply conditions. Therefore, the static inventory positioning decisions need

to be made in conjunction with myriads of contingent shipment policies. Furthermore, although

some information about planned responses is already available in the public domain, prepositioning

MCMs, particularly predispensing medical kits, is likely to grant to bioattackers even greater visibil-

ity to planned responses. Consequently, bioattackers, because they usually act in a pre-planned way
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to inflict the greatest damage possible, are more likely to target under-served populated areas, as

opposed to ones that have access to abundant stockpiles. This subtle interaction between defender

and attacker’s actions makes the demand for MCMs endogenous and challenging to model.

Our contributions

We propose a robust optimization (RO) model for the MCM prepositioning problem that

addresses the aforementioned challenges. We model the SNS response supply chain as a network:

inventory stockpiles as nodes, and shipment routes as links. Bioattacks correspond to demand surges

at some of the network nodes. In that context, we cast the inventory prepositioning problem as a

two-stage RO problem, with inventory placement decisions being first-stage (static) decisions and

shipment decisions being second-stage (adjustable) decisions, contingent on the realized demand

surge. The mini-max approach of RO allows us to capture the interaction between defender and

attacker’s actions we alluded to above. We calibrate the problem’s objective and uncertainty set of

possible demand scenarios in ways that reflect policymakers’ considerations. In particular, we deal

with minimizing either inventory holding costs under coverage guarantees under all possible attack

scenarios, or worst-case holding and life loss costs, where possible scenarios comprise simultaneous

attacks in multiple locations.

Multistage RO problems, however, are generally intractable, because the search for policies for the

adjustable decisions makes the solution space infinite-dimensional. Therefore, we solve our problem

via its so-called affinely adjustable robust counterpart [6], which reduces to a linear optimization

problem by restricting the adjustable shipment policies to be affine in the demand shocks.

We make the following contributions.

1. Modeling : We provide an integrated framework for the MCM inventory prepositioning problem

in a supply chain network that admits a tractable and scalable heuristic solution approach.

Our model allows for a systematic tradeoff analysis of upstream versus downstream inventory

placement, accounting for factors including deployment flexibility, pooling, holding costs, and

responsiveness.

2. Theory : We prove that the affine adjustable policy heuristic is in fact optimal under mild

and practical assumptions. We discuss the implications of our result for the RO literature at

length in our literature review and in Section 4. Numerical studies we conducted confirmed

that affine policies provide near-optimal performance for the inventory prepositioning problem

under general settings as well.

3. Designing SNS : We perform a thorough case study of MCM inventory prepositioning for the

SNS network to defend against potential anthrax attacks in the U.S. We calibrate our model

using multiple literature sources that studied different facets of the problem. Our integrated

framework allows us to derive precise prescriptive recommendations to the CDC. We find
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that, for example, if the CDC wanted to ensure a 90% survivability target for attacks that

simultaneously affect (any) two states, each with at most two cities being attacked, with a

detection time of under 48 hours, then the minimum required annual inventory budget would

be about $77 million; if the survavibility target were 95%, the budget would amount to roughly

$330 million instead. This increasing marginal cost phenomenon, along with other cost/policy

characteristics, can be explored quantitatively with the support of our model.

4. Generalizability : Our inventory prepositioning problem is qualitatively similar to problems

facing supply chain, manufacturing system, or distribution network managers who need to

decide on inventory safety stock levels across their networks to protect them from disruptions,

in conjunction with inventory re-routing policies, contingent on the one occurred. We illus-

trate how our framework can capture these problems. We also discuss how our model can

be extended to deal with other SNS design problems such as network design or dispensing

facilities design.

1.1. Literature Review

Research studies and concerted vaccine distribution effort arising from flu outbreaks or pandemics,

e.g., the 2009 H1N1 event, may provide ample experiences, data, and methodological guidance for

biodefense research and practice. Indeed, the public health challenges during a pandemic highlight

the difficulty of coordinating the distribution of a large amount of vaccines or antibiotics to the

public in a timely manner [23]. Flu outbreaks, however, differ from bioattacks in ways that make

data and lessons from one type of distribution effort not transferable to the other. First, vaccine

distribution for pandemic influenza usually takes place over weeks or months, whereas antibiotic

prophylaxis is expected to happen within a handful of days or even hours of a dispensing decision in

order to be effective.2 Second, the infection characteristics of flu dictate that demand is geographi-

cally dispersed, whereas anthrax attack could potentially affect entire cities at once. Therefore, an

anthrax attack leads to demand patterns that are concentrated both temporally and spatially. This

poses a unique strain on the distribution capability of MCMs during a bioattack. In the literature,

many works have also focused on drug development in response to the evolution of flu, for example

see [50, 16, 38]. From the perspective of pandemic preparedness supply chain research, studies

mainly focused on the stochastic behavior of pandemic progression and vaccination strategies over

a relatively long period of time and a large space, e.g., see [33, 42, 44, 32]. Moreover, flu outbreaks

are random in nature, whereas bioattacks are pre-planned so as to inflict the greatest damage, as

2 The problem of short treatment time window is exacerbated by the fact that a bioattack is often hard to detect,
even if medical tests are actively administered. In fact, even under optimistic medical technology scenarios, expensive
tests such as blood donor screening are ineffective in detecting anthrax attacks [25].
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we argued above. In this paper, we study the unique properties of bioattacks, such as endogenous

and adversarial demand, and their implications on the design of a response supply chain.

Existing research on biodefense supply chain can be broadly categorized into two types. The

first type focuses on the detailed design of dispensing strategies immediately after an attack in

a metropolitan area [20, 28, 29, 30, 31]. Papers in this stream provide analyses and practical

decision support tools that help policymakers determine (optimal) operational parameters for the

mass dispensing of antibiotics, advising on key decisions such as the number of Point of Dispenses

(POD) to open, modality of the PODs (walk-through, drive-through, and closed), staffing levels,

and clinic floor plans. Given the maturity and effectiveness of the decision support tools developed

in this stream, we do not repeat effort on this design question. Instead, we work on the multi-

stage decision problem that includes prepositioning of inventory in a large (national) network, the

uncertainty in demand locations across the network, and the contingent shipment decisions after

an attack happens. Since dispensing capacity is exogenous to our model – in the sense that we can

capture the variability in dispensing capacity by introducing additional decision variables and cost

parameters without losing tractability – our model can be naturally extended to incorporate the

learnings from these studies (Section 6).

The second type, which is closer to our work, focuses on the comparison between a small set

of prepositioning strategies in anticipation of attacks at specific locations. King and Muckstadt

[26, 27] formulate a linear optimization model and a dynamic programming model to evaluate the

effectiveness of planned inventory levels on the treatment of patients in a three-echelon tree-like

inventory network after bioattacks and influenza outbreaks. Bravata et al. [11] evaluate the cost-

effectiveness of four alternative supply chain design strategies of maintaining central and distributed

inventories to defend against anthrax attacks. Wein et al. [47] and Craft et al. [17] also developed

mathematical models that compare different types of emergency response systems for airborne

anthrax attacks. Also for the case of airborne anthrax attacks, the Institute of Medicine in the

United States commissioned a book [43] that examines the background and actionable items for

prepositioning MCMs to support rapid access to antibiotics. While papers in this stream either

focus on the physics of Bacillus anthracis dispersion and the details of antibiotic dispensing via a

queueing system for a fixed logistical setup, or focus on the evaluation of a particular inventory

design strategies, our paper’s main focus is on optimizing the logistical setup and inventory design,

within the policy scope specified by policymakers. We also differ in the level of abstraction: we

provide a model that takes the pathogen characteristics (incubation period, infection scale, etc.) as

inputs, therefore allowing the model to be calibrated to inform the design of different types of MCM

inventory systems. In fact, the ability to stockpile different types of MCMs for more high-priority

biothreats has already been a point of discussion for the Strategic National Stockpile program [24].
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Aside from bio-preparedness literature, there is a wealth of works in humanitarian logistics that

study the prepositioning of disaster relief assets. For comprehensive reviews, we refer the readers

to [14, 15, 18]. Recent work by Uichanco [45], which studies the problem of prepositioning disaster

relief inventories in anticipation of typhoons in the Philippines, is most similar to ours since it

also takes the worst-case approach. A typhoon not only creates demand in the regions it passes

through, but potentially also destroys the inventories that are prepositioned at these locations.

The author formulates the problem as a two-stage robust optimization problem, providing an exact

solution method for the special case of no supply disruption, and a heuristic that samples from the

uncertainty set for the general case. Since there is no supply vulnerability in our model, a natural

question is whether we can directly employ such an exact solution method. The answer is negative

for two reasons. First, in our problem, we focus on the tradeoff between first stage inventory cost

and second stage cost that includes demand loss, both of which are absent in [45]. Second, such

method leads to a practically intractable formulation in our case since it scales with the number

of vertices in the polytope describing the network structure, and a biodefense network typically

comprises thousands of nodes and edges.

Our work also relates to papers on manufacturing supply chain design problems in the face

of disruptions. Recent papers by Simchi-Levi et al. [39, 40] provide a decision support tool to

evaluate the performance of manufacturing supply chain under disruptive risks for a given inventory

configurations and a given disruption scenario. This is similar to the problem that the Division

of SNS Board of Scientific Counselors highlighted in terms of having a quantitative model that

can describe the performance of supply chain under shock. Unlike the descriptive nature of these

models, ours derives prescriptive suggestions that incorporate two stages of decision making.

The model most similar to ours is the one by Simchi-Levi et al. [41], where the authors worked

under the setting of a manufacturing supply chain, with the goal of positioning inventories across

the network to hedge against capacity disruptions and demand uncertainties. Their focus is on

providing an exact solution method. Not surprisingly, this leads to a generally intractable formu-

lation, in particular, a linear optimization problem with an exponentional number of constraints.

They propose a novel constraint generation algorithm, which they find to work well in practice for

bi-partite graphs involving 200 nodes. However, their constraint generation algorithm still involves

the solution of mixed-integer linear optimization problems in its subroutines. Our focus is on

providing tractable and scalable (polynomial-time) algorithms, which require the solution only of

linear optimization problems. While not being exact for general network topologies, our approach

is backed by optimality guarantees under mild assumptions.

On a more abstract level, two-stage resource planning and demand satisfaction problem under

the scope of network flow or facility location has been studied in the literature. The work by
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Atamtürk and Zhang [5], to our knowledge, was the first to systematically study the two-stage

robust network flow problem under demand uncertainty. In particular, the authors study the com-

putational complexity of two-stage network flow problems under budgeted uncertainty sets and

find the problem to be intractable in general, except for some special network structures, e.g., a

tree structure. In contrast, our focus is not on the characterization of computational complexity,

but rather on the derivation of tractable solution approaches. In particular, we study an approxi-

mate solution method that gives rise to tractable formulations, and provide strong theoretical and

numerical backing for its performance. This also allows us to apply our framework to a practically

relevant policy design problem.

Also motivated by bioterrorism events such as the 2001 anthrax attack to postal offices in the

U.S., Berman and Gavious [7] study the defender-attacker problem as a min-max facility location

problem, where a defender leads with location decisions, and the (strategic) attacker follows with

an attack on a single location. The defender can then make a recourse decision to serve the attacked

location from the nearest facility. We differ from their work in two ways. First, we allow simultane-

ous attacks at multiple locations of our network (which is crucial in, for example, anthrax attack

preparedness, cf. [22]); second, we allow demand loss, and demand is served potentially by multiple

stockpile locations in our model, with each stockpile hosting a variable amount of inventory.

An introduction to affine adjustable robust optimization (AARO) is included in Ben-tal et al.

[6]. There have been a handful of recent results that show AARO heuristics to be optimal under

special circumstances [10, 3, 9, 21]. Our works contributes to this stream by providing another

optimality proof under a different context. Bertsimas et al. [10] studies one-dimensional problems,

e.g., inventory problems that involve a single stocking level, while in Delage and Ardestani-Jaafari’s

work [3], the authors deal with newsvendor type problems under demand uncertainty. We differ

from these papers by studying a supply chain network, where the central recourse decision is a

multidimensional shipment decision, which is absent in a newsvendor type model. The papers by

Iancu et al. [21] and Bertsimas et al. [9] deal with families of problems, where for optimality (or

“good” performance) they require the uncertainty sets to be lattices, or possess a “symmetric”

structure. In our model, in order to preclude overly conservative solutions, we rely on simplex-type

budget constraints that invalidate both the lattice and the symmetric structures.

2. The Inventory Prepositioning Problem

For exposition purposes, we use SNS to exemplify our discussion of the MCM inventory preposi-

tioning problem. The SNS network is designed to protect the public susceptible to bioattacks in a

set of geographic locations, e.g., densely populated towns or neighborhoods, which we shall refer

to as demand locations. The demand locations are split into administrative divisions according
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city 1

city 2

city 3

city 4

city 5

state A

state B

federal F

` = 2` = 1` = 0

Figure 1 Five demand locations (cities) split into three administrative divisions, federal ℓ = 0, state ℓ = 1 and

city ℓ = 2. Note that P(1) = P(2) = P(3) =A and P(4) = P(5) =B; C(A) = D(A) = {1,2,3} and C(B) =

D(B) = {4,5}; D(F) = {1,2,3,4,5}.

to a hierarchical structure, e.g., boroughs, municipalities, provinces, states, etc. There are L+ 1

levels in the hierarchy, indexed by ℓ = 0, . . . ,L, whereby each division at the lowest (Lth) level

comprises precisely one demand location. Divisions at some intermediate ℓth level comprise subsets

of divisions at the lower (ℓ+1)th level in a nested fashion; the highest (0th) level includes a single

division, e.g., federal/national level. For a division i at the ℓth level, let P(i) be its (unique) parent

division at the (ℓ− 1)th level, C(i) the set of (children) divisions that it includes at the (ℓ+ 1)th

level, and D(i) the set of demand locations that it includes, i.e.,

D(i) = {demand location j : P(P(. . .P(P
︸ ︷︷ ︸

L−ℓ times

(j)) . . .)) = i}.

Figure 1 includes an illustrative example, where the demand locations are cities, split under state

and federal divisions.

To serve the demand locations, each administrative division at the 0, . . . ,L− 1 levels maintains

a stockpile of appropriate medical countermeasures. In particular, in case of a bioattack, MCMs

would typically need to be shipped from the—usually remotely located—stockpiles to the demand

locations to treat the affected population.

Let the demand locations and stockpiles correspond to nodes in a directed graph (V,E), which

we refer to as demand and stockpile nodes, respectively. The subset of demand nodes is denoted

with VD. We index the (unique) stockpile node at the highest level division with 0. The edges in

E connect stockpile nodes with demand nodes. Specifically, (i, j) ∈ E if and only if inventory can

be shipped from i to j ∈ VD once an attack occurs. Shipments have negligible costs and are not

subject to capacity constraints for the purposes of the SNS network. However, there is a fixed lead

time τij for shipping inventory from i to j for all (i, j)∈ E.
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We focus on a particular bioattack threat, in anticipation of which the CDC stores a single type

of MCM. Inventory of this MCM can be prepositioned at any node i∈ V . If i is a demand node, the

stored inventory corresponds to predispensed medical kits. We use x∈ R
|V | to denote the amounts

of stored inventories allocated at the nodes. The set of all feasible inventory allocations, denoted

by X ⊆ R
|V |, is assumed to be a polytope. A unit of inventory is adequate to treat precisely one

individual. Associated with storing inventory at any node are purchasing, replenishment, main-

tenance, management costs, etc. We refer to these costs simply as holding costs, and denote the

per-unit costs with h ∈R
|V |. That is, the cost for storing xi units of MCM at node i∈ V is hixi.

When an attack takes place, a subset of demand nodes are affected, and parts of their populations

are in need of treatment with the MCMs. We also say that division i is affected, if any of its children

demand nodes D(i) is affected. For example, if city 1 is attacked in Figure 1, we say that it is

affected and so is state A. Let d ∈R
|VD | be the (a priori unknown) vector with the realized number

of affected individuals in each of the demand nodes. Once d is revealed, prepositioned inventory

at the affected demand nodes is available immediately to treat individuals. In case of shortages,

inventory from other nodes can be shipped to satisfy the demands. For each edge (i, j) ∈ E, we

use fij to denote the amount of inventory shipped from i to satisfy demand at node j. Note that

the shipment decisions are contingent on the realized demand, which we sometimes make explicit

by writing them as fij(d). Inventory shipped from i would be made available for treatment at

node j only after τij time units. Delays in treatment of affected population could lead to lower

probability of survival. We use ρij ∈ [0,1] to denote the survival probability (or survivability) of an

individual in node j if treated with inventory shipped from node i, and ρ ∈ [0,1] if left untreated.

For example, suppose that node j is affected and 50% of the affected individuals are treated with

inventory prepositioned at that node, 30% are treated with inventory shipped from node i, and

20% are left untreated. The average survivability would then be 0.5ρjj +0.3ρij +0.2ρ.

With respect to the possible attack scenarios, the CDC considers ones involving simultaneous

attacks to multiple locations across the country. As a matter of fact, a recent report from an

advisory board to the CDC was questioning the current network’s ability to respond to three

simultaneous attacks [22]. Generalizing this in our framework, we consider attack scenarios (or

demand vectors) where, for each administrative division i, at most Γi of its children divisions C(i)

are affected. We assume Γi’s to be non-negative integers and refer to them as the attack scale

parameters. For example, if the administration levels are states and cities, Γi = 2 for state i would

mean that we consider attack scenarios with at most 2 cities in state i being affected.

In case demand location i is affected, the maximum number of individuals in need for treatment

at that location is d̂i.
3 A further probabilistic characterization of the possible demand vectors d

3 The maximum number of affected individuals for a bioattack is estimated by policymakers based on census consid-
erations, e.g., population density, transmission and contagion characteristics, e.g., the required quantity of spores to
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appears to be, unfortunately, prohibitive in the CDC’s problem for a variety of reasons. One relates

to limited historical data, given that bioattacks have so far been rarely encountered in practice.

A second, and more important, reason is the nature of terrorist attacks being adversarial and

endogenous, instead of purely random and exogenous. In particular, unlike natural disasters, for

instance, bioattacks are pre-meditated and often carefully planned in order to maximize the damage

inflicted. The choice of which locations to attack then, which essentially drives the realization of

d, is likely to be influenced by the CDC’s inventory decisions, given that prepositioned inventory

(or lack thereof) is partially visible to the public. Both issues of endogeneity and the adversarial

choice of the attacked areas are indeed considered and acknowledged by policymakers [43]. In the

next section, we propose a suitable model for d that addresses these issues, instead of postulating

a probabilistic description.

In general, more (less) inventory in the system leads, on the one hand, to higher (lower) holding

costs and, on the other hand, to fewer (more) potential casualties. Therefore, CDC needs to balance

inventory costs and the costs of life loss. We consider two different ways to navigate this tradeoff,

leading to two possible problem formulations:

1. Policymakers explicitly quantify the cost of each life lost to be b monetary units. The CDC’s

problem is then to select a feasible inventory allocation so as to minimize holding costs plus

worst case life loss costs under all possible attack scenarios. We shall refer to this problem

formulation as the Life Loss Cost (LLC).

2. Policymakers specify survivability targets: let 1 − ǫi be the target for average survivability

in demand node i, for some ǫi ∈ [0,1], which we shall refer to as the survivability target

parameters. The CDC’s problem is then to select a feasible inventory allocation so as to

minimize holding costs, while providing the survivability guarantees implied by the specified

targets in all demand locations, under all possible attack scenarios. We shall refer to this

problem formulation as the Life Loss Guarantee (LLG).

Our model is well-suited for policy decision-making purposes. In particular, the attack scale

parameters {Γi : i ∈ V } allow policymakers to specify the severity of the attacks they want to

hedge against, both in terms of their magnitude, since higher values of Γ for lower level nodes

translate into more areas affected, e.g., cities, and in terms of their complexity, since higher values

of Γ for higher level nodes translate into the affected areas being dispersed among more divisions,

e.g., states. Furthermore, the life loss cost b in the (LLC) formulation, or the survivability target

parameters {ǫi : i ∈ VD} in the (LLG) formulation, reflect the policymakers’ aversion to casualties

carry out an attack and their ability to remain aloft and travel further for aerosol attacks, and others. The estimation
usually relies on experimental data, see for example our discussion in Section 5.
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and insufficient coverage. Based on the policymakers’ selections, the model prescribes appropri-

ate inventory prepositioning strategies and elicits their minimum required costs, which allows for

tradeoff analyses.

In the rest of the paper, we first propose a tractable solution approach to CDC’s problem for both

the (LLC) and (LLG) formulations, providing analytical and numerical evidence for its fidelity. We

then apply it to a case study of the anthrax SNS inventory prepositioning problem.

3. Formulation and Solution Approach

For both (LLC) and (LLG), we formulate the inventory prepositioning problem as a two-stage

robust optimization problem. In particular, at the first stage, the policymaker decides on the

prepositioned inventory allocation x ∈ X. Subsequently, “nature” draws an attack scenario or

demand vector d from the set of scenarios compatible with the specified attack scale parameters,

denoted by U ⊂ R
|VD|, so as to minimize expected survivors. We also refer to U as the demand

uncertainty set. Note that the demand vector is selected having observed x and in anticipation

of possible inventory shipment decisions. That is, at the second stage, after the realized demand

vector d ∈U is revealed, the policymaker decides on the shipment strategy {fij(d) : (i, j)∈E} so as

to minimize life loss costs in the (LLC) formulation, or to provide sufficient coverage as prescribed

by the survivability target parameters in (LLG).

Formally, we model the Life Loss Cost problem as

(LLC): min
x, f(·), s(·)

h′x + max
d∈U

b
∑

i∈VD

(
(1− ρ)si(d)+

∑

j:(j,i)∈E

(1− ρji)fji(d)

)
(1a)

subject to xi ≥
∑

j:(i,j)∈E

fij(d), ∀i∈ V, ∀d ∈U (1b)

si(d)+
∑

j:(j,i)∈E

fji(d) = di, ∀i∈ VD, ∀d ∈U (1c)

∑

j:(j,i)∈E

fji(d)≤ di, ∀i∈ VD, ∀d∈U (1d)

fij(d)≥ 0, ∀(i, j)∈E, ∀d ∈U (1e)

x ∈X. (1f)

The auxiliary variables {si(·) : i ∈ VD} capture demand shortages, i.e., the number of affected

individuals left untreated at each node. Note that both the shipment decision variables f(·) and the

shortage variables s(·) are adjustable, contingent on the realized demand vector d. The objective

is to minimize inventory holding costs plus worst-case life loss costs. Constraint (1b) is a flow

conservation condition: the total amount of inventory shipped from node i should be less than the

amount stockpiled at i. Constraint (1c) defines the demand shortage variable si for each node i.
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Constraint (1d) upperbounds the inventory shipped into and consumed at node i by di, since one

unit of inventory is used to treat precisely one individual.

Similarly, we formulate (LLG) as follows:

(LLG): min
x, f(·), s(·)

h′x (2a)

subject to ρsi(d)+
∑

j:(j,i)∈E

ρjifji(d)≥ (1− ǫi)di, ∀i∈ VD, ∀d ∈U (2b)

(1b), (1c), (1d), (1e), (1f). (2c)

Compared to (LLC), the (LLG) formulation has an objective of minimizing holding costs, while

ensuring that the average survivability at each node is higher than the target set, as reflected by

the added constraint (2b). Throughout this paper we assume that ρji ≥ ρ for all (j, i) ∈ E, i.e.,

treatment increases survivability; and ρ ≤ 1− ǫi for all i∈ VD, otherwise (LLG) reduces to a trivial

problem with optimal cost of zero.

We believe that our robust optimization formulations of the SNS inventory prepositioning prob-

lem are best-suited to capture the practical considerations facing CDC for the following reasons:

1. Adversarial & endogenous demand : Bioattacks are pre-planned and often target locations so as

to inflict the greatest damage, in response to preparedness efforts. Our formulations precisely

capture this feature by allowing “nature” to adversarially pick a demand vector d after the

inventory allocation x is decided.

2. Worst-case guarantees: Policy decisions related to public safety are usually subject to coverage

guarantees that they need to provide. By requiring the prescribed coverage to be achievable

under all possible attack scenarios under consideration, see constraint (2b), formulation (LLG)

furnishes the desired guarantees. Similarly, (LLC) also minimizes worst-case life loss costs.

3. Unknown demand : Bioattack locations are highly unpredictable, because of sparsity, or com-

plete lack of historical data. By relying on a worst-case analysis and modeling the demand

via means of an uncertainty set, which requires less data to calibrate in comparison with a

distributional probabilistic description, formulations (LLC) and (LLG) hedge against demand

uncertainty and provide robust inventory allocation decisions.

From an implementation standpoint, formulations (LLC) and (LLG) admit tractable, scalable

solution approaches for dealing with practical networks involving thousands of nodes and edges,

which we attend to next, after we provide a formulation for the set of attack scenarios U .

3.1. Set of Attack Scenarios

We provide a formulation for the set of attack scenarios under consideration. In particular, recall

that, given some attack scale parameters {Γi : i ∈ V }, a possible scenario involves demand nodes
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affected so that, for each administrative division i, no more than Γi of its children divisions C(i)

are affected. Consider

U :=

{
d ∈R

|VD| : ξ ∈R
|V |, di = d̂iξi ∀i∈ VD, 0≤ ξi ≤ ξP(i) ∀i∈ V \{0}, ξ0 = 1,

∑

j∈C(i)

ξj ≤ Γiξi ∀i∈ V

}
.

As we will show, only the extreme points of U will be relevant for the optimal solution of (LLC)

and (LLG). Therefore, to argue for the correctness of the above formulation for U , it suffices to

argue that its extreme points precisely correspond to the attack scenarios under consideration.

Indeed, as we will also show, the auxiliary variables ξ are binary at the extreme points of U . Then,

they bear the following interpretation: ξi indicates whether node i is affected or not. In particular,

if i is a demand node,

di =

{
d̂i if i is affected, ξi = 1

0 otherwise.

The constraint ξi ≤ ξP(i) enforces all parent divisions of an affected node to also be affected, i.e.,

ξj =1 for all j such that i∈ D(j) and i is affected. Finally, constraint
∑

j∈C(i) ξj ≤ Γiξi ensures that,

if i is affected, at most Γi of its children divisions are affected, as we required. As a side note, it

can be readily seen that the set U also includes all remaining attack scenarios that are compatible

with the attack scale parameters, but have a number of affected individuals di ≤ d̂i.

To facilitate exposition, we also let

Ξ :=

{
ξ ∈R

|V | : 0≤ ξi ≤ ξP(i) ∀i∈ V \ {0}, ξ0 = 1,
∑

j∈C(i)

ξj ≤ Γiξi ∀i∈ V

}
.

We can then simply express U =
{
d ∈R

|VD | : di = d̂iξi ∀i∈ VD, ξ ∈ Ξ
}
.

3.2. Solution Approach

By involving both static, x, and recourse decisions, f(·), s(·), formulations (LLC) and (LLG) fall

into the class of so-called multi-stage adjustable robust optimization problems (ARO). Problems

in that class are, in general, computationally intractable [6], because they require the optimization

over functions, or policies, instead of vectors, and this makes them infinite-dimensional problems.

Specifically, f(·) and s(·) are policies that could take different values contingent on the uncertain

parameters’ realization (namely, the demand d).

Most popular techniques to deal with ARO problems in the literature are heuristics and con-

straint/column generation methods. One popular heuristic, which we also adopt to tackle our

problem, is to limit attention to policies restricted to depend affinely on the uncertain parameters,

which are often referred to as affine policies (AP), as opposed to fully adjustable policies (FP).
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This restriction often enables tractability, see, e.g., [6]. In our setting, the affinely adjustable robust

counterpart of (LLG), for example, is

(ALLG): min
x,F,S

h′x (3a)

subject to ρ(S′
id+S0

i )+
∑

j:(j,i)∈E

ρji(F
′
jid+F 0

ji)≥ (1− ǫi)di, ∀i∈ VD, ∀d∈ U (3b)

xi ≥
∑

j:(i,j)∈E

(F′
ijd+F 0

ij), ∀i∈ V, ∀d ∈U (3c)

(S′
id+S0

i )+
∑

j:(j,i)∈E

(F′
jid+F 0

ji) = di, ∀i∈ VD, ∀d ∈U (3d)

∑

j:(j,i)∈E

(F′
jid+F 0

ji)≤ di, ∀i∈ VD, ∀d∈ U (3e)

F′
jid+F 0

ji ≥ 0, ∀(i, j)∈E, ∀d ∈U (3f)

x∈X, (3g)

where Fij ∈ R
|VD |, F 0

ij ∈ R for all (i, j) ∈ E, and Si ∈ R
|VD|, S0

i ∈ R for all i ∈ VD are variables

corresponding to the affine policies’ coefficients. The affinely adjustable version of (LLC) is of similar

form. It can be readily seen that both (ALLC) and (ALLG) can be cast as linear optimization

problems. Hence, under the practical assumption that X can be expressed by a small number of

constraints, (ALLC) and (ALLG) can be solved efficiently, in a tractable and scalable manner.

On the flipside, tractability of AP heuristics to deal with ARO problems often comes at the cost

of suboptimal solutions. In fact, for some AROs, the optimality gap between the objective value

under AP and the objective value of the original formulation under FP can grow indefinitely with

the dimension of the problem [8]. As we pointed out in the literature review, a handful of papers

have recently identified conditions under which AP are indeed optimal. These conditions require

the absence of simplex-type constraints in the uncertainty set. In our model, however, the simplex-

type constraints
∑

j ξj ≤ Γiξi are essential to preclude excessively conservative demand scenarios,

where an arbitrary number of nodes are affected. Consequently, given the current state of affairs in

the robust optimization literature, the performance of AP heuristics (ALLC) and (ALLG) remains

questionable. The next section is devoted to providing evidence that (ALLC) and (ALLG) are

indeed likely to produce near-optimal solutions for the original (LLC) and (LLG) formulations,

respectively.

4. Optimality of Affine Shipment Policies

We provide evidence that affine policies are near-optimal for our problem formulations (LLC) and

(LLG). First, and more importantly, we analytically show that under mild additional assumptions

(on the survivability parameters and the network structure), AP are indeed optimal. Second, we
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conduct numerical studies illustrating that the suboptimality gap remains small for instances that

violate the additional assumptions guaranteeing optimality.

4.1. Optimality Result

Consider the following assumptions.

Assumption 1. The survival probabilities under treatment are all equal, i.e., ρij = ρ ∀(i, j)∈E.

Assumption 2. Stockpiles serve all demand nodes in their division, and only demand nodes in

their division, i.e., (i, j)∈E ⇐⇒ j ∈ D(i).

Assumption 1 requires that the difference in shipment times between stockpile and demand nodes

bears no effect on the survivability of treated individuals. Note that this assumption will be violated

for biothreats with incubation periods shorter than the shipment times, e.g., for nerve-agents that

require treatment within minutes or hours after an attack [43]. However, it will be satisfied for

biothreats with longer incubation periods, e.g., for anthrax attacks that are detected early (see

also our discussion in Section 5). Assumption 2 requires that stockpiles, which are maintained

by administrative divisions, serve affected locations only within their division. For example, in

the U.S., this would mean that the stockpiles maintained by states are reserved for usage by

their residents. Let z⋆
LLC, z

⋆
LLG, z

⋆
ALLC, z

⋆
ALLG be the optimal values of formulations (LLC), (LLG),

(ALLC), (ALLG) respectively. We have the following result.

Theorem 1. Under Assumptions 1 and 2, affine policies are optimal for (LLG), i.e.,

z⋆
LLG = z⋆

ALLG.

Furthermore, if ρ= 1, affine policies are optimal for (LLC), i.e.,

z⋆
LLC = z⋆

ALLC.

To illustrate the applicability of our methodology beyond the scope of MCM inventory prepo-

sitioning, we prove our result in a more general model. In particular, for any node we consider

shipments to any of its children nodes, not just its demand (leaf) nodes. Furthermore, we allow

demand to occur at any node in V , not just the (leaf) nodes in VD. We also consider demand vectors

that, apart from the unknown component d̂, entail a deterministic component d̄ that realizes under

any scenario, and can be thus thought of as the network’s “nominal” demand. In other words, we

deal with a more general supply chain network where inventory can be stored at nodes and shipped

over the (tree-style) network in order to satisfy nominal demand, plus unknown demand shocks,

across the entire network. We formalize this generalization within the proof of Theorem 1 below

and show that it subsumes the MCM prepositioning problems (LLC) and (LLG) as special cases.

We discuss alternative applications in Section 6.



17

Proof of Theorem 1. Under Assumption 2, our model can be reformulated to one where, instead

of inventory shipments over the edges of (V,E), {fe : e ∈ E}, we consider inventory shipments

over the edges of the directed out-tree (V,T ) with root node 0 and T := {(i, j) : i ∈ V, j ∈ C(i)}.

This is because, under Assumption 2, any inventory shipment to node j occurs from some “parent

node” i such that j ∈ D(i), i.e., PL−ℓ(j) = i for some ℓ, where Pn(k) := P(Pn−1(k)) for n positive

integer, k ∈ V and P0(k) := k. Thus, any fij can be thought of as a flow along the unique path

i → PL−ℓ−1(j) → . . .P(j) → j. It can then be readily seen that our model entails a path-based

network flow formulation for inventory shipments in the graph (V,T ). In the rest of the proof, we

consider the associated edge-based formulation, and denote the shipments over the edges with y=

{yt : t ∈ T}. Clearly, this is without loss, since for every feasible (f , s) in the path-based formulation,

there exists y such that (y, s) is feasible for the edge-based formulation, and vice versa (for more

details see Chapter 3.5 in [2]).

Furthemore, we assume that demand occurs at every node; specifically, demand at node i is

di = d̄i + d̂iξi for all i ∈ V and some ξ ∈ Ξ. Unmet demand at each node in V \ VD is treated in

the same way as at nodes in VD: either penalized at a cost rate b under the (LLC), or subject to a

guarantee under the (LLG). Clearly, for d̄i = 0 for all i∈ V and d̂i = 0 for all i∈ V \VD , we recover

our original formulations. Thus, we deal with this more general model without loss.

To prove optimality of affine policies, it suffices to show that for any static inventory allocation

decision x ∈ X, there exist policies that are affine in the uncertain demand for the adjustable

decisions and achieve the same worst-case cost under fully-adjustable policies. Thus, we henceforth

consider the static inventory allocation decision x as fixed.

We first deal with the (LLC) formulation. At the end of the proof, we argue how the (LLG) can

be cast as a special case of the (LLC) formulation in this setting. Using the edge-based formulation,

the more general demand model, and a fixed inventory allocation x ∈ X, it can be readily seen

that when ρ= 1, the (LLC) problem is equivalent to (in the sense that they have the same optimal

set)4

min
y(·),s(·)

max
ξ∈Ξ

1′s(ξ)

subject to si(ξ)+ yP(i)i(ξ)+xi ≥
∑

j∈C(i)

yij(ξ)+ d̄i + d̂iξi, ∀i∈ V, ∀ξ ∈Ξ

yP(i)i(ξ)+xi ≥
∑

j∈C(i)

yij(ξ), ∀i∈ V, ∀ξ ∈Ξ

y(·), s(·) ≥ 0,

4 Technically, this means that if (f , s) is optimal for (LLC), then there exists y such that (y, s) is optimal for the
corresponding edge-based formulation, and vice versa.
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where 1 is the vector of all ones. Let zF be the optimal value of this fully-adjustable formulation.

Correspondingly, let zA be the optimal value of its affinely adjustable counterpart, i.e., when we

restrict y(·) and s(·) to be affine in ξ. It suffices then to show that zF = zA.

We now introduce some useful notation:

• For some index set I, let ξI := {ξi : i∈ I} and projIΞ := {ξI : ξ ∈Ξ}.

• Let V l be the set of nodes at the lth level, i.e., V l := {j ∈ V :P l(j) = 0}.

• Let Ai be the set of ancestor nodes of i, i.e., Ai := {i,P(i),P2(i), . . . ,0}.

• We will frequently look into subgraphs of (V,T ), specifically out-trees rooted at some node

i ∈ V l, denoted by (Vi, Ti), where Vi := {j ∈ V : Pk(j) = i for some k = 0,1,2, . . . ,L − l}, and

Ti := {(k, l) : k ∈ Vi, l ∈ C(k)}.

• Let Qi(ξ
′
i, xi,x−i) by the set of feasible policies for (Vi, Ti), with inventory at node i being xi,

the inventory on Vi \ {i} being x−i, and the uncertain parameter being ξ′
i at node i, i.e.,

Qi(ξ
′
i, xi,x−i) :={{y(·), s(·)} :

xi ≥
∑

j∈C(i)

yij(ξ), ∀ξ ∈ Ξi

si(ξ)+xi ≥
∑

j∈C(i)

yij(ξ)+ d̂iξ
′
i + d̄i, ∀ξ ∈Ξi

yP(k)k(ξ)+xk ≥
∑

j∈C(k)

ykj(ξ), ∀k ∈ Vi \ {i},∀ξ ∈Ξi

sk(ξ)+ yP(k)k(ξ)+xk ≥
∑

j∈C(k)

ykj(ξ)+ d̂kξk + d̄k, ∀k ∈ Vi \ {i},∀ξ ∈Ξi

y(ξ), s(ξ)≥ 0, ∀ξ ∈Ξi}.

where Ξi(ξ
′
i) := {ξ | ξ ∈Ξ, ξi = ξ′

i}. We use shorthand notation Ξi when there is no ambiguity in ξ′
i.

• Let Θi(ξ
′
i, s) be the worst-case demand loss in (Vi, Ti) under ξi = ξ′

i and (feasible) resource

allocation policy {y(·), s(·)}, ΩF
i (ξ

′
i, xi,x−i) be the worst-case demand loss in Vi under ξi = ξ′

i with

an optimal fully-adjustable policy, and Q⋆
i (ξ

′
i, xi,x−i) be the set of all optimal policies:

Θi(ξ
′
i, s) := max

ξ∈Ξi(ξ′i)

∑

k∈Vi

sk(ξ),

ΩF
i (ξ

′
i, xi,x−i) := min

y(·),s(·)
Θi(ξ

′
i, s) subject to {y(·), s(·)} ∈ Qi(ξ

′
i, xi,x−i),

Q⋆
i (ξ

′
i, xi,x−i) := argmin

y(·),s(·)
Θi(ξ

′
i, s) subject to {y(·), s(·)} ∈ Qi(ξ

′
i, xi,x−i).

Similarly, we define the affinely-adjustable counterpart ΩA
i (ξ

′
i, xi,x−i) as the worst-case demand

loss in Vi, restricted to {y(·), s(·)} ∈ Qi(ξ
′
i, xi,x−i) and affine.

Using our notation, zF =ΩF
0 (1, x0,x−0) and zA =ΩA

0 (1, x0,x−0). It thus suffices to show that

ΩF
0 (1, x0,x−0) = ΩA

0 (1, x0,x−0). (7)
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ΩF
i (ξi, xi,x−i) i

xi

d̂iξi + di

j
yj(ξ)

sj(ξ)
ΩF

j (ξj, xj,x−j)

Figure 2 Recursive representation of ΩF
i .

We now show two useful intermediate results. The first provides a recursive expression for ΩF
i ,

and the second shows that Ξ has binary vertices.

Proposition 1. For all i∈ V , ξ′
i ∈ [0,1], x≥ 0,

ΩF
i (ξ

′
i, xi,x−i) =



d̄i + d̂iξ
′
i −xi + max

ξC(i)∈projC(i)Ξi(ξ′i)

∑

j∈C(i)

ΩF
j (ξj, xj,x−j)





+

.

Moreover, ΩF
i (ξi, xi,x−i) is convex in ξi over ξi ∈ [0,1].

Proof of Proposition 1. See Appendix A.

Proposition 1 shows the intuitive fact that given a fixed inventory decision and under the optimal

policy, the demand shortage in Vi should be the sum of shortages in {Vj}j∈C(i) plus the demand

on node i, subtracting away inventory xi. Based on such recursive definition, we can view the tree

as a collection of hub-and-spoke clusters, each consisting of one node and several edges pointing

away from this node (Figure 2).

Proposition 2. Ξ is a polytope with binary vertices, i.e., ξ ∈ ext(Ξ) =⇒ ξ ∈ {0,1}n.

Proof of Proposition 2. See Appendix B.

Now we prove (7) by induction. For a given tree (Vi, Ti) and uncertainty set Ξi, we limit our

attention to {y(·), s(·)} that satisfies the following properties:

(I) ∀m∈ Vi, j ∈ C(m), ξ ∈Ξi : sm(ξ) = sm(ξm), ymj(ξ) = ymj(ξj) are affine in ξm, ξj respectively.

(II) ∀m ∈ Vi: if xm ≥ d̄m +
∑

j∈C(m)Ω
A
j (0, xj,x−j), then (a) yP(m)m(0) = 0, and (b) yjk(0) =

ΩA
k (0, xk,x−k) ∀(j, k)∈ Tm and sj(0) = 0 ∀j ∈ Vm.

(III) ∀m∈ Vi: if sm(0)> 0, then ∀ξ ∈Ξi, j ∈Am, (a) yjk(ξ) = yjk(0) ∀k ∈ C(j); (b) yP(j)j(ξ)+xj +

sj(ξ) =
∑

k∈C(j) yjk(ξ)+ d̄j + d̂jξj; (c) sj(ξ)≥ d̂jξj.

where we let yP(i)i(ξ) := 0. Properties (II) and (III) describe policies that fulfill deterministic

demands as much as possible without over-shipping (Figure 3). Let V +(s) be the subset of V that

contains the nodes i such that si(0)> 0 and all their ancestor nodes, i.e., V +(s) := ∪i:si(0)>0Ai. We
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Figure 3 A visual representation of properties (II) and (III) for some out-tree. If the if-condition of (II) is satisfied

at nodes 6, 7, 8, and 9, then y37(ξ) = y38(ξ) = y49(ξ) = y26(ξ) = 0 for any ξ ∈ Ξ0, and si(0) = 0 ∀i ∈

V6 ∪ V7 ∪ V8 ∪ V9, i.e., deterministic demands on these nodes are fulfilled. If nodes 3, 10, 11, 12 satisfy

the if-condition of (III), V +(s) = {0,1,2,3,4,5,10,11,12}, and flows on the solid edges are constant and

the demand loss constraints are tight for all ξ ∈ Ξ0.

also let

Qi(ξi, xi,x−i) := {{y, s} ∈ Qi(ξi, xi,x−i) : {y, s} satisfies (I)-(III)}

Q
⋆
i (ξi, xi,x−i) := Qi(ξi, xi,x−i)∩ Q⋆

i (ξi, xi,x−i).

We are now ready to formalize the induction process.

Induction Hypothesis. If for some l ∈ {0,1, . . . ,L− 1}, ∀j ∈ V l+1,x≥ 0, ∃{ȳj(·), s̄j(·)} such that

(Feasibility) ∀ξj ∈ [0,1],{ȳj(·), s̄j(·)} ∈ Qj(ξj, xj,x−j), (8)

(Optimality) ∀ξj ∈ {0,1},Θj(ξj, s̄
j) = ΩA

j (ξj, xj,x−j) = ΩF
j (ξj, xj,x−j), (9)

then, ∀i∈ V l,x≥ 0, ∃{ȳi(·), s̄i(·)} such that

(Feasibility) ∀ξi ∈ [0,1],{ȳi(·), s̄i(·)} ∈ Qi(ξi, xi,x−i), (10)

(Optimality) ∀ξi ∈ {0,1},Θi(ξi, s̄
i) = ΩA

i (ξi, xi,x−i) =ΩF
i (ξi, xi,x−i). (11)

Base Case (l = L − 1). Given some x ≥ 0, for each j ∈ V L we define s̄j
j(ξ) = s̄j

j(ξj) = ξj(d̂j +

d̄j − xj)
+ + (1 − ξj)(d̄j − xj)

+. This policy satisfies (I) by construction. For (II), if xj ≥ d̄j, then

s̄i
j(0) = (d̄j − xj)

+ = 0. For (III), s̄j
j(0) > 0 =⇒ s̄j

j(0) = (d̄j − xj)
+ > 0 =⇒ s̄j

j(0) + xj = d̄j and

s̄j
j(1) + xj = d̄j + d̂j, thus s̄j

j(ξj) + xj = d̄j + d̂jξj and s̄j
j(ξj) ≥ d̂jξj. It is straightforward to check

that constraints in Qj(ξ
′
j, xj,x−j) are satisfied under any ξ′

j ∈ [0,1]. For optimality, Θj(ξ
′
j =0, s̄j

j) =
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(d̄j − xj)
+ = ΩF

j (ξ
′
j = 0, xj,0), Θj(ξ

′
j = 1, s̄j

j) = (d̂j + d̄j − xj)
+ = ΩF

j (ξ
′
j = 1, xj,0). Since Θj(ξ

′
j, s̄

j
j)

and ΩF
j (ξ

′
j, xj ,0) are upper and lower bounds on ΩA

j (ξ
′
j, xj,0), we have that ∀ξj ∈ {0,1},Θj(ξj, s̄

j
j) =

(d̄j + d̂jξj −xj)
+ =ΩA

j (ξj, xj,0) =ΩF
j (ξj, xj,0).

General Step. Now we prove the general induction step: suppose (8)-(9) hold for some l ∈

{0,1, . . . ,L − 1} and ∀j ∈ V l+1,x ≥ 0. To construct {ȳi(·), s̄i(·)}, we define the following. Since

ΩA
j (ξj, xj ,x−j) is nondecreasing in ξj and nonnegative, there necessarily exists gj, g

0
j ≥ 0 such that

ΩA
j (ξj, xj ,x−j) = gjξj + g0j for ξj ∈ {0,1}. Let αi := min

(
1, xi∑

j∈C(i) g0
j
+d̄i

)
if

∑
j∈C(i) g

0
j + d̄i > 0, and

αi := 1 otherwise; βi := min

(
1,

(xi−
∑

j∈C(i) g0j −d̄i)
+

∑Γi
j=1 g(j)+d̂i

)
if

∑Γi

j=1 g(j) + d̂i > 0, and βi := 1 otherwise,

where g(j) is the jth largest element of {gj}j∈C(i). We can think of αi as the coverage ratio for

deterministic demands in Vi, and βi as the surge demand coverage ratio.

We are now ready to construct affine {ȳi, s̄i}:

{ȳi, s̄i}=






ȳi
ij(ξj) =αig

0
j +βigjξj ∀j ∈ C(i)

s̄i
i(ξi) = (1−αi)d̄i +(1−βi)d̂iξi

ȳi
km(ξm) = ȳj1

km(ξm) ∀(k,m)∈ Tj,∀j ∈ C(i)
s̄i

k(ξk) = s̄j0
k (0)(1− ξk)+ s̄j1

k (1)ξk ∀k ∈ Vi \ {i}.

(12)

Let Q
⋆
j0 := Q

⋆
j(0, xj + ȳi

ij(0),x−j) and Q
⋆
j1 := Q

⋆
j(1, xj + ȳi

ij(1),x−j). By the induction hypothe-

sis, Q
⋆
j0,Q

⋆
j1 6= ∅, since xj + ȳi

ij(ξj) ≥ 0 for ξj ∈ [0,1]. We require that ȳj0, s̄j0, ȳj1, and s̄j1 satisfy

Proposition 3.

Proposition 3. ∃{ȳj0, s̄j0} ∈ Q
⋆
j0,{ȳj1, s̄j1} ∈ Q

⋆
j1 such that ȳj1(0) = ȳj0(0) and s̄j1

k (0) = s̄j0
k (0) for

all k ∈ Vj \ {j}, j ∈ C(i).

Proof for Proposition 3. See Appendix C.

We now check the feasibility and optimality of {ȳi, s̄i}.

For (Feasibility), note that Property (I) holds by construction.

To show {ȳi, s̄i} satisfies (II): if αi < 1, xi < d̄i +
∑

j∈C(i)Ω
A
j (0, xj,x−j), the if-condition in

(II) does not hold for node i. For j ∈ C(i), if xj ≥ d̄j +
∑

k∈C(j)Ω
A
k (0, xk,x−k), then g0j = (d̄j +

∑
k∈C(j)Ω

F
k (0, xk,x−k)−xj)

+ = (d̄j +
∑

k∈C(j)Ω
A
k (0, xk,x−k)−xj)

+ = 0 by the induction hypothesis,

thus ȳi
ij(0) = 0; ȳi

km(0) = ȳj1
km(0) =ΩA

m(0, xm,x−m), and s̄i
k(0) = s̄j0

k (0) = 0 for (k,m)∈ Tj and k ∈ Vj

(both by (II)). For k ∈ Vj \ {j}, j ∈ C(i), (II) holds for {ȳi, s̄i} since (II) holds for {ȳj0, s̄j0} and

{yj1, sj1}. If αi = 1, ȳi
ij(0) =αig

0
j = g0j =ΩA

j (0, xj,x−j); ȳ
i
km(0) = ȳj1

km(0) =ΩA
m(0, xm,x−m) ∀(k,m)∈

Tj,∀j ∈ C(i) because xi ≥ d̄i +
∑

j∈C(i)Ω
A
j (0, xj,x−j) and {ȳj1, s̄j1} satisfies (II); if xk ≥ d̄k +

∑
m∈C(k)Ω

A
m(0, xm,x−m), then ȳi

P(k)k(0) = 0 for any k ∈ Vj \{j}, j ∈ C(i) since {ȳj1, s̄j1} satisfies (II)

and ȳi
P(k)k(0) = ȳj1

P(k)k(0); s̄
i
k(0) = s̄j0

k (0) = 0 ∀k ∈ Vi \ {i} because xi ≥ d̄i +
∑

j∈C(i)Ω
A
j (0, xj,x−j)

and {ȳj0, s̄j0} satisfies (II); s̄i
i(0) = (1−αi)d̄i = 0. Therefore, {ȳi, s̄i} satisfies (II).
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To show {ȳi, s̄i} satisfies (III), we again look at the conditions on different sets of nodes separately.

If αi < 1, for i, s̄i
i(ξi) = (1−αi)d̄i+ d̂iξi ≥ d̂iξi, satisfying (IIIc); ȳi

ij(ξj) =αig
0
j +0= ȳi

ij(0), satisfying

(IIIa); xi + s̄i
i(ξi) = xi + (1− αi)d̄i + d̂iξi = αi(d̄i +

∑
j∈C(i) g

0
j ) + d̄i − αid̄i + d̂iξi =

∑
j∈C(i) ȳ

i
ij(ξj) +

d̄i + d̂iξi for all ξ ∈ Ξi, satisfying (IIIb). For j ∈ C(i), k ∈ Vj, (k,m) ∈ Tj, since ȳi
km(ξm) = ȳj1

km(ξm)

and s̄i
k(ξk) = (1 − ξk)s̄

j0
k (0) + ξks̄

j1
k (1), property (III) holds. If αi = 1, the if-condition of property

(III) does not hold, there is nothing to check.

To show {ȳi, s̄i} satisfies the constraints in Qi(ξ
′
i, xi,x−i), note that the constraints involving

node i are satisfied by construction of {ȳi, s̄i}. For nodes downstream from i, note that ȳi
km(ξm) =

ȳj0
km(0)(1 − ξm) + ȳj1

km(1)ξm and s̄i
k(ξk) = s̄j0

k (1 − ξk) + s̄j1
k (1)ξk, for all (k,m) ∈ Tj, j ∈ C(i) and

k ∈ Vi \{i}. Since {ȳj0(·), s̄j0(·)} and {ȳj1(·), s̄j1(·)} satisfy the constraints of Qj(0, xj + ȳi
ij(0),x−j)

and Qj(1, xj + ȳi
ij(1),x−j) respectively, it is straightforward to check the constraint satisfaction of

{yi, si} for Qi(ξ
′
i, xi,x−i).

For (Optimality), note that for ξ′
i ∈ {0,1} we have

Θi(ξ
′
i, s̄

i) =s̄i
i(ξ

′
i)+max

ξ∈Ξi

∑

j∈C(i)

∑

k∈Vj

s̄i
k(ξk) (13a)

=s̄i
i(ξ

′
i)+ max

ξC(i):1
′ξC(i)≤Γiξ′i

ξj∈[0,ξ′i],j∈C(i)

max
ξ∈Ξj(ξj)

j∈C(i)

∑

j∈C(i)

∑

k∈Vj

s̄i
k(ξk) (13b)

=s̄i
i(ξ

′
i)+ max

ξC(i):1
′ξC(i)≤Γiξ′i

ξj∈[0,ξ′i],j∈C(i)

∑

j∈C(i)

max
ξ∈Ξj(ξj)

∑

k∈Vj

s̄i
k(ξk) (13c)

=s̄i
i(ξ

′
i)+ max

ξC(i):1
′ξC(i)≤Γiξ′i

ξj∈[0,ξ′i],j∈C(i)

∑

j∈C(i)

max
ξ∈Ξj(ξj)

∑

k∈Vj

{
s̄j0

k (0)(1− ξk)+ s̄j1
k (1)ξk

}
(13d)

=s̄i
i(ξ

′
i)+ max

ξC(i):1
′ξC(i)≤Γiξ′i

ξj∈{0,ξ′i},j∈C(i)

∑

j∈C(i)

max
ξ∈Ξj(ξj)

∑

k∈Vj

{
s̄j0

k (0)(1− ξk)+ s̄j1
k (1)ξk

}
(13e)

=s̄i
i(ξ

′
i)+ max

ξC(i):1
′ξC(i)≤Γiξ′i

ξj∈{0,ξ′i},j∈C(i)

∑

j∈C(i)

ΩA
j (ξj, xj + ȳi

ij(ξj),x−j) (13f)

=s̄i
i(ξ

′
i)+ max

ξC(i):1
′ξC(i)≤Γiξ′i

ξj∈{0,ξ′i},j∈C(i)

∑

j∈C(i)

ΩF
j (ξj, xj + ȳi

ij(ξj),x−j) (13g)

=s̄i
i(ξ

′
i)+ max

ξC(i):1
′ξC(i)≤Γiξ′i

ξj∈{0,ξ′i},j∈C(i)

∑

j∈C(i)

(
ΩF

j (ξj, xj,x−j)− ȳi
ij(ξj)

)+
(13h)

=s̄i
i(ξ

′
i)+ max

ξC(i):1
′ξC(i)≤Γiξ′i

ξj∈{0,ξ′i},j∈C(i)




∑

j∈C(i)

ΩF
j (ξj, xj,x−j)−

∑

j∈C(i)

ȳi
ij(ξj)



 (13i)

=




d̄i + d̂iξ

′
i −xi + max

ξC(i):1
′ξC(i)≤Γiξ

′
i

ξj∈{0,ξ′i},j∈C(i)

∑

j∈C(i)

ΩF
j (ξj, xj ,x−j)






+

(13j)
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=




d̄i + d̂iξ

′
i −xi + max

ξC(i):1
′ξC(i)≤Γiξ

′
i

ξj∈[0,ξ′i],j∈C(i)

∑

j∈C(i)

ΩF
j (ξj, xj ,x−j)






+

(13k)

=ΩF
i (ξ

′
i, xi,x−i) =ΩA

i (ξ
′
i, xi,x−i). (13l)

Equalities (13a-13d) are straightforward applications of definitions of Θi and s̄i.

To show equality (13e), we argue that is it sufficient to check ξj = 1 and ξj = 0 for j ∈ C(i).

Suppose that Ξj(ξj) has n extreme points ξ1, . . . ,ξn, and Wm = {k ∈ Vj : ξm
k = ξj}, Wm = Vj \Wm.

Since for each extreme point, ξk takes value of either ξj or 0 (cf. Proposition 2), we can write

max
ξ∈Ξj(ξj)

∑

k∈Vj

{
s̄j0

k (0)(1− ξk)+ s̄j1
k (1)ξk

}
= max

m∈{1,...,n}

∑

k∈Vj

{
s̄j0

k (0)(1− ξj)1k∈Wm
+ s̄j1

k (1)ξk1k∈Wm

}
,

which is a convex function of ξj (1i∈I = 1 if i ∈ I and 0 otherwise). By this token, we can replace

ξC(i) ∈ projC(i)Ξi with ξC(i) ∈ projC(i)Ξi ∩ {0,1}|C(i)| for the argument of the outer maximization,

since Ξi(0) and Ξi(1) have binary vertices.

To show equality (13f), note that for ξj = 1, ΩA
j (1, xj + ȳi

ij(1),x−j) = Θj(1, s̄
j1) = s̄j1

j (1) +

maxξ∈Ξj(1)

∑
k∈Vj\{j} s̄

j1
k (ξk), which is equal to maxξ∈Ξj(1)

∑
k∈Vj

s̄j0
k (0)(1 − ξk) + s̄j1

k (1)ξk by

Proposition 3. For ξj = 0, ΩA
j (0, xj + ȳi

ij(0),x−j) = Θj(0, s̄
j0) = maxξ∈Ξj(0)

∑
k∈Vj

s̄j0
k (0) =

maxξ∈Ξj(0)

∑
k∈Vj

s̄j0
k (0)(1− ξk)+ s̄j1

k (1)ξk.

Equality (13g) holds by the induction hypothesis. Equality (13h) follows from the definition of

ΩF
j and (18).

For equality (13i), by the definitions of αi and βi, we have βi > 0 =⇒ αi = 1, or equivalently,

αi < 1 =⇒ βi =0. For the subtraction expression inside the brackets in line (13h), one of these two

cases is true:

1. αi < 1 =⇒ ΩF
j (ξj, xj,x−j)− ȳi

ij(ξ) = gjξj +(1−αi)g
0
j ≥ 0,∀j ∈ C(i), or

2. αi =1 =⇒ ΩF
j (ξj, xj,x−j)− ȳi

ij(ξ) = (1−βi)gjξj ≥ 0,∀j ∈ C(i).

Both cases lead to the fact that (ΩA
j (ξj, xj,x−j)− ȳi

ij(ξj))≥ 0 for j ∈ C(i), therefore we can rewrite

(13h) into (13i).

For the transition into (13j), consider ξ′
i =0 and ξ′

i = 1 separately.

If ξ′
i = 0, then s̄i

i(0) = (1−αi)d̄i, ȳ
i
ij(0) = αig

0
j , and ΩA

j (0, xj,x−j) = g0j ,

=⇒ (13i) = (1−αi)d̄i +
∑

j∈C(i)

(1−αi)g
0
j = (1−αi)



d̄i +
∑

j∈C(i)

g0j





=

(
(d̄i +

∑
j∈C(i) g

0
j )−xi

)+

d̄i +
∑

j∈C(i) g
0
j



d̄i +
∑

j∈C(i)

g0j



 =



d̄i +
∑

j∈C(i)

g0j −xi





+

= (13j).
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Otherwise if ξ′
i = 1, s̄i

i(1) = (1−αi)d̄i +(1−βi)d̂i, ȳ
i
ij(ξj) = αig

0
j +βigjξj.

For the case of αi < 1 (and consequently βi = 0),

(13i) = (1−αi)d̄i + d̂i + max
ξC(i)∈projC(i)Ξi(1)




∑

j∈C(i)

(1−αi)g
0
j + gjξj





= d̄i + d̂i −αid̄i −αi

∑

j∈C(i)

g0j + max
ξC(i)∈projC(i)Ξi(1)

∑

j∈C(i)

(g0j + gjξj) (collecting terms)

= d̄i + d̂i −xi + max
ξC(i)∈projC(i)Ξi(1)

∑

j∈C(i)

ΩF
j (ξj, xj,x−j) (αi < 1)

= (13j).

For the case of αi =1 (implying xi ≥
∑

j∈C(i) g
0
j + d̄i),

(13i) = (1−βi)d̂i + max
ξC(i)∈projC(i)Ξi(1)

∑

j∈C(i)

((1−βi)gjξj)

= (1−βi)



d̂i + max
ξC(i)∈projC(i)Ξi(1)

∑

j∈C(i)

gjξj



 (factorization)

=

(
d̂i +

∑Γi

j=1 g(j) − (xi −
∑

j∈C(i) g
0
j − d̄i)

)+

d̂i +
∑Γi

j=1 g(j)

(

d̂i +

Γi∑

j=1

g(j)

)

(xi ≥
∑

j∈C(i)

g0j + d̄i)

=



d̂i +

Γi∑

j=1

g(j) − (xi −
∑

j∈C(i)

g0j − d̄i)





+

= (13j).

Lastly, (13k) holds by the convexity property of
∑

j∈C(i)Ω
F
j (ξj, xj,x−j) and (13l) holds by the

recursive property, both shown in Proposition 1. We have now completed the proof for the inductive

step, thus showing zF = zA.

To complete the proof, we now turn our attention to the (LLG) formulation. By solving for si(d)

from (1c) and substituting in (2b), we can eliminate (1c) and re-write (2b) as

∑

j:(j,i)∈E

fji(d)≥
1− ǫi − ρ

ρ− ρ
di, ∀i∈ V, ∀d ∈U.

At optimality, the above constraint can be taken to be active without loss (if it is not, we can scale

down the associated flows into i so that it becomes active). Thus, the (LLG) is equivalent to

min
x, f(·), s(·)

h′x

subject to xi ≥
∑

j:(i,j)∈E

fij(d), ∀i∈ V, ∀d ∈U ′

si(d)+
∑

j:(j,i)∈E

fji(d) = di, ∀i∈ V, ∀d ∈U ′
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si(d) = 0, ∀i∈ V, ∀d∈U ′

fij(d)≥ 0, ∀(i, j)∈E, ∀d ∈U ′

x ∈X,

where U ′ :=
{
d′ : d′

i =
1−ǫi−ρ

ρ−ρ di ∀i∈ V, d ∈U
}
. Then, this is in turn equivalent to

min
x, f(·), s(·)

h′x + max
d∈U ′

b′
∑

i∈V

(1− ρ)si(d)

subject to xi ≥
∑

j:(i,j)∈E

fij(d), ∀i∈ V, ∀d ∈U ′

si(d)+
∑

j:(j,i)∈E

fji(d) = di, ∀i∈ V, ∀d∈U ′

∑

j:(j,i)∈E

fji(d)≤ di, ∀i∈ V, ∀d∈ U ′

fij(d)≥ 0, ∀(i, j)∈E, ∀d∈U ′

x∈X

for b′ large enough. However, this corresponds to an (LLC) instance that satisfies our assumptions

and therefore admits an optimal affine adjustable policy. �

4.2. Performance of Affine Policies for the General Case

To quantify the suboptimality gap of the AP heuristics for the general case, we conducted two

numerical studies where we sequentially relaxed the optimality-guaranteeing Assumptions 1 and 2.

For brevity, we present our studies for the (LLC) formulation—our studies on the (LLG) formula-

tion yielded quantitatively similar results. All our studies consider small-sized networks that allow

us to solve the fully-adjustable formulations. The conclusion from both studies below is that the

AP heuristic maintains a near-optimal performance: average suboptimality gaps were less than

0.01% and always smaller than 1% in all our experiments.

Study 1. We relax Assumption 1 and allow the survival probabilities to take different values.

Specifically, we consider a network of 21 nodes with three administrative levels: node 0 is at the

0th level, nodes 1-4 are at the 1st level, and the remaining nodes are at the 2nd level. Each of the

level 1 nodes has 4 children demand nodes. For the 0th node, the attack scale parameter equals

2; for nodes 1-4, they equal 1, 2, 2, and 3, respectively. Life loss cost is b = 100. The survival

probabilities are randomly sampled between 0.6 and 1, with shipments from nodes higher in the

hierarchy corresponding to lower probabilities. Demand shocks d̂ are randomly drawn between 0

and 1000. Inventory holding costs at each node are randomly sampled between 1 and 50, with nodes
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z⋆
ALLC − z⋆

LLC

z⋆
LLC

average 0.01%
stdev 0.03%
max 0.51%

Table 1 Suboptimality gaps of the affine relaxation in Study 1.

higher in the hierarchy having lower costs. Table 1 reports statistics for the relative suboptimality

gap, (z⋆
ALLC − z⋆

LLC)/z
⋆
LLC, we measured over 1,450 generated instances.

To further evaluate the quality of solutions produced by (ALLC) compared with (LLC), we

performed experiments where we first fix the first-stage inventory allocation decision, as prescribed

by either formulation, and then measure the objective cost under non-worst-case, randomly sampled

demand realizations (within U), for which optimal shipping decisions are made. This experimental

setup mimics practice more closely, as the re-optimization of shipment decisions in the second stage

can always be conducted from an implementation standpoint. Let zLLC(d) and zALLC(d) be the

optimal costs from such an approach, when the first-stage inventory allocation is derived using

(LLC) and (ALLC), respectively, and the sampled demand vector is d. A histogram of the cost

differential, (zALLC(d) − zLLC(d))/zLLC(d), we measured over 55,000 generated instances, and a

scatterplot of the actual costs zLLC(d), zALLC(d), are depicted in Figure 4.
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Figure 4 Cost comparison between affine and fully adjustable inventory decisions in Study 1.

Study 2. We now relax Assumption 2 as well. To allow stockpile nodes to serve demand

locations outside their administrative divisions, we add the following edges between stockpile nodes

and demand nodes: node 2 can serve the children of nodes 3, 4; node 3 can serve the children of 4,
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5, etc. All other parameters remain as in Study 1. Table 2 reports statistics for the suboptimality

gaps we measured over 850 generated instances. Figure 5 depicts the histogram and scatterplot of

costs under random non-worst-case demand scenarios and re-optimization of shipping decisions for

145,000 generated instances (as outlined above).

z⋆
ALLC − z⋆

LLC

z⋆
LLC

average 0.01%
stdev 0.05%
max 0.79%

Table 2 Suboptimality gaps of the affine relaxation in Study 2.

×

×

×10

10

10 5
5

5
5

5

4

4

4

4

3

3

3

2

2

2

1

1

1

0
0

0
0-100 -50 50 100

#
o
f
o
cc
u
re
n
ce
s

Cost difference (%)

A
P

C
o
st

FP Cost

Figure 5 Cost comparison between affine and fully adjustable inventory decisions in Study 2.

5. Strategic National Stockpile Inventory Prepositioning for Anthrax Attacks

In this section, we apply our work in a case study on MCM inventory prepositioning for aerosolized

Bacillus anthracis (anthrax) attacks in the U.S. We focus on anthrax attacks as they are of par-

ticular interest to public health experts because of their relatively high probability of occurrence

and potentially devastating impact. To elaborate on this, anthrax cultures are easily obtainable

worldwide, and anthrax spores are extremely robust in that they can stay dormant and alive

for decades, which allows them to be weaponized and transported securely in a number of forms

[43]. Availability and robustness of anthrax weapons increase the likelihood of anthrax attacks.

Furthermore, anthrax spores spread easily in the air to affect a large number of people through

inhalation. Fatality rate among infected population is high if left untreated for even just a few days.
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More precisely, if t is the time between infection and treatment, then, according to the studies of

[13, 12, 48, 49], the survival probability ρ(t) of anthrax infected population can be approximated,

for t≤ 200 hours, by

ρ(t) = e−(0.004t)2. (16)

Considering the time it would take to detect an anthrax attack and the time to ship the MCMs

from a regional warehouse to individuals, which is likely to be on the order of days [43], CDC is

exploring different options in prepositioning MCMs to achieve better antibiotic efficacy. Preposi-

tioning though also has drawbacks as we discussed before, for example, it increases cost due to

higher inventory management and replenishment costs and the loss of pooling effect downstream.

We now discuss how to calibrate our model to navigate the underlying tradeoffs. For the purposes

of this study, we consider the (LLG) formulation, that is, policymakers specify coverage targets

and our model calculates the minimum required inventory costs.

Model calibration. In our case study, we consider the prepositioning of one MCM type, e.g.,

ciprofloxacin or doxycycline, to treat individuals affected by anthrax attacks in any of the 336 major

metropolitan statistical areas (MSA) in the U.S. (according to Census Bureau [46]). There are

twelve federally-managed SNS warehouses in the U.S. for MCM storage, with their exact locations

being classified for security reasons. Instead, it is publicly known that the locations have been

chosen such that MCMs can be transported from them to any U.S. state within 24-36 hours of a

deployment decision [37]. Within our model, it is appropriate then to consider these warehouses

as a single virtual federal stockpile node. In case of an attack, inventories can be shipped from the

federal inventory node to state-managed warehouses, where additional inventory is usually stored.

Inventory from these warehouses can then be forwarded to city and local authorities for dispensing

to the general public. We therefore model the SNS stockpile network with 1 federal stockpile node,

52 state level stockpile nodes, and 336 MSA nodes.

As we remarked above, the time to ship MCMs from the federal node to any state level node

varies between 24 to 36 hours. Within each state, we assume the transportation time to be within

2 to 6 hours, e.g., if shipped via ground transportation, depending on the geography of the state.

According to performed field studies, including, for example, a field study in Philadelphia in 2005

[1] and another one in Minneapolis in 2008 [4], policymakers have estimated the dispensing of

MCMs from local authorities to individuals to take 10 to 12 hours, either via public dispensing

facilities or postal/courier service. Using these figures, we can calculate the survivability parameters

for each link in the network according to equation (16): ρij = ρ(τ0 + τij), where τ0 is the detection

time and τij is the time between shipment from stockpile i and dispensing at demand node j.

Inventory costs include the cost of purchasing, storage, management, replenishment, and ship-

ment from manufacturer to warehouse. According to a commissioned paper by the Institute of
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Medicine [19], the costs for anthrax antibiotics stored at regional warehouses amount to $2.10

per person, while home kits are more expensive at $10 per person, due to higher packaging and

delivery costs. We estimate the federal and state stockpile costs to be $1 and $2 per person, due

to anticipated scale economies. Annual management and replenishment costs are 85% of cost [19].

To estimate the demand volume at each MSA in case of an attack, we assume that an airborne

attack has the same spread radius in every geographic region, and we use a value of 3,000 square

miles as in the field study on the Minneapolis MSA [4]. The affected population at node i can

then be calculated as (population density of i) × min{3000 sq miles,area of MSA}. We obtained

population density and area data of MSAs from statistics of the Census Bureau [46].

Results. Having calibrated the model, we compute optimal inventory configurations and costs

for different policy parameters: survivability target, attack scale, and detection time. Table 3 is a

summary of the model inputs and outputs.

Input Output

Survivability target: ǫi Total inventory holding cost
Attack scale: Γi Optimal inventory prepositioning strategy: x⋆

Detection time: τ0

Table 3 Input/output for our case study.

The default input parameters we consider are survivability targets 1− ǫi = 0.94, ∀i∈ VD, attack

scale parameters Γi = 2, ∀i ∈ V , and detection time τ0 = 48 hours.5 Below, we perform several

sensitivity analyses to illustrate the flexibility of our framework and how it can be used to guide

policy making.

1. Varying survivability target. Figure 6 depicts the minimum required annual inventory cost as

a function of the survivability target. For example, for a 90% survivability target the annual

inventory budget needs to be about $77 million annually; if the survavibility target is set to

95%, the budget would need to be increased to $330 million, approximately. The curve in

Figure 6 also illustrates that increasing the survivability target beyond 90% requires a rather

steep cost increase. We can also interpret the curve as a Pareto frontier associated with the

cost-survivability tradeoff: the region left to the curve represents the achievable outcomes.

Figure 7 shows how much inventory and where it needs to be prepositioned for different

survivability targets. We obsvere that for low targets, storing small amounts of inventory at

the federal level, i.e., level 0, is sufficient. As the target increases, more inventory is required,

which is stored at the state (level 1) or MSA levels (level 2). Interestingly, predispensing

medical kits (level 3) is not cost-efficient in any of these cases.

5 For a discussion of anticipated detection times in case of an anthrax attack, see [43].
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Figure 7 Amount (y-axis) and location (x-axis) of prepositioned inventory for different survivability targets

{0.5,0.9,0.92,0.945}; at the x-axis, level 0 is federal, level 1 is state, level 2 is MSA, and level 3 is

predispensed medical kits in households.

# Cities = 1 # Cities = 2 # Cities = 3

# States = 1 $832 mil $1121 mil $1306 mil
# States = 2 $835 mil $1124 mil $1310 mil
# States = 3 $838 mil $1127 mil $1314 mil

Table 4 Minimum required annual costs for different attack scale parameters Γi.

2. Varying attack scale. We now explore different attack scale parameters. Table 4 and Figure

8 report the minimun required annual costs and optimal inventory amounts at each level,

under nine different cases: {1,2,3} states being attacked and each state having {1,2,3} cities

affected. Recall that the first parameter reflects the geographic complexity of the attack, and

the second parameter the magnitude of an attack within a state. For this particular setup,

the total cost is much more sensitive on the attack magnitude as compared with the attack

complexity, since the policymaker already needs to preposition a large quantity of MCMs at

the MSA level (level 2) in order to achieve the default survivability target of 0.94.

3. Varying detection time. Figure 9 shows the cost-survivability tradeoff for different detection

times, highlighting the importance of timely response mechanisms. In particular, if detection

infrastructure is able to detect an attack within 60 hours, approximately $350 million of
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at the x-axis, level 0 is federal, level 1 is state, level 2 is MSA, and level 3 is predispensed medical kits

in households.

annual inventory costs are needed for a 92.5% survivability target. For enhanced detection

infrastructure capable of detecting attacks within 24 hours, the corresponding annual costs

reduce to just over $23 million.
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Figure 9 Minimum required annual inventory costs for different survivability targets and detection times.
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6. Extensions and Concluding Remarks

In this paper, we presented a framework to tackle the problem of prepositioning MCM inventory to

build a cost-effective and responsive public health stockpile network for protection against bioter-

rorism attacks. Our framework captured many of the key drivers facing the CDC in maintaining the

Strategic National Stockpile, for example, holding costs, pooling, and responsiveness. Our method-

ology can be extended to capture additional SNS design considerations, or used in other supply

chain applications.

Additional SNS design considerations. During bioattacks, the delivery of shipped MCMs

to the public takes place at public dispensing facilities, called Point of Dispenses. CDC has identi-

fied that for certain cases, such as large-scale anthrax attacks, the POD dispensing capacity could

become a bottleneck in some locations. In our model, we have so far assumed no dispensing capac-

ity limitations. In particular, inventory shipped from node i to node j has the same efficacy (as

measured via the survival probability ρij), independent of the quantity. In the face of limited dis-

pensing capacity, efficacy of incremental shipments could indeed decrease. An interesting research

direction would be to extend our model to capture such capacity constraints. Moreover, it would

be useful to consider a formulation that allows POD capacity design as well, in conjunction with

inventory prepositioning decisions.

Another interesting direction for future research could be to allow for multiple types of MCMs,

for the same or different biothreats. In that case, our model could be used to guide the design of

the CDC’s overall portfolio and mix of MCMs in view of budgetary constraints.

Application to Supply Chain Design and Comparison with Stochastic Optimization.

The MCM inventory prepositioning problem we studied in this paper is essentially a two-stage

inventory allocation and shipment problem in view of demand surges. Such a model can be applied

to other domains of interest as well, for example, supply chain, manufacturing and distribution

networks. In these contexts, managers usually face the problem of maintaining appropriate inven-

tory safety stock levels across their networks to hedge against unforeseen disruptions to their usual

course of operation. These stocking decisions need to be made in conjunction with contingent ship-

ping policies, in a similar manner as in our model. Consequently, our model could be extended to

tackle problems in these domains as well.

In the aforementioned contexts, however, disruption patterns are not neccessarily adversarial (as

bioattacks are). A natural question to ask then is whether our robust optimization model would

be suitable, as opposed to a stochastic optimization approach. In Appendix D, we demonstrate

experimentally that if distributional information about the disruptions is imprecise, our robust

optimization approach remains suitable. Readers are referred to the appendix for more details.
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Appendix A: Proof of Proposition 1

Note that we can express ΩF
i (ξ

′
i, xi,x−i) as maxξ∈Ξi(ξ′i)

ri(ξ, xi,x−i), where

ri(ξ, xi,x−i) :=min
y,s

∑

k∈Vi

sk

subject to xi ≥
∑

j∈C(i)

yij

si +xi ≥
∑

j∈C(i)

yij + d̄i + d̂iξi

yP(k)k +xk ≥
∑

j∈C(k)

ykj , ∀k ∈ Vi \ {i}

yP(k)k + sk +xk ≥
∑

j∈C(k)

ykj + d̄k + d̂kξk, ∀k ∈ Vi \ {i}

y, s ≥ 0.

It is straightforward to check that the above optimization problem admits an optimal solution such

that si = (d̄i + d̂iξ
′
i −xi)

+ and
∑

j∈C(i) yij = (xi − d̄i − d̂iξ
′
i)

+. Also,

ri(ξ, xi +∆,x−i) = (ri(ξ, xi,x−i)−∆)+, ∀∆≥ 0. (18)

Another fact we will use is that

min
x≥0

1′x=K

n∑

i=1

(qi −xi)
+ = (1′q−K)+, ∀q∈R

n,K ≥ 0. (19)

Using all these properties we have

ΩF
i (ξ

′
i, xi,x−i) =(d̄i + d̂iξ

′
i −xi)

++max
ξ∈Ξi

min
{yij}j∈C(i) : yij≥0,

∑
j∈C(i) yij=(xi−d̄i−d̂iξ

′
i)

+

∑

j∈C(i)

rj(ξ, xj + yij ,x−j) (20a)

=(d̄i + d̂iξ
′
i −xi)

++max
ξ∈Ξi

min
{yij}j∈C(i) : yij≥0,

∑
j∈C(i) yij=(xi−d̄i−d̂iξ

′
i)

+

∑

j∈C(i)

(rj(ξ, xj,x−j)− yij)
+ (20b)

=(d̄i + d̂iξ
′
i −xi)

++



max
ξ∈Ξi

∑

j∈C(i)

rj(ξ, xj,x−j)− (xi − d̄i − d̂iξ
′
i)

+





+

(20c)

=(d̄i + d̂iξ
′
i −xi)

++



 max
ξC(i)∈projC(i)Ξi

max
ξ∈Ξj(ξj),

j∈C(i)

∑

j∈C(i)

rj(ξ, xj,x−j)− (xi − d̄i − d̂iξ
′
i)

+





+

(20d)

=(d̄i + d̂iξ
′
i −xi)

++



 max
ξC(i)∈projC(i)Ξi

∑

j∈C(i)

max
ξ∈Ξj(ξj)

rj(ξ, xj,x−j)− (xi − d̄i − d̂iξ
′
i)

+





+

(20e)
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=(d̄i + d̂iξ
′
i −xi)

++



 max
ξC(i)∈projC(i)Ξi

∑

j∈C(i)

ΩF
j (ξj, xj ,x−j)− (xi − d̄i − d̂iξ

′
i)

+





+

(20f)

=



d̄i + d̂iξ
′
i −xi + max

ξC(i)∈projC(i)Ξi

∑

j∈C(i)

ΩF
j (ξj, xj,x−j)





+

. (20g)

Equality (20a) follows from the definition of ri; (20b) follows from (18); (20c) follows from (19);

(20d) is an equivalent way of writing the maximization operator; exchanging the inner maximization

and summation operators is allowed since rj only depends on {ξk, k ∈ Vj}, leading to (20e); (20f)

follows from the definition of rj. Equality (20g) holds by considering the fact that ΩF
j ≥ 0 for any

j ∈ C(i), and checking two cases: one with d̄i + d̂iξ
′
i −xi < 0, and the other with d̄i + d̂iξ

′
i −xi ≥ 0.

To show convexity of ΩF
i (ξ

′
i, xi,x−i), we use an induction argument on the level of node i. First

note that for i∈ V L, we have ΩF
i (ξ

′
i, xi,x−i) = (d̄i + d̂iξ

′
i −xi)

+, which is convex and non-decreasing

in ξ′
i. For i in any other level of the network, given the result we just proved (20g), it suffices

to show maxξC(i)∈projC(i)Ξi(ξ′i)
∑

j∈C(i)Ω
F
j (ξj, xj,x−j) is convex in ξ′

i. Since ΩF
j (ξj, xj,x−j) is convex

in ξj (by the induction hypothesis), maximum is obtained at the extreme points. Given that

projC(i)Ξi(ξ
′
i) = {ξC(i) : ξj ∈ [0, ξ′

i],1
′ξC(i) ≤ Γiξ

′
i} and ΩF

j is non-decreasing in ξj, we can equivalently

write: max|S|=Γi,S⊆C(i)

{∑
j∈S Ω

F
j (ξ

′
i, xj,x−j)+

∑
j∈C(i)\S ΩF

j (0, xj,x−j)
}
, which is convex and non-

decreasing in ξ′
i. �

Appendix B: Proof of Proposition 2

For the sake of reaching a contradiction, suppose there exists some extreme point ξ ∈ ext(Ξ), such

that its kth entry is fractional, ξk ∈ (0,1). Note that by definition of Ξ, ξ0 = 1, and thus k 6=0. Let

p=P(k) be its parent, i.e., k ∈ C(p). Then it must hold that 0<
∑

i∈C(p) ξi ≤ Γpξp, and thus Γp > 0

and ξp > 0.

Suppose ξp = 1. Then the above condition becomes 0 <
∑

i∈C(p) ξi ≤ Γp. Furthermore, ξi ∈ [0,1]

∀i ∈ C(p). Now consider the |C(p)|-dimensional polytope {γ :
∑

i∈C(p) γi ≤ Γp, γi ∈ [0,1]∀i ∈ C(p)},

which can be readily seen to have binary extreme points. Let these extreme points be {γj, j =

1, . . . ,N}. Since ξC(p) belongs to this polytope, we can express it as

ξC(p) =
N∑

j=1

αjγ
j, where

N∑

j=1

αj = 1, αj ≥ 0,∀j ∈ {1, . . . ,N}.

In particular, for those i∈ C(p) that ξi > 0, we have:

N∑

j=1

αjγ
j
i = ξi ⇐⇒

N∑

j=1

αj
1

ξi
γj

i =1. (21)

Now we use each γj to construct a vector ξj ∈ Ξ and show that we can write ξ as a convex com-

bination of {ξj, j = 1, . . . ,N}, and ξ 6= ξ
j,∀j ∈ {1, . . . ,N}—which will contradict our assumptions.
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We construct ξj, j =1, . . . ,N , as follows:

ξ
j
V \Vp

= ξV \Vp
,

ξj
p = ξp,

ξ
j
C(p) = γj,

ξ
j
Vi\{i} =

{
1
ξi
ξVi\{i} if ξi > 0 and ξj

i =1

0 otherwise
, ∀i∈ C(p).

It is straightforward to verify that for all j = 1, . . . ,N , ξj ∈ Ξ and ξ
j 6= ξ. We next argue that

∑
j=1,...,N αjξ

j = ξ by checking component-wise. This is straightforward for components V \ Vp,

p, and C(p). For any l ∈ Vi \ {i} for i ∈ C(p) such that ξi = 0, we have that ξj
l = ξl = 0 for all

j =1, . . . ,N . Finally, for any l ∈ Vi \ {i} for i∈ C(p) such that ξi > 0, we have that

N∑

j=1

αjξ
j
l =

∑

j:ξj
i
=1

αjξl/ξi +
∑

j:ξj
i
=0

0 =
N∑

j=1

αjξl/ξiξ
j
i =

N∑

j=1

(
αjξ

j
i /ξi

)
ξl =

N∑

j=1

(
αjγ

j
i /ξi

)
ξl
(21)
= ξl.

Consequently, ξ cannot be an extreme point if ξp = 1. Since ξp > 0, we must have ξp ∈ (0,1). We

can propagate this argument upstream to eventually show that ξ0 ∈ (0,1), which contradicts that

ξ0 = 1 for all ξ ∈Ξ, and the proof is complete. �

Appendix C: Proof of Proposition 3

We proceed by checking two cases: αi < 1 and αi =1.

Case αi < 1:

Let {ȳj1, s̄j1} ∈ Q
∗

j1. Define {ȳj0, s̄j0} such that ȳj0(0) = ȳj1(0), s̄j0
k (0) = s̄j1

k (0) ∀k ∈ Vj \ {j},

s̄j0
j (0) = (

∑
k∈C(j) ȳ

j0
jk(0) + d̄i − xj − αig

0
j )

+. We will show that {ȳj0, s̄j0} ∈ Q
⋆
j0, thus showing the

result.

For (I), because Ξj(0) contains only a single value 0, there is nothing to check.

For (II), if the if-condition holds at node j, then ȳj0
jk(0) = ȳj1

jk(0) = ΩA
k (0, xk,x−k)∀k ∈ C(j) and

xj + αig
0
j ≥ d̄j +

∑
k∈C(j)Ω

A
k (0, xk,x−k) = d̄j +

∑
k∈C(j) ȳ

j1
jk(0) =⇒ s̄j0

j (0) = 0; (IIa) and (IIb) hold

for other nodes by construction. If the if-condition holds for any node other than j, (II) holds for

{ȳj0, s̄j0} since (II) holds for {ȳj1, s̄j1}.

For (III), (IIIa) does not need to be checked since Ξj(0) contains only 0, and (IIIc) holds by con-

struction. For (IIIb), if s̄j0
j (0) = (

∑
k∈C(j) ȳ

j0
jk(0)+ d̄i −xj −αig

0
j )

+ > 0, then s̄j0
j (0) =

∑
k∈C(j) ȳ

j0
jk(0)+

d̄i −xj −αig
0
j =⇒ s̄j0

j (0)+xj +αig
0
j =

∑
k∈C(j) ȳ

j0
jk(0)+ d̄i. If ∃k ∈ Vj \{j} such that s̄j1

k (0)> 0, then

the equality of (IIIb) holds for all nodes V +
j (s̄j0) \ {j}. For node j, we have xj + αig

0
j + s̄j1

j (1) =
∑

k∈C(j) ȳ
j1
jk(1) + d̄j + d̂j

IIIa
=⇒ xj + αig

0
j + s̄j1

j (1) =
∑

k∈C(j) ȳ
j1
jk(0) + d̄j + d̂j =⇒ xj + αig

0
j + s̄j1

j (1) =
∑

k∈C(j) ȳ
j0
jk(0)+ d̄j + d̂j. But since s̄j1

j (1)≥ d̂j, we have xj +αig
0
j ≤

∑
k∈C(j) ȳ

j0
jk(0)+ d̄j, then by the

definition of s̄j0
j (0), xj +αig

0
j + s̄j0

j (0) =
∑

k∈C(j) ȳ
j0
jk(0)+ d̄j. (IIIc) holds by definition.
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To show constraint satisfaction, i.e., {ȳj0, s̄j0} ∈ Qj(0, xj,x−j), we know that all constraints that

do not involve s̄j0
j (0) are satisfied by the feasibility of {ȳj1, s̄j1}. Constraints involving s̄j0

j (0), i.e.,

s̄j0
j (0)+xj +αig

0
j ≥

∑
k∈C(j) ȳ

j0
jk(0)+ d̄j and s̄j0

j (0)≥ 0, are satisfied by the definition of s̄j0
j (0).

To show optimality of {ȳj0, s̄j0}, since it satisfies (III), this holds for all k ∈ V +
j (s̄j0):

ȳj0
P(k)k(0) + xk + αig

0
j1k=j + s̄j0

k (0) =
∑

m∈C(k) ȳ
j0
km(0) + d̄k. Let V ⋆

j (s̄
j0) := {m ∈ V \ V +

j (s̄j0) : ∃k ∈

V +
j (s̄j0) s.t. m ∈ C(k),ΩA

m(0, xm,x−m)> 0}.

Thus (using shorthand V + for V +
j (s̄j0) and V ⋆ for V ⋆

j (s̄
j0)),

∑

k∈V +

ȳj0
P(k)k(0)+

∑

k∈V +

xk +αig
0
j +

∑

k∈V +

s̄j0
k (0) =

∑

k∈V +

∑

m∈C(k)

ȳj0
km(0)+

∑

k∈V +

d̄k

(IIa)
=⇒

∑

k∈V +

ȳj0
P(k)k(0)+

∑

k∈V +

xk +αig
0
j +

∑

k∈V +

s̄j0
k (0) =

∑

k∈V +

ȳj0
P(k)k(0)+

∑

k∈V ⋆

ȳj0
P(k)k(0)+

∑

k∈V +

d̄k

=⇒
∑

k∈V +

s̄j0
k (0) =

∑

k∈V +

d̄k −
∑

k∈V +

xj −αig
0
j +

∑

k∈V ⋆

ȳj0
P(k)k(0)

=⇒
∑

k∈V +

s̄j0
k (0) =

∑

k∈V +

d̄k −
∑

k∈V +

xj −αig
0
j +

∑

k∈V ⋆

ΩA
k (0, xk,x−k) (optimality of ȳj1)

=⇒
∑

k∈Vj

s̄j0
k (0) =

∑

k∈V +

d̄k −
∑

k∈V +

xk −αig
0
j +

∑

k∈V ⋆

ΩA
k (0, xk,x−k).

Since V \{∪k∈V ⋆Vk ∪V +} is downstream from the nodes in ∪k∈V ⋆Vk ∪V +, the total demand loss in

Vj, Ω
A
j (0, xj,x−j), is no less than the demand loss in the subset of nodes ∪k∈V ⋆Vk ∪V +, which is in

turn lowerbounded by
∑

k∈V ⋆ ΩA
k (0, xk,x−k) +

∑
k∈V + d̄k −

∑
k∈V + xk −αig

0
j . Therefore, {ȳj0, s̄j0}

achieves the optimal cost, {ȳj0, s̄j0} ∈ Q
⋆
j0.

Case αi =1:

By the definition of αi, we have xi ≥ d̄i +
∑

j∈C(i)Ω
A
j (0, xj,x−j). Since {ȳj0, s̄j0} and {ȳj1, s̄j1}

satisfy (II), ȳj0
km(0) = ȳj1

km(0) =ΩA
m(0, xm,x−m) for (k,m)∈ Tj, j ∈ C(i), thus ȳj0 = ȳj1. Also, s̄j0

k (0) =

0 and s̄j1
k (0) = 0 ∀k ∈ Vj \{j}, so s̄j0

k (0) = s̄j1
k (0) ∀k ∈ Vj \{j}, j ∈ C(i), this concludes the proof. �

Appendix D: Comparison with Stochastic Optimization

We compare our robust optimization solution approach with sample average approximation (SAA),

which is a classical stochastic optimization solution approach. For a fair comparison, we will use

mis-specified distributional information to calibrate both solution methods. We find that as mis-

specification becomes more acute, our method outperforms SAA. We next describe the experimen-

tal setup in detail.

We use the same network structure as in Section 4.2. An uncertain scenario is chosen as follows.

First, nature decides the number of level 1 nodes to impact, which we denote by γ. This random

variable is described by a discrete Weibull distribution normalized on γ = 1, . . . ,4, parameterized

by (p,β): P[γ = x] = (1−p)x
β

−(1−p)(x+1)β

(1−p)−(1−p)5β
. Then, nature decides which level 1 nodes to affect: the
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probability of picking i on the first run is increasing in the average demand of the node i. In this

experiment, we let it be pi =
∑

j∈C(i) pj
∑

j∈VD
pj
, and we will define pj shortly for the level 2 nodes. If there is

any remaining budget, nature will move on to pick the next target with the probability proportional

to its corresponding pi =
∑

j∈C(i) pj. For each level 1 node picked, we assume that nature only picks

one level 2 node. The probability of picking such node is proportional to pj, which is increasing in

the average demand, which we denote by µi: pi =
µ2
i∑

i∈VD
µ2
i

. Finally, when a level 2 node sees high

demand, the exact demand magnitude is characterized by a normal distribution with mean and

standard deviation (µi, σi).

The SAA solution approach is based on the following formulation:

min
x,f ,s

h′x+
1

N

N∑

k=1

[1′sk(dk)+ c′fk(dk)]

subject to sk
i (d

k)+
∑

j:(j,i)∈E

fk
ji(d

k)+xi ≥
∑

j:(i,j)∈E

fk
ij(d

k)+ dk
i , ∀i∈ V, k= 1, . . . ,N

∑

j:(j,i)∈E

fk
ji(d

k)+xi ≥
∑

j:(i,j)∈E

fk
ij(d

k), ∀i∈ V, k=1, . . . ,N

x, fk, sk ≥ 0, k= 1, . . . ,N.

The samples used are based on a presumed distribution (parameterized by (pf , βf) and {µf
i , σ

f
i }i).

We then evaluate the solution by computing the cost under a potentially different actual distribu-

tion, parameterized by (pa, βa) and {µa
i , σ

a
i }i. The demand for node i, µa

i , is uniformly distributed

between [0.5,1.5]×µf
i , and the standard deviation is scaled accordingly. We consider twelve differ-

ent forecast probability distributions, parameterized by βf ∈ {1,2,3,4} and pf ∈ {0.3,0.6,0.9}. We

then evaluate the SAA optimal solution against these twelve probability distributions.

We then use our robust optimization model, as follows. We construct the uncertainty set by

letting the attack scale Γi =2 for the level 1 nodes, and demand shock d̂j = µi + zσi. We test with

z ∈ {1,2,3} and present the results for z = 2 (the other two are not qualitatively different).

Figure 10 reports the obtained costs under both approaches. We observe that the robust solutions

are less susceptible to probability distribution mis-specifications, unlike the stochastic optimization

solutions, which are more volatile. A closer look at the cost breakdown reveals that the volatility

is due entirely to the demand loss penalty.
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Stochastic Robust Num. of Instances
mean cv (%) mean cv (%)

Exact 8,852 50 10,007 42 12
Close 9,507 49 10,117 35 86
Far 14,493 65 11,371 36 46
Overall 11,045 63 10,508 37 144

Table 5 Mean and coefficient of variation for different instances. “Exact”: forecast and actual demand

distributions are identical; “close”: absolute difference in β is less than or equal to 2, and the absolute difference in

p is less than or equal to 0.3; “far”: the rest.
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Figure 10 Objective values in 144 instances when evaluating the stochastic and robust solutions against actual

probability distribution (sorted from highest to lowest SAA total costs).


