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ABSTRACT
The concept of the optimal partition was originally introduced for linear optimiza-

tion and linear complementarity problems and subsequently extended to semidef-

inite optimization. For linear optimization and su�cient linear complementarity

problems, from a central solution su�ciently close to the optimal set, the opti-

mal partition and a maximally complementary optimal solution can be identified in

strongly polynomial time. In this paper, we consider the identification of the optimal

partition of semidefinite optimization, for which we provide an approximation from

a bounded sequence of solutions on, or in a neighborhood of the central path. Using

bounds on the magnitude of the eigenvalues we identify the subsets of eigenvectors

of the interior solutions whose accumulation points are orthonormal bases for the

subspaces of the optimal partition. The magnitude of the eigenvalues of an interior

solution is quantified using a condition number and an upper bound on the distance

of an interior solution to the optimal set. We provide a measure of proximity of the

approximation obtained from the central solutions to the true optimal partition of

the problem.

KEYWORDS
Semidefinite optimization; Optimal partition; Maximally complementary optimal

solution; Degree of singularity

1. Introduction

Semidefinite optimization (SDO) is known as a generalization of linear optimization
(LO), where the nonnegative orthant is substituted by the cone of symmetric positive
semidefinite matrices. In SDO, one minimizes/maximizes the linear objective function

C •X := trace(CX),

where C and X are n ⇥ n symmetric matrices, over the intersection of the positive
semidefinite cone and a set of a�ne constraints. Mathematically, an SDO problem is
written as

(P ) zp⇤ := min
�
C •X | Ai

•X = bi, i = 1, . . . ,m, X ⌫ 0
 
,
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where Ai for i = 1, . . . ,m are n⇥ n symmetric matrices, b 2 Rm, and X 2 Sn+, where
Sn+ denotes the cone of n ⇥ n positive semidefinite matrices. The dual SDO problem
is given by

(D) zd⇤ := max

⇢
bT y |

mX

i=1

yiA
i + S = C, S ⌫ 0, y 2 Rm

�
.

Let P and D denote the primal and dual feasible sets, respectively, as follows

P :=
�
X | Ai

•X = bi, i = 1, . . . ,m, X ⌫ 0
 
,

D :=

⇢
(y, S) |

mX

i=1

yiA
i + S = C, S ⌫ 0

�
.

In light of this notation, the primal and dual optimal sets are defined as

P
⇤ :=

�
X | X 2 P, C •X = zp⇤

 
,

D
⇤ :=

n
(y, S) | (y, S) 2 D, bT y = zd⇤

o
.

Throughout this paper, the following assumptions are made:

Assumption 1. Ai for i = 1, . . . ,m are linearly independent.

Assumption 2. The interior point condition holds, i.e., there exists (X�, y�, S�) 2

P ⇥D with X�, S�
� 0.

Assumption 1 guarantees that y is uniquely determined for a given dual solution S.
Assumption 2 ensures that the primal and dual optimal sets are nonempty, bounded,
and that strong duality holds1. The interior point condition may be assumed w.l.o.g.,
since any SDO problem can be cast into a self-dual embedding format, for which the
interior point condition always holds, see de Klerk et al. (1997) for details.

SDO problems are frequently used in many applications, e.g., control theory, struc-
tural optimization, statistics, robust optimization, eigenvalue optimization, pattern
recognition, and combinatorial optimization. Second-order conic optimization (SOCO)
problems can be embedded in SDO formulation. See e.g., Vandenberghe and Boyd
(1996) for a detailed description of the problems. Analogous to LO, using interior
point methods (IPMs), SDO problems can be solved in polynomial time, though they
require significantly more computational e↵ort per iteration. The extension of IPMs
from LO to SDO was pioneered by Nesterov and Nemirovskii (1994), and Alizadeh
(1991). The main idea of primal-dual path following IPMs is to follow the central path,

1By strong duality we mean that both the primal and dual problems have optimal solutions with equal
objective values, see e.g., Theorem 5.81 in Bonnans and Shapiro (2000).
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which is defined as the set of solutions of

Ai
•X = bi, i = 1, . . . ,m,

mX

i=1

Aiyi + S = C,

XS = µIn,

X, S ⌫ 0,

(1)

where XS = µIn is called the centrality condition, and In denotes the identity matrix
of size n. For any given µ > 0, the central solution (Xµ, yµ, Sµ) to this system exists,
and it is uniquely defined under the interior point condition and the linear indepen-
dence of Ai for i = 1, . . . ,m, see Theorem 3.1 in de Klerk (2006). For 0  µ  µ̄, where
µ̄ > 0, the set of solutions of (1) is bounded, see Lemma 3.2 in de Klerk (2006), and
the trajectory of the central solutions has accumulation points in the relative interior
of the optimal set (Goldfarb and Scheinberg 1998; de Klerk et al. 1997; Luo et al.
1998). A proof was given by Halická et al. (2002) for the fact that the central path
converges to a maximally complementary optimal solution.

Definition 1.1 (Definition 2.7 in de Klerk (2006)). Let (X⇤, y⇤, S⇤) 2 P
⇤
⇥D

⇤. Then
(X⇤, y⇤, S⇤) is a maximally complementary optimal pair if rank(X⇤ + S⇤) is maximal
over the optimal set.

Definition 1.2 (Definition 2.7 in de Klerk (2006)). A maximally complementary pair
(X⇤, y⇤, S⇤) is strictly complementary if X⇤ + S⇤

� 0.

The analyticity and limiting behavior of the central path for SDO have been extensively
studied in the literature. Luo et al. (1998) established the superlinear convergence of
an IPM for SDO under the strict complementarity assumption and a condition for the
size of the neighborhood of the central path. The convergence of the central path to
the so called analytic center of the optimal set was established by Luo et al. (1998)
and de Klerk et al. (1997) under the strict complementarity condition. Goldfarb and
Scheinberg (1998) showed, under the strict complementarity and primal-dual nonde-
generacy conditions, that the first order derivatives of the central path converge as
µ ! 0. However, the first order derivatives may be unbounded if strict complemen-
tarity fails to hold. Using the strict complementarity condition only, Halická (2002)
showed the extension of the analyticity of the central path to µ = 0.

1.1. Motivation and related works

In case of degeneracy, even for LO, the condition number of the Newton system of
search directions goes to infinity, leading to ill-posed systems during the final itera-
tions of IPMs (Güler et al. 1993). It would be helpful, like in LO and linear com-
plementarity problem (LCP) (Roos et al. 2005; Illés et al. 2000), if we could avoid
this ill-conditioning, by switching over to a rounding procedure, when µ is su�ciently
small. This motivates us to study the identification of the optimal partition.

The notion of the optimal partition was originally introduced for LO and LCPs. Ye
(1992) proposed a finite termination strategy for IPMs which generates a strictly com-
plementary optimal solution from a primal-dual solution su�ciently close to the opti-
mal set. Under the interior point condition as well as the integrality of the data, Roos
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et al. (2005) presented a rounding procedure which uses the optimal partition infor-
mation to identify a strictly complementary optimal solution. Under the same condi-
tions, Illés et al. (2000) considered the identification of the optimal partition for suf-
ficient LCPs and proposed a strongly polynomial rounding procedure to a maximally
complementary optimal solution, from a central solution su�ciently close to the opti-
mal set. The concept of the optimal partition was extended to SDO by Goldfarb and
Scheinberg (1998) and to general linear conic optimization by Yildirim (2004). Bonnans
and Ramı́rez (2005) established another algebraic definition of the optimal partition
for SOCO. Peña and Roshchina (2013) extended the idea of the complementarity par-
tition for a linear system to a homogeneous convex conic system formed by regular
closed convex cones. Recently, Terlaky and Wang (2014) have studied the identification
of the optimal partition for SOCO. The optimal partition provides unique informa-
tion about the optimal set of an SDO problem, regardless of nondegeneracy and strict
complementarity conditions.

1.2. Contributions

In this paper, we consider the identification of the optimal partition for an SDO prob-
lem. As an extension from LO, the optimal partition of SDO is a 3-tuple of mutually
orthogonal subspaces B, T ,N ✓ Rn such that B + T + N = Rn. Our goal is to ap-
proximate the optimal partition of an SDO problem using the limiting behavior of
the central path and a bounded sequence of interior solutions in a neighborhood of
the central path. We show how the complexity of approximating the optimal parti-
tion depends on condition numbers of the problem. We quantify the magnitude of the
eigenvalues of an interior solution (a central solution, or a solution in a neighborhood
of the central path) by using a condition number and an upper bound on the dis-
tance of an interior solution to the optimal set. In contrast to LO, there are certain
instances of SDO for which the condition number is doubly exponentially small. In
Theorems 3.8, 3.9, and 4.3 we use bounds on the eigenvalues to identify the subsets of
the eigenvectors of the interior solutions whose accumulation points form orthonormal
bases for the subspaces of the optimal partition. This is referred to as an approximation

of the optimal partition. We show that even approximation of the optimal partition
is notably more expensive than the identification of the optimal partition for LO. Fi-
nally, in Theorems 3.11 and 3.13 we evaluate the proximity of the approximation of
the optimal partition to the true optimal partition.

1.3. Organization of the paper

The rest of this paper is organized as follows. In Section 2, we review the concepts of the
optimal partition and complementarity. Our main results are presented in Sections 3
and 4. In Section 3, we analyze the magnitude of the eigenvalues of the solutions
on the central path based on a condition number and error bound result for linear
matrix inequalities (LMIs). The latter bound enables us to determine the subsets of
the eigenvectors of the central solutions whose accumulation points form orthonormal
bases for the subspaces of the optimal partition. Furthermore, we measure the accuracy
of the approximation of the optimal partition. In Section 4, we extend the identification
results to solutions in a neighborhood of the central path and provide an iteration
complexity bound for the identification of the above sets of eigenvectors. Finally, our
conclusions and directions for future research are presented in Section 5.
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1.4. Notation

Throughout this paper, Sn denotes the space of symmetric matrices of size n. We
adopt the notation (.; .; . . . ; .) to indicate the concatenation of column vectors. An
arbitrary optimal solution is denoted by (X̃, ỹ, S̃), and any maximally complementary
optimal solution is indicated by superscript ⇤. Furthermore, the limit point of the
central path and the analytic center of the optimal set are denoted by (X⇤⇤, y⇤⇤, S⇤⇤)
and (Xa, ya, Sa), respectively. The subscript [i] in our notation means the ith largest
component of a vector. For instance, �[i](X) denotes the ith largest eigenvalue of X so
that

�[1](X) � �[2](X) � . . . � �[n](X).

In particular, �min(X) := �[n](X) and �max(X) := �[1](X) stand for the minimum
and maximum eigenvalues of X, respectively. Associated with a symmetric matrix
svec : Sn ! Rn(n+1)/2 is a linear bijection which stacks the upper triangular part into
a vector by multiplying the o↵-diagonal entries of the symmetric matrix by

p
2, i.e.,

svec(X) :=
�
X11,

p
2X12, . . . ,

p
2X1n, X22,

p
2X23, . . . ,

p
2X2n, . . . , Xnn

�T
,

and smat : Rn(n+1)/2
! Sn denotes the inverse of svec(.). Note that svec(.) is a linear

isometry between Sn and Rn(n+1)/2. The kernel and range of a matrix are denoted
by Ker(.) and R(.), respectively, and ri(.) stands for the relative interior of a convex
set. For a linear subspace L, L? denotes the orthogonal complement of L. Finally, the
Frobenius norm of a matrix is denoted by k.k, and k.k2 serves as the l2 norm and the
induced 2-norm for the vectors and matrices, respectively.

2. The optimal partition for SDO

Consider the optimality conditions for (P ) and (D). Since the interior point condition
holds, for optimality the KKT conditions (Nocedal and Wright 2006) are necessary
and su�cient for (P ) and (D), which are written as

Ai
•X = bi, i = 1, . . . ,m,

mX

i=1

Aiyi + S = C,

XS = 0, X, S ⌫ 0,

(2)

where XS = 0 is referred to as the complementarity condition. A solution (X, y, S)
which satisfies XS = 0 is called complementary.

Note that strict complementarity may fail in SDO, i.e., an SDO problem might have
no strictly complementary optimal solution. See de Klerk (2006) for further details. A
maximally complementary optimal pair can be equivalently defined as a primal-dual
optimal solution in the relative interior of the optimal set. As a result, all X⇤

2 ri(P⇤)
have the same range space. Analogously, all S⇤ have identical range spaces, where
(y⇤, S⇤) 2 ri(D⇤), see e.g., Lemma 2.3 in de Klerk (2006) or Lemma 3.1 in Goldfarb
and Scheinberg (1998).
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Let B := R(X⇤) and N := R(S⇤), where (X⇤, y⇤, S⇤) is a maximally complementary
optimal solution. We define nB := dim(B) and nN := dim(N ). Then, it follows from
the above equivalence, that R(X̃) ✓ B and R(S̃) ✓ N for all (X̃, ỹ, S̃) 2 P

⇤
⇥ D

⇤.
By the complementarity condition, the subspaces B and N are orthogonal, and this
implies that nB + nN  n. In case of strict complementarity, the subspaces B and N

span Rn. Otherwise, there exists a subspace T , which is the orthogonal complement
to B +N , i.e., Rn is partitioned into three mutually orthogonal subspaces B, N , and
T . In a similar manner, we define nT := dim(T ).

Definition 2.1. The partition (B, T , N ) of Rn is called the optimal partition of an
SDO problem.

Consider a maximally complementary optimal solution (X⇤, y⇤, S⇤). By the comple-
mentarity condition, X⇤ and S⇤ commute, and thus they have a common eigenvector
basis Q⇤, i.e., we can represent X⇤ and S⇤ as

X⇤ = Q⇤⇤(X⇤)(Q⇤)T , S⇤ = Q⇤⇤(S⇤)(Q⇤)T ,

where ⇤(X⇤) and ⇤(S⇤) are diagonal matrices containing the eigenvalues of X⇤ and
S⇤, respectively. Then we have

R(X⇤) = R(Q⇤⇤(X⇤)), R(S⇤) = R(Q⇤⇤(S⇤)),

which implies that the range spaces are spanned by the eigenvectors associated with
the positive eigenvalues. In particular, the columns of Q⇤ corresponding to the positive
eigenvalues of X⇤ can be chosen as an orthonormal basis for B. In fact, any matrix with
orthonormal columns which span B would be an orthonormal basis for B. Analogously,
we can choose the columns of Q⇤ corresponding to the positive eigenvalues of S⇤ as
an orthonormal basis for N .

Remark 1. If the interior point condition fails for either (P ) or (D), but a primal-
dual optimal solution exists, and the duality gap is 0, then the optimal partition of
(P ) and (D) can be recovered from the optimal partition of the problem in self-dual
embedding format, see de Klerk et al. (1998).

Let Q := (QB, QT , QN ) be an orthonormal basis partitioned according to B, T , and
N . Now, the following theorem is in order.

Theorem 2.2 (Theorem 2.7 in de Klerk (2006)). For every primal-dual optimal so-

lution (X̃, ỹ, S̃) 2 P
⇤
⇥D

⇤
we can represent X̃ and S̃ as

X̃ = QBUX̃QT
B , S̃ = QNUS̃Q

T
N ,

where UX̃ 2 SnB
+ and US̃ 2 SnN

+ . If nB > 0 and X⇤
2 ri(P⇤), then there exists UX⇤ � 0.

Similarly, if nN > 0 and (y⇤, S⇤) 2 ri(D⇤), then there exists US⇤ � 0.

Notice the necessity of the condition nB > 0 or nN > 0 in Theorem 2.2. For instance,
if nB = 0, then we have P

⇤ = ri(P⇤) = {0}, which implies UX⇤ = 0.

Remark 2. By the interior point condition, at least one of nB or nN has to be positive.
In fact, if X⇤ = 0 is the unique primal optimal solution of (P ), then any dual feasible
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solution is also dual optimal. Therefore, by the interior point condition, there exists
a dual optimal solution (y⇤, S⇤) where S⇤ is positive definite. Similarly, for a unique
dual optimal solution (y⇤, S⇤) with S⇤ = 0 there exists a primal optimal solution X⇤

which is positive definite. Consequently, when either nB = 0 or nN = 0 holds, then
there exists an optimal solution which is strictly complementary.

An orthogonal transformation of (X⇤, y⇤, S⇤) 2 ri(P⇤
⇥D

⇤) with respect to Q reveals
the optimal partition as

QTX⇤Q =

0

@
UX⇤ 0 0
0 0 0
0 0 0

1

A , QTS⇤Q =

0

@
0 0 0
0 0 0
0 0 US⇤

1

A ,

where UX⇤ � 0 and US⇤ � 0 if nB, nN > 0. As a result of Theorem 2.2 we have

QT
T [N X̃QT [N = 0, 8 X̃ 2 P

⇤,

QT
B[T S̃QB[T = 0, 8 (ỹ, S̃) 2 D

⇤,
(3)

where QT [N := (QT QN ), and QB[T := (QB QT ).

Remark 3. From now on, unless stated otherwise, we use a fixed orthonormal basis
Q both to represent the optimal solutions and to make an orthogonal transformation
with.

Let �B and �N denote the set of all orthonormal bases for B and N , respectively. The
following lemma is in order.

Lemma 2.3. The sets �B and �N are compact.

Proof. If B = {0}, then the lemma holds trivially. Hence, we can assume that B 6= {0}.
Then it is known that for a given subspace B, any two orthonormal bases QB and Q̄B
are related by QBU = Q̄B for some orthogonal matrix U 2 RnB⇥nB , see e.g., Lemma
2.4 in de Klerk (2006). The result follows by noting that the set of orthogonal matrices
is compact. The compactness of �N follows analogously.

The optimal partition plays a central role in the parametric and sensitivity analysis
of SDO problems, see e.g., Goldfarb and Scheinberg (1999) and Yildirim (2004).

3. On the identification of the optimal partition along the central path

In this section, we provide a characterization of the optimal partition using the eigen-
vectors of a central solution, when µ is su�ciently close to 0. Recall that the central
path for (P ) and (D) is defined by (1), and assume that QB and QN are known.
Consider the orthogonal transformation of Xµ with respect to Q denoted by

X̂µ :=

0

@
X̂µ

B X̂µ
BT X̂µ

BN
X̂µ

T B X̂µ
T X̂µ

T N
X̂µ

NB X̂µ
NT X̂µ

N

1

A , (4)
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where X̂µ := QTXµQ. The orthogonal transformation of Sµ is defined analogously.
Since the central path converges to a maximally complementary optimal solution, from
the orthogonal transformation in (4) we have

lim
µ!0

X̂µ
B = UX⇤⇤ , lim

µ!0
Ŝµ
N = US⇤⇤ ,

and

lim
µ!0

QT
T [NXµQT [N = 0, lim

µ!0
QT

B[T S
µQB[T = 0,

where X̂µ
B = QT

BX
µQB and Ŝµ

N = QT
NSµQN , see (3). We define a condition number

and employ an error bound result for LMIs to derive bounds on the magnitude of
vanishing blocks of X̂µ and Ŝµ as µ ! 0.

3.1. Bounds on Ŝµ
B and X̂µ

N

To derive bounds on Ŝµ
B and X̂µ

N , we define a condition number � as

� := min{�B,�N }, (5)

where

�B :=

8
>>><

>>>:

max
X̃2P⇤

�min(Q
T
BX̃QB)

= max
Q̄B2�B

max
X̃2P⇤

�min(Q̄
T
BX̃Q̄B), if nB > 0,

1, if nB = 0,

(6)

�N :=

8
>>><

>>>:

max
(ỹ,S̃)2D⇤

�min(Q
T
N S̃QN )

= max
Q̄N2�N

max
(ỹ,S̃)2D⇤

�min(Q̄
T
N S̃Q̄N ), if nN > 0,

1, if nN = 0.

(7)

The condition number � is indeed a generalization of the analogous condition number
from LO, as introduced by Ye (1994).

Lemma 3.1. The condition number � is positive.

Proof. By the interior point condition, P⇤
⇥ D

⇤ is nonempty and compact. Thus, �
is well-defined by Remark 2. Assume that nB > 0. Then there exists X̆ 2 P

⇤ so that
�min(QT

BX̆QB) > 0. By the compactness of P⇤ and the continuity of the eigenvalues,
there exists X̄ 2 P

⇤ so that

max
X̃2P⇤

�min(Q
T
BX̃QB) = �min(Q

T
BX̄QB) � �min(Q

T
BX̆QB) > 0,

which implies that �B > 0. A similar argument can be made to show that �N > 0 if
nN > 0. Consequently, it holds that � > 0.
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Remark 4. In Appendix A, we provide a positive lower bound on the condition
number � as

� � min

(
1

rP⇤
Pm

i=1 kA
ik
,

1

rD⇤

)
,

where

log2(rP⇤) = (L+ 2)
⇣
max{n, 3}(6n2 + 2n+m)

⌘5n2+2m
,

log2(rD⇤) = (L+ 2)
⇣
max{n, 3}(7n2 + 2n+ 2m)

⌘6n2+m
,

in which L is the binary length of the largest absolute value of the input data, when
the problem is given by integers. See Lemma A.2 for the proof.

For LO, the condition number � may be in the order of 2�L. However, there are
instances of SDO for which � is doubly exponentially small, as the following example
illustrates.

Example 3.2. Consider Khachiyan’s example which is adopted from Ramana (1997):

max y1

s.t. Gi(y) :=

✓
y1 2yi
2yi yi+1

◆
⌫ 0, i = 1, . . . , m̄,

ym̄+1  1.

This problem can be represented in dual form (D) if we define

A1 =

✓
�1 �2
�2 0

◆
�

✓
�1 0
0 0

◆
� . . .�

✓
�1 0
0 0

◆
� 0,

Ai+1 = 02(i�1)⇥2(i�1) �

0

BB@

0 0 0 0
0�1 0 0
0 0 0 �2
0 0 �2 0

1

CCA� 0(2(m̄�i)�1)⇥(2(m̄�i)�1), i = 1, . . . , m̄� 1,

Am̄+1 = 02(m̄�1)⇥2(m̄�1) �

✓
0 0
0�1

◆
� 1,

C = 02m̄⇥2m̄ � 1,

b = (1,0)T ,

where m = m̄+ 1, n = 2m̄+ 1, and the direct sum � forms a block diagonal matrix,
i.e.,

X � S :=

✓
X 0
0 S

◆
.

From the linear matrix inequalities we can observe that the volume of the feasible
set is doubly exponentially small, since we have 42

i�1y1  yi+1 and yi+1  1 for all
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i = 1, . . . , m̄. The optimal solution is unique, and it is given by y⇤i+1 = 42
i�2m̄

for
i = 0, . . . , m̄.

Since y⇤1y
⇤
i+1 = 4(y⇤i )

2 and Gi(.) is a 2⇥ 2 matrix, we get

�max(Gi(y
⇤)) = trace(Gi(y

⇤)) = y⇤1 + y⇤i+1 = 41�2m̄

+ 42
i�2m̄

, i = 1, . . . , m̄.

Therefore, an upper bound on the condition number � is given by

�  �N = �min

⇣
QT

N

⇣
G1(y

⇤)� . . .�Gm̄(y⇤)� (1� y⇤m̄+1)
⌘
QN

⌘

= min
i2{1,...,m̄}

{�max(Gi(y
⇤))}

= 41�2m̄

+ 42�2m̄

= 20⇥ 4�2m̄

.

Now, the following lemma is in order.

Lemma 3.3. For a given central solution
�
Xµ, yµ, Sµ

�
we have

trace(X̂µ
N ) 

nµ

�
, trace(Ŝµ

B) 
nµ

�
.

Proof. By the compactness of P⇤ and the continuity of the eigenvalues, there exists
X̄ 2 P

⇤ so that �B = �min(QT
BX̄QB) as defined in (6). Analogously, it follows from (7)

that �N = �min(QT
N S̄QN ) for some (ȳ, S̄) 2 D

⇤. Since � = min{�B,�N }, there exists
(X̄, ȳ, S̄) 2 P

⇤
⇥D

⇤ so that

�min(UX̄) � �, �min(US̄) � �, (8)

where UX̄ = QT
BX̄QB and US̄ = QT

N S̄QN . Recall from the primal-dual equality con-
straints that

(Xµ
� X̄) • (Sµ

� S̄) = 0,

which by (1) and using the optimality of X̄ and S̄ gives

Xµ
• S̄ + X̄ • Sµ = nµ. (9)

Since the inner product is invariant with respect to an orthogonal transformation, we
get

Xµ
• S̄ + X̄ • Sµ = X̂µ

N • US̄ + UX̄ • Ŝµ
B = nµ,

where Ŝµ
B = QT

BS
µQB and X̂µ

N = QT
NXµQN . Therefore, the positive definiteness of X̂µ

N
gives rise to X̂µ

N • US̄  nµ. Furthermore, from the inequality �min(US̄) trace(X̂
µ
N ) 

X̂µ
N • US̄ , it immediately follows that

�min(US̄) trace(X̂
µ
N )  nµ,

10



which by the lower bounds (8) gives

trace(X̂µ
N ) 

nµ

�
.

In a similar manner, it follows from Ŝµ
B � 0 that

trace(Ŝµ
B) 

nµ

�
.

The proof is complete.

3.2. Bounds on QT
T [NXµQT [N and QT

B[T SµQB[T

In order to estimate the magnitude of QT
T [NXµQT [N and QT

B[T S
µQB[T we derive

an upper bound on the distance of a central solution to the optimal set. Toward this
end, we resort to a Hölderian error bound result for an LMI system from Theorem 3.3
in Sturm (2000). An LMI system is defined as

(
X 2 D0 + L,

X ⌫ 0,
(10)

where D0 is a symmetric matrix and L ⇢ Sn denotes a linear subspace of symmetric
matrices. Further, L̄ is defined as the smallest subspace containing D0 + L, i.e.,

L̄ := {X 2 Sn | X + �D0 2 L for some �}.

Lemma 3.4 yields an upper bound on the distance of an approximate solution to the
solution set obtained from (10).

Lemma 3.4 (Theorem 3.3 in Sturm (2000)). Let {X✏
| 0 < ✏  1} be a set of solutions

so that kX✏
k is bounded and

dist
�
X✏, D0 + L

�
 ✏, �min(X

✏) � �✏ (11)

holds for all 0 < ✏  1, where

dist
�
X✏, D0 + L

�
:= min

�
kX �X✏

k | X 2 D0 + L
 
.

Then there exist a positive condition number c independent of ✏ and a positive exponent

� such that

dist
�
X✏, (D0 + L

�
\ Sn+)  c✏� ,

where � = 2�d(L̄,Sn
+)

in which d(L̄, Sn+) denotes the degree of singularity
2
of the linear

subspace L̄.

2In this context, the degree of singularity (Sturm 2000) is defined as the minimum number of facial reduction
steps to get the minimal face of the positive semidefinite cone which contains D0 + L.
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In Lemma 3.5, we employ the error bound result to specify an upper bound on the
distance of a central solution to the optimal set. Let (X̃, ỹ, S̃) 2 P

⇤
⇥D

⇤ be a primal-
dual optimal solution. Then the primal and dual optimal sets are given by

8
><

>:

A svec(X) = b,

svec(S̃)T svec(X) = 0,

X ⌫ 0,

8
><

>:

A
T y + svec(S) = svec(C),

svec(X̃)T svec(S) = 0,

S ⌫ 0,

(12)

where

A :=
�
svec(A1), . . . , svec(Am)

�T
.

By invoking the null and range spaces of A, it is easy to see that the set of all optimal
solutions (X,S) is obtained as the set of solutions of the following LMIs

(
X 2 X̃ + smat

�
Ker(A)

�
\ (RS̃)?,

X ⌫ 0,

(
S 2 S̃ + smat

�
R(AT )

�
\ (RX̃)?,

S ⌫ 0,
(13)

where smat
�
Ker(A)

�
\ (RS̃)? and smat

�
R(AT )

�
\ (RX̃)? are linear subspaces of

Sn, see also Section 4 in Sturm (2000). The minimal subspaces containing the a�ne
subspaces X̃ + smat

�
Ker(A)

�
\ (RS̃)? and S̃ + smat

�
R(AT )

�
\ (RX̃)? are given by

L̄P⇤ := smat
�
Ker(A)

�
\ (RS̃)? + RX̃,

L̄D⇤ := smat
�
R(AT )

�
\ (RX̃)? + RS̃,

in which RX̃ and RS̃ denote the set of all multiples of X̃ and S̃, respectively.

By using the Ho↵man error bound (Ho↵man 1952) we can derive upper bounds on
the distance of Xµ and Sµ to the a�ne subspaces in (13). Recall from (9) that

Xµ
• S̃ + X̃ • Sµ = nµ,

which implies 0  Xµ
• S̃  nµ and 0  X̃ • Sµ

 nµ. Then the application of the
Ho↵man error bound gives

dist
�
Xµ, X̃ + smat

�
Ker(A)

�
\ (RS̃)?

�

= dist
�
svec(Xµ),

�
x | Ax = b, svec(S̃)Tx = 0

 �

 ✓1
�
kA svec(Xµ)� bk2 + svec(Xµ)T svec(S̃)

�

= ✓1X
µ
• S̃  ✓1nµ,

(14)

where ✓1 > 0 denotes the Ho↵man condition number, which depends on A and S̃,
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only. Analogously, we can derive

dist
�
Sµ, S̃ + smat

�
R(AT )

�
\ (RX̃)?

�

= dist
�
svec(Sµ),

�
s | 9 y 2 Rm,AT y + s = svec(C), svec(X̃)T s = 0

 �

 ✓2
�
kA

T yµ + svec(Sµ)� svec(C)k2 + svec(Sµ)T svec(X̃)
�

= ✓2S
µ
• X̃  ✓2nµ,

(15)

where ✓2 > 0 is the Ho↵man condition number, which is dependent on A and X̃.

Now, we present the following lemma, as planned.

Lemma 3.5. Let
�
Xµ, yµ, Sµ

�
be a central solution with

µ  µ̂ :=
1

n
min

n
✓�1
1 , ✓�1

2

o
. (16)

Then there exist a positive condition number c independent of µ and an exponent � > 0
so that

dist
�
Xµ,P⇤�

 c(nµ)� ,

dist
�
Sµ, {S | 9 y 2 Rm s.t. (y, S) 2 D

⇤
}
�
 c(nµ)� ,

(17)

where � depends on the degree of singularity of L̄P⇤ and L̄D⇤.

Proof. The bounds in (17) can be established easily by applying the error bound
result, as stated in Lemma 3.4, to the LMIs in (12). As defined by (1), the set of
central solutions (Xµ, yµ, Sµ) for 0  µ  µ̂ is bounded. Additionally, from (14), (15),
and (16) we get

dist
�
Xµ, X̃ + smat

�
Ker(A)

�
\ (RS̃)?

�
 1,

dist
�
Sµ, S̃ + smat

�
R(AT )

�
\ (RX̃)?

�
 1,

which satisfy the conditions in (11). Therefore, we can conclude from Lemma 3.4 that
there exist positive condition numbers c1 and c2, both independent of µ, and positive
exponents �1 and �2 so that

dist
�
Xµ,

�
X̃ + smat

�
Ker(A)

�
\ (RS̃)?

�
\ Sn+

�
 c1(nµ)

�1 ,

dist
�
Sµ,

�
S̃ + smat

�
R(AT )

�
\ (RX̃)?

�
\ Sn+

�
 c2(nµ)

�2 ,

where �1 = 2�d(L̄P⇤ ,Sn
+) and �2 = 2�d(L̄D⇤ ,Sn

+), in which d(L̄P⇤ , Sn+) and d(L̄D⇤ , Sn+)
denote the degree of singularity of the subspaces L̄P⇤ and L̄D⇤ , respectively. Setting
� := min{�1, �2} and c := max{c1, c2} we get the result of the lemma.

Remark 5. For the special case T = {0} there exists a stronger bound on the distance
of a central solution to the optimal set. In this case, the central path converges to the
analytic center of the optimal set. Hence, a direct application of Theorem 3.5 in (Luo
et al. 1998) to the central solutions gives

kXµ
�Xa

k = O(µ), and kSµ
� Sa

k = O(µ)
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for any SDO problem with strict complementarity condition, while Lemma 3.5 gives
an upper bound O(

p
nµ). This is due to the fact that the degree of singularity of

L̄P⇤ and L̄D⇤ is at most 1 when the strict complementarity condition holds, see Sturm
(2000).

Remark 6. From Theorem 3.6 in Sturm (2000) we can get a nontrivial upper bound
n� 1 on the degree of singularity3. Therefore, we have � � 21�n for n � 2. However,
we are not aware of any method to compute an upper bound on the condition number
c.

Now, we use the upper bounds in (17) to derive bounds on the vanishing blocks
QT

T [NXµQT [N and QT
B[T S

µQB[T .

Lemma 3.6. Let
�
Xµ, yµ, Sµ

�
be a central solution with µ  µ̂, where µ̂ is defined

in (16). Then we have

��QT
T [NXµQT [N

��  c(nµ)� , and
��QT

B[T S
µQB[T

��  c(nµ)� .

Proof. From Lemma 3.5 and compactness of the optimal set it follows the existence
of (Xµ, yµ, Sµ) 2 P

⇤
⇥D

⇤ such that (17) holds. Recall from Theorem 2.2 that Xµ can
be represented as QBUXµ

QT
B where UXµ

⌫ 0. Thus, we have

��QT
T [NXµQT [N

�� =

����

✓
X̂µ

T X̂µ
T N

X̂µ
NT X̂µ

N

◆����

=
��QT

T [N
�
Xµ

�Xµ
�
QT [N

�� 
��Xµ

�Xµ

��  c(nµ)� ,

and

��QT
B[T S

µQB[T
�� =

����

✓
Ŝµ
B Ŝµ

BT
Ŝµ
T B Ŝµ

T

◆����

=
��QT

B[T
�
Sµ

� Sµ
�
QB[T

�� 
��Sµ

� Sµ

��  c(nµ)� ,

which completes the proof.

3.3. Approximation of the optimal partition

Let Xµ = Qµ⇤(Xµ)(Qµ)T and Sµ = Qµ⇤(Sµ)(Qµ)T be the eigenvalue decompositions
ofXµ and Sµ, whereQµ denotes a common eigenvector basis. We show in Theorems 3.8
and 3.9 that it is possible to identify the subsets of columns of Qµ whose accumulation
points are orthonormal bases for the subspaces B, N , and T , when µ is su�ciently
small. To do so, we need Lemma 3.7 to derive bounds on the eigenvalues of central
solutions, which will be presented in Theorem 3.8.

Lemma 3.7 (Theorem 4.5 in Stewart and Sun (1990)). Let X 2 Sn and Y 2 Rn⇥k
.

3An example was provided by Sturm (2000) which needs n� 1 facial reduction steps, see Example 2 in Sturm
(2000).
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Then we have

�[n�k+1](X) + . . .+ �[n](X) = min
Y

trace(Y TXY ),

s.t. Y TY = Ik.

Theorem 3.8. For a central solution (Xµ, yµ, Sµ) with µ  µ̂, where µ̂ is given

by (16), it holds that:

�[n�i+1](S
µ) 

nµ

�
, �[i](X

µ) �
�

n
, i = 1, . . . , nB, (18)

�[n�i+1](X
µ) 

nµ

�
, �[i](S

µ) �
�

n
, i = 1, . . . , nN , (19)

µ

c
p
n(nµ)�

 �[i](X
µ),�[n�i+1](S

µ)  c
p
n(nµ)� , i = nB + 1, . . . , nB + nT . (20)

If nT > 0, then we have

c �

�
min{✓�1

1 , ✓�1
2 }

� 1
2
��

n
,

1

2n�1
 � 

1

2
.

Proof. Recall that Ŝµ
B = QT

BS
µQB and X̂µ

N = QT
NXµQN as defined in (4). Then it

follows from Lemmas 3.3 and 3.7 that

�[n�nB+1](S
µ) + . . .+ �[n](S

µ)  trace(Ŝµ
B) 

nµ

�
,

�[n�nN+1](X
µ) + . . .+ �[n](X

µ)  trace(X̂µ
N ) 

nµ

�
,

which, by �min(Xµ),�min(Sµ) > 0, give

�[n�i+1](S
µ) 

nµ

�
, i = 1, . . . , nB,

�[n�i+1](X
µ) 

nµ

�
, i = 1, . . . , nN .

Further, the centrality condition ⇤(Xµ)⇤(Sµ) = µIn implies that the ith largest eigen-
value of Xµ and the ith smallest eigenvalue of Sµ have the same eigenvector, i.e.,
�[i](X

µ)�[n�i+1](S
µ) = µ. Hence, we can derive

�[i](X
µ) �

�

n
, i = 1, . . . , nB,

�[i](S
µ) �

�

n
, i = 1, . . . , nN .

In a similar manner, one can conclude from Lemmas 3.6 and 3.7 and trace(X) 
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p
nkXk that

1
p
n

✓
�[n�nN�nT +1](X

µ) + . . .+ �[n](X
µ)

◆

��QT

T [NXµQT [N
��  c(nµ)� ,

1
p
n

✓
�[n�nB�nT +1](S

µ) + . . .+ �[n](S
µ)

◆

��QT

B[T S
µQB[T

��  c(nµ)� ,

which, by the centrality condition, give

�[n�i+1](X
µ)  c

p
n(nµ)� , �[i](S

µ) �
µ

c
p
n(nµ)�

, i = 1, . . . , nN + nT ,

�[n�i+1](S
µ)  c

p
n(nµ)� , �[i](X

µ) �
µ

c
p
n(nµ)�

, i = 1, . . . , nB + nT .

This completes the first part of the proof.

By (20), if nT > 0, there exist nT eigenvalues of Xµ and nT eigenvalues of Sµ which
stay within the interval

⇥
µ/(c

p
n(nµ)�), c

p
n(nµ)�

⇤
, and thus both converge to 0 as

µ ! 0. Then it holds that

c
p
n(nµ)� �

µ

c
p
n(nµ)�

) c2n2
� (nµ)1�2� , 8 0 < µ  µ̂,

which by the definition of µ̂ implies

c �

�
min{✓�1

1 , ✓�1
2 }

� 1
2
��

n
, � 

1

2
.

The proof is complete.

Since the central path is an analytic curve, the eigenvalues ofXµ and Sµ are continuous
functions of µ, and the eigenvalues of central solutions converge to the eigenvalues of
the limit point of the central path. Hence, one can observe from Theorem 3.8 that as
µ ! 0, the eigenvalues of a central solution (Xµ, yµ, Sµ) naturally separate into three
subsets:

(1) �[i](X
µ) converges to a positive value and �[n�i+1](S

µ) converges to 0,
(2) both �[i](X

µ) and �[n�i+1](S
µ) converge to 0,

(3) �[i](S
µ) converges to a positive value and �[n�i+1](X

µ) converges to 0.

Recall that Xµ and Sµ have a common eigenvector basis Qµ. If µ is su�ciently small,
then Qµ can be represented as

Qµ = (Qµ
B, Q

µ
T , Q

µ
N ),

where Qµ
B, Q

µ
T , and Qµ

N denote the subsets of columns of Qµ corresponding to the
above three subsets of eigenvalues, respectively. The following theorem shows how
small µ should be in order to identify Qµ

B, Q
µ
T , and Qµ

N from Qµ.
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Theorem 3.9. Let (Xµ, yµ, Sµ) and a common orthogonal matrix Qµ
be given. If µ

satisfies

µ < µ̃ := min

⇢
1

n

✓
�

cn
3
2

◆ 1
�

,
�2

n2
, µ̂

�
, (21)

then we can identify Qµ
B, Q

µ
T , and Qµ

N from Qµ
.

Proof. From inequalities (18) and (19), we can deduce that the nB largest eigen-
values of Xµ stay positive while the nB smallest eigenvalues of Sµ will converge to
0. Similarly, the nN largest eigenvalues of Sµ will remain positive while the last nN
eigenvalues of Xµ converge to 0 as µ ! 0. Inequalities (20) also hint that, if nT > 0,
there should exist a set of nT eigenvalues of Xµ and Sµ which stay within the in-
terval

⇥
µ/(c

p
n(nµ)�), c

p
n(nµ)�

⇤
. Recall that the ith largest eigenvalue of Xµ and

the ith smallest eigenvalue of Sµ have the same eigenvector. Thus, if the intervals⇥
µ/(c

p
n(nµ)�), c

p
n(nµ)�

⇤
, (0, nµ/�], and [�/n,1) are disjoint, i.e.,

nµ

�
<

µ

c
p
n(nµ)�

, c
p
n(nµ)� <

�

n
,

nµ

�
<

�

n
, (22)

and that µ  µ̂ holds, then we can identify Qµ
B, Q

µ
T , and Qµ

N . Consequently, when
µ < µ̃, we can identify the vanishing eigenvalues of Xµ and Sµ by comparing the
magnitude of the eigenvalues to the lower and upper bounds given in (18) to (20).
This completes the proof.

Since the central path converges to a maximally complementary optimal solution, for a
given sequence {µk} the accumulation points of Qµk

B , Qµk

T , and Qµk

N form orthonormal
bases for the subspaces B, T , and N , respectively, see Section 3.3 in de Klerk (2006).
For every µ < µ̃ we refer to (R(Qµ

B),R(Qµ
T ),R(Qµ

N )) as an approximation of the
optimal partition (B, T ,N ).

Remark 7. In general, we do not know in advance if the strict complementarity
condition holds for a given instance of SDO. If nT > 0, then (22) implies that

1

n

✓
�

cn
3
2

◆ 1
�


�2

n2
.

In case that nT = 0, we can improve the bound (21). In fact, the bounds in (20) may
provide no further information compared to (18) and (19) for small values of µ. Hence,
in order to identify Qµ

B and Qµ
N it is enough to have

nµ

�
<

�

n
,

which reduces the bound (21) to µ < �2/n2. This bound matches the one for LO, see
Section 3.3.3 in Roos et al. (2005).

3.4. Proximity to the true optimal partition

We can provide more information about the optimal partition of the problem by mea-
suring the proximity of R(Qµ

B) and R(Qµ
N ) to the subspaces B and N , respectively,

17



for µ < µ̃. To that end, we use the approach in Cheung et al. (2013) which mea-
sures the distance between a primal optimal solution X̃ 2 P

⇤ and its projection onto
Qµ

B[T S
nB+nT
+ (Qµ

B[T )
T , which is a face of the positive semidefinite cone4. In fact, P⇤ is

contained in the minimal face QBSnB
+ QT

B which itself is a face of QB[T SnB+nT
+ QT

B[T .

Analogously, we measure the distance between S̃, where (ỹ, S̃) 2 D
⇤, and its projection

onto Qµ
T [NSnT +nN

+ (Qµ
T [N )T .

The following technical lemma is in order.

Lemma 3.10. Let (Xµ, yµ, Sµ) with µ  µ̂ be given, and assume that P
⇤,D⇤

6= {0}.
Then we have

sup
X̃2P⇤\{0}

Sµ
• X̃

kX̃k
 c(nµ)� ,

sup
(ỹ,S̃)2D⇤, S̃ 6=0

Xµ
• S̃

kS̃k
 c(nµ)� .

Proof. Assume that 0 6= X̃ 2 P
⇤ is given. Then for all (ỹ, S̃) 2 D

⇤ we have

Sµ
• X̃

kX̃k
=

(Sµ
� S̃ + S̃) • X̃

kX̃k
=

(Sµ
� S̃) • X̃

kX̃k
 kSµ

� S̃k.

Therefore, we get

sup
X̃2P⇤\{0}

Sµ
• X̃

kX̃k
 min

(ỹ,S̃)2D⇤
kSµ

� S̃k  c(nµ)� ,

where the last inequality follows from Lemma 3.5. The proof for the second part follows
analogously.

Theorem 3.11. Let (Xµ, yµ, Sµ) be given so that µ < µ̃, where µ̃ is defined in (21).
Then for all (X̃, ỹ, S̃) 2 P

⇤
⇥D

⇤
we have

kX̃ � X̃FBT k 
p
2kX̃k

r
cn(nµ)�

�
, (23)

kS̃ � S̃FT N k 
p
2kS̃k

r
cn(nµ)�

�
, (24)

where X̃FBT and S̃FT N denote the projection of X̃ and S̃ onto the faces FBT and FT N ,

respectively, in which

FBT := Qµ
B[T S

nB+nT
+ (Qµ

B[T )
T ,

FT N := Qµ
T [NSnT +nN

+ (Qµ
T [N )T .

Proof. If X̃ = 0 or S̃ = 0, then X̃FBT = 0 or S̃FT N = 0, and thus the inequalities (23)
and (24) trivially hold. Note that the projection of X̃ onto the face FBT is the optimal

4See Proposition 2.2.14 in Cheung (2013) for its proof.
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solution to

X̃FBT : = argmin
U⌫0

���X̃ �Qµ
B[T U(Qµ

B[T )
T
���

= argmin
U⌫0

�����

✓
(Qµ

B[T )
T X̃Qµ

B[T � U (Qµ
B[T )

T X̃Qµ
N

(Qµ
N )T X̃Qµ

B[T (Qµ
N )T X̃Qµ

N

◆�����,

which is given by U⇤ = (Qµ
B[T )

T X̃Qµ
B[T . Then we get

kX̃ � X̃FBT k =
��X̃ �Qµ

B[T U
⇤(Qµ

B[T )
T
�� =

��X̃ �Qµ
B[T (Q

µ
B[T )

T X̃Qµ
B[T (Q

µ
B[T )

T
��

=
q

kX̃k2 �
��(Qµ

B[T )
T X̃Qµ

B[T
��2

 kX̃k

vuut1�

��(Qµ
B[T )

T X̃Qµ
B[T

��2

kX̃k2
.

Thus, it only remains to derive a lower bound on

��(Qµ
B[T )

T X̃Qµ
B[T

��

kX̃k
. (25)

Let us define

⇤(Sµ) =:

✓
⇤B[T (Sµ) 0

0 ⇤N (Sµ)

◆
.

Then we have

Qµ
N⇤N (Sµ)(Qµ

N )T • X̃  Qµ
B[T ⇤B[T (S

µ)(Qµ
B[T )

T
• X̃ +Qµ

N⇤N (Sµ)(Qµ
N )T • X̃

= Sµ
• X̃  c(nµ)�kX̃k,

(26)
where the last inequality follows from Lemma 3.10. Since (26) holds for any X̃ 2 P

⇤,
a lower bound on (25) is given by

min
��(Qµ

B[T )
TXQµ

B[T
��

s.t. Qµ
N⇤N (Sµ)(Qµ

N )T •X  c(nµ)� ,

kXk = 1,

X ⌫ 0.

(27)

Let X̌ := (Qµ)TXQµ, where

X̌ :=

✓
X̌B[T X̌(B[T )N

X̌N (B[T ) X̌N

◆
.
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Then auxiliary problem (27) is equivalent to

min
��X̌B[T

��

s.t. ⇤N (Sµ) • X̌N  c(nµ)� ,

kX̌B[T k
2 + kX̌N k

2 + 2kX̌(B[T )N k
2 = 1,

X̌ ⌫ 0.

(28)

Since X̌ ⌫ 0, we can use the inequality5
��X̌(B[T )N

��2 
��X̌B[T

����X̌N
�� to derive a

relaxation of (28) as

min
��X̌B[T

��

s.t. ⇤N (Sµ) • X̌N  c(nµ)� ,
��X̌B[T

��+
��X̌N

�� � 1,

X̌B[T ⌫ 0,

X̌N ⌫ 0.

(29)

Finally, from the constraints in (29) we get

kX̌B[T k � 1� kX̌N k � 1�
c(nµ)�

�[nN ](Sµ)
� 1�

cn(nµ)�

�
(30)

> 1�
1
p
n
> 0, (31)

in which (30) follows from (19) as well as

�min
�
⇤N (Sµ)

�
kX̌N k  ⇤N (Sµ) • X̌N  c(nµ)� ,

and (31) results from µ < µ̃. In a similar way as in Cheung et al. (2013), it can be
shown that 1 � c(nµ)�/�[nN ](S

µ) is indeed the optimal value of (27). Consequently,
we can conclude that

��X̃ � X̃FBT

��  kX̃k

s

1�
k(Qµ

B[T )
T X̃Qµ

B[T k
2

kX̃k2
 kX̃k

r
2
⇣cn(nµ)�

�

⌘
�

⇣cn(nµ)�
�

⌘2


p
2kX̃k

r
cn(nµ)�

�
.

Analogously, we can prove that

��S̃ � S̃FT N

��  kS̃k

s

1�
k(Qµ

T [N )T S̃Qµ
T [N k2

kS̃k2


p
2kS̃k

r
cn(nµ)�

�
,

5The validity of this inequality can be verified by squaring both sides of

����

✓
A X
XT B

◆����  kAk+kBk, which is

valid for all positive semidefinite

✓
A X
XT B

◆
. See Theorem 2.1 and Remark 2.3 in Lee (2011) for more general

results.

20



which completes the proof.

Under the assumption of primal-dual uniqueness, we provide an upper bound on the
distance between the subspaces (B, T ,N ) and (R(Qµ

B),R(Qµ
T ),R(Qµ

N )), which are of
the same dimension if µ < µ̃. The distance between two subspaces L1 and L2 of Rn

with the same dimension, as defined e.g., in Section 2.5.3 in Golub and Van Loan
(2013), is

dist(L1,L2) := kProjL1
�ProjL2

k2,

where ProjL1
and ProjL2

denote the orthogonal projections onto L1 and L2, respec-
tively. By definition, 0  dist(L1,L2)  1.

We use an error bound result for analytic systems from Luo and Pang (1994) to derive
upper bounds on dist(B,R(Qµ

B)), dist(T ,R(Qµ
T )), and dist(N ,R(Qµ

N )), see also Luo
and Luo (1994).

Lemma 3.12 (Theorem 2.2 in Luo and Pang (1994)). Let a solution set C be defined

as

C :=
�
x 2 Rn

| g1(x)  0, . . . , gm1(x)  0, h1(x) = 0, . . . , hm2(x) = 0
 
,

in which gj for j = 1, . . . ,m1 and hk for k = 1, . . . ,m2 are analytic functions on an

open set X ✓ Rn
. If C 6= ;, then for each compact set X̄ ⇢ X there exist a positive

condition number ⇢ and an exponent � > 0 such that

dist(x, C)  ⇢
�
k[g(x)]+k2 + kh(x)k2

��
, 8x 2 X̄ ,

where

[g(x)]+ :=
�
max{g1(x), 0}, . . . ,max{gm1(x), 0}

�T
,

h(x) := (h1(x), . . . , hm2(x))
T .

Using eigenvalue decompositions of X and S, the optimality conditions (2) can be cast
into an analytic system, since every function is polynomial, see e.g., Alizadeh et al.
(1998). Let

C
⇤ :=

n�
vec(Q̃); diag(⇤(X̃)); ỹ; diag(⇤(S̃))

�
| Q̃⇤(X̃)Q̃T

2 P
⇤, (ỹ, Q̃⇤(S̃)Q̃T ) 2 D

⇤
o
,

where vec(.) is the concatenation of the columns of a matrix, and diag(.) denotes the
vector of diagonal entries of a square matrix. Then the following theorem is in order.

Theorem 3.13. Assume that the primal-dual optimal solution is unique, and let a

central solution (Xµ, yµ, Sµ) with µ < µ̃ be given, where µ̃ is defined in (21). Then
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there exist ⇢ > 0 and � > 0 such that

dist
�
B,R(Qµ

B)
�
 min{2⇢(

p
nµ)�, 1},

dist
�
T ,R(Qµ

T )
�
 min{2⇢(

p
nµ)�, 1},

dist
�
N ,R(Qµ

N )
�
 min{2⇢(

p
nµ)�, 1}.

Proof. An orthogonal projection matrix of the subspace B is given by QBQT
B . Note

that this projection matrix is invariant with respect to any choice of an orthonormal
basis for B, see e.g., Section 2.5.1 in Golub and Van Loan (2013). Then we get

dist
�
B,R(Qµ

B)
�
=
��Qµ

B(Q
µ
B)

T
�QBQ

T
B
��
2

=
��Qµ

B(Q
µ
B)

T
�QBQ

T
B �Qµ

BQ
T
B +Qµ

BQ
T
B
��
2

=
��Qµ

B
�
(Qµ

B)
T
�QT

B
�
+
�
Qµ

B �QB
�
QT

B
��
2


��Qµ

B
��
2

��Qµ
B �QB

��
2
+
��Qµ

B �QB
��
2

��QB
��
2

 2
��Qµ

B �QB
��
2
,

 2
��Qµ

�Q⇤��
2
,

 2
��� vec(Qµ

�Q⇤); diag(⇤(Xµ)� ⇤(X⇤)); yµ � y⇤; diag(⇤(Sµ)� ⇤(S⇤))
���

2

for every
�
Q⇤⇤(X⇤)(Q⇤)T , y⇤, Q⇤⇤(S⇤)(Q⇤)T

�
2 ri(P⇤

⇥D
⇤). Consequently,

dist
�
B,R(Qµ

B)
�
 2 dist

��
vec(Qµ); diag(⇤(Xµ)); yµ; diag(⇤(Sµ))

�
, C

⇤�, (32)

where the inequality (32) follows from the uniqueness of the optimal solution, since in
this case ri(P⇤

⇥D
⇤) = P

⇤
⇥D

⇤.

By the centrality condition, a central solution (Xµ, yµ, Sµ) violates the constraints
⇤ii(X̃)⇤ii(S̃) = 0 by µ for i = 1, . . . , n. Due to the fact that the set of central solutions
(Xµ, yµ, Sµ) with µ < µ̃ is contained in a compact set, it follows from Lemma 3.12
that there exist ⇢, � > 0 such that

dist
��

vec(Qµ); diag(⇤(Xµ)); yµ; diag(⇤(Sµ))
�
, C

⇤�
 ⇢

���diag
�
⇤(Xµ)⇤(Sµ)

���
2

��

 ⇢(
p
nµ)�,

which completes the proof for B. The proof for the subspaces T and N are analogous.

Remark 8. The condition number ⇢ and the exponent � in Theorem 3.13 depend on
the problem data and the size of the compact set which contains the set of central
solutions for µ < µ̃. Unlike the exponent � in Lemma 3.5, there is no known estimate
for �.

Since C
⇤ is a compact set, there exists a solution

�
vec(Q̃µ); diag(⇤(X̃µ)); ỹµ; diag(⇤(S̃µ))

�
2 C

⇤,

whose distance from
�
vec(Qµ); diag(⇤(Xµ)); yµ; diag(⇤(Sµ))

�
is minimal. The as-

sumption of uniqueness in Theorem 3.13 can be released if there exists a sequence of
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Figure 1.: The illustration of a 3-elliptope.

common eigenvector bases of maximally complementary optimal solutions converging
to Q̃µ. In particular, this condition holds if (X̃µ, ỹµ, S̃µ) is a maximally complementary
optimal solution, or if there exists a unique common eigenvector basis for (X̃µ, ỹµ, S̃µ).
For instance, consider the minimization of a linear objective over a 3-elliptope as
illustrated by Figure 1:

min

⇢
� 2z |

0

@
1 x y
x 1 z
y z 1

1

A ⌫ 0, (x, y, z) 2 R3

)
. (33)

The primal optimal set is given by

X̃(�) = �

0

@
1 �1 �1

�1 1 1
�1 1 1

1

A+ (1� �)

0

@
1 1 1
1 1 1
1 1 1

1

A , � 2 [0, 1],

and the unique dual optimal solution is given by

ỹ = (0,�1,�1)T , S̃ =

0

@
0 0 0
0 1 �1
0 �1 1

1

A .

One can verify that the eigenvalues of X̃(�) for 0  �  1 are given by

�[1](X̃(�)) =
1

2

p
32�2 � 32� + 9 +

3

2
,

�[2](X̃(�)) = �
1

2

p
32�2 � 32� + 9 +

3

2
,

�[3](X̃(�)) = 0.

Observe that for all 0 < � < 1, (X̃(�), ỹ, S̃) is strictly complementary, and that the
multiplicity of the positive eigenvalues of X̃(�) and S̃ are 1. Hence, for all 0 < � < 1,
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the eigenvalue decompositions of X̃(�) and S̃ are unique up to the sign of columns of
the orthogonal matrices. At � = 0 the optimal solution is not strictly complementary,
but X̃(0) and S̃ have the unique common eigenvector basis

Q̃(0) =

0

@
1/
p
3 �2/

p
6 0

1/
p
3 1/

p
6 1/

p
2

1/
p
3 1/

p
6 �1/

p
2

1

A .

Therefore, for a given �k ! 0 there exists a sequence of strictly complementary optimal
solutions (X̃(�k), ỹ, S̃) and a sequence Q̃(�k) such that Q̃(�k) ! Q̃(0).

Remark 9. We should note that unlike the SDO problem (33), there may be no
sequence of common eigenvector bases with such a desired property. For example, if
we change (33) to

min

⇢
� 2z |

0

BB@

1 x y 0
x 1 z 0
y z 1 0
0 0 0 2� x� y

1

CCA ⌫ 0, (x, y, z) 2 R3

)
,

then the primal optimal set and the unique dual optimal solution are given as

X̃(�) = �

0

BB@

1 �1 �1 0
�1 1 1 0
�1 1 1 0
0 0 0 4

1

CCA+ (1� �)

0

BB@

1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

1

CCA , � 2 [0, 1],

y⇤ = (0,�1,�1, 0, 0, 0, 0)T , S⇤ =

0

BB@

0 0 0 0
0 1 �1 0
0 �1 1 0
0 0 0 0

1

CCA .

For all � 2 (0, 1) \ {1
2} the optimal solution (X̃(�), ỹ, S̃) is strictly complementary and

the positive eigenvalues of X̃(�) and S̃ are distinct. However, X̃(0) and S̃ have more
than one common eigenvector basis.

4. On the identification of the optimal partition in a neighborhood of the

central path

Thus far, we assumed that the solution given by IPMs is exactly on the central path.
In general, however, path-following IPMs operate in a specified vicinity of the central
path by computing approximate solutions of (1). In this section, we extend the results
of Theorems 3.8 and 3.9 by considering solutions in a neighborhood6 of the central
path, given by

N(⇠) :=
n
(X�, y�, S�) 2 ri(P ⇥D) | (X�S�)  ⇠

o
, (34)

6See e.g., Section 6.4 in de Klerk (2006).
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where

(X�S�) :=
�max(X�S�)

�min(X�S�)
, (X�, y�, S�) 2 ri(P ⇥D), (35)

and ⇠ > 1. Notice that X�S� has the same eigenvalues as (X�)
1
2S�(X�)

1
2 , i.e., X�S�

has real positive eigenvalues even though it is not necessarily symmetric. Further, it
follows from (35) that (X�S�) � 1, and equality holds only when (X�, y�, S�) is on
the central path. Then, for (X�, y�, S�) 2 N(⇠) we have

�min(X
�S�)  �[i](X

�S�)  ⇠�min(X
�S�), i = 1, . . . , n. (36)

We use the application of Weyl theorem7 in Lu and Pearce (2000) to provide an upper
bound on �min(X�S�), as presented in Lemma 4.2.

Lemma 4.1 (Corollary 2.3 in Lu and Pearce (2000)). Let X and S be two n ⇥ n
symmetric positive semidefinite matrices. Then for j  min{rank(X), rank(S)} we

have

min
1ij

{�[i](X)�[j�i+1](S)} � �[j](XS) � max
jin

{�[i](X)�[n+j�i](S)}. (37)

Lemma 4.2. Let (X�, y�, S�) 2 N(⇠). Then we have

�[i](X
�)�[n�i+1](S

�) � �min(X
�S�), i = 1, . . . , n. (38)

Proof. The proof is straightforward from the first inequality in (37) and the positive
definiteness of X� and S�. In fact, for the special case k = n there holds that

min
n
�[1](X

�)�[n](S
�), �[2](X

�)�[n�1](S
�), . . . ,�[n](X

�)�[1](S
�)
o
� �min(X

�S�),

which completes the proof.

Consider a solution (X�, y�, S�) 2 N(⇠), and let X� = M⇤(X�)MT and S� =
P⇤(S�)P T be eigenvalue decompositions of X� and S�, respectively, where M and
P are orthogonal matrices. Analogous to the case of central solutions, we let M :=
(MB,MT ,MN ) and P := (PB, PT , PN ), respectively, partitioned according to the
eigenvalues of X� and S� whose accumulation points are positive and zero. Since
X� and S� do not necessarily commute, an accumulation point of M is not necessarily
identical with an accumulation point of P .

The following theorem generalizes the bounds derived in Theorems 3.8 and 3.9 to an
approximate solution (X�, y�, S�) 2 N(⇠).

Theorem 4.3. Let (X�, y�, S�) 2 N(⇠) with µ  µ̂, where µ := X�
• S�/n and µ̂ is

defined in (16). Then there exist a positive condition number c0 independent of µ and

7See Theorem 4.3.7 in Horn and Johnson (2012).
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a positive exponent � so that

�[n�i+1](S
�) 

nµ

�
, �[i](X

�) �
�

n⇠
, i = 1, . . . , nB,

�[n�i+1](X
�) 

nµ

�
, �[i](S

�) �
�

n⇠
, i = 1, . . . , nN ,

µ

c0
p
n⇠(nµ)�

 �[i](X
�),�[n�i+1](S

�)  c0
p
n(nµ)� , i = nB + 1, . . . , nB + nT .

If nT > 0, then we have

1

2n�1
 � 

1

2
.

Furthermore, if µ satisfies

µ < min

⇢
1

n

✓
�

c0n
3
2 ⇠

◆ 1
�

,
�2

n2⇠
, µ̂

�
, (39)

then we can identify MB, MT , and MN from X�
, and PB, PT , and PN from S�

.

Proof. The proof technique can be traced back to Theorems 3.8 and 3.9 fairly eas-
ily. Let (X̄, ȳ, S̄) 2 P

⇤
⇥ D

⇤ which satisfies (8) and (X̂�, Ŝ�) denote the orthogonal
transformation of (X�, S�) with respect to Q. Then it follows from the orthogonality
between (X�

� X̄) and (S�
� S̄) that

X�
• S̄ + X̄ • S� = X̂�

N • US̄ + UX̄ • Ŝ�
B = X�

• S�,

where Ŝ�
B = QT

BS
�QB and X̂�

N = QT
NX�QN . Using the inequality

�min(US̄) trace(X̂
�
N )  X̂�

N • US̄ and the positive definiteness of X� and S� we have

�min(UX̄) trace(Ŝ�
B)  X�

• S�
) trace(Ŝ�

B) 
nµ

�
,

�min(US̄) trace(X̂
�
N )  X�

• S�
) trace(X̂�

N ) 
nµ

�
,

where the latter inequalities follow from (8). Now, Lemma 3.7 can be applied to get

�[n�nB+1](S
�) + . . .+ �[n](S

�)  trace(Ŝ�
B) 

nµ

�
,

�[n�nN+1](X
�) + . . .+ �[n](X

�)  trace(X̂�
N ) 

nµ

�
,

which by X�, S�
� 0 imply

�[n�i+1](S
�) 

nµ

�
, i = 1, . . . , nB,

�[n�i+1](X
�) 

nµ

�
, i = 1, . . . , nN .

(40)
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Recall from (36) that

nµ = X�
• S�

 n⇠�min(X
�S�),

which yields

�min(X�S�)

µ
�

1

⇠
. (41)

Then, using (38), (40), and (41), we can derive lower bounds on the eigenvalues of X�

and S�:

�[i](X
�) �

�min(X�S�)

�[n�i+1](S�)
�

��min(X�S�)

nµ
�

�

n⇠
, i = 1, . . . , nB,

�[i](S
�) �

�min(X�S�)

�[n�i+1](X�)
�

��min(X�S�)

nµ
�

�

n⇠
, i = 1, . . . , nN .

We employ an analogue of Lemma 3.5 to derive bounds on QT
T [NX�QT [N and

QT
B[T S

�QB[T . Note that the amount of constraint violation with respect to the LMI
system (12) for (X�, y�, S�) is equal to nµ, where µ = X�

• S�/n. Then it is easy to
verify that

dist
�
X�, X̃ + smat

�
Ker(A)

�
\ (RS̃)?

�
 ✓1nµ,

dist
�
S�, S̃ + smat

�
R(AT )

�
\ (RX̃)?

�
 ✓2nµ,

where ✓1 and ✓2 are the same8 Ho↵man condition numbers defined in (14) and (15).
Moreover,

�
(X�, y�, S�) 2 N(⇠) | X

�
• S�

 min
�
✓�1
1 , ✓�1

2

  

is a bounded set by the interior point condition and the linear independence of Ai

for i = 1, . . . ,m, see e.g., Lemma 3.1 in de Klerk (2006). Hence, for 0 < µ  µ̂ the
result of Lemma 3.4 is still valid, i.e., there exist (Xµ� , yµ� , Sµ�) 2 P

⇤
⇥D

⇤, a positive
condition number c0 independent of µ, and a positive exponent � so that

��X�
�Xµ�

��  c0(nµ)� ,
��S�

� Sµ�
��  c0(nµ)� , (42)

where c0 and � are defined as in Lemma 3.5. Analogous to the proof of Theorem 3.8,

8Recall that a Ho↵man condition number is only dependent on the left hand side of a linear system, see Güler
(2010).
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we can observe, using the orthogonal transformation Q, that

1
p
n
trace(QT

T [NX�QT [N ) 
��QT

T [NX�QT [N
��

=

����

✓
X̂�

T X̂�
T N

X̂�
NT X̂�

N

◆���� 
��X�

�Xµ�
��  c0(nµ)� ,

1
p
n
trace(QT

B[T S
�QB[T ) 

���QT
B[T S

�QB[T

���

=

����

✓
Ŝ�
B Ŝ�

BT
Ŝ�
T B Ŝ�

T

◆���� 
��S�

� Sµ�
��  c0(nµ)� .

(43)

Then it follows from Lemma 3.7 and (43) that

�[n�i+1](X
�)  c0

p
n(nµ)� , i = 1, . . . , nN + nT ,

�[n�i+1](S
�)  c0

p
n(nµ)� , i = 1, . . . , nB + nT ,

which, by the bounds in (38) and (41), yield

�[i](X
�) �

�min(X�S�)

�[n�i+1](S�)
�

�min(X�S�)

c0
p
n(nµ)�

�
µ

c0
p
n⇠(nµ)�

, i = 1, . . . , nB + nT ,

�[i](S
�) �

�min(X�S�)

�[n�i+1](X�)
�

�min(X�S�)

c0
p
n(nµ)�

�
µ

c0
p
n⇠(nµ)�

, i = 1, . . . , nN + nT .

This completes the first part of the proof.

Finally, using the same argument as in Theorem 3.9, we can identify the subsets of
columns of M and P whose accumulation points form orthonormal bases for B, T and
N if

nµ

�
<

µ

c0
p
n⇠(nµ)�

, c0
p
n(nµ)� <

�

n⇠
, and

nµ

�
<

�

n⇠
, (44)

which give (39). If nT > 0, then from (44) it is immediate that

(c0)2n2⇠ � (nµ)1�2� , 8 0 < µ  µ̂,

which implies

1

2n�1
 � 

1

2
.

This completes the proof.

Corollary 4.4. Let (X(0), y(0), S(0)) 2 N(⇠) be an initial solution, µ(0) := X(0)
•

S(0)/n, and log(.) denote the natural logarithm. Then the Dikin-type primal-dual a�ne

scaling method with steplength ↵ = 1/(⇠
p
n) and the neighborhood (34) (see Section

6.6 in de Klerk (2006)) needs at most

⇠
⇠n log

✓
µ(0)

✓
min

⇢
1

n

✓
�

c0n
3
2 ⇠

◆ 1
�

,
�2

n2⇠
, µ̂

�◆�1◆⇡
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iterations to get an (X�, y�, S�) 2 N(⇠) which allows to identify (MB,MT ,MN ) and

(PB, PT , PN ).

Proof. The proof easily follows from the iteration complexity result for the Dikin-
type primal-dual a�ne scaling method with steplength ↵ = 1/(⇠

p
n), see Theorem 6.1

in de Klerk (2006). Then the complementarity gap drops below a threshold " after

⇠
⇠n log

✓
nµ(0)

"

◆⇡

iterations. The result follows if we replace " by the right hand side of (39) multiplied
by n.

Analogues of Theorems 3.11 and 3.13 can be presented for interior solutions in a
neighborhood of the central path. To that end, we only need to replace (Qµ

B, Q
µ
T , Q

µ
N )

by (MB,MT ,MN ) or (PB, PT , PN ) to define the projection of X̃ and S̃ for any
(X̃, ỹ, S̃) 2 P

⇤
⇥ D

⇤. Analogous to Theorem 3.13, we can derive an upper bound on
the proximity of

�
R(MB),R(MT ),R(MN )

�
, or

�
R(PB),R(PT ),R(PN )

�
, to (B, T ,N ).

For the sake of brevity, we do not present the details here.

Remark 10. In (42), we employed the same exponent � as in (17) but a di↵erent
condition number c0. In fact, the primal and dual systems in (12) are used for both
Theorems 3.8 and 4.3. However, it is not known whether c and c0 are identical or of
the same order.

5. Concluding remarks

In this paper, we considered the identification of the optimal partition for SDO where
strict complementarity may fail. Using the condition number � defined in (5) and
the upper bounds in (17), we derived bounds on the magnitude of the eigenvalues of
a primal-dual solution on, or in a neighborhood of the central path. We then used
the bounds to identify the subsets of the eigenvectors of the interior solutions whose
accumulation points form orthonormal bases for the subspaces B, T , and N . Moreover,
we measured the proximity of the approximation of the optimal partition obtained from
the bounded sequence of central solutions. For the interior solutions in a neighborhood
of the central path, an iteration complexity bound was provided which states that the
Dikin-type primal-dual a�ne scaling algorithm needs at most

⇠
⇠n log

✓
µ(0)

✓
min

⇢
1

n

✓
�

c0n
3
2 ⇠

◆ 1
�

,
�2

n2⇠
, µ̂

�◆�1◆⇡

iterations to identify the subsets of eigenvectors whose accumulation points are or-
thonormal bases for B, T , and N . It can be inferred from this complexity bound that
even approximation of the optimal partition for SDO is significantly harder than the
identification of the optimal partition for LO and LCP.

We provided a positive lower bound on the condition number �. Even though the
lower bound is doubly exponentially small, it is not too far from the actual value of
� for some instances of SDO. In fact, all this only indicates that an SDO problem
is, in general, harder to solve exactly than an LO problem. However, one should be
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cautioned that computing an exact solution of an LO problem might be di�cult too.
More precisely, the condition number � might be so small for an LO problem that
very high accuracy is needed for the computation of an exact solution, far beyond the
double precision arithmetic commonly used today. For instance, it might be extremely
hard to exactly solve an LO problem with a Hilbert matrix of size larger than 20,
regardless of the algorithm used.

Our approach only allows for an approximation of the optimal partition from a
bounded sequence of interior solutions on, or in a neighborhood of the central path.
It might be possible to derive additional characterization of the optimal partition if
we look at the central path as a semi-algebraic set parameterized by µ. Moreover, it is
worth investigating the dependence of the condition numbers c and c0 on the problem
data. The derivation of upper bounds on ✓1, ✓2, c, and c0 is subject of future studies.
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Appendix A. A lower bound on �

In this section, we derive a lower bound on the condition number � defined in (5). To
do so, we resort to a technical lemma in Ramana (1993).

An integral polynomial map f : Rs
! Rt is defined as a map consisting of polynomial

functions f i of degree di with integer coe�cients. We consider a solution set V(f)
defined as

V(f) := {x | f i(x) �i 0, 8 i},

where �i stands for one of the relations {>,=,�}. Depending on the polynomial map
f , the solution set V(f) could be connected or disconnected. For this polynomial map
Lf denotes the binary length of the largest absolute value of the coe�cients of the
polynomials, where the binary length of an integer n is defined as

l(n) := 1 +
⌃
log2(|n|+ 1)

⌥
,

in which log2(.) stands for the logarithm to the base 2.

The next lemma shows that there exists a sphere B(0, r) which circumscribes some
solutions from every connected component of V(f).

Lemma A.1 (Lemma 3.1 in Ramana (1993)). Suppose that the polynomials in the

polynomial map f have maximum degree d, i.e., d := maxi{di} with d � 2. Then every

connected component of V(f) intersects the sphere {x | kxk2  r}, where log2(r) =
Lf (td)s.

Lemma A.2. Let the SDO problems (P ) and (D) be given by integer data and L
denote the binary length of the largest absolute value of the entries in b, C, and Ai

for

i = 1, . . . ,m. Then, for the condition number � we have

� � min

(
1

rP⇤
Pm

i=1 kA
ik
,

1

rD⇤

)
, (A1)

where

log2(rP⇤) = (L+ 2)
⇣
max{n, 3}(6n2 + 2n+m)

⌘5n2+2m
,

log2(rD⇤) = (L+ 2)
⇣
max{n, 3}(7n2 + 2n+ 2m)

⌘6n2+m
.

Proof. Recall from (6) and (7) that

�B � �min(Q
T
BX̃QB), �N � �min(Q

T
N X̃QN ), 8(X̃, ỹ, S̃) 2 P

⇤
⇥D

⇤,

which motivates us to find a solution in the relative interior of the optimal set. We
apply the definition of the analytic center of the optimal set to find a solution in the
relative interior of the optimal set, and we then derive a lower bound on its minimum
eigenvalue. It should be noted that Ramana (1993) used this definition to compute a
lower bound on the volume of a sphere inscribed in the feasible set of a so called strict
semidefinite feasibility problem.

Throughout the proof, we can assume that nB, nN > 0. By Theorem 2.2, any primal-
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dual optimal pair is a solution to the following LMI system

8
>>><

>>>:

Ai
•QBUXQT

B = bi, i = 1, . . . ,m,

C �

mX

i=1

yiA
i = QNUSQT

N ,

UX , US ⌫ 0,

(A2)

where UX 2 SnB
+ and US 2 SnN

+ are as defined in Theorem 2.2, and QB and QN are
assumed to be known. Therefore, since nB, nN > 0, we obtain the set of maximally
complementary optimal solutions if we add the constraints UX , US � 0 to (A2), i.e.,

8
>>><

>>>:

Ai
•QBUXQT

B = bi, i = 1, . . . ,m,

C �

mX

i=1

yiA
i = QNUSQT

N ,

UX , US � 0.

(A3)

Then for a given orthonormal basis QB, the analytic center of the primal optimal set
can be computed by solving

max log(det(UXa))

s.t. Ai
•QBUXaQT

B = bi, i = 1, . . . ,m,

UXa � 0.

(A4)

Problem (A4) is convex with a strictly concave objective function over the cone of
positive definite matrices, which by nB > 0 induces the existence of a unique optimal
solution for (A4). Further, there exists a vector of Lagrange multipliers u 2 Rm so
that the following system of optimality conditions has a solution:

8
><

>:

U�1
Xa �

Pm
i=1 uiQ

T
BA

iQB = 0,

Ai
•QBUXaQT

B = bi, i = 1, . . . ,m,

UXa � 0.

(A5)

For any solution (UXa , u) of (A5), which is unique in terms of UXa but not necessarily
in terms of u, Xa := QBUXaQT

B is the analytic center of the primal optimal set. To
derive a lower bound on the minimum eigenvalue of Xa, we have from (A5) that

�min(UXa) =
1

�max

⇣Pm
i=1 uiQ

T
BA

iQB

⌘ �
1��Pm

i=1 uiQ
T
BA

iQB
��

�
1Pm

i=1 |ui|kQ
T
BA

iQBk

�
1Pm

i=1 |ui|kA
ik
, (A6)

where we have used the triangle inequality and the fact that kQT
BA

iQBk  kAi
k. Note

that the bound (A6) depends on an upper bound on |ui| which itself relies on QB.
In general, however, QB is not known a priori, since it is determined by solutions in
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the relative interior of the optimal set. Hence, the idea is to characterize all possible
orthonormal bases for B, i.e., to characterize the properties of �B, in the optimal-
ity conditions (A5) to describe the analytic center of the optimal set. Then a direct
application of Lemma A.1 to the embedded set yields an upper bound on |ui|.

Assume that QB is an unknown orthonormal basis in (A4), i.e., QB is still an or-
thonormal basis for B but acts as an unknown in (A4), which leads to a nonconvex
optimization problem in QB and UXa . Then, problem (A4) can equivalently be written,
see e.g., Theorem 2.1 in Geo↵rion (1972), as

max
QB2�B

max
UXa�0

n
log(det(UXa)) : Ai

•QBUXaQT
B = bi, i = 1, . . . ,m

o
. (A7)

Any optimal solution (QB, UXa) of (A4) is also optimal for (A7) and vice versa. This
is due to the fact that the optimal solution of the inner maximization problem in (A7)
is attained. By Lemma 2.3, Theorem 2.2 and (A3), the set �B is compact, and it is
equivalent to the set of all QB with orthonormal columns by which (A3) is feasible.
Since the unique optimal solution of the inner maximization problem in (A7) is at-
tained, and its set of Lagrange multipliers is nonempty, then (A5) with �B describes
the analytic center of the primal optimal set, see Section 4.2 in Geo↵rion (1972) for a
similar argument in the context of the generalized Benders decomposition.

Now, we apply Lemma A.1 to the above embedded set. Let

#p := (UXa , u, ZX , US , y,QB, QN ),

where ZX 2 RnB⇥nB . We then define the integral polynomial map

fp : RnB⇥nB ⇥ Rm
⇥ RnB⇥nB ⇥ RnN⇥nN ⇥ Rm

⇥ Rn⇥nB ⇥ Rn⇥nN ! Rtp

as defined below

fp(#p) :=

0

BBBBBBBBBBBBBBBBBBB@

vec
⇣
ZX �

mX

i=1

uiQ
T
BA

iQB

⌘

vec
�
UXaZX � InB

�

A1
•QBUXaQT

B � b1
...

Am
•QBUXaQT

B � bm

vec
⇣
C �

mX

i=1

yiA
i
�QNUSQ

T
N

⌘

vec
�
QT

BQB � InB

�

vec
�
QT

NQN � InN

�

vec
�
QT

BQN
�

1

CCCCCCCCCCCCCCCCCCCA

, (A8)

where tp = 3n2
B+n2

N +nBnN +n2+m. Note that the symmetry of ZX and US follows
from the symmetry of Ai and C, and the symmetry of UXa follows from the symmetry
of ZX . Moreover, we define the solution set Up to enforce the positive definiteness of
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UXa and US as follows

Up :=
n
#p | det(UXa [i]) > 0, det(US [j]) > 0, i = 1, . . . , nB, j = 1, . . . , nN

o
, (A9)

in which UXa [i] denotes the ith leading principal submatrix of UXa . Indeed, the strict
inequalities in (A9) are necessary and su�cient for the positive definiteness of UXa and
US . By the interior point condition, the solution set V(fp) \ Up, where V(fp) =

�
#p |

fp(#p) = 0
 
, is nonempty but not necessarily a singleton. Then, from every solution

#p 2 V(fp)\Up, we can extract a solution (UXa , u,QB) which is the analytic center of
the primal optimal set, since it satisfies the constraints in (A5).

The solution set Up is characterized by nB +nN integer polynomials of degree at most
max{nB, nN }. Since the symmetry of the matrices UXa , ZX , and US is not presumed
for fp and Up, the coe�cients of the polynomial functions are bounded above by
twice the largest absolute value of the entries in b, C, and Ai for i = 1, . . . ,m. For
instance, the coe�cients of det(UXa [i]) are just 1, but uiQT

BA
iQB has some polynomial

terms with coe�cients twice the o↵-diagonal entries of Ai. Hence, the binary length
of the largest absolute value of the coe�cients in (A8) and (A9) is bounded above by
L+ l(2)� 1 = L+ 2, see Section 3.1 in Ramana (1993).

Consequently, by applying Lemma A.1 to the set V(fp) \ Up, we can conclude that
there exists a solution #p 2 V(fp) \ Up so that k#pk2  rP⇤ , where

log2(rP⇤) = (L+ 2)(t̄pd̄p)
s̄p ,

d̄p := max{nB, nN , 3}  max{n, 3},

t̄p := tp + nB + nN = 3n2
B + n2

N + nBnN + nB + nN + n2 +m  6n2 + 2n+m,

s̄p := 2n2
B + n2

N + n(nB + nN ) + 2m  5n2 + 2m,

in which s̄p denotes the total number of variables in the polynomial map fp, and d̄p is
the maximum degree of the polynomials in fp and the polynomials defining Up. As a
result, there exists u so that |ui|  kuk2  rP⇤ . Then, using inequality (A6), we get

�B � �min(UXa) �
1Pm

i=1 |ui|kA
ik

�
1

rP⇤
Pm

i=1 kA
ik
.

This completes the first part of the proof. In a similar fashion, we can use the same
reasoning as in the primal side to derive a lower bound on �N . Notice that for a given
orthonormal basis QN , the analytic center of the dual optimal set can be obtained by
solving

max log(det(USa))

s.t.
mX

i=1

yai A
i +QNUSaQT

N = C,

USa � 0,

(A10)

which is a convex optimization problem with strictly concave objective function. The
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optimality conditions for (A10) are given by

8
>>><

>>>:

U�1
Sa �QT

NWQN = 0,

Ai
•W = 0, i = 1, . . . ,m,Pm
i=1 y

a
i A

i +QNUSaQT
N = C,

USa � 0,

(A11)

where W is an n ⇥ n symmetric matrix. Note that the symmetry of Ai induces the
symmetry of USa but not necessarily the symmetry9 of W . Then the optimality con-
ditions (A11) imply

�min(USa) =
1

�max(QT
NWQN )

�
1

kQT
NWQN k

�
1

kWk
. (A12)

Let #d :=
�
USa , ya, UX , ZS ,W,QB, QN

�
, where ZS 2 RnN⇥nN , and consider the solu-

tion set

V(fd) :=
n
#d | fd(#d) = 0

o
,

where the integral polynomial map

fd : RnN⇥nN ⇥ Rm
⇥ RnB⇥nB ⇥ RnN⇥nN ⇥ Rn⇥n

⇥ Rn⇥nB ⇥ Rn⇥nN ! Rtd

is defined as

fd(#d) :=

0

BBBBBBBBBBBBBBBBBBBBBBBBB@

vec
�
ZS �QT

NWQN
�

vec
�
USaZS � InN

�

A1
•W
...

Am
•W

A1
•QBUXQT

B � b1
...

Am
•QBUXQT

B � bm

vec
⇣
C �

mX

i=1

yai A
i
�QNUSaQT

N

⌘

vec
�
W �W T

�

vec
�
QT

BQB � InB

�

vec
�
QT

NQN � InN

�

vec
�
QT

BQN
�

1

CCCCCCCCCCCCCCCCCCCCCCCCCA

, (A13)

in which td = n2
B + 3n2

N + nBnN + 2n2 + 2m. By the interior point condition, the set
of solutions of V(fd) \ Ud is nonempty, where Ud is defined as

Ud :=
n
#d | det(UX [i]) > 0, det(USa [j]) > 0, i = 1, . . . , nB, j = 1, . . . , nN

o
.

9Note that there is no need to add a symmetrization constraint. One can easily check that W+WT

2 is a
symmetric feasible solution for (A11).

36



Then, analogous to the primal case, from a solution #d 2 V(fd) \ Ud we can get a
solution (USa , ya,W,QN ) with symmetric W , which is the analytic center of the dual
optimal set. Therefore, Lemma A.1 implies the existence of #d 2 V(fd) \ Ud so that
k#dk2  rD⇤ , where

log2(rD⇤) = (L+ 2)(t̄dd̄d)
s̄d ,

d̄d := max{nB, nN , 3}  max{n, 3},

t̄d := td + nB + nN = n2
B + 3n2

N + nBnN + nB + nN + 2n2 + 2m  7n2 + 2n+ 2m,

s̄d := n2
B + 2n2

N + n2 + n(nB + nN ) +m  6n2 +m,

in which s̄d and d̄d are defined analogously as in the primal side. As a result, a lower
bound on �N is given by using kWk  rD⇤ and (A12). This completes the proof.

Remark 11. For the special case nB = 0 we get � = �N by (5), and thus the lower
bound (A1) is still valid. Indeed, any dual feasible solution is also dual optimal for
this special case. Thus, to derive a lower bound on �N we only need to compute the
analytic center of the dual feasible set D, i.e.,

max log
�
det(Sa)

�

s.t.
mX

i=1

yai A
i + Sa = C,

Sa
� 0.

(A14)

It it easy to verify that the application of Lemma A.1 to the system of optimality
conditions of (A14) gives an integral polynomial map with strictly fewer number of
polynomials and variables than (A13), which yields a smaller rD⇤ .

Example A.3. From (A1) we get a doubly exponentially small lower bound on �.
Consider the SDO problem in Example 3.2 for which we have �  20 ⇥ 4�2m̄

. Given
nB  2m̄+1, nN  2m̄+1, kA1

k =
p
m̄+ 8, kAi+1

k = 3 for i = 1, . . . , m̄�1, kAm̄+1
k =

p
2, and L = l(2) = 1 + dlog2(3)e = 3, we can compute the lower bound (A1). To do

so, we have

t̄p  6(2m̄+ 1)2 + 2(2m̄+ 1) + m̄+ 1, t̄d  7(2m̄+ 1)2 + 2(2m̄+ 1) + 2m̄+ 2,

s̄p  5(2m̄+ 1)2 + 2m̄+ 2, s̄d  6(2m̄+ 1)2 + m̄+ 1,

d̄p = d̄d  2m̄+ 1,
mX

i=1

kAi
k =

p
m̄+ 8 + 3(m̄� 1) +

p
2.

Therefore, we get

log(rP⇤) = 5⇥ (48m̄3 + 82m̄2 + 47m̄+ 9)20m̄
2+22m̄+7,

log(rD⇤) = 5⇥ (56m̄3 + 96m̄2 + 56m̄+ 11)24m̄
2+25m̄+7.
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Consequently,

� � min
n�p

m̄+ 8 + 3(m̄� 1) +
p
2
�
2�5⇥(48m̄3+82m̄2+47m̄+9)20m̄

2+22m̄+7

,

2�5⇥(56m̄3+96m̄2+56m̄+11)24m̄
2+25m̄+7

o
.
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