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 

Abstract—This paper presents an economic framework for designing demand curves in Forward Capacity Market (FCM). Capacity 

demand curves have been recognized as a way to reduce the price volatility inherited from fixed capacity requirements. However, due 

to the lack of direct demand bidding in FCM, obtaining demand curves that appropriately reflect load’s willingness to pay for 

reliability is challenging. The proposed framework measures the value of reliability by the Cost of Unserved Energy (CUE), i.e., 

Expected Unserved Energy (EUE) multiplied by Value of Lost Load (VOLL). The total cost of capacity and CUE are then minimized, 

allowing economic tradeoffs between different reliability levels. EUE, a multivariate function of the total system capacity and its 

distribution among capacity zones, is decomposed into single-variable functions, which form the base for system and zonal demand 

curves. VOLL is implied from the Net Cost of New Entry (Net-CONE) based on long-term market equilibrium properties. The 

proposed framework is applied to a multi-zone ISO New England system to demonstrate its effectiveness.   

 
Index Terms—Capacity demand curve, Cost of New Entry (CONE), decomposition, Expected Unserved Energy (EUE), Forward 

Capacity Market (FCM), market equilibrium, value of reliability, Value of Lost Load (VOLL). 

I.  INTRODUCTION 

orward Capacity Market (FCM) has been adopted in many regions (e.g., ISO-NE, MISO, NYISO and PJM) to address long-

term resource adequacy and the missing money problem
1
 ([1]-[5]). The fundamental goal of FCM is to attract the right 

amount of capacity at the right locations (so that the appropriate level of system reliability is maintained) through proper price 

signals, while the “rightness” should be defined through the balance between reliability and cost. Most capacity markets employ 

fixed capacity requirements for the system or zones. These fixed requirements are determined prior to the capacity auction based 

on a prescribed reliability level, e.g., Loss of Load Expectation (LOLE) of 1 day in 10 years. The use of fixed capacity 

requirements, or, equivalently, vertical or price-inelastic demand curves in FCM, undermines the above fundamental FCM goal 

in three aspects: First, by fixing the capacity requirements, the market does not have the option to choose the proper level of 

system reliability. As a result, the reliability level implied by these requirements could be suboptimal, e.g., the cost for the 

required capacity levels could outweigh the value of the implied reliability. Second, when capacity zones are modeled in FCM to 

address the capacity deliverability issue, the fixed capacity requirements do not allow the market to trade off capacity among 

different zones. As a result, the capacity distribution may not be optimal, e.g., FCM may procure expensive capacity in a zone to 

meet its fixed zonal requirement while potentially ignoring a more efficient solution of procuring less capacity in that zone but 

more in another zone. Lastly, vertical demand curves lead to significant price volatility, e.g., the market clearing price tends to 

skyrocket when there is any capacity shortage from the fixed requirement, and the market price plummets when there is a 

capacity surplus. Such price volatility increases the risk for capacity investment and load payment, and impedes the formation of 

adequate price signals for long-term investment. Furthermore, the market may be prone to the market power.  

In light of the above shortcomings of fixed capacity requirements, sloped or price-elastic capacity demand curves have been 

discussed or implemented in different regions. Particularly in 2013, Federal Energy Regulatory Commission (FERC) issued a 

report on centralized capacity market design that identifies demand curves as a major design element [6]. ISO-NE has 

implemented a 3-segment linear system capacity demand curve since 2015 to replace the fixed Installed Capacity Requirement 

(ICR), and was required by FERC (Docket No. EL16-15-000) to develop zonal capacity demand curves. Despite being an 

important improvement to the fixed ICR, the parameters of the 3-segment system demand curve are determined by market 

simulations that use presumed market bids, and the transition points of the curve are selected administratively, largely based on 
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stakeholder consensus. Furthermore, the linear shape and the number of segments are more a convenient choice than the 

rigorous analysis. As a result, the approach was found difficult to extend to zonal demand curves. PJM implements 4-segment 

linear Variable Resource Requirement (VRR) curves (i.e., capacity demand curves) for both system and Locational 

Deliverability Areas (LDAs) in its FCM [7]. The approach suffers similar drawbacks as the ISO-NE’s existing 3-segment system 

demand curve. Furthermore, the approach uses separate system and local reliability objectives, i.e., 1-in-10 LOLE for the system 

and 1-in-25 for LDAs, to produce the system and local VRRs, thus disregarding the correlation between system and local loss of 

load events. NYISO uses 3-segment linear demand curves for its Installed Capacity (ICAP) spot market [8]. The transition points 

on the demand curve are prescribed as certain percentages of the forecasted peak load plus a reserve margin. The parameters of 

the curve, including the transition points, are subject to recurring reviews. MISO runs a 1-year ahead Planning Resource Auction 

(PRA) to procure capacities that cover the forecasted peak load plus the reserve margin [9]. Vertical or fixed demand is currently 

implemented in the PRA. However, there is an increasing interest in MISO to introduce a new 3-year ahead Forward Resource 

Auction (FRA) with sloped demand curves. Demand curves in the above capacity markets have been analyzed in [10]-[12], but 

none has produced rigorous justifications for the existing demand curves. 

All demand curves implemented in the existing capacity markets share the following common weaknesses: lack of a rigorous 

and complete economic framework that supports the development of demand curves; and lack of clear recognition of the 

interactions between system and local demand curves. As a result, the demand curves often involve assumptions that are hard to 

justify, while the meaning of demand curves is often obscure and does not connect with the demand’s willingness to pay for 

reliability (especially in the presence of both system and local demand curves).  

Demand curve is not a new concept in economics literature. Efforts were made to derive demand curves. Hogan [13] proposed 

an operating reserve demand curve (ORDC) based on the product of VOLL and Loss of Load Probability (LOLP) for short-term 

reserve markets. In the presence of local reserve zones, the approach implies zonal ORDCs based on the prescribed zonal 

“configuration of lost load” and may not lead to explicit two-dimensional curves. Furthermore, the paper did not instruct how to 

estimate the VOLL, an important parameter for ORDC. The Brattle Group reviewed the PJM’s capacity market design and 

recommended “defining local reliability objectives in terms of normalized unserved energy” and “exploring this alternative 

standard based on a multi-area reliability model that simultaneously estimates the location-specific EUE among different PJM 

system and sub-regions” [14]. The Brattle report did not provide a systematic framework or details of “local reliability 

objectives.” Rudkevich et al. [15] proposed a stochastic optimization framework to derive locational resource adequacy 

indicators as price indicators for general transmission constrained systems. While the paper did not address demand curves, it 

provides useful insights about how the marginal capacity cost is related to the cost of unserved energy.  

In the absence of demand bids for capacity, the major theoretical challenge for designing meaningful demand curves is to 

appropriately reflect their economic essence, i.e., the value of reliability, without direct expression from the consumers. Also, in 

the presence of zonal interface limits, capacities in different zones have different reliability implications, while they are all 

counted as part of the system capacity. How to design zonal and system demand curves that appropriately capture the interaction 

between zonal and system capacities while keeping the curves in a simple form (e.g., 2-dimensional) becomes the major 

technical challenge.  

In this paper, we present a rigorous economic framework based on social-surplus maximization that incorporates both the cost 

of capacity and the value of reliability. The reliability value is measured by consumers’ avoided Cost of Unserved Energy 

(CUE), i.e., the product of Value of Lost Load (VOLL) and Expected Unserved Energy (EUE). Then the marginal value of 

reliability, based on the derivative of CUE, is used to represent the load’s willingness to pay for capacity, i.e., the demand 

curve
2
. Since capacities in different locations have different impact on reliability, EUE is not only affected by the total capacity 

in the system, but by the allocation of the system capacity as well. As a result, EUE and CUE are multi-variate functions of the 

total system capacity and its distribution among zones. The marginal value of reliability is also a multi-variate function of the 

system and zonal capacities. To obtain a simple 2-dimensional form for demand curves, we first decompose EUE into a system 

capacity related component that is caused by the system capacity shortage, and an additional component that is caused by 

interface limits. Note that the decomposition here is different from the zonal LOLP configuration in [13], which needs to be 

prescribed and amounts to unconventional locational reliability criteria. Our approach counts the total system EUE for each 

decomposed component, consistent with the widely adopted system reliability criteria in practice. With the independence 

assumption for reliability impact of different interfaces, the additional component is further split into individual zonal capacity 

related components. As a result, the EUE function is decomposed into system and zonal capacity related components that are 

used to derive the corresponding demand curves. Since power system reliability is treated as a public good, a uniform VOLL is 

considered for all locations. Estimating VOLL is notoriously difficult and a wide range of values from several thousand to tens of 

thousands of U.S. dollars per MWh have been reported [16]-[19]. Based on the property of the long-term market equilibrium, 

this paper derives VOLL from the marginal cost of capacity, i.e., Net Cost of New Entry (Net-CONE) that has been established 

in all existing capacity markets. With decomposed EUE, system and zonal demand curves are derived from the derivatives of 
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corresponding EUE components scaled by the VOLL. The economic interpretation of demand curves is obtained from the 

Karush-Kuhn-Tucker (KKT) optimality conditions of the social surplus maximization problem.  

The major contributions of this paper are: First, it provides a complete and rigorous economic framework for the development 

of FCM demand curves. To the authors’ best knowledge, no existing design has achieved the level of completeness and rigor of 

this paper. Second, it provides a sensible decomposition of reliability (i.e., EUE in this paper) that leads to a simple yet 

meaningful 2-dimensional representation of demand curves. Lastly, the proposed demand curve design is highly practical. A 

filing based on this paper’s approach has been approved recently by FERC (Docket No. ER16-1434-000, Issued June 28
th

, 

2016), and we demonstrated our approach with a real-size New England system in this paper.  The rest of the paper is organized 

as follows.  Section II presents the economic framework and the derivation of demand curves.  Section III describes a practical 

process of generating the demand curves. Section IV studies the demand curves for the ISO-NE system.  Section V concludes the 

paper. 

II.  ECONOMIC FRAMEWORK 

In this section, we present an economic framework for producing and applying capacity demand curves. We start with 

analyzing the reliability value of the capacity for loads (Subsection II.A). The demand curves are derivatives of the reliability 

value function. In view of the multi-variate reliability function of zonal capacities and the desired single-variable capacity 

demand functions, decomposition and approximation of the multi-variate reliability function are introduced to obtain system and 

zonal components of reliability (Subsection II.B). The corresponding system and zonal capacity demand curves are then derived 

from these components (Subsection II.C). The demand curves are used in the capacity market clearing (Subsection II.D), 

resulting in desired cascading capacity clearing prices (Subsection II.E). Then, VOLL as the scaling factor of the demand curves 

is implied from the Net capacity Cost of New Entry (Net-CONE) based on long-term market equilibrium (Subsection II.F). 

Finally, we discuss the extensibility and limitation of our framework (Subsection II.G).  

For simplicity, we use a stylized capacity market with one Import Constrained Zone (ICZ), one Export Constrained Zone 

(ECZ) and the Rest of System (ROS) zone
3
. The system configuration is depicted in Fig. 1.  

 

 

 

 

 

Fig.1. System configuration 

A.  The value of reliability   

Capacity demand curves are supposed to reflect consumers’ willingness to pay for capacity. In the absence of direct capacity 

demand bids from consumers, we rely on the economic essence of capacity product to derive the demand curves. As discussed in 

[20], capacity product indeed is a surrogate for reliability. Therefore, the value of reliability is essential for deriving capacity 

demand curves.  

Conventional reliability theory [21] establishes various reliability indices. The mostly adopted reliability index in North 

America is Loss of Load Expectation (LOLE) with the typical criterion of 1 day in 10 years [22]. While LOLE captures the 

frequency of loss of load events, it does not reflect the severity of service interruptions, e.g., the size of loss of load. EUE 

captures both frequency and size that affect the value of reliability. Therefore, we adopt EUE as the reliability index in the 

following derivation.  

For a multi-zone system such as the one depicted in Fig. 1, unserved energy can be caused by the deficiency in the system 

capacity or limitation of transfer capability between zones. Therefore, system reliability is impacted by both the total system 

capacity and the allocation of system capacity among zones. Let’s denote the capacities in the system, ICZ and ECZ by QSYS, 

QICZ, QECZ, respectively. Then, the reliability, measured by EUE in MWh/Year, is a multivariate function of all three capacity 

levels, i.e., EUE(QSYS, QICZ, QECZ). The multivariate surface with one ICZ and no ECZ is illustrated in Fig. 2 where the dots on 

the surface represent EUEs corresponding to the sampled system and ICZ capacity levels.  
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Fig.2. Multivariate EUE function 

 

To measure the value of reliability, we introduce VOLL in $/MWh. Since reliability is treated as a public good, the same 

VOLL shall apply to every MW of lost load, irrespective of its location. Therefore, the value of reliability, which is based on 

the Cost of Unserved Energy (CUE), can be represented as: 

   , , , ,SYS ICZ ECZ SYS ICZ ECZCUE Q Q Q VOLL EUE Q Q Q                    (1) 

B.  Decomposition of EUE/CUE 

The marginal value of reliability, or the derivative of CUE, represents consumers’ willingness to pay for reliability, or, the 

demand curve. Since CUE is a multi-variate function, its derivatives, are also multi-variate functions. Multi-variate demand 

functions imply coupling among capacity levels of different zones, i.e., one zone’s willingness to pay would not only depend on 

the demand level of that zone, but demand levels of all other zones as well. Evaluation of the multi-variate CUE function based 

on the multi-area reliability theory is much more complex than the single area reliability [23]-[26]. Furthermore, the coupling 

among different capacity zones makes the demand functions difficult to interpret, and poses significant challenges to numerical 

approximation of the demand functions and the market clearing process.  

To address the above challenges, our approach is to decompose the EUE function (and hence CUE) into single-variable 

components such that each would lead to a demand curve relating only to the capacity level of a particular zone. Approximation 

may need to be involved in the decomposition as shown later in this subsection. Also, there exists multiple ways of 

decomposition. The key challenge is to find an appropriate decomposition formula that yields meaningful and easy-to-interpret 

demand curves. Below is our decomposition.  

Loss of load can be caused either by the inadequate system capacity or the insufficient transfer capability between zones. 

Therefore, a natural way of decomposing the multi-variate EUE function is to separate the two causes, i.e.,  

     |, , , |SYS ICZ ECZ SYS SYS A SYS ICZ ECZ SYSEUE Q Q Q EUE Q EUE Q Q Q             (2) 

where EUESYS(QSYS) is the expected unserved energy resulting from the system capacity deficiency (i.e., treating the entire system 

as a single zone without considering zonal interface limits); and EUEA|SYS (QICZ, QECZ |QSYS) is the “additional” expected 

unserved energy resulting from the distribution of system capacity QSYS in the presence of interface constraints. It can be seen 

that EUESYS() is a single-variable function since it only depends on the total system capacity. However, EUEA|SYS () is still a 

multivariate function as it depends on the total system capacity and its distribution in ICZ and ECZ. Further decomposition of 

EUEA|SYS () is needed. 

In practice, the fixed zonal capacity requirements are calculated one zone at a time [27], i.e., one zone’s capacity requirement 

is not affected by other zones’ capacity allocation. The underlying assumption is that the reliability impact of one zone’s capacity 

is independent of other zones’. Under the same assumption, the EUEA|SYS resulting from the distribution of system capacity can 

be decomposed into individual zones, i.e.,  
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     | | |, | | |A SYS ICZ ECZ SYS ICZ SYS ICZ SYS ECZ SYS ECZ SYSEUE Q Q Q EUE Q Q EUE Q Q        (3) 

where EUEICZ|SYS (QICZ |QSYS) is the additional expected unserved energy caused by the ICZ import limit when allocating QICZ of 

system capacity QSYS into the ICZ; and EUEECZ|SYS (QECZ |QSYS) is the additional expected unserved energy caused by the ECZ 

export limit when allocating QECZ of system capacity QSYS into the ECZ. Note that EUEICZ|SYS() and EUEECZ|SYS() depend not 

only on the capacity in the corresponding zone, but the total system capacity as well. Therefore, these two functions are still 

multi-variate. However, in our testing of the NE system, we found that these EUE values are not sensitive to the system capacity 

QSYS around the nominal system capacity level of ICR, which corresponds to the desired “1-in-10” LOLE criterion. As a result, 

EUEICZ|SYS() and EUEECZ|SYS() in (3) are approximated as  

   | || |ICZ SYS ICZ SYS ICZ SYS ICZEUE Q Q EUE Q ICR                     (4) 

   | || |ECZ SYS ECZ SYS ECZ SYS ECZEUE Q Q EUE Q ICR                     (5) 

Ideally, the system capacity QSYS in the above approximations should be the optimal level of the system capacity from the 

capacity market clearing, e.g., Q
*

SYS, instead of ICR. Therefore the approximation error can be measured by the difference 

between EUEZ|SYS (EZ|Q
*

SYS) and EUEZ|SYS (EZ|ICR) where Z= ICZ or ECZ. In the lack of knowing Q
*
SYS prior to the market 

clearing, we can specify a range [Qmin, Qmax] surrounding ICR for estimating Q
*

SYS, with Qmin and Qmax denoting the bounds for 

possible cleared system capacity
4
. Then the approximation error in (4)-(5) can be capped by the deviation from EUEZ|SYS 

(EZ|ICR) to EUEZ|SYS (EZ|Qmin) or EUEZ|SYS (EZ|Qmax). Our testing of the NE system found the error to be quite small. 

Substituting (3)-(5) into (2), we have: 

       | |, , | |SYS ICZ ECZ SYS SYS ICZ SYS ICZ ECZ SYS ECZEUE Q Q Q EUE Q EUE Q ICR EUE Q ICR     (6) 

The right-hand side components in (6) are single-variable functions with respect to the system total capacity QSYS, ICZ capacity 

QICZ and ECZ capacity QECZ, respectively. Consequently, the value of reliability, or the Cost of Unserved Energy (CUE) in (1), 

can be decomposed as: 

   

   | |

, ,

| |

SYS ICZ ECZ SYS SYS

ICZ SYS ICZ ECZ SYS ECZ

CUE Q Q Q VOLL EUE Q

VOLL EUE Q ICR VOLL EUE Q ICR

 

   
   (7) 

where the right-hand-side components represent the CUE associated with QSYS, QICZ and QECZ, respectively.  

System reliability improves (i.e., less unserved load) when there is more capacity in the system. Therefore, EUESYS() in (6) is 

a monotonically decreasing function of QSYS. Also, the capacity in ICZ has more value than that of the rest of system due to the 

zone’s import limit. Therefore, system reliability improves when more capacity is allocated in ICZ, i.e., EUEICZ|SYS() in (6) is a 

monotonically decreasing function of  QICZ. On the other hand, system reliability deteriorates when more capacity is allocated in 

ECZ where the capacity is constrained by the export limit. Namely, EUEECZ|SYS() in (6) is a monotonically increasing function of 

QECZ.  

C.  Capacity demand curves 

 With the above decomposition of the value of reliability in (7), demand curve, as the marginal value of reliability for 

corresponding system or zonal capacity, can be represented by the negative derivative of the corresponding CUE components in 

(7) (with the negative sign to convert cost into value), i.e.,  

      
 SYS SYS

SYS SYS
SYS

dEUE Q
D Q VOLL

dQ
                            (8) 

 
 | |ICZ SYS ICZ

ICZ ICZ
ICZ

dEUE Q ICR
D Q VOLL

dQ
                        (9) 

 
 | |ECZ SYS ECZ

ECZ ECZ
ECZ

dEUE Q ICR
D Q VOLL

dQ
                       (10) 

where DSYS(), DICZ() and DECZ(), respectively, are the system and zonal demand curves representing the annualized marginal 

value of capacity in $/mw-year.  

                                                           
4 As we design the VOLL parameter to achieve the “1-in-10” criterion under the long-term market equilibrium (discussed in Section II.F), the optimal 

system capacity Q*
SYS is considered to converge to the ICR in the long run. Under the convergence, the range is bounded and would be narrower along the 

convergence path, implying smaller approximation error in (4)-(5). 
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 The EUE components associated with system and ICZ capacities in (6) are monotonically decreasing functions. As a result, 

their derivatives are negative, and the corresponding system and ICZ demand curves in (8)-(9) have positive values.  

Furthermore, as we will derive in the next Section, the derivative of EUE (with the negative sign) is in general proportional to the 

Loss of Load Hours (LOLH)
5
. The LOLH, as a reliability index, decreases when the capacity increases. Therefore the system 

and ICZ demand curves are monotonically decreasing. Likewise, the ECZ demand curve in (10) has negative values and is 

monotonically decreasing.  

 It should be noted that zonal demand curves are derived from the EUE components that reflect the additional unserved energy 

caused by the interface limits. Therefore, zonal demand curves reflect the load’s additional willingness to pay for capacity in the 

corresponding zones besides the marginal value of the total system capacity. The total willingness to pay for capacity in an ICZ 

or ECZ zone is then a combination of the system and zonal demand curve values, i.e.,  

       , .SYS SYS Z ZD Q D Q Z ICZ or ECZ                           (11) 

Note that the above total willingness to pay in (11) depends on both the system capacity QSYS and its allocation QZ in the zone.  

With the demand curves (8)-(10), the CUE in (7) can be represented as  

       0 0 0, , sys ICZ ECZ
Q Q Q

SYS ICZ ECZ sys ICZ ECZCUE Q Q Q D Q dQ D Q dQ D Q dQ               (12) 

D.  Social-surplus maximization 

The objective of the Forward Capacity Market (FCM) is to maximize the total surplus of capacity supply and demand, or 

equivalently, to minimize the total costs of capacity offers and CUE, i.e.,  

     

     

{ }, , ,

0 0 0

i SYS ICZ ECZ ICZ ECZ ROS

SYS ICZ ECZ

i i j j k k
q Q Q Q i Z j Z k Z

Q Q Q
SYS ICZ ECZ

Minimize C q C q C q

D Q dQ D Q dQ D Q dQ

  

   

       

       (13) 

where ZICZ, ZECZ and ZROS, respectively, are the sets of capacity offers in ICZ, ECZ and ROS; qi, qj, and qk are the cleared 

quantities of capacity offers in the corresponding zones; QICZ, QECZ and QROS are cleared demand in corresponding zones; and 

Ci(·), Cj(·), and Ck(·) are the costs associated with corresponding capacity offers.  

 The total cleared system capacity should meet the total system demand, i.e.,  

ICZ ECZ ROS

i j k SYS
i Z j Z k Z

q q q Q
  

                                (14) 

Similarly, the cleared capacity in ICZ should meet the ICZ demand, i.e.,  

ICZ

i ICZ
i Z

q Q


                                     (15) 

For the export zone, the zonal demand serves as a “limit” instead of requirement in order to limit the capacity allocated in the 

interface-constrained export zone, i.e.,  

ECZ

j ECZ
j Z

q Q


                                    (16) 

Each capacity offer has its own constraints, e.g., capacity size. The constraints for an offer i is denoted by Ωi. Thus we have  

,i i ICZ ECZ ROSq i Z Z Z                               (17) 

The FCM clearing problem is then (13)-(17). It can be seen that with demand curves, the FCM problem allows tradeoffs 

between costs and values of capacity, and tradeoffs between capacities in different zones. These features are unavailable under 

the fixed capacity requirements.  

E.  Capacity Clearing Prices 

In this subsection, we define the capacity clearing prices and link them to the demand curves based on the KKT optimality 

conditions [28] of the social-surplus maximization problem (13)-(17). We denote the Lagrange multiples associated with the 

capacity constraints (14)-(16) by SYS, ICZ and ECZ, respectively. The Lagrangian of the social-surplus maximization problem is 

then  

                                                           
5 The exact relation form between EUE and LOLH depends on the reliability evaluation process that is adopted.   
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           0 0 0

(18)

SYS ICZ ECZ

ICZ ECZ ROS

ICZ ECZ ROS ICZ ECZ

Q Q Q
i i j j k k sys ICZ ECZ

i Z j Z k Z

SYS SYS i j k ICZ ICZ i ECZ j ECZ
i Z j Z k Z i Z j Z

L C q C q C q D Q dQ D Q dQ D Q dQ

Q q q q Q q q Q  

  

    

            

     
                   

     
     

 

Suppose that the problem (13)-(17) is convex, e.g., capacity offer costs are convex functions and demand curves are 

monotonically decreasing. Then the KKT optimality conditions for the problem hold and yield the following: 

 * *
SYS SYS SYSD Q                                    (19) 

 * *
ICZ ICZ ICZD Q                                    (20) 

 * *
ECZ ECZ ECZD Q                                    (21) 

where Q
*

SYS, Q
*
ICZ and Q

*
ECZ, respectively, are cleared demand in system and zones; and *

SYS (≥0), *
ICZ (≥0)  and *

ECZ (≥0) 

respectively, are the shadow prices associated with the system and zonal capacity constraints.   

The Capacity Clearing Price (CCP) for the ROS zone can be defined as the marginal value of increasing by 1MW of capacity 

in ROS (or equivalently, system capacity), i.e., DSYS(Q
*

SYS). Based on (19), we have 

  * *
ROS SYS SYS SYSCCP D Q                                (22) 

Similarly, the capacity clearing price for the ICZ zone can be defined as the marginal value of increasing by 1 MW of capacity in 

ICZ. Together with (11), we have  

   * * * *
ICZ SYS SYS ICZ ICZ SYS ICZCCP D Q D Q                           (23) 

For ECZ, we have  

   * * * *
ECZ SYS SYS ECZ ECZ SYS ECZCCP D Q D Q                          (24) 

Based on (23)-(24), it can be seen that shadow prices *
ICZ and *

ECZ can be interpreted as “congestion components” of the 

corresponding capacity zone clearing prices, e.g., if the ICZ constraint (15) or the ECZ constraint (16) is not binding, then the 

corresponding shadow price becomes zero, and the ICZ or ECZ clearing price would be the same as the ROS clearing price. This 

interpretation is also consistent with the EUE decomposition in (6) where the zonal EUE components that lead to the 

corresponding demand curves reflect the unserved energy due to interface limits. Furthermore, since the shadow prices are non-

negative, we have the following price cascading relationship: 

ICZ ROS ECZCCP CCP CCP  ,                              (25) 

which is consistent with the intuition that the capacity of an import zone is the most valuable and the capacity of an export zone 

is the least valuable.  

F.  Implied VOLL 

Power system reliability in many ways represents a classic public good [29]-[31]. Despite the market liberalization, there’s 

still a lack of a mechanism for consumers to express their reliability preferences. With the centralized capacity markets, capacity 

is still purchased to achieve the uniform system reliability criterion (e.g., 1-in-10) enforced by regulatory institutions such as 

North America Electric Reliability Corporation (NERC). Consequently, we consider the uniform VOLL for the entire system in 

the centralized capacity market, i.e., the same value of reliability is considered for all consumers throughout the electric network. 

Estimating VOLL is notoriously difficult and a wide range of values from several thousand to tens of thousands of U.S. dollars 

per MWh have been reported [16]-[19]. The popular estimation methods include customer survey [32], macroeconomic analysis 

[33], and case study [34]. Each of them has strengths and weaknesses. In this paper, we imply the VOLL value from Net Cost of 

New Entry (Net-CONE) based on the long-term equilibrium property of the economic framework established in the previous 

subsections.  

Many capacity markets use the Net-CONE for market power mitigation and administrative price setting. The Net-CONE 

value, calculated as the annualized capital costs for the new resource, less its expected margin from energy and reserve markets, 

essentially reflects the “missing-money” or the marginal cost of the new resource. Depending on the assumptions made for the 
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new resource, different markets may have different Net-CONE values. ISO-NE calculated the Net-CONE value of $11.64/kw-

month for the capacity commitment period of 2019-2020 [35]. PJM used a Net-CONE value of $102,315/MW-year for the same 

period of 2019-2020 [36]. Nevertheless, the Net-CONE value is calculated prior to the FCM clearing, and we therefore can use it 

to derive the implied VOLL in the following.  

 Based on (22)-(24) and the marginal cost meaning of Net-CONE, we have the following relations between the demand curves 

and Net-CONEs:  

 

   

   

*

* *

* *

_

_

_

SYS SYS SYS

SYS SYS ICZ ICZ ICZ

SYS SYS ICZ ECZ ECZ

D Q Net CONE

D Q D Q Net CONE

D Q D Q Net CONE

 



 

  


                       (26) 

The above (26) represents the well-known result in microeconomics theory that the marginal benefit of demand equals the 

marginal cost of new entry at the market equilibrium. Substituting (8)-(10) into (26) and denoting the negative derivative of EUE 

as Marginal EUE (MEUE), we have  

 

   

   

*

* *
|

* *
|

_

| _

| _

SYS SYS SYS

SYS SYS ICZ SYS ICZ ICZ

SYS SYS ECZ SYS ECZ ECZ

MEUE Q Net CONE VOLL

MEUE Q MEUE Q ICR Net CONE VOLL

MEUE Q MEUE Q ICR Net CONE VOLL

 



 

  


            (27) 

With (27), one can calculate MEUESYS, MEUEICZ|SYS and MEUEECZ|SYS for a given VOLL. As shown in the later Section III, the 

MEUE functions are monotonically decreasing and can be numerically evaluated with existing reliability assessment tools. 

Therefore, one can look up the MEUE curves to obtain the system capacity and its distribution with respect to the given VOLL, 

i.e., Q
*

SYS(VOLL), Q
*
ICZ(VOLL) and Q

*
ECZ(VOLL). With the monotonically decreasing MEUE functions and (27), Q

*
SYS, Q

*
ICZ 

and Q
*

ECZ are monotonically increasing with respect to VOLL. This is intuitive since a higher evaluation of reliability, i.e., higher 

VOLL, would lead to more installed capacity and higher reliability level. 

Furthermore, with the LOLE of 0.1 days/year as the reliability criterion, it should be achieved at the market equilibrium. 

Similar to EUE, the system LOLE is affected by both the total system capacity and its allocation among zones, i.e., LOLE(Q
*

SYS, 

Q
*
ICZ, Q

*
ECZ). The existing reliability assessment software can calculate the LOLE for a given set of capacities (Q

*
SYS, Q

*
ICZ, 

Q
*
ECZ) associated with a multi-zone model. As a result, for a given VOLL, one can first calculate the capacities based on (27) and 

then run the reliability assessment software to obtain the corresponding LOLE(Q
*
SYS(VOLL), Q

*
ICZ(VOLL), Q

*
ECZ(VOLL)).  

LOLE is monotonically decreasing when Qsys, QICZ or QECZ increases. This is obvious since adding capacity anywhere in the 

system could only improve, not worsen, the system reliability. Combined with the fact that Q
*
SYS, Q

*
ICZ and Q

*
ECZ are 

monotonically increasing functions of VOLL, the compound function LOLE is monotonically decreasing with respect to VOLL. 

Based on this monotonicity property, we can obtain the VOLL value that leads to the system LOLE of 0.1 days/year by a simple 

bisection algorithm. 

 In the case that a uniform Net-CONE is used across the system, implying no limiting interfaces at the equilibrium, the 

calculation of VOLL diminishes to the following simple equation: 

 

_

SYS

SYS

SYS SYS SYS Q ICR

Net CONE
VOLL

dEUE Q dQ 

                          (28)   

Note that the above VOLL is endogenously calculated through the proposed framework, in contrast to most other demand curve 

designs (e.g., [13]) that treat the VOLL as an exogenous parameter. 

G.  Extension of the Framework 

The economic framework presented in this section is based on the ISO-NE’s capacity market that models import, export and 

ROP zones. Some capacity markets, e.g., NYISO, do not model export zones but have nested import zones, e.g., one import zone 

is enclosed in another import zone. The proposed method can be adapted to the nested zones by treating the outer import zone as 

a subsystem and further decomposing the subsystem reliability function into the components associated with the inner import 

zone and the rest of the subsystem. Also, some markets may need demand curves for inter-zonal transfer capability instead of the 

zone’s capacity. Then the multi-variate reliability function, also a function of the transfer capability, will be decomposed into 

components that include one single-variable function for the transfer capability. In essence, the decomposition of the reliability 
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function relies on the configuration of the capacity market model, and different decompositions may involve different 

approximations to the multi-variate reliability function. As a result, the applicability of the proposed method will be determined 

by how good the approximation is.  

The VOLL as the important scaling factor for the proposed demand curves is implied based on the 1-in-10 criterion. Different 

ISOs may have different reliability criteria. Similar derivation using equilibrium conditions and the Net-CONE can be used to 

imply the VOLL parameter. 

III.  CALCULATING DEMAND CURVES 

In this section, we present a practical process of producing capacity demand curves based on the proposed theoretical 

framework. EUEs and their derivatives are evaluated at different capacity levels by existing reliability assessment tools. The 

implied VOLL value is also calculated. With VOLL as a scalar factor, demand curves are produced based on linear interpolation 

of the EUE derivative points. 

A.  Reliability Evaluation 

The EUEs serve as the fundamental reliability measure for deriving capacity demand curves (8)-(10). Existing reliability 

assessment tools such as GE’s Multi-Area Reliability Simulation (MARS) can evaluate various reliability indices, including 

EUE, LOLH and LOLE, for a multi-area system by chronological simulation of the system [37]. Details of the generator outage, 

maintenance schedule, renewable resource treatment, and tie-benefit assumptions can be modeled in the reliability assessment 

tool, following the ISO’s reliability assessment procedure. To produce capacity demand curves for the system and zones, the 

corresponding EUE components in (6) are evaluated separately as described below.  

To evaluate the EUESYS component in (6), i.e., the unserved energy resulting from the system capacity deficiency, the entire 

system is modeled as one area. One can predetermine the range of system capacity levels to be evaluated, and pick the capacity 

level points within the range for evaluation. The range should be chosen to cover the possible cleared system capacity level and 

the number of points should be sufficient enough to characterize the shape of the demand curve. For a given system capacity 

level, the reliability assessment software calculates the reliability indices through simulations. The evaluation process for each 

capacity level is independent of the evaluations of other capacity levels. Therefore, the evaluation for different system capacity 

levels can be carried out in parallel to improve the computational efficiency.   

To evaluate zonal EUE components in (6), i.e., the additional unserved energy resulting from allocating certain capacity out 

of the system ICR into the corresponding zone, the system is modeled as two areas: the ICZ or ECZ zone under consideration; 

and the rest of the system. Note that zonal EUE components are considered independent of each other as described in Section II. 

Therefore, the evaluation for each ICZ or ECZ is independent of each other and can be performed in parallel. For each ICZ or 

ECZ zone, we select a range of capacity levels in that zone and sufficient number of sample points within the range. For each 

selected capacity level, e.g., QZ (Z=ICZ or ECZ), we evaluate the reliability indices by performing the 2-area simulations with 

the total system capacity held at ICR and the zonal interface limit imposed. The resulting reliability measure reflects the 

reliability impact of both system capacity at ICR and its allocation of QZ in the zone. Denote the EUE measure of the 2-area 

system by EUE2(Q
*

SYS, QZ) where Q
*

SYS = ICR. Then the zonal EUE component in (6) is obtained as  

     | 2| ,Z SYS Z Z SYSEUE Q ICR EUE ICR Q EUE ICR                     (29) 

where EUESYS(ICR) is a constant and can be calculated during the evaluation of system EUE component. The evaluation of 

different zonal capacity levels can be carried out in parallel to improve the computational efficiency.  

 The above description applies also to other reliability indices such as LOLH; and the reliability assessment software produces 

all reliability indices simultaneously. Thus the LOLH components can be obtained along with the EUE components. 

B.  EUE derivatives 

Capacity demand curves (8)-(10) are the derivatives of EUE components. With EUE components for various capacity levels 

obtained from subsection III.A, a simple numerical approximation
6
 of the EUE derivative at each capacity level is the average 

slope of the two linear segments adjacent to the capacity point as illustrated in Fig. 3.  

 

 

 

 

 

 

                                                           
6 More sophisticated numerical approximations are out of the scope of this paper. 
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Fig.3. Approximate EUE derivative. 

The EUE derivative at capacity level Qi is then calculated as:  

  1 1

1 1
/ 2

i

i i i i

i i i i
Q Q

dEUE Q EUE EUE EUE EUE

dQ Q Q Q Q

 

 


   
  

   

                  (30) 

Alternatively, the EUE derivatives can be obtained from the LOLH values, thus avoiding the numerical approximation of EUE 

derivatives. This is achieved by using the relationship between EUE derivative and LOLH as demonstrated below.  

Each EUE component (system or zonal) in (6) is a single-variable function of the corresponding capacity Q. The EUE(Q) is 

basically the average hourly Loss of Load (LOL) across simulated years, i.e.,  

   ,
1

N

n h
n h

EUE Q LOL Q N


                                (31) 

where n and h, respectively, are the indices of the simulated years and hours, N is the total number of the simulated years, and 

LOLn,h(Q) is the loss of load in MWs for Hour h of Year n under Q. Now consider a small firm load change dL. The change of 

EUE caused by dL can be represented as  

     ,
1

0
N

n h
n h

dEUE Q dL I LOL Q N


                            (32) 

where   , 0n hI LOL Q  is the indicator variable indicating non-zero LOL. Based on the definition of LOLH, i.e.,  

    ,
1

0
N

n h
n h

LOLH Q I LOL Q N


   ,                         (33) 

we have  

       dEUE Q dL LOLH Q                                (34) 

The firm load change can be translated to the capacity change. For instance, one can convert dQ to dL by the average Equivalent 

Forced Outage Rate – in Demand (EFORd), i.e.,  

 1dL dQ EFORd    .                                (35) 

From (35)-(36), we have 

   1dEUE dQ LOLH Q EFORd    .                          (36) 

C.  Producing demand curves 

With the derivatives of EUE components for selected capacity levels calculated in Subsection III.B, we create continuous 

demand curves based on these evaluated capacity levels. Demand curves should be monotonically decreasing. Due to the 

statistical nature of reliability simulation and the possible numerical approximation error introduced by (30), the calculated EUE 

derivative values at the selected capacity levels may not be monotonic. Therefore, we first ensure monotonicity of the points. A 

simple filter that checks all points and removes the non-monotonic ones can be applied. These points can be simply connected to 

form a piece-wise linear curve. Then the system EUE derivative that corresponds to ICR
7
 can be found to calculate the VOLL 

based on (28). The piece-wise linear curve of EUE derivatives is then scaled with VOLL to produce the corresponding system or 

                                                           
7 The system Installed Capacity Requirement (ICR) is the capacity level where the 1-in-10 LOLE is met, i.e., LOLE(ICR) =0.1. ICR can be obtained by 

linear search since LOLE(Q) is a monotonically decreasing function of Q.  

Slopei 

Slopei+1 

EUE 

Q 
Qi-1 Qi Qi+1 

EUEi-1 

EUEi 

EUEi+1 



 11 

zonal capacity demand curve based on (8)-(10). The above process to generate demand curves is summarized in the diagram 

below.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4. Demand curve process 

IV.  CASE STUDY 

In this section, we first present a 2-zone analytical example to demonstrate the demand curve derivation and the FCM 

clearing. Then, we apply the process in Section III to a multi-zone ISO-NE system, and analyze the resulting demand curves.  

 

Case 1. Analytical Example 

 Consider a 2-zone system with one ICZ and the ROS. Assume that the multivariate EUE function has an analytical form of 

EUE(QSYS, QICZ) = 10
6
/QSYS + 8000/QICZ. The Net-CONE value is $10/kw-month.  The block capacity offers in ICZ and ROS are 

summarized in Table 1.  

 

Table 1. Capacity offers 

Zone Block 1 Block 2 Block 3 

ROS 
Capacity (MW) 200 150 150 

Price ($/kw-month) $6 $9 $10.5 

ICZ 
Capacity (MW) 300 200 200 

Price ($/kw-month) $5 $8 $10 

 

Since the assumed multivariate EUE function is separable in QSYS and QICZ (an assumption used for the simplicity of analysis and 

does not hold for actual systems), the EUE components for the system and ICZ are naturally obtained as  

  610SYS SYS SYSEUE Q Q  and   | 8000ICZ SYS ICZ ICZEUE Q Q                (37) 

Note that the zonal EUE component EUEICZ|SYS does not rely on the system capacity QSYS due to the above assumption. The 

derivatives of the corresponding EUE components, respectively, are: 

   6 2 2
|10 8000SYS SYS SYS SYS ICZ SYS ICZ ICZ ICZdEUE Q dQ Q and dEUE Q dQ Q         (38) 

As analyzed in Section III.2, the derivative of EUE has certain relations to the corresponding LOLH, depending on how firm 

load is translated into the installed capacity. For the simplicity of analysis, we assume that LOLH is the negative EUE derivative, 

i.e.,  

   6 2 2
|10 8000SYS SYS SYS ICZ SYS ICZ ICZLOLH Q Q and LOLH Q Q               (39) 

Furthermore, we assume that 1 hour of LOLH translates into 0.1 day of LOLE. Then, 

   5 2 2
|10 800SYS SYS SYS ICZ SYS ICZ ICZLOLE Q Q and LOLE Q Q                (40) 

Based on the system LOLE function in (40), one can calculate the ICR that corresponds to 0.1 day/year LOLE, i.e., ICR 

=(10
5
/0.1)

0.5
=1000 MW. Then based on (38), the system EUE derivative at the ICR is calculated as dEUESYS/dQSYS = 1. 

Therefore the VOLL is calculated with (28), i.e.,  

Select Capacity Range and 

Sample Points for 

Reliability Evaluation 

 

Produce Demand 

Curves with VOLL and 

EUE Derivatives 

 

Evaluate System 

Reliability for Selected 

Capacity Points 

Calculate EUE 

Derivatives for Selected 

Capacity Points  

 

Estimate VOLL 
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10 / ( 1) $10 / $120,000 /VOLL kw month mwh                          (41) 

The system and zonal demand curves are derived from the EUE derivatives in (38) scaled by the VOLL, i.e.,  

   7 2 4 210 8 10SYS SYS SYS ICZ ICZ ICZD Q Q and D Q Q                    (42) 

 These curves are illustrated in Fig. 5.  

  
Fig.5. Demand curves for the 2-zone example 

With the demand curves in (42) and the capacity offers in Table 1, the FCM clearing problem (13)-(17) can be solved and yield 

the following solution: 

Table 2. Clearing result for the 2-zone example 

 Cleared Capacity 

q* (MW) 

Cleared Demand 

Q* (MW) 

Clearing Price 

($/kw-month) 

ICZ 600 600 10.5 

ROS  400 1000 (Q*
SYS) 10 

In the following, we interpret the above clearing result based on the meaning of demand curves.  

 As discussed in Section II.3, the load’s willingness to pay for capacity in ICZ, or the incremental reliability value in ICZ, is 

reflected by the combination of system and zonal demand curve values. At the system capacity Q
*
SYS = 1000MW, the system 

demand value is $10/kw-month. Therefore, the total willingness to pay in ICZ can be viewed as the zonal demand curve in Fig.5 

shifted upward by $10. The clearing of the ICZ can then be illustrated by the intersection of the raised demand curve and the 

aggregated supply offer curve in ICZ (see Fig. 6). It can be seen that the two curves intersect at q
*

ICZ = Q
*
ICZ = 400MW and 

$10.5/kw-month. These are consistent with the cleared quantity and clearing price in Table 2.  

 Next we consider the entire system. According to Section II.3, the load’s willingness to pay for the system capacity (absent 

zonal interface limits) is reflected by the system demand curve in Fig.5. The system supply curve should combine both the 

capacity offers in ROS and ICZ. With the cleared 400MW in ICZ, the system supply curve is the aggregated supply offer curve 

in ROS shifted to the right by 400MW. The clearing of the system can then be illustrated by the intersection of the shifted supply 

curve and the system demand curve (see Fig. 6). It can be seen that the two curves intersect at q
*
SYS = Q

*
SYS = 1000MW 

(including the 400MW cleared ICZ capacity) and $10/kw-month. These are consistent with the cleared quantity and clearing 

price in Table 2. 

     
Fig.6. FCM clearing for the 2-zone example 
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Case 2. ISO-NE System 

ISO-NE’s 11
th

 FCM for the 2020-2021 commitment period is used for the study. The auction base cases including network 

configuration can be found in [38]. The system has 1 import zone (SENE), 1 export zone (NNE), and the Rest of System zone. 

GE-MARS is used for reliability simulations, which were run on Amazon Cloud. All the numerical results can be found in [39]. 

System demand curve 

 The system EUE component EUESYS is evaluated on sample capacity levels within the range of [32.02GW, 37.44GW] at 

10MW sample interval. To derive the system demand curve, we took the numerical approximation
8
 of EUESYS at the sampled 

capacity levels. The EUE derivatives at these capacity levels are depicted in Fig. 7.  

 
 

Fig.7. System EUE component and derivative. 

It can be seen that the EUE derivative is monotonically decreasing. Since EUE derivative reflects LOLH, a reliability index, this 

can be explained by the fact that reliability improves when more capacity is added into the system.  

The system ICR that corresponds to 1-in-10 LOLE has been calculated by the ISO at 34,070 MW [39]. Based on the EUE 

derivatives in Fig.7, we obtain the derivative of EUESYS at the ICR as -0.6465 hours/year. Also, NET_CONE for the FCM has 

been predetermined by the ISO at $11.64/kw-month. Therefore, VOLL can be determined as follows based on (29):  

11.64 / 0.6465 12000 $216,048 /VOLL MWh                         (43) 

The above VOLL implied from NET-CONE can be compared to the values obtained through other methods such as customer 

survey, which opens the door for research on different VOLL estimation methods. The system demand curve is obtained as the 

linear interpolation of EUESYS points scaled by VOLL and is shown in Fig. 8.  

  

Fig.8. System demand curve. 

Zonal demand curves 

 Zonal demand curves are derived from the derivatives of the corresponding zonal EUE components. Based on (36), we use 

LOLH for zonal demand curves to avoid numerical approximation of EUE derivative. Zonal LOLH values are functions of the 

corresponding zonal capacity levels. We evaluate LOLH for selected zonal capacity levels within the selected range for each 

zone individually while holding the system capacity at ICR. The zonal demand curves are obtained as the linear interpolation of 

the LOLH points scaled by the VOLL. These zonal demand curves are depicted in Fig.9.  

                                                           
8 Note that the EUE derivative can also be obtained through LOLH as mentioned in Section III.  However, for the system EUE, the relationship between 

LOLH and EUE derivative is more complex than (36) due to the specific reliability evaluation procedure. Therefore, we adopt the numerical approximation for 

the system EUE derivative.  
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 Fig.9. Demand curves for the import SENE and export NNE zones. 

It can be seen that the SENE (import zone) demand curve approaches zero when the capacity allocated in the zone increases, and 

the NNE (export zone) demand curve starts with zero where the capacity allocated in the zone is small. This is because the 

interface tends not to be constrained when more capacity is allocated in the import zone or less capacity is allocated in the export 

zone. This is consistent with our analysis in Section II that the zonal demand curves act as congestion components in FCM 

pricing.   

V.  CONCLUSION 

This paper presents an economic framework for deriving demand curves in Forward Capacity Markets (FCM). Unlike the ad 

hoc demand curves implemented in the existing capacity markets, our approach is built on a rigorous economic and mathematical 

foundation. Also, an innovative decomposition of EUE is developed to obtain the single-variable demand curves. The resulting 

demand curves have a clear economic meaning that reflects the reliability impact of capacity in corresponding zones. Our 

approach may also be used to derive demand curves for other products such as reserves, and the result of our approach has 

broader impacts on other interesting research topics such as VOLL estimation.  
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