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Abstract

Flood protection is of major importance to many flood-prone regions and involves sub-

stantial investment and maintenance costs. Modern flood risk management requires often

to determine a cost-efficient protection strategy, i.e., one with lowest possible long run cost

and satisfying flood protection standards imposed by the regulator throughout the entire

planning horizon. There are two challenges that complicate the modeling: (i) uncertainty

- many of the important parameters on which the strategies are based (e.g. the sea level

rise) are uncertain, and will be known only in the future, and (ii) adjustability - decisions

implemented at later time stages need to adapt to the realized uncertainty values. We de-

velop a new mathematical model addressing both, based on recent advances in integer robust

optimization and we implement it on the example of the Rhine Estuary - Drechtsteden area

in the Netherlands. Our approach shows, among others, that (i) considering 40% uncer-

tainty about the sea level rise leads to solution with a less than 10% increase in the total

cost (ii) solutions taking the uncertainty into account are cheaper in the long run if the ‘bad

scenarios’ for the uncertainty materialize, even if the ‘optimistic solutions’ are allowed to be

fixed later on (iii) the optimal here-and-now investment decisions change when uncertainty

and adjustability are considered.

Keywords: robust optimization, flood protection, adjustability, adaptivity

JEL codes: C61, Q54

1 Introduction

Managing flood risks is of vital importance for the Netherlands, a country which is for two-

thirds flood prone. The areas at risk are protected by a large flood protection system, with

dike rings consisting of dikes, dams, dunes, high grounds, and other water defense structures.

Each year, about 1 billion euro is spent to maintain and improve this system.

Improving the flood defenses is necessary when flood protection standards are no longer

met. This can be caused by for example a general deterioration of the flood defense, climate

change but also because of changing protection standards. In the recent years, and within

the context of the Dutch Delta Program, the Netherlands has been in the process of revising

all its legal flood protection standards (Van Alphen 2015), since part of the old standards

was still based on the advice of the first Delta Commission, installed after the last great

flood disaster in the Netherlands of 1953 (Van Dantzig 1956).
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In the Deltra program, a novel, optimizing cost-benefit analysis (CBA) using operations

research techniques was used to derive economically efficient (‘optimal’) flood protection

standards, in which the discounted total cost of expected long-run investment and remaining

flood damages was minimized (Brekelmans et al. 2012, Kind 2014, Eijgenraam et al. 2014,

2016). This CBA assumed dike reinforcements as flood protection measure and determined

the optimal timing and size of the reinforcements, from which subsequently optimal flood

protection standards were derived. It turned out that although the optimal timing and size of

the reinforcements were dependent on the climate scenario assumed, the optimal standards

were not. The optimal standards, however, are very sensitive to assumptions on e.g. the

economic scenario, discount rate, investment costs and flood damages (Gauderis et al. 2013).

The updated standards, accepted by the Dutch government on July 5, 2016, are based on

considerations over equity (a maximum tolerable probability for all individuals to lose his/her

life because of flooding), efficiency (CBA) and social disruption (Van der Most et al. 2014).

After the new flood protection standards become legally binding from 2017 and onwards,

regional delta programs have the task of developing more detailed flood risk management

strategies to meet those new flood protection standards. Those strategies are not necessarily

restricted to dike reinforcements, but other measures are also considered.

In the lower reaches of the Rhine and Meuse rivers, the regional Delta Program Rhine

Estuary - Drechtsteden studies alternatives to dike reinforcements, such as water storage,

channel deepening, storm surge barriers, and room for the river measures - alternatives which

lower (design) water levels and hence reduce the need to reinforce and heighten the dikes

(Jeuken et al. 2013). To aid the regional program in developing and evaluating combined

strategies, including proposal for timing of the investments, a ‘planning kit’ was developed

(Kind et al. 2014). It turned out there was a large number of strategies possible and it was

practically infeasible to find an optimal strategy by trial and error, even if uncertainties in

climate scenarios were not considered.

There are two important challenges remaining in designing the optimal flood risk man-

agement strategies. First, it is important to incorporate climate change related uncertainties

in the analysis explicitly. In the previous approaches, sensitivity analysis was used to show

robustness, that is, the performance of the given solution was tested against different real-

izations of the uncertainty. Such an approach may (i) take a lot of computation time and

for each scenario requires a detailed specification of the parameter evolution and (ii) may

be infeasible already at the implementation stage - because parameter values different from

the assumed ones are revealed between the decision-making moment and the implementation

moment. This raises the challenge of robustness to parameter uncertainty. Second, it is im-

portant that the solutions are adjustable to the revealed values of uncertainties as opposed to

static solutions. The static solutions, where the later-stage decisions do not adapt to the true

outcome of, say, sea level rise speed in the first 30 years, may prove to be over-conservative

and expensive. This raises the challenge of adjustability to revealed uncertainties.

In this paper, we develop a mathematical optimization model to determine optimal adap-

tation strategies that addresses both of the challenges above. This model is general and

applicable in any area, and in our experiment we apply it to the Rhine Estuary area, where

it improves upon the planning kit of (Kind et al. 2014). The issue of climate change related

uncertainties is addressed by using Robust Optimization (RO, see Ben-Tal et al. (2009)). In

this approach, instead of specifying a precise climate change trajectory, an uncertainty set

of ‘possible outcomes’ of the unknown parameters is specified. Then, the problem is solved

in such a way that the constraints (requirements) are satisfied by the decisions for every

outcome of uncertainty within the uncertainty set.

The strict requirement that the decisions are feasible for all allowed outcomes of uncer-

tainty makes RO the preferred methodology for safety-related optimization problem such as

flood prevention. For an introduction and overview of techniques used in RO, we refer the
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reader to the work by Ben-Tal et al. (2009), Bertsimas et al. (2011a), Gabrel et al. (2014)

and references therein.

In order to allow the later-stage decisions adapt to the revealed uncertainties from earlier

stage, we resort to an extension of RO - the Adjustable Robust Optimization (ARO). There,

apart from requiring the constraints to hold for all outcomes of the uncertainty, the later

stage decisions are formulated as functions of the uncertainties revealed before they are

implemented, and the way these decisions adapt (‘shape of the reaction’) is also optimized.

ARO was initially developed to solve problems with continuous decision variables in Ben-

Tal et al. (2004) where the concept of using affinely adjustable decision rules was introduced,

extended later by Chen et al. (2012), Chen and Zhang (2012), Ben-Tal et al. (2009), and

Bertsimas et al. (2011b). In the flood protecting problem, however, most of the decisions

are binary variables determining whether and when a given measure (dike heightening, etc.)

is applied. The first applications of ARO to integer recourse problems were Bertsimas and

Caramanis (2007, 2010), and Vayanos et al. (2011), where the idea was to simply divide

the uncertainty set into a dense grid of points and allow a different decision for each of

them. Bertsimas and Georghiou (2015, 2014), and Hanasusanto et al. (2014) proposed to

use specific decision rules for the integer variables whose ‘shape’ is optimized. However, these

methodologies do not scale well with the size of the problem, which makes their application

to problems like ours impossible.

The approach used in our paper is to construct multi-period adjustable integer decisions

by means of multi-stage splitting of the uncertainty set into subsets. This is the approach

taken in Postek and den Hertog (2016) and Bertsimas and Dunning (2014) where, having

determined the splits of the uncertainty set, a different constant decision is applied for each

part of the uncertainty set. The essence of this approach lies in determining the conditions

that a splitting needs to satisfy in order to improve on the decisions’ adaptivity. Since,

however, in the model we consider it is not possible to determine the structure of the splits

using the methods proposed by Postek and den Hertog (2016), our splitting strategy of the

uncertainty set is pre-determined.

The structure of this paper is as follows. Section 2 gives the generic mathematical for-

mulation of our problem without parameter uncertainty and adjustability. Section 3 defines

how multi-stage parameter uncertainty is modeled and the corresponding adaptive decisions

are constructed. Section 4 presents the results of numerical experiments for the Rhine -

Meuse Estuary - Drechtsteden area.

2 Deterministic model

We consider the problem of constructing an optimal flood protection strategy. The aim of

the strategy is to create a schedule when to take various measures that minimizes the present

value of the measures’ costs such that at each time moment and at each dike segment, the

flood protection standards are satisfied. Hence, cost effectiveness is applied.

We assume that the flood protection system consists of Ns dike segments. The flood

protection standards can be formulated in terms of relative dike height requirements - the

height of the dike compared to the water level. The relative dike height can be improved

by one of Nh dike heightenings of size h ∈ H, and Nm large-scale measures such as, for

example, changing the discharge distribution of a river (directing it via other river segments

in the delta). Whereas a dike heightening affects only the relative dike height at a single

segment, the large-scale measures affect more than one segment and its impact may differ

throughout the time horizon after its implementation. We denote by am,s,τ,t the impact of

implementing large-scale measure m at time τ on the relative dike height at segment s at

time t ≥ τ . The flood protection standard requires that at each dike segment s and each
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time t ∈ {0, 1, . . . , T} the relative dike height is higher than or equal to the requirement ns,t.

We define decision variables xt,s,h ∈ {0, 1} indicating whether the h-th dike heightening

has been implemented at dike segment s at time t, and yt,m ∈ {0, 1} indicating whether

large-scale measure m is implemented at time t. We denote the cost of dike heightening h

for segment s by ps,h, the cost of measure m by pm, and we assume an inter-period discount

rate 0 ≤ d ≤ 1.

In this setting, the objective is to minimize the total discounted costs and the optimization

problem is:

min
x,y

T∑
t=1

1

(1 + d)t

{
Ns∑
s=1

Nh∑
h=1

ps,hxt,s,h +

Nm∑
m=1

pmyt,m

}

s.t.

t∑
τ=0

{
Nh∑
h=1

hxτ,s,h +

Nm∑
m=1

am,s,τ,tyt,m

}
≥ ns,t, ∀s, t (1a)

Nh∑
h=1

xt,s,h ≤ 1, ∀t, s (1b)

Lk(x,y) ≤ 0, ∀k = 1, . . . ,K (1c)

xt,s,h, yt,m ∈ {0, 1}, ∀t, s, h,m,

where the constraints are:

(1a) relative dike height constraint at segment s at time t - the total impact of the dike

heightenings and the large-scale measures up to time t accommodates for the require-

ment ns,t,

(1b) for each dike segment s and time t, only one of Nh heightenings is implemented,

(1c) K linear constraints - these may involve, for example (i) conditions how many times can

a given large-scale measure be taken, (ii) which measures cannot be taken together, (iii)

redundant constraints which the solution must satisfy and which improve the solution

time.

3 Modeling uncertainty and adjustability

3.1 Introduction

In the previous section we considered the relative dike height requirements ns,t to be a

deterministic quantity known in advance. In fact, ns,t is based on the protection standards

but also on the sea level rise:

ns,t = ns,0 + βs

t∑
τ=1

rτ ,

where ns,0 is the initial requirement, rτ is the sea level rise in time period [τ −1, τ ], and βs is

the sensitivity of the dike segment s to the sea level rise - for example, sensitivity βs of dike

segments closer to the sea is higher than the dike segments situated higher along the rivers.

In this setting, the realized sea level rise may turn out to be different from the predicted

values. Using only the forecast values of the sea level rise may lead to the solution becoming

infeasible if small deviations from the given values occur (Ben-Tal et al. 2009). Secondly,

even if the solution stays feasible, the future decisions are fixed and do not adjust to the

outcomes of the uncertain sea level rise from the earlier periods. In the following, we discuss

in detail the uncertainty structure w.r.t. the sea level rise and then develop the adjustable

robust version of the deterministic model of Section 2.

4



3.2 Uncertainty structure

We divide the time horizon into intervals with points 0 = t0 < t1 < t2 < . . . < tJ−1 < tJ = T

and assume that in each of the intervals [tj−1, tj ], j = 1, . . . , J the sea level rise is equal to rj
which value is known only at time tj . In this way (i) we allow the dynamics of the sea level

rise to differ over time, (ii) it is possible to readjust the decisions at time points t1, . . . , tJ−1
after the value of the respective sea level rise is known.

Example 1 Suppose that T = 10, and we define J = 3 with t1 = 3 and t2 = 6. We then

have that the time horizon is divided into intervals: [0, 3], [3, 6] and [6, 10]. At time points

t1 and t2 decisions can be readjusted, based on the revealed sea level rise speed in the periods

[0, 3] and [3, 6], respectively.

We assume that in each of the intervals [tj−1, tj ] the sea level rise belongs to an interval

rj ∈ Rj = [(1− ρ)rj , (1 + ρ)rj ], j = 1, . . . , J,

where rj is the forecast value and parameter 0 ≤ ρ ≤ 1 specifies the degree of uncertainty

about rj . For simplicity, we assume that rj = r for all j.

Let us denote the vector of uncertain sea level rises by r = (r1, r2, . . . , rJ) and assume

that the sea level rise speed (the sea level grows linearly throughout the interval) is constant

in each of the intervals [tj−1, tj ]. Then, we model the relative dike height requirement as:

ns,t(r) = ns,0 + βs

 ∑
j:tj≤t

rj +
t− tj(t)

tj(t)+1 − tj(t)
rj(t)

 , (2)

where ns,0 is the initial requirement in period 1, rj the rise of the sea level throughout the

interval [tj−1, tj ], and j(t) = min {j : tj ≥ t}, that is, j(t) is the smallest j such that t belongs

to the interval [tj , tj+1]. Formula (2) means that the requirement ns,t(r) is equal to the sum

of the initial requirement, the sea level rises from all the full intervals that passed until time

t and the sea level rise in the interval containing t up to this time moment, multiplied by

the sensitivity βs.

3.3 Adjustability of decisions - applicability of adaptive splitting

Adjustability of integer decisions consists in its essence in splitting the uncertainty set into

subsets and designing different later-stage decisions for each of these subsets. For example,

one splits the set R1 into two sets R1
1 = [(1 − ρ)rj , z] and R2

1 = [z, (1 + ρ)rj ], such that

R1
1 ∪ R2

1 = R1 Then, at time t1 when rj is observed and it is known whether it holds that

r1 ∈ R1
1 or r1 ∈ R2

1. Then, one can differentiate the decisions implemented from time tj on,

whereas there can be only one possible decision implemented before tj , since it is not known

yet what r1 is.

One of the crucial questions in this setting is how to choose the point z where the sets

Rj are split. Postek and den Hertog (2016) provide theoretical results on how to do it. This

approach relies on the observation that for different constraints in the problem, different

scenarios rj are the worst-case scenarios, i.e., maximizing the left hand side. They prove

that in order to improve on the worst-case objective function, these scenarios need to end up

in different subsets R1
1 and R2

1 as a result of the splitting procedure. The splitting procedure

is then applied iteratively, resulting in a more and more adjustable decision structure.

Remark 1 Here, we make an important distinction that by the worst-case scenario we mean

a realization of the uncertain parameter within the specified uncertainty set that is least favor-

able to the given set of decisions. This should be opposed to the ‘worst scenarios’ considered
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in the water management community, corresponding to a specific sea level rise trajectory

prescribed by, for example, the government.

In the specific problem we consider, this method cannot be applied as (i) all the con-

straints of the problem depend on the uncertain parameter r in the same way, that is, the

highest the sea level rise, (ii) the uncertainty set is a box, i.e. we have thatR = R1×. . .×RJ .

Combination of these two factors leads to the conclusions that it is always a single scenario

r that maximizes the right-hand side term ns,t(r) in the safety requirement constraint. This

claim is proved in the later part of this paper as Proposition 1 and it implies that we need (i)

another methodology of choosing how to split the uncertainty set R than the one of Postek

and den Hertog (2016), (ii) a different objective than simply the worst-case cost over the

entire uncertainty set (total cost of the objective assuming that the flood protection policy

is feasible for all r ∈ R. In the following subsections we outline the adjustability structure

of our choice and demonstrate mathematically the need for a different objective function,

which shall be the so-called average worst-case objective.

3.4 Adjustability of decisions - our approach

As for the splitting methodology, we assume that at t1, t2, . . . , tj , depending whether the

realized value rj is such that rj ∈ R1
j = [(1 − ρ)rj , rj ] or rj ∈ R2

j = [rj , (1 + ρ)rj ], different

decisions can be implemented in the periods to come. We choose to split the uncertainty sets

R2
j at points rj for its simplicity and lack of theoretical reasons justifying another splitting

structure.

In other words, before time t1 there is only one decision scenario to be implemented.

From time t1 and before t2 there are two decision possibilities, between t2 and t3 four, and

so on. This gives rise to the tree decision structure given in Figure 1.

As shown in Figure 1, J−1 split points result in a decision tree with 2J−1 paths - sequences

of arrows from time 0 to T . We enumerate the paths using (J − 1)-tuples α ∈ {1, 2}J−1

which is illustrated by the following example.

Example 2 In Figure 1, α = (2, 2, 1) corresponds to the decision paths that branches ‘up’

at times t1 and t2, and then ‘down’ at time t3.

We define that for each of the decision paths for the entire planning horizon [0, T ] there is

a separate decision vector xt,s,h,p(α) and yt,m,p(α), where t = 0, . . . , T . Each of the decision

paths is then uniquely identified with a trajectory of the sea level rise r:

αj =

{
1 if rj ∈ R1

j

2 if rj ∈ R2
j

, j = 1, . . . , J − 1.

In a similar way, we construct multi-period uncertainty sets for r uniquely identifiable with

α’s as:

R(α) = Rα1
1 ×R

α2
2 × . . .×R

αJ−1

J−1 ×R
αJ−1

J−1 ×RJ .

The relation between the decisions xt,s,h,p(α) and yt,m,p(α) and the uncertainty sets R(α)

is that we require each of the decision paths to satisfy the relative dike requirement for each

r belonging to an uncertainty set corresponding to that path (adjustable robust version of

constraint (1a)):

t∑
τ=0

{
Nh∑
h=1

hxτ,s,h(α) +

Nm∑
m=1

am,s,t,τyt,m(α)

}
≥ ns,t(r), ∀s, t ∀r ∈ R(α). (3)

However, as some of the decision paths from 0 to T coincide up to a certain time point, it is

necessary to include nonanticipativity constraints, ensuring that decisions corresponding to
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Figure 1: Adjustability scheme when J = 4. At times points t1, t2, t3 it turns out whether the sea level rise belonged to

[(1−ρ)rj , rj ] (symbolized by the dark gray part of the box) or [rj , (1 +ρ)rj ] (symbolized by the light gray part of the box).
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paths that are the same up to some point, are also the same, to prevent that decisions are

based on information not available yet. These constraints can be formulated as:

xt,s,h(α′) = xt,s,h(α′′), yt,m(α′) = yt,m(α′′), ∀t : t < tj , α′1:j = α′′1:j , (4)

where α1:j denotes a subvector of vector α consisting of its first j components. Nonantici-

pativity constraints are illustrated by the following example.

Example 3 In the scheme of Figure 1 we have that the paths corresponding to the two top

branches of the tree correspond to α′ = (2, 2, 2) and α′′ = (2, 2, 1). Thus we have that 2

is the largest j such that it holds that α′1:j = α′′1:j. This, combined with (4) implies that

xt,s,h,p(2, 2, 2) = xt,s,h,p(2, 2, 1) and yt,m,p(2, 2, 2) = yt,m,p(2, 2, 1) for t < t2.

3.5 Objective function

In the deterministic problem (1) there is only a single decision path and no uncertainty so

that the objective function is simple and corresponds to the total discounted costs of the

measures taken.

In the adjustable case, however, each of the paths α yields a different decision path that

has a different total cost C(α):

C(α) =

T∑
t=0

1

(1 + d)t

{
Ns∑
s=1

Nh∑
h=1

ps,hxt,s,h(α)ps,h +

Nm∑
m=1

pmyt,m(α)

}
,

and the objective function of the entire problem should somehow take into account the costs

related to all the paths. A typical choice in Robust Optimization is to consider the worst-case

cost as the objective function - in our case, the cost of the most expensive decision path.

Suppose that indeed, for fixed t = (t1, . . . , tJ−1) we minimize the worst-case objective, i.e.

the value of the objective function under the assumption that the worst-possible realization

r ∈ R is realized. The optimization problem is then:

min
x,y

max
α∈{1,2}nz

C(α)

s.t.

t∑
τ=0

{
Nh∑
h=1

hxτ,s,h(α) +

Nm∑
m=1

am,s,τ,tyt,m(α)

}
≥ ns,t(r), ∀s, t ∀v ∈ R(α) (5a)

ns,t(r) = ns,0 + βs

 ∑
j:tj≤t

rj +
t− tj(t)

tj(t)+1 − tj(t)
rj(t)

 (5b)

xt,s,h(α′) = xt,s,h(α′′), yt,m(α′) = yt,m(α′′), ∀t : t < tj , α′1:j = α′′1:j (5c)

Nh∑
h=1

xt,s,h(α) ≤ 1, ∀t, s, ∀α (5d)

Lk(x(α),y(α)) ≤ 0, ∀k = 1, . . . ,K, ∀α (5e)

xt,s,h(α), yt,m(α) ∈ {0, 1}, ∀t, s, h,m, ∀α. (5f)

Let us denote by WC(t) the optimal value to (5) for a given t. There is no adjustability if

J = 1 and we denote the objective value in this case by WC.

As the following Proposition shows, it is not possible that WC(t) is better than WC.

Proposition 1 For every t it holds that WC(t) = WC.

Proof. It follows easily that WC(t) ≤WC from the fact that every feasible solution to the

problem with J = 1 is also feasible to the problem with J > 1. Assume there exists t such
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that WC(t) < WC. We have that the optimal solution corresponding to α∗ = (2, 2, . . . , 2)

is feasible for every

R((2, 2, . . . , 2)) = [r1, (1 + ρ)r1]× [r2, (1 + ρ)r2]× . . .× [rJ−1, (1 + ρ)rJ−1]×RJ .

However, since the only constraint dependent on r is (5a), and its left hand side depends

monotonically on components of r, we have that the optimal solution corresponding to α∗

is feasible for all R(α), α ∈ {1, 2}J−1, and hence, for the entire uncertainty set:

R = [(1− ρ)r1, (1 + ρ)r1]× [(1− ρ)r2, (1 + ρ)r2]× . . .× [(1− ρ)rJ−1, (1 + ρ)rJ−1]×RJ .

In other words, decisions feasible for the uncertainty set being a product of the ‘worse subin-

tervals’ for rj (containing the higher values) is feasible also for the ‘better intervals’ and

hence, for the entire uncertainty set. But this implies that the decision sequence correspond-

ing to α∗ is also feasible for problem with J = 1 (no adjustability) and, at the same time,

gives a better objective value than WC. This is a contradiction with the assumption that

WC is the best objective value for problem with J = 1. �

Proposition 1 shows that no improvement in the objective value is possible if the objec-

tive is the worst-case cost. More generally, it can be proven in a similar fashion that no

adjustability schemes can lead to an improvement of the worst-case formulation. A simple

consequence of this fact is, as we have already signalized, that the methods of adaptive splits

of Postek and den Hertog (2016), in which the division of the uncertainty set R is deter-

mined on the basis of solutions, cannot be applied. It is exactly for that reason that in our

application the splits of the uncertainty sets [(1 − ρ)rj , (1 + ρ)rj ] into halves [(1 − ρ)rj , rj ]

and [rj , (1 + ρ)rj ] is pre-determined.

As a consequence, we propose that instead of the worst-case cost of a decision path, the

objective function is the average of the costs associated with all the paths:

1

2J−1

∑
α∈{1,2}J−1

C(α).

The weights 1/2J−1 correspond to the fact that each of the uncertainty subsets R(α) has

the same volume and that we assume both parts to be evenly likely (which happens if the

underlying probability distribution is uniform). Secondly, due to the fact that each C(α)

plays a role, it is almost sure that for the uncertainty subsets with smaller sea level increase,

smaller later-stage investments are needed to meet the safety standards. In this way, we can

expect increasing J to lead to better optimal values.

In the end, the adjustable problem we consider is:

min
x(α),y(α)

1
2J−1

∑
α∈{1,2}J−1

C(α)

s.t. (5a) - (5f).
(6)

4 Numerical experiment

4.1 Region

In our numerical experiment we consider the Rhine - Meuse Estuary - Drechtsteden area

illustrated in Figure 2, consisting of Ns = 150 dike segments. For each dike segment Nh = 22

dike heightenings are possible of size {0.1, 0.2, . . . , 2.0, 2.5, 3.0m}. Also there are Nm = 14

large scale water measures:

1. Replacement of the Measlantbarrier. This storm surge barrier is located at Hoek

van Holland in the Nieuwe Waterweg. This barrier together with dikes and dunes

protects the province Zuid-Holland against floods from sea. The storm surge barrier

9



Figure 2: The Rhine - Meuse Estuary - Drechtsteden area. Thick lines stand for the dike segments, numbers denote the

dike rings - areas surrounded by dikes or high grounds from all sides.

protects against high water and can be closed in emergencies. This measure can be

implemented only from 2070 on.

2. Improving the Maeslantbarrier before 2070 and its replacement in 2070.

3. Change the river discharge distribution via the IJssel river. When the dis-

charge via the Lek river becomes greater than 8000m3/s, more water is discharged via

the IJssel river.

4. Change the river discharge distribution via the Waal river. When the discharge

via the Lek river becomes between 8000m3/s and 16000m3/s, more water is discharged

via the Waal river.

5. High water level Waal. When the discharge of the Rhine is above 16000m3/s, more

water will be discharged via the Waal river.

6. Robert Koning. In this measure extra space for the Merwede is created with a flood

channel through the Land of Heusden and Altena. It is a green river, called Robert

Koning, that is used when water levels exceed a certain height. It is expected that

these high water levels occur once every 100 years.

7. Room for the River packages (4 measures). There are several measures that

dig off areas around the river Merwede. The four measures that can be taken are

the measures RvR klein 01, RvR klein 02*, MW007, and MW42 3. Two packages

(RvR klein 01 and RvR klein 02*) combine several measures that dig off areas around

Merwede.

8. Grevelingen. With this measure the possibility is created to store water at the Grev-

elingen lake.

9. Spaargaren 1. In this measure the seaside is closed by sluices at the Maeslantbarrier.

10. Spaargaren 2. Around the Nieuwe and Oude Maas rivers, sluices close the seaside

with extra discharge capacity.

11. Spaargaren 3. The sluices close the seaside around the Nieuwe and Oude Maas rivers

as Spaargaren 2, but without extra discharge capacity.

10



Figure 3: The Rhine - Meuse Estuary - Drechtsteden area with some of the large-scale measures. The box includes measures

considered in the planning kit of Kind et al. (2014).

The big measures are illustrated in Figure 3.

4.2 Piping problem

An additional trait of the problem we consider is the so-called piping problem affecting some

of the dike segments. If groundwater flows wash away the sand below a dike, a pipe through

the dike can arise (Deltares 2014). The flood probability increases enormously and the piping

problem needs to be solved instantly in order to reduce the flood probability significantly.

This issue cannot be addressed by lowering the water level, but only by strengthening the

dikes. Let us denote by Sp the set of dike segments for which the piping problem exists.

The piping problem enters our problem in a way that for each s ∈ Sp it holds that (i) every

dike heightening h ∈ H and (ii) solving the piping problem, have a fixed cost component cfs
which is the same for both ps,h and rs, such that:

ps,h = cfs + pvs,h rs = cfs + rvs ,

where pvs,h is the variable cost of dike heightening depending on h ∈ H, rs is the total cost

of solving the piping problem, and rvs is the remaining cost of solving the piping problem for

dike segment s.

In our optimization model, we incorporate the piping issue in such a way that we assume

that the piping problem, for dike segments s for which it exists, is solved at time t = 0. Thus,

the fixed cost rs is incurred at t = 0 for each s ∈ Sp. In order to avoid double-counting of

the fixed cost at t = 0 we assume that the cost of dike heightening h (if implemented) is

equal to pvs,h for that time period.

Since the total cost of solving the piping problem are relatively large compared to the

cost of dike heightenings, in our numerical results we shall report on the total cost both with

and without the cost of solving the piping problem.

4.3 Research questions and numerical results

The particular research questions that we subsequently answer in the coming sections, are

as follows:
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1. What is the nominal (nonrobust) solution and what the dangers are if uncertainty w.r.t.

sea level rise is present?

2. What are the (adjustable) robust solutions, how do they change as more adjustability

is allowed in the model?

3. How do the robust solutions differ from the nominal solution?

4. How do the robust solutions change when either the discount rate d or the the uncer-

taintly level ρ changes?

5. How do the robust solutions change when an adjustability scheme different to that of

Section 3 is applied? This question is considered, for reasons of brevity, in Appendix A.

In our numerical experiment, the planning horizon is 2020 - 2200, with the possibility to

implement decisions every 10 years, which gives 19 decision stages in total. When talking

about the results, we shall often refer by t = 1 to year 2020, t = 1 to year 2030 and so on.

In our numerical experiment, we shall consider equidistant splitting points (if any ad-

justability is present) tj , j = 1, . . . , J − 1, to be defined as

tj = jW,

where W is the length of the interval between tj−1 and tj as measured in the ‘big’ time

intervals of 10 years, chosen to be independent from j. In this way, W = 3 corresponds to

differentiating the decisions every 3 · 10 = 30 years. We solve the optimization model for

different values of J − 1 and W .

The sensitivities βs and initial dike shortages ns,0 are estimated from the data. For the

robust models we assume that there is ρ = 40% uncertainty about the sea level rise speed,

motivated by the Dutch KNMI uncertainty intervals for sea level rise speed.1 We also solve

a nonrobust (nominal) model where ρ = 0%. The discount rate is assumed to be equal to

d = 5.5%. We assume that a dike segment should not be heightened more often than once

in 30 years, which we denote as the frequency constraint.

Due to the size of the model and the number of binary variables, it is not expected that it

is solved to full optimality within reasonable time limits. However, a particular feature of the

model is that once the decisions w.r.t. the large-scale measures are fixed, the optimization

problem related to the dike heightenings per each dike segment can be solved separately. For

that reason, each time we reach the sub-optimal solution to the entire optimization model

(which is the likely case as mixed-integer models of this size almost never are solved to full

optimality), we run an extra step consisting in re-optimization of the dike decisions, calling

it the dike reoptimization step.

The optimization model formulation has been coded using the C++ language and is

solved with the Gurobi solver (Gurobi Optimization 2015). For each instance with given W

and J we set time limit of 10h and the MIP optimality gap to 0.1%. Problems have been

implemented using 16-core computing nodes of the Lisa computing cluster at SURF SARA

computing center in Amsterdam.

4.3.1 Nominal solution and its shortcomings

Table 1 presents the results for the nominal solution, i.e. assuming that there is no un-

certainty about the sea level rise, and Table 2 presents the corresponding implementation

schedule of the large-scale measures. We observe that the model has been solved nearly to

optimality, attaining the total cost of 1004 (excluding the piping cost). Of all the variable

cost, the largest share are the here-and-now dike heightening cost, 587. We can clearly see

1See the document (in Dutch) ‘Zeespiegelveranderingen in de toekomst’, at http://www.knmi.nl/

kennis-en-datacentrum/achtergrond/zeespiegelveranderingen-in-de-toekomst.
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Table 1: Results for the nominal solution. ‘Obj value’ - the optimal value (in millions of euros) of the optimization problem

without piping cost; ‘Opt. gap’ - the MIP optimality gap after 10 hours of computation with dike reoptimization (without

dike reoptimization); ‘Dike cost t = 0’ - total cost of dike heightenings implemented at t = 0

Nominal

Obj value Opt. gap Obj value + piping Dikes cost t = 0

1004.71 0.1% (0.1%) 3607.50 587.93

Table 2: Implementation schedules of the used large-scale measures for the nominal solution.

Measure Implementation year

Replacing the Maeslantbarrier 2180

Grev100 2090

MW42 3 2060

MW007 2020

that the fixed cost of solving the piping problem (2602) dominate the cost of the entire

solution, as they raise the total cost to the level of 3607.

Regarding the large-scale measures, in Table 2 we observe that only four of them are

used: ‘Replacing the Maeslantbarrier’, ‘Grev100’, ‘MW42 3’ and ‘MW007’. This gives an

indication that not all of the measures are relevant and are worth maintaining their readiness

to use. This indication shall be confirmed in later experiments.

To investigate ‘how bad the nominal solution can become’, we check first for how many

dikes and when are the safety standards violated if the sea level rise turns out to be the

worst +40% value taken into account for the robust solutions. It turns out that throughout

the planning horizon, the safety requirements are violated for 123 out of 150 dike segments.

Figure 4 includes the histogram of the first time moments that for these 123 segments the

safety standards are violated. We see that there is a ‘peak’ of the frequency of dike violations

in time frame 2040-2080. On average, the first violation occurs in year 2087.

As an additional illustration of the advantages of taking into account the robustness and

adjustability, we provide one more experiment. In this experiment, we shall begin with the

nominal solution and re-optimize its decisions in the subsequent time periods to match the

worst +40% value, so that it can be considered as an ‘on-the-spot fixing’ of the nominal

solution. To be precise, the procedure is as follows.

1. At time t = 0 an optimal strategy is constructed with the assumption of no uncertainty

in the sea level rise (using thus ρ = 0) and the here-and-now decisions are implemented.

2. However, at t = 1 the sea level rise between t0 and t1 turns out to be the highest

possible one with +40% and at time t1 a new strategy is constructed (using again

ρ = 0) for time horizon [t1, T ] and the here-and-now decisions for t1 are implemented.

3. Step 2 is repeated in time periods [t1, t2], [t2, t3], [tJ−1, tJ ].

It is important to note that in this experiment it is possible (and it will occur) that for certain

dikes segments the safety standards are violated. Another issue is that the constraint that a

dike segment is heightened at most once in 30 years might not be possible to be satisfied.

Indeed, we observe that the problem to solve becomes infeasible in period t = 9 (year

2110), due to the necessity to increase the height of certain dikes immediately while not

allowed because of the frequency constraint. Strikingly, already the solution of the opti-

mization problem solved at t = 1 (year 2030, the ‘on-the-spot fixing’ model is still feasible)

involves a major increase in the total cost - a value of 1686, 68% up compared to the value

‘promised’ by the nominal solution in Table 1. The evolution of the optimal cost from the

optimization problem solved at each stage is given by the continuous line in Figure 5.

Because it is not possible to ‘keep fixing the nominal solution’ without heightening the

dikes more often than once in 30 years, we implemented also a variant of this test without
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Figure 4: Histogram of the first time moments of safety standards’ violation for the 123 dike segments for which there is

a violation (out of the total number of 150 dike segments), with +40% sea level rise increase compared to the nominal

scenario.
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Figure 5: Increase of the total cost when the optimal solution is re-optimized due to the highest possible sea level rise
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Table 3: Implementation schedules of the used large-scale measures for the nominal solutions and for the robust solutions

with W = 2 and J − 1 ∈ {0, 2}. There is only one scenario for the nominal solution and for the robust solution with

J − 1 = 0 (no adjustability) and four scenarios for J − 1 = 2.

Nominal J − 1 = 0 (no adjustability) W = 2 and J − 1 = 2

Scenario - - 1 2 3 4

Replacing the Maeslantbarrier 2180 2150 2110 2110 2110 2100

RvR kl01 - - 2110 2130 2100 2090

Grev100 2090 2070 2080 2080 2080 2070

MW42 3 2060 2050 2050 2060 2050 2050

MW007 2020 2020 2020 2020 2020 2020

the frequency constraint at stages later than t = 0. It turns out that the total cost is equal

to 1227, that is, 22% higher (see Figure 5) than assumed in Table 1. Also, in the course

of such a strategy, 7 of the 14 large-scale measures are used - an increase from 4 measures

assumed in the initial solution.

From this experiment we see that in presence of uncertainty, even if the nominal solution

is allowed to be ‘fixed’ later on, the cost of this fixing may be substantial. As we shall see in

the section to come, the total cost of the ‘fixed’ solution is higher than the cost of the robust

solution, i.e., the one that takes uncertainty into account at the very beginning.

4.3.2 Robust solutions

Having studied the disadvantages of the nominal solution, we turn to the (adjustable) robust

solutions with sea level rise uncertainty ρ = 40%. We begin the discussion of the results with

the changes in the large-scale measures implementations for different solutions. We show the

solutions for the nominal model and the robust models for W = 2 with zero and two splits

in Table 3. We see from it (second row) that for the non-adjustable solution the measure

‘RvR kl01’ is not used at all, whereas for the adjustable solution its year of implementation

varies between 2090 and 2130. The most stable measures are ‘MW42 3’ implemented by all

solutions in 2050, and ‘MW007’ which is implemented right away at the beginning of the

planning horizon at 2020.

The cost and dike heightening implementation characerstics of the robust solutions are

given in Table 4 on page 17 (including also the nominal solution for ease of comparison) and

we comment on it in a column-by-column basis, beginning the discussion on the example of

models with W = 2, comparing it later to the nominal solution. Note that for all values of

W the first row (solution with J − 1 = 0) is the same - this is because this is the solution

with no adjustability.

In the first column, we can see that, as the degree of adjustability grows with the number

of splits, the objective function value decreases. Already for one split we observe a drop of

−3.73%, equivalent to approximately 45 million euro. For most adjustable solutions in Table

4 with three splits we have a decrease in the average worst-case cost at the level of −6.35%.

The second columns provides the information about the remaining optimality gap of the

MIP solver. For example, for three splits we can observe a remaining optimality gap 0.43%

which without the reoptimization step would have been equal to 0.52%. Roughly speaking,

this means that there is uncertainty whether the given solution can be improved by another

4.4 million euro.

In the third column the objective value of the optimization problem is added to the fixed

cost of solving the piping problem, which dominate the cost structure. We can see that then,

the relative improvements in the total cost due to adjustability oscillate between 1–2%.

The fourth and fifth columns provide information about the worst-case cost for the best

and the worst α. That is, they provide the range to which the worst-case cost fall depending

on the trajectory of the sea level rise. For the no adjustability case there is no gap between
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the two as there is only one scenario. But already for the single split solution, we can see

that the ‘best scenario’ gives worst-case cost of 1106 compared to 1206 of the worst scenario.

The difference between the two, equal to 100 million euro, informs us about the uncertainty

in the total cost due to uncertainty about the sea level growth. This difference takes about

100/1200 ≈ 8.3% of the total variable cost for J − 1 = 1. For the three splits solution we

can see that the difference between the worst and best scenarios is even bigger, with values

1044 and 1207, respectively.

An important observation is that the worst-case scenario cost does not change that much

for different number of splits, showing that minimization of the average worst-case objective

does not lead to the minimization of the optimistic scenarios at the expense of much bigger

riskiness, so that their average would go down.

The last three columns inform on the changes in the here-and-now dike heightening deci-

sions. We can see that with adjustbility, the decisions are different for 11-12 dike segments,

with the average difference oscillating between 0.1–0.2m. The resulting change in the here-

and-now dike heightening cost is equally small, compare for example (last column) 606 for

three splits and 606 for no split.

With respect to the impact of different values of W we can observe that W = 2 and

W = 3 provide slightly higher improvements in the total cost than W = 4. This can be

linked to the fact that if the first differentiation of the total costs is done only after 40 years,

then the only later-stage decisions that different for scenarios α are the ones with discount

factor at least 1.055−40 ≈ 0.1175. That is, the differentiation of decisions comes ‘too late’ to

lead to substantial changes in the total cost.

4.3.3 Comparison of the robust and nominal solutions

As for the nominal solution, we can clearly see in Table 4 that the objective function value

in the first column is significantly smaller than for the robust models: compare 1004 for the

nominal solution to 1201 for the robust solutions without adjustability. We note however,

that if the nominal solution is to be fixed ‘on the spot’ later, the cost grows sharply beyond

the cost of the worst scenarios for the robust solution, as illustrated in Figure 5.

Due to lack of the need to accommodate for the uncertain sea level rise, the here-and-now

investment decisions for the dikes differ for 20 dike segments, with the average difference of

0.19m (lower heightenings), with a total cost of 587 at t = 0, instead of 606 for the robust

solution - about 3% less than the robust solution. In Table 3 we see that the nominal solution

applies all the large-scale measures at least as late as the robust solutions.

Overall, we can say that incorporating 40% uncertainty in the sea level rise leads only

to only about 8.3% change of the expected total worst-case cost, and a 3-4% change in the

here-and-now cost. These numbers seem to be rather small compared to the guarantees

gained - recall what happens if the nominal solution is to be fixed later.

4.3.4 Robust solutions when the key parameters change

Conclusions of the experiments up to now rely on the value of the two crucial parameters:

(i) the discount rate d, and (ii) the uncertainty parameter ρ, whose values can be seen as

somewhat arbitrary. We want to validate our results by considering the model with changes

in these parameters and investigate what happens to the results of Table 4 if we change the

discount rate from 5.5% to 2.5%, or change the uncertainty about the sea level rise from 40%

to 60%. To make this comparison concise, we focus only on the models with W = 3. Table

6 on page 23 presents the results.

In the first part of the table we can see the solutions for the changed discount rate.

Lower discount rate implies that (i) the overall discounted cost grows higher, (ii) the cost of
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later-stage decisions grow relatively to the here-and-now decisions and hence, adjustability

should become more important. This is indeed visible, for example, in the number of the

dike segments for which the adjustable solutions involve different here-and-now decisions,

which is 14 for a single split and 22 for two splits. This contrasts with the case d = 5.5%

for which only 11–12 dike segments required different decisions because of the adjustability.

Surprisingly, the adjustable decisions in this case require smaller here-and-now investment

cost, which is reflected in the last column.

Also, we would like to highlight here the impact of the discount rate itself - the nonad-

justable solutions of the first part of Table 6 implies a different here-and-now decision for 43

dike segments compared to the nonadjustable solution of Table 4, with an average difference

of 0.42m, typically implying a larger here-and-now heightening. This is logical as with the

lower discount rate, the here-and-now decisions become relatively cheaper.

The second part of the table includes the solutions for ρ = 60%. Here, only four dike

segments require a different here-and-now decision when adjustability is applied. Also, in

the last column we see that in this setting the cost of the here-and-now dike heightening

decisions are lower - 620 of J − 1 = 1 compared to 632 of J − 1 = 0.

4.3.5 Numerical experiment - results overview

Here, we summarize the conclusions of the numerical experiment of Section 4 including direct

links to the tables and figures. These are as follows:

• not taking the uncertainty into account and assuming a ‘moderate’ sea level rise speed

leads to solutions for which the safety standards are mostly violated within the period

of about 40 years (see Figure 4) if the worst-case happens;

• not taking the uncertainty into account and assuming a ‘moderate’ sea level, combined

with ‘on the spot’ fixing of the situation leads to rapidly growing total cost of the

solution and/or violating some of the constraints (safety requirements and frequency

constraints, stating how often can a single dike segment be heightened), see Figure 5.

In fact, the total cost of the ‘on the spot problem fixing’ strategy are higher than the

maximum cost of the strategy taking into account robustness from the very beginning;

• considering 40% uncertainty in the sea level rise results in only 8.3% difference in the

total project cost (see Table 4), equivallent to about 200 million euro;

• adjustability allows for lower-cost solutions particularly when the realized uncertain

sea level rise in the early periods is low, see Tables 4 and 6;

• adjustability and here-and-now decisions for dike segments play a much more important

role when the discount rate is low (see the first part of Table 6, where 22 dikes require

a different here-and-now decision, compared to 10 dike segments in Table 4);

• only a small part of the large-scale measures (5 out of 14) are used by the optimal

solutions and their moment of implementation is relatively stable (see Table 3);

• a different set splitting strategy for adjustability (see Appendix A), based on sums of

sea level increase, does not change the solutions significantly.

5 Conclusion

In this paper we have considered the problem of finding the optimal flood protection strategy

in a long-term horizon. In particular, the aim was to address two challenges: (i) one related to

explicitly taking into account of the uncertainty related to the future sea level rise and (ii) the

second one, requiring the future decisions to adjust to the revealed uncertainties from earlier
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periods. Both challenges have been addressed by applying the tools of integer-adjustable

robust optimization as proposed in Postek and den Hertog (2016).

The numerical experiments reveal that taking uncertainty into account early leads to

solutions that, compared to the nominal solutions based on ‘moderate’ sea level rise scenario,

do not require expensive adjustments at later time stages, if the uncertainty deviates from

the moderate scenario. At the same time, adjustability of decisions ensures that cheaper

decisions are made when the realized uncertainty is low.

Also, taking into account uncertainty results in different here-and-now decisions for some

of the dike segments, which facilitate better adjustments in the future. This becomes even

more important when the assumed discount rate is low (and the relative costs of the later-

stage decisions are higher). In the end, we conclude that only a small part of the available

large-scale measures are used in the optimal solutions.

Regarding future research, it is important to consider the problem of finding an optimal

solution on a larger-scale region including also dike segments whose safety standards are

driven by the (uncertain) river flow rather than by the sea. Furthermore, the model can be

extended by taking into account costs arising in case a certain area is flooded.
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A Experiment - alternative splitting proposal

The results for the adjustable robust solutions up to now have been based on the splitting

methodology presented in Section 3. In it, we have been differentiating the decisions based

on whether r1 fell into the upper or lower half of the corresponding interval, and the same

for the later rj .

Alternatively, one can argue that the splitting (adjustability) at time tj should be based

on the outcome of the sum
∑j

s=1 rs. This is because the total water level depends on

the sum of the sea level rises in the subsequent time periods rather than on each of them
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separately. Each of the uncertainty subsetsR(α) is identified then, instead with the sequence

of inequalities in the following sequence (as in Section 3)

r1 (≥ or ≤) r̄1, r1 (≥ or ≤) r̄2, r3 (≥ or ≤) r̄2, . . .

with the sequence of inequalities in the following sequence:

r1 (≥ or ≤) r̄1, r1 + r2 (≥ or ≤) r̄1 + r̄2, r1 + r2 + r3 (≥ or ≤) r̄1 + r̄2 + r̄2, . . .

Again, the objective function is a weighted average of the cost corresponding to each of the

2J−1 scenarios. However, in this setting it is no longer true that all uncertainty subsets R(α)

are equally probable if one assumes uniform probability distribution of r over R instead, the

volume of each of the uncertainty subsets needs to be computed. In other words, with

J − 1 = 2 the probability of the scenario α = (2, 2) is equal to the proportion p(α) of the

volume of the polytope

R(α) = {r : (1− ρ)r̄j ≤ rj ≤ (1 + ρ)r̄j , j = 1, 2, 3, r1 ≥ r̄1, r1 + r2 ≥ r̄1 + r̄2, }

to the volume of the entire uncertainty set R. We have computed these proportions p(α)

using a Monte Carlo simulation and we note here only that these proportions (probabilities)

give relatively more weight to the extreme uncertainty subsets - the ones where the sums of

sea level rises is consistently in the ‘lower part’ or ‘upper part’, respectively.

The results of the experiment with a changed splitting strategy are given in the last part

of Table 6. Obviously, since the objective function is weighted with different probabilities

than in the original case, we should rather compare the new splitting strategy based on the

last five columns. Regarding the worst-case costs in the worst and best scenario, they are

nearly the same as the ones for W = 3 in Table 4, with the worst-scenario only slightly

better than in Table 4. This difference is most likely accountable to the new probabilities

assigning more weight to the extreme scenarios. We also observe that the number of dikes

with different t = 0 decisions is rather stable, between 6 and 9. Overall, we conclude that

in this parameter setting a different splitting strategy does not lead to significantly different

solution, especially in the first time period.
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