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Abstract. We introduce a quasi-Newton method with block updates called Block BFGS. We
show that this method, performed with inexact Armijo-Wolfe line searches, converges globally and
superlinearly under the same convexity assumptions as BFGS. We also show that Block BFGS
is globally convergent to a stationary point when applied to non-convex functions with bounded
Hessian, and discuss other modifications for non-convex minimization. Numerical experiments
comparing Block BFGS, BFGS and gradient descent are presented.

1. Introduction

The classical BFGS method is perhaps the best known quasi-Newton method for minimizing
an unconstrained function f(x). These methods iteratively proceed along search directions dk =
−B−1

k ∇f(xk), where Bk is an approximation to the Hessian ∇2f(xk) at the current iterate xk.
Quasi-Newton methods differ primarily in the manner in which they update the approximation Bk.
The BFGS method constructs an update Bk+1 which is the nearest matrix to Bk (in a variable met-
ric) satisfying the secant equation Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk). This can be interpreted
as modifying Bk to act like ∇2f(x) along the direction xk+1−xk, so that successive updates induce
Bk to resemble ∇2f(x) along the search directions.

A natural extension of the classical BFGS method is to incorporate information about ∇2f(x)
along multiple directions in each update. Early work in this area includes the development by

Schnabel [17] of quasi-Newton methods that satisfy multiple (say, q) secant equations Bk+1s
(i)
k =

∇f(xk+1)−∇f(xk+1−s(i)k ) for directions s
(1)
k , . . . , s

(q)
k . This approach has the disadvantage that the

resulting update is generally not symmetric, and considerable modifications are required to ensure Bk

remains positive definite. Consequently, there appears to have been little interest in quasi-Newton
methods with block updates in the years following Schnabel’s initial report.

More recently, a stochastic quasi-Newton method with block updates was introduced by Gower,
Goldfarb, and Richtárik [6]. Their approach constructs an update which satisfies sketching equations
of the form

Bk+1s
(i)
k = ∇2f(xk+1)s

(i)
k

for multiple directions s
(i)
k . By using sketching equations instead of secant equations, the update

is guaranteed to remain symmetric, and in the case where f(x) is convex, positive definite. The
sketching equations can be thought of as ‘tangent’ equations that require Bk+1 to incorporate in-
formation about the Hessian ∇2f(xk+1) at the most recent point xk+1, as opposed to information
about the average of ∇2f(x) between two points, i.e, along a secant.
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Experimental results from [6] show that their limited memory method Stochastic Block L-BFGS
often outperforms other state-of-the-art methods when applied to a class of machine learning prob-
lems. This is promising, and provides evidence that quasi-Newton methods with block updates are
a practical tool for unconstrained minimization.

In this paper, we introduce a deterministic quasi-Newton method Block BFGS. The key feature
of Block BFGS is the inclusion of information about ∇2f(x) along multiple directions, by enforcing
that Bk+1 satisfies the sketching equations for a subset of previous search directions. We show
that this method, performed with inexact Armijo-Wolfe line searches, has the same convergence
properties as the classical BFGS method. Namely, if f is twice differentiable, convex, and bounded
below, and the gradient of f is Lipschitz continuous, then Block BFGS converges. If, in addition, f is
strongly convex and the Hessian of f is Lipschitz continuous, then Block BFGS achieves superlinear
convergence.

Block BFGS can also be applied to non-convex functions. We show that if f has bounded Hessian,
then Block BFGS converges to a stationary point of f . Modified forms of the classical BFGS
method also have natural extensions to block updates, so modified block quasi-Newton methods are
applicable in the non-convex setting.

The paper is organized as follows. Section 2 contains preliminaries and describes Armijo-Wolfe
inexact line searches. In Section 3, we formally define the Block BFGS method and several variants.
In Sections 4 and 5 respectively, we show that Block BFGS converges, and converges superlinearly,
for f satisfying appropriate conditions. In Section 6, we show that Block BFGS converges for suitable
non-convex functions, and describe several other modifications to adapt Block BFGS for non-convex
optimization. In Section 7, we present the results of numerical experiments for several classes of
convex and non-convex problems.

2. Preliminaries

The following notation will be used. The objective function of n variables is denoted by f : Rn →
R. We write g(x) for the gradient ∇f(x) and G(x) for the Hessian ∇2f(x). For a sequence {xk},
fk = f(xk) and gk = g(xk). However, we deliberately use Gk = G(xk+1) to simplify the update
formula.

The norm ‖ · ‖ denotes the L2 norm, or for matrices, the L2 operator norm. The Frobenius
norm will be explicitly indicated as ‖ · ‖F . Angle brackets 〈·, ·〉 denote the standard inner product
〈x, y〉 = yTx and the trace inner product 〈X,Y 〉 = Tr(Y TX). We use either notation 〈x, y〉 or yTx
as is convenient. The symbol Σn denotes the space of n×n symmetric matrices, and � denotes the
Löwner partial order; hence A ≻ 0 means A is positive definite.

An LΣLT decomposition is a factorization of a positive definite matrix into a product LΣLT ,
where L is lower triangular with ones on the diagonal, and Σ = Diag(σ2

1 , . . . , σ
2
n). This is commonly

called an LDLT decomposition in the literature, but we write Σ in place of D as we use D to denote
a matrix whose columns are previous search directions.

In the pseudocode for our algorithm, size(A, 1) and size(A, 2) denote the number of rows and
columns of a matrix A respectively. The ij-entry of a matrix A will be denoted by Aij . We use
Col(A) to denote the linear space spanned by the columns of A. By convention, a sum over an
empty index set is equal to 0.

Our inexact line search selects step sizes λk satisfying the Armijo-Wolfe conditions: for parameters
α, β with 0 < α < 1

2 and α < β < 1, the step satisfies

(2.1) f(xk + λkdk) ≤ f(xk) + αλk〈gk, dk〉
and

(2.2) 〈g(xk + λkdk), dk〉 ≥ β〈gk, dk〉
Furthermore, our line search always selects λk = 1 whenever this step size is admissible. This is
important in the analysis of superlinear convergence in Section 5.
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3. Block quasi-Newton Methods

In this section, we introduce Block BFGS, a quasi-Newton method with block updates, and several
variants.

Algorithm 1 Block BFGS

input: x
(1)
1 , B1, q

1: for k = 1, 2, 3 . . . do
2: for i = 1, . . . , q do

3: d
(i)
k ← −B−1

k g
(i)
k

4: λ
(i)
k ← linesearch(x

(i)
k , d

(i)
k )

5: s
(i)
k ← λ

(i)
k d

(i)
k

6: x
(i+1)
k ← x

(i)
k + s

(i)
k

7: end for
8: Gk ← G(x

(q+1)
k )

9: Sk ← [s
(1)
k . . . s

(q)
k ]

10: Dk ← filtersteps(Sk, Gk)
11: if Dk is not empty then
12: Bk+1 ← Bk − BkDk(D

T
k BkDk)

−1DT
k Bk +GkDk(D

T
kGkDk)

−1DT
k Gk

13: else
14: Bk+1 ← Bk

15: end if
16: x

(1)
k+1 ← x

(q+1)
k

17: end for

Algorithm 2 filtersteps

input: Sk, Gk output: Dk parameters: threshold τ > 0
1: Initialize Dk ← Sk, i← 1
2: while i ≤ size(Dk, 2) do

3: σ2
i ← [DT

k GkDk]ii −
∑i−1

j=1 L
2
ijΣjj

4: si ← column i of Dk

5: if σ2
i ≥ τ‖si‖2 then

6: Σii ← σ2
i

7: Lii ← 1
8: for j = i+ 1, . . . , size(Dk, 2) do

9: Lji ← 1
Σii

([DT
k GkDk]ji −

∑i−1
k=1 LikLjkΣkk)

10: end for
11: i← i+ 1
12: else
13: Delete column i from Dk and row i from L
14: end if
15: end while

3.1. Block BFGS. Block BFGS (Algorithm 1) takes q steps in each block, using a fixed Hessian
approximation Bk. We may also take a varying number of steps, bounded above by q, but we
assume every block contains q steps to simplify the presentation. We use a subscript k for the block
index, and superscripts (i) for the steps within each block. The k-th block contains the iterates

x
(1)
k , . . . , x

(q+1)
k , and x

(1)
k+1 = x

(q+1)
k . At each point x

(i)
k , the step direction is d

(i)
k = −B−1

k g
(i)
k , and
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line search is performed to obtain a step size λ
(i)
k . We take a step s

(i)
k = λ

(i)
k d

(i)
k . The angle between

s
(i)
k and −g(i)k is denoted θ

(i)
k . As Bk is positive definite, θ

(i)
k ∈ [0, π2 ).

After taking q steps, the matrix Bk is updated. Let Gk = G(x
(q+1)
k ) denote the Hessian at the final

iterate, and form the matrix Sk = [s
(1)
k . . . s

(q)
k ]. We apply the filtersteps procedure (Algorithm 2)

to Sk, which returns a subset Dk of the columns of Sk satisfying σ2
i ≥ τ‖si‖2, where si is the i-th

column of Dk and σ2
i is the i-th diagonal entry of the LΣLT decomposition of DT

kGkDk. τ > 0 is
a parameter which controls the strictness of the filtering; a small value of τ permits Dk to contain
steps that are closer to being linearly dependent. In essence, filtersteps iteratively computes
the LΣLT decomposition of ST

k GkSk and discards columns of Sk corresponding to small diagonal
entries, with the remaining columns forming Dk.

Define qk to be the number of columns of Dk. If Dk is the empty matrix (all columns were
removed), then no update is performed and Bk+1 = Bk. If Dk is not empty, the matrix Bk is
updated to have the same action as the Hessian Gk on the column space of Dk, or equivalently,

(3.1) Bk+1Dk = GkDk

Let D = Dk, G = Gk. The formula for the update is given by

(3.2) Bk+1 = Bk −BkD(DTBkD)−1DTBk +GD(DTGD)−1DTG

This formula is invariant under a change of basis of Col(Dk), so we can choose Dk to be any matrix
with the same column space.

As is the case for standard quasi-Newton updates, there are many possible updates that satisfy
equation (3.1). The specific Block BFGS update (3.2) is derived as follows. Let Hk = B−1

k be the
approximation of the inverse Hessian. In contrast with the classical BFGS update, the update (3.2)
is chosen so that Hk+1 is the nearest matrix to Hk in a weighted norm, satisfying the system of
sketching equations Hk+1GkDk = Dk rather than a set of secant equations. That is, Hk+1 is the
solution to the minimization problem

(3.3)
min

H̃∈Rn×n

‖H̃ −Hk‖Gk

s.t H̃ = H̃T , H̃GkDk = Dk

where ‖ · ‖Gk
is the norm ‖X‖Gk

= Tr(XGkX
TGk), in analogy with the classical BFGS update.

This norm is induced by an inner product, so Hk+1 is an orthogonal projection onto the subspace

{H̃ ∈ Σn : H̃GkDk = Dk}. In Appendix A, it is shown that Hk+1 has the explicit formula

(3.4) Hk+1 = D(DTGD)−1DT + (I −D(DTGD)−1DTG)Hk(I −GD(DTGD)−1DT )

Taking the inverse yields formula (3.2). Moreover, as shown in [17], we have

Lemma 3.1. If Bk (Hk) and DT
kGkDk are positive definite, then the Block BFGS update (3.2) for

Bk+1 ((3.4) for Hk+1) is positive definite.

Proof. Our proof is adapted from Theorem 3.1 of [17]. Let z ∈ R
n, and define w = DT

k z, v =
z −GkDk(D

T
k GkDk)

−1w. Using formula (3.4), we find that

zTHk+1z = wT (DT
k GkDk)

−1w + vTHkv

so zTHk+1z ≥ 0. Furthermore, zTHk+1z = 0 only if both w = 0 and v = 0, in which case z = 0.
Hence Hk+1 is positive definite. �

In Section 4, we show that Block BFGS converges even if Bk = Bk+1 = . . . is stationary. In
Section 5, we show that when f is strongly convex, the parameter τ can be chosen so an update is
always performed, and the convergence is superlinear.

In practice, one may omit filtersteps. However, filtering may improve numerical stability,
by removing nearly linearly dependent steps from Dk. Also, notice that GkDk can be computed
by performing qk Hessian-vector products in parallel. It is often faster to compute Hessian-vector
products than the full Hessian.
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3.2. Rolling Block BFGS. Block BFGS uses the same matrix Bk throughout each block of q
steps. We could also add information from these steps immediately, at the cost of doing far more
updates. This variant, Rolling Block BFGS, performs a block update after every step, using a subset
Dk of the previous q steps. Dk is formed by adding sk as the first column of Dk−1, removing sk−q

if present, and filtering.

3.3. Other Variants. Block updates may be used within other quasi-Newton methods as well. For
instance, the limited memory BFGS (L-BFGS) algorithm of Liu and Nocedal [12] is readily modified
to use block updates. In [6], the authors tested a stochastic L-BFGS algorithm with block updates.
Another possibility is to interleave standard BFGS updates with periodic block updates, to capture
additional second-order information.

4. Convergence of Block BFGS

In this section we prove that Block BFGS with inexact Armijo-Wolfe line searches converges under
the same conditions as does the classical BFGS method. These conditions are given in Assumption
1.
Assumption 1.

(1) f is convex, twice differentiable, and bounded below.
(2) For all x in the level set Ω = {x ∈ R

n : f(x) ≤ f(x1)}, the Hessian satisfies G(x) � MI, or
equivalently, g(x) is Lipschitz continuous with Lipschitz constant M .

The main goal of this section is to prove the following theorem. The concept of our proof is
similar to the analysis given by Powell [14] for the classical BFGS method.

Theorem 4.1. Let f be a function satisfying Assumption 1, and let {xk}∞k=1 denote the sequence
of all iterates produced by Block BFGS. Then lim infk ‖gk‖ = 0.

We begin by proving several lemmas. The first two are well known; see [2, 14].

Lemma 4.2.
∑∞

k=1〈−gk, sk〉 <∞, and therefore 〈−gk, sk〉 → 0.

Proof. From the Armijo condition (2.1), 〈−gk, sk〉 = λk〈−gk, dk〉 ≤ (1/α)(fk − fk+1). As f is
bounded below,

∞∑

k=1

〈−gk, sk〉 ≤ (1/α)

∞∑

k=1

(fk − fk+1) ≤ (1/α)(f1 − lim
k→∞

fk) <∞

�

Lemma 4.3. If the gradient g(x) is Lipschitz continuous with constant M , then for c1 = 1−β
M , we

have ‖sk‖ ≥ c1‖gk‖ cos θk.
Proof. Let yk = gk+1 − gk. From the Wolfe condition (2.2),

〈yk, sk〉 = 〈gk+1, sk〉 − 〈gk, sk〉 ≥ (1− β)〈−gk, sk〉
By the Lipschitz continuity of the gradient, ‖yk‖ ≤M‖sk‖. Therefore

(1 − β)‖gk‖‖sk‖ cos θk = (1− β)〈−gk, sk〉 ≤ 〈yk, sk〉 ≤M‖sk‖2

yielding ‖sk‖ ≥ c1‖gk‖ cos θk. �

It is possible that Dk is empty for all k ≥ k0, and no further updates are made to Bk0 . This
may occur, for example, if G(x) has arbitrarily small eigenvalues and τ is large. We handle this case
separately, as the theoretical properties of Block BFGS resemble gradient descent if this occurs.

Lemma 4.4. Suppose that for some k0, no further updates are made to Bk, so Bk = Bk0 for all
k ≥ k0. Then limk ‖gk‖ = 0.



6 BLOCK BFGS METHODS

Proof. In the proof of Lemma 4.3, we obtained the inequality ‖sk‖2 ≥ c1〈−gk, sk〉. Multiplying by
λk, we have λk‖sk‖2 ≥ c1sTkBksk = c1s

T
kBk0sk ≥ c1λmin(Bk0)‖sk‖2, where λmin(Bk0) is the smallest

eigenvalue of Bk0 . Hence there exists a constant ρ = c1λmin(Bk0) > 0 with λk ≥ ρ for all k ≥ k0.
We then have

∞∑

k=k0

1

λk
〈−gk, sk〉 =

∞∑

k=k0

gTk B
−1
k0
gk ≥

1

λmax(Bk0 )

∞∑

k=k0

‖gk‖2

The left side is bounded above by
∞∑

k=k0

1
ρ〈−gk, sk〉 <∞, so ‖gk‖ → 0. �

For the remainder of this section, we assume that there is an infinite sequence of updates. In fact,
we may further assume that an update is made for every k, as one can verify that the propositions of
this section continue to hold when we restrict our arguments to the subsequence of {Bk} for which
updates are made. This simplifies the notation. Note, however, that the same cannot simply be
assumed in Section 5. The results in that section do not hold if updates are skipped. However, in
Section 5 we are able to choose τ so as to guarantee that an update is made for every k.

Lemma 4.5. Let c3 = Tr(B1) + qM . Then for all k,

Tr(Bk) ≤ c3k and

k∑

j=1

Tr(DT
j B

2
jDj(D

T
j BjDj)

−1) ≤ c3k

Proof. Clearly Tr(B1) ≤ c3. Define Ej = G
1
2

j Dj , and let Pj = Ej(E
T
j Ej)

−1ET
j be the orthogonal

projection onto Col(Ej), so that GjDj(D
T
j GjDj)

−1DT
j Gj = G

1
2

j PjG
1
2

j . For k ≥ 1, we expand

Tr(Bk+1) using Equation (3.2):

0 < Tr(Bk+1) = Tr(B1) +

k∑

j=1

Tr(G
1
2
j PjG

1
2
j )−

k∑

j=1

Tr(DT
j B

2
jDj(D

T
j BjDj)

−1)

≤ Tr(B1) + k(qM)−
k∑

j=1

Tr(DT
j B

2
jDj(D

T
j BjDj)

−1)

where the first inequality follows from the positive definiteness of Bk+1 (Lemma 3.1) and the second

inequality follows since rank(Pj) ≤ q, and ‖G
1
2

j PjG
1
2

j ‖ ≤ ‖Gj‖‖Pj‖ ≤ M . This shows Tr(Bk+1) ≤
c3(k + 1) and

∑k
j=1 Tr(D

T
j B

2
jDj(D

T
j BjDj)

−1) ≤ c3k. �

Lemma 4.6. Let s
(i)
k be a step included in Dk. Then

λ
(i)
k ‖g

(i)
k ‖2

〈−g(i)k , s
(i)
k 〉
≤ Tr(DT

k B
2
kDk(D

T
kBkDk)

−1)

Proof. By the Gram-Schmidt process applied to the columns of Dk, we can find a set of Bk-

orthogonal vectors {v1, . . . , vqk} spanning Col(Dk) with v1 = s
(i)
k . Using the matrix [v1 . . . vqk ]

for Dk, we have

DT
kBkDk = Diag(〈s(i)k ,−λ(i)k g

(i)
k 〉, 〈v2, Bkv2〉, . . . , 〈vqk , Bkvqk〉)

and therefore

Tr(DT
k B

2
kDk(D

T
kBkDk)

−1) =

qk∑

ℓ=1

[DT
kB

2
kDk]ℓℓ[D

T
k BkDk]

−1
ℓℓ

=
(λ

(i)
k ‖g

(i)
k ‖)2

λ
(i)
k 〈−g

(i)
k , s

(i)
k 〉

+

qk∑

ℓ=2

‖Bkvℓ‖2
〈vℓ, Bkvℓ〉

≥ λ
(i)
k ‖g

(i)
k ‖2

〈−g(i)k , s
(i)
k 〉

�
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We may assume without loss of generality that Dk = [s
(1)
k . . . s

(qk)
k ].

Corollary 4.7.
k∏

j=1

qj∏

i=1

λ
(i)
j ‖g

(i)
j ‖2

〈−g(i)j , s
(i)
j 〉
≤ (qc3)

qk

Proof. Let q̂k =
∑k

j=1 qj , and note that k ≤ q̂k ≤ qk. Hence, from Lemmas 4.5 and 4.6,

1

q̂k

k∑

j=1

qj∑

i=1

λ
(i)
j ‖g

(i)
j ‖2

〈−g(i)j , s
(i)
j 〉
≤ qk

q̂k
c3 ≤ qc3

Applying the arithmetic mean-geometric mean (AM-GM) inequality,



k∏

j=1

qj∏

i=1

λ
(i)
j ‖g

(i)
j ‖2

〈−g(i)j , s
(i)
j 〉


 ≤ (qc3)

q̂k ≤ (qc3)
qk

�

Lemma 4.8. det(Bk) ≤
(
c3k
n

)n
for all k.

Proof. By Lemma 4.5, Tr(Bk) ≤ c3k. Recall that the trace is equal to the sum of the eigenvalues,
and the determinant to the product. Applying the AM-GM inequality to the eigenvalues of Bk, we

obtain det(Bk) ≤
(
c3k
n

)n
. �

We will need the following two classical results from matrix theory; see [9].
Sylvester’s Determinant Identity Let A ∈ R

n×m, B ∈ R
m×n. Then

det(In +AB) = det(Im +BA)

Sherman-Morrison-Woodbury Formula Let A ∈ R
n×n and C ∈ R

k×k be invertible, and U ∈
R

n×k, V ∈ R
k×n. If A + UCV and C−1 + V A−1U are invertible, then (A + UCV )−1 = A−1 −

A−1U(C−1 + V A−1U)−1V A−1.

Lemma 4.9.

det(Bk+1) =
det(DT

k GkDk)

det(DT
k BkDk)

det(Bk)

Proof. Let B = Bk, B
+ = Bk+1, D = Dk, G = Gk. Then

det(B+) = det(B) det(I +B− 1
2GD(DTGD)−1DTGB− 1

2 −B 1
2D(DTBD)−1DTB

1
2 )

Define X = B− 1
2GD(DTGD)−1DTGB− 1

2 and Y = DTGD + DTGB−1GD. Note that I + X is
invertible since X � 0 and I ≻ 0, and Y is invertible since DTGD ≻ 0. Thus, we can write

det(B+) = det(B) det(I +X) det(I − (I +X)−1B
1
2D(DTBD)−1DTB

1
2 )

By Sylvester’s determinant identity,

det(I +X) = det(I + (DTGB− 1
2 )(B− 1

2GD(DTGD)−1)) = det(Y ) det(DTGD)−1

and

det(I − (I +X)−1B
1
2D(DTBD)−1DTB

1
2 ) = det(I −DTB

1
2 (I +X)−1B

1
2D(DTBD)−1)

Applying the Sherman-Morrison-Woodbury formula to I+X with U = B− 1
2GD,C = (DTGD)−1, V =

DTGB− 1
2 , we obtain (I +X)−1 = I −B− 1

2GDY −1DTGB− 1
2 , and so

det(I − (I +X)−1B
1
2D(DTBD)−1DTB

1
2 ) = det(DTGD)2 det(Y )−1 det(DTBD)−1

Thus det(B+) = det(B) det(DTGD) det(DTBD)−1 as desired. �
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Lemma 4.10.

det(Bk+1) ≥
(

qk∏

i=1

1

λi

)
(τc1)

qk det(Bk)

Proof. Recall that the columns of Dk satisfy σ2
i ≥ τ‖s(i)k ‖2, where σi is the i-th diagonal element

of the LΣLT decomposition of DT
kGkDk. We have det(DT

k GkDk) =
∏qk

i=1 σ
2
i and det(DT

k BkDk) ≤∏qk
i=1[D

T
k BkDk]ii =

∏qk
i=1〈s

(i)
k ,−λ(i)k g

(i)
k 〉. By Lemma 4.9,

det(Bk+1) = det(Bk)
det(DT

k GkDk)

det(DT
k BkDk)

≥ det(Bk)

∏qk
i=1 τ‖s

(i)
k ‖2∏qk

i=1〈s
(i)
k ,−λ(i)k g

(i)
k 〉
≥ det(Bk)

qk∏

i=1

τ

λ
(i)
k

‖s(i)k ‖
‖g(i)k ‖ cos θ

(i)
k

By Lemma 4.3,
‖s

(i)
k

‖

‖g
(i)
k

‖ cos θ
(i)
k

≥ c1. Hence det(Bk+1) ≥
(

qk∏
i=1

1

λ
(i)
k

)
(τc1)

qk det(Bk). �

Corollary 4.11.

det(Bk+1) ≥ (τc1)
qk det(B1)

k∏

j=1

qj∏

i=1

1

λ
(i)
j

Corollary 4.12. There exists a constant c4 such that for all k,

k∏

j=1

qj∏

i=1

‖g(i)j ‖2

〈−g(i)j , s
(i)
j 〉
≤ ck4

Proof. Multiplying the inequalities of Corollary 4.7 and Lemma 4.8, we obtain



k∏

j=1

qj∏

i=1

λ
(i)
j ‖g

(i)
j ‖2

〈−g(i)j , s
(i)
j 〉



(
det(Bk+1)

det(B1)

)
≤ (qc3)

qk

(
(c3(k + 1)/n)n

det(B1)

)
≤ ρk1

for some constant ρ1. Using the lower bound of Corollary 4.11, we also obtain



k∏

j=1

qj∏

i=1

λ
(i)
j ‖g

(i)
j ‖2

〈−g(i)j , s
(i)
j 〉



(
det(Bk+1)

det(B1)

)
≥




k∏

j=1

qj∏

i=1

λ
(i)
j ‖g

(i)
j ‖2

〈−g(i)j , s
(i)
j 〉


 · (τc1)qk

k∏

j=1

qj∏

i=1

1

λ
(i)
j

= (τc1)
qk




k∏

j=1

qj∏

i=1

‖g(i)j ‖2

〈−g(i)j , s
(i)
j 〉




Take c4 = ρ1

(τc1)q
, whence

∏k
j=1

∏qj
i=1

‖g
(i)
j

‖2

〈−g
(i)
j

,s
(i)
j

〉
≤ ck4 . �

Finally, we can establish our main result.

Proof. (of Theorem 4.1) Assume to the contrary that ‖g(i)k ‖ is bounded away from zero. Lemma 4.2

implies that 〈g(i)k ,−s(i)k 〉 → 0. Thus, there exists k0 such that for k ≥ k0,
‖g

(i)
k

‖2

〈g
(i)
k

,−s
(i)
k

〉
> c4 + 1. This

contradicts Corollary 4.12, as
∏k

j=1

∏qj
i=1

‖g
(i)
j

‖2

〈−g
(i)
j

,s
(i)
j

〉
≤ ck4 for all k. We conclude that lim infk ‖gk‖ =

0. �

A similar analysis shows that Rolling Block BFGS (Section 3.2) converges.

Theorem 4.13. Assume f satisfies Assumption 1. Then the sequence {gk}∞k=1 produced by Rolling
Block BFGS satisfies lim infk ‖gk‖ = 0.
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Proof. By the calculations for Corollary 4.7, we have
∏k

j=1
λj‖gj‖

2

〈−gj ,sj〉
≤ ck3 .

Dk is produced by adding column sk to Dk−1, removing sk−q if present, and then running
Algorithm 2. Without loss of generality, assume that Dk = [sk . . . sk−qk+1]. By definition, Bk

satisfies BkDk−1 = Gk−1Dk−1. Thus, we have

det(DT
k BkDk) ≤

qk−1∏

i=0

〈sk−i, Bksk−i〉 = 〈sk, Bksk〉
qk−1∏

i=1

〈sk−i, Gk−1sk−i〉

which gives an analogue of Lemma 4.10:

det(Bk+1) ≥
∏qk−1

i=0 τ‖sk−i‖2

〈sk,−λkgk〉
∏qk−1

i=1 〈sk−i, Gk−1sk−i〉
det(Bk) ≥

1

λk

c1τ
q

M q−1
det(Bk)

Thus det(Bk+1) ≥
(

c1τ
q

Mq−1

)k
det(B1)

∏k
j=1

1
λk

. The remainder of the proof follows exactly as in the

proofs of Corollary 4.12 and Theorem 4.1. �

5. Superlinear Convergence of Block BFGS

In this section we show that Block BFGS converges superlinearly under the same conditions as
does BFGS, namely, that f is strongly convex and its Hessian is Lipschitz continuous. We use the
characterization of superlinear convergence given by Dennis and Moré [4], and employ an argument
similar to the analysis used by Griewank and Toint [7] for partitioned quasi-Newton updates.
Assumption 2. The level set Ω = {x ∈ R

n : f(x) ≤ f(x1)} is convex, and
(1) f is strongly convex on Ω, so there exist constants m,M > 0 such that for all x ∈ Ω,

mI � G(x) �MI

Note that this implies f has a unique minimizer x∗, with value f∗.
(2) G(x) is Lipschitz in a neighborhood of x∗, with Lipschitz constant µ.

For this section we assume τ ≤ m, where τ is the parameter in filtersteps. Since σ2
1 =

[DT
kGkDk]11 = 〈s(1)k , Gks

(1)
k 〉 ≥ m‖s

(1)
k ‖2, the first column of Dk is never removed by filtersteps.

This guarantees that an update is always performed.

Theorem 5.1. Let f be a function satisfying Assumption 2. If the first step s
(1)
k in each block is

included in Dk, then Block BFGS converges superlinearly in the sense that

lim
k→∞

‖x(i)k − x∗‖
‖x(1)k − x∗‖

= 0 for i = 2, . . . , q + 1

We begin by showing that Block BFGS converges R-linearly. The first three lemmas are well
known; see [2, 14].

Lemma 5.2. For c1 = 1−β
M and c2 = 2(1−α)

m ,

c1‖gk‖ cos θk ≤ ‖sk‖ ≤ c2‖gk‖ cos θk
Proof. By Taylor’s theorem, there exists a point x̃ on the line segment joining xk, xk+1 such
that f(xk+1) = f(xk) + 〈gk, sk〉 + 1

2s
T
kG(x̃)sk. From (2.1), f(xk+1) − f(xk) ≤ α〈gk, sk〉, so

(1 − α)〈−gk, sk〉 ≥ 1
2s

T
kG(x̃)sk ≥ 1

2m‖sk‖2. Rearranging yields ‖sk‖ ≤ c2‖gk‖ cos θk. The lower
bound was shown in Lemma 4.3. �

Lemma 5.3. For any x ∈ Ω, ‖g(x)‖2 ≥ 2m(f(x)− f∗).
Proof. The result is immediate if x = x∗, so assume x 6= x∗. By Taylor’s theorem, there exists a point
x̃ on the line segment joining x, x∗ such that f(x∗) = f(x)+g(x)T (x∗−x)+ 1

2 (x∗−x)TG(x̃)(x∗−x),
in which case

g(x)T (x− x∗) = f(x) − f∗ +
1

2
(x∗ − x)TG(x̃)(x∗ − x) ≥ f(x)− f∗ +

1

2
m‖x− x∗‖2
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Using the Cauchy-Schwarz inequality, we find that ‖g(x)‖‖x − x∗‖ ≥ f(x) − f∗ + 1
2m‖x − x∗‖2.

Applying the AM-GM inequality and squaring yields ‖g(x)‖2 ≥ 2m(f(x)− f∗). �

Lemma 5.4.
fk+1 − f∗ ≤ (1− 2αmc1 cos

2 θk)(fk − f∗)
Proof. The Armijo condition (2.1) and Lemma 5.2 imply that

fk+1 − fk ≤ α〈gk, sk〉 = −α‖gk‖‖sk‖ cos θk ≤ −αc1‖gk‖2 cos2 θk
By Lemma 5.3, ‖gk‖2 ≥ 2m(fk − f∗). Hence fk+1 − f∗ ≤

(
1− 2αmc1 cos

2 θk
)
(fk − f∗). �

Define rk = ‖x(q+1)
k −x∗‖. R-linear convergence implies that the errors rk diminish to zero rapidly

enough that
∑∞

k=1 rk <∞, a key property.

Theorem 5.5. There exists δ < 1 such that f(x
(q+1)
k )− f∗ ≤ δk(f(x(1)1 )− f∗), and thus

∑∞
k=1 rk <

∞.

Proof. From Lemma 4.12,
∏k

j=1

∏qj
i=1

‖g
(i)
j

‖

‖s
(i)
j

‖ cos θ
(i)
j

≤ ck4 . Lemma 5.2 gives the upper bound ‖s(i)j ‖ ≤

c2‖g(i)j ‖ cos θ
(i)
j . Substituting, we find

k∏

j=1

qj∏

i=1

cos2 θ
(i)
j ≥

(
1

cq2c4

)k

From this, we see that at least 1
2k of the angles must satisfy cos2 θ

(i)
j ≥

(
1

cq2c4

)2
.

By Lemma 5.4, f(x
(i+1)
k )−f∗ ≤ (1−2αmc1 cos

2 θk)(f(x
(i)
k )−f∗). Using our bound on the angles,

f(x
(q+1)
k )− f∗ ≤

(
1− 2αmc1

(
1

cq2c4

)2
) 1

2k

(f(x
(1)
1 )− f∗)

Hence, we may take δ =
(
1− 2αmc1

c2q2 c24

)1/2
. The strong convexity of f implies that 1

2m‖x − x∗‖2 ≤

f(x)− f∗ ≤ 1
2M‖x− x∗‖2, so we have rk ≤ (

√
δ)k
√

M
m ‖x

(1)
1 − x∗‖. Therefore

∑∞
k=1 rk <∞. �

The classical BFGS method is invariant under a linear change of coordinates. It is easy to
verify that Block BFGS also has this invariance, so we may assume without loss of generality that
G(x∗) = I. This greatly simplifies the following calculations.

Lemma 5.6. For any v ∈ R
n, ‖(Gk − I)v‖ ≤ µrk‖v‖.

Proof. Since G(x∗) = I,

‖(Gk − I)v‖ ≤ ‖G(x(q+1)
k )−G(x∗)‖‖v‖ ≤ µ‖x(q+1)

k − x∗‖‖v‖ = µrk‖v‖
�

The following notion is useful in our analysis. Define B̃k+1 to be the matrix obtained by per-
forming a Block BFGS update on Bk with Gk = G(x∗). Since we assumed G(x∗) = I, we have the
explicit formula

B̃k+1 = Bk −BkDk(D
T
k BkDk)

−1DT
kBk +Dk(D

T
kDk)

−1DT
k

and its inverse H̃k+1 is given by

H̃k+1 = Dk(D
T
kDk)

−1DT
k + (I −Dk(D

T
kDk)

−1DT
k )Hk(I −Dk(D

T
kDk)

−1DT
k )

Lemma 5.7. Let B = Bk, B̃ = B̃k+1, D = Dk. Define the following orthogonal projections:

(1) P = B
1
2D(DTBD)−1DTB

1
2 , the projection onto Col(B

1
2D).
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(2) PD = D(DTD)−1DT , the projection onto Col(D).
(3) PB = BD(DTB2D)−1DTB, the projection onto Col(BD).

Then

‖B − I‖2F − ‖B̃ − I‖2F = ‖PB −B
1
2PB

1
2 ‖2F + 2Tr(B(B

1
2PB

1
2 )− (B

1
2PB

1
2 )2)

Furthermore, Tr(B(B
1
2PB

1
2 )− (B

1
2PB

1
2 )2) ≥ 0, and thus ‖B̃ − I‖F ≤ ‖B − I‖F .

Proof. Expand the Frobenius norm and use the identity Tr(BPD) = Tr(B
1
2PB

1
2PD) to obtain

‖B − I‖2F − ‖B̃ − I‖2F = 2Tr(B(B
1
2PB

1
2 ))− Tr((B

1
2PB

1
2 )2)− 2Tr(B

1
2PB

1
2 )

− Tr(P 2
D) + 2Tr(PD)

= 2Tr(B(B
1
2PB

1
2 ))− 2Tr((B

1
2PB

1
2 )2)

+ Tr((B
1
2PB

1
2 )2)− 2Tr(B

1
2PB

1
2 ) + Tr(I)

− Tr(P 2
D) + 2Tr(PD)− Tr(I)

Factoring the above equation produces

‖B − I‖2F − ‖B̃ − I‖2F = ‖I −B 1
2PB

1
2 ‖2F − ‖I − PD‖2F + 2Tr(B(B

1
2PB

1
2 )− (B

1
2PB

1
2 )2)

Let P⊥
B be the projection onto the orthogonal complement of Col(BD); hence I = PB + P⊥

B . Since

〈P⊥
B , B

1
2PB

1
2 〉 = Tr(P⊥

BBD(DTBD)−1DTB) = 0, we have ‖I −B 1
2PB

1
2 ‖2F = ‖PB −B

1
2PB

1
2 ‖2F +

‖P⊥
B ‖2F . The Frobenius norm of an orthogonal projection is equal to the square root of its rank, and

thus

‖I −B 1
2PB

1
2 ‖2F − ‖I − PD‖2F = ‖PB −B

1
2PB

1
2 ‖2F + ‖P⊥

B ‖2F − ‖I − PD‖2F = ‖PB −B
1
2PB

1
2 ‖2F

This gives the desired equation. Now, observe that

Tr(B(B
1
2PB

1
2 )− (B

1
2PB

1
2 )2) = Tr(BPB(I − P ))

= Tr((I − P )BPB(I − P )) ≥ 0

where in the second equality we have used that I−P is the orthogonal projection onto Col(B
1
2D)⊥,

and is therefore idempotent. This proves ‖B̃ − I‖F ≤ ‖B − I‖F . �

We will later analyze the individual terms in Lemma 5.7. Let us define

ϕk = ‖PBk
−B

1
2

k PkB
1
2

k ‖2F
ψk = Tr(Bk(B

1
2

k PkB
1
2

k )− (B
1
2

k PkB
1
2

k )
2)

Intuitively, B̃k+1 and H̃k+1 should be closer approximations of I than Bk and Hk. This is made
precise in the next lemma.

Lemma 5.8. ‖B̃k+1 − I‖F ≤ ‖Bk − I‖F and ‖H̃k+1 − I‖F ≤ ‖Hk − I‖F .

Proof. That ‖B̃k+1−I‖F ≤ ‖Bk−I‖F was shown in Lemma 5.7. Clearly ‖H̃k+1−I‖F ≤ ‖Hk−I‖F ,
as H̃k+1 is defined as the orthogonal projection of Hk onto the subspace of matrices {H̃ ∈ Σn :

H̃Dk = Dk}, which contains I (see (3.3)). �

Lemma 5.9. There exists an index k0 and constants κ1, κ2 such that ‖Bk+1 − B̃k+1‖F ≤ κ1rk and

‖Hk+1 − H̃k+1‖F ≤ (‖Hk − I‖F + 1)κ2rk for all k ≥ k0.

Proof. Let B̃ = B̃k+1, H̃ = H̃k+1, H = Hk, D = Dk, G = Gk, and define ∆ = (G − I)D. We may
assume the columns of D are orthonormal, so DTD = I. By Lemma 5.6, every column δi of ∆
satisfies ‖δi‖ ≤ µrk, which gives the useful bounds ‖∆‖, ‖∆T‖ ≤ µ

√
qrk. This stems from the fact

that a matrix A of rank q satisfies ‖A‖ = ‖AT ‖ ≤ ‖A‖F ≤
√
q‖A‖, which we will use frequently.
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To prove the first inequality, we write

‖Bk+1 − B̃‖F = ‖GD(DTGD)−1DTG−DDT ‖F
= ‖GD(I +DT∆)−1DTG−DDT ‖F

By the Sherman-Morrison-Woodbury formula, (I + DT∆)−1 = I − DT (I + ∆DT )−1∆. Let X =
I +∆DT . Inserting this expression and using the triangle inequality, we have

‖GD(I +DT∆)−1DTG−DDT ‖F = ‖GDDTG−DDT −GDDTX−1∆DTG‖F
≤ ‖GDDTG−DDT ‖F + ‖GDDTX−1∆DTG‖F

By a routine calculation,

‖GDDTG−DDT ‖F = ‖∆∆T +∆DT +D∆T ‖F
whence ‖GDDTG−DDT ‖F ≤ ρ2rk for some constant ρ2.

To bound the Frobenius norm of the other term, we bound its operator norm. Since ∆ → 0 as
rk → 0, there exists an index k0 such that for k ≥ k0,

(1) ‖X − I‖ ≤ 1
2 , so ‖X−1‖ ≤ 2, and

(2) ‖G− I‖ ≤ 1, so ‖G‖ ≤ 2

in which case ‖GDDTX−1∆DTG‖ ≤ ρ3rk for some ρ3. Taking κ1 = ρ2 +
√
qρ3, we then have

‖Bk+1 − B̃‖F ≤ κ1rk for all k ≥ k0.
A similar analysis applies to ‖Hk+1 − H̃‖F . Using the triangle inequality,

‖Hk+1 − H̃‖F ≤ ‖D(DTGD)−1DT −DDT ‖F
+ ‖(D(DTGD)−1DTG−DDT )H +H(GD(DTGD)−1DT −DDT )‖F
+ ‖D(DTGD)−1DTGHGD(DTGD)−1DT −DDTHDDT ‖F

We bound each of the three terms. As before, (DTGD)−1 = I−DTX−1∆, so we have ‖D(DTGD)−1DT−
DDT ‖F = ‖DDTX−1∆DT ‖F . For k ≥ k0, ‖X−1‖ ≤ 2, so ‖D(DTGD)−1DT −DDT ‖F ≤ ρ4rk for
some ρ4.

For the second term, observe that

GD(DTGD)−1DT −DDT = ∆DT −DDTX−1∆DT −∆DX−1∆DT

Therefore the operator norm of the second term is bounded above by ρ5rk‖H‖ for some ρ5.
Finally, we bound the operator norm of the third term. Factoring out D and DT on the left and

right, we can write the inside term as

DTGHGD −DTHD − (DTX−1∆DTGHGD +DTGHGDDTX−1∆)

+DTX−1∆DTGHGDDTX−1∆

Since DTGHGD −DTHD = ∆THD +DTH∆+ ∆TH∆, the operator norm of the third term is
bounded above by ρ6rk‖H‖ for some ρ6.

Adding the three terms, there is a constant κ2 with ‖Hk+1 − H̃‖F ≤ (‖Hk − I‖F + 1)κ2rk. �

Since superlinear convergence is an asymptotic property, we may assume k0 = 1 in Lemma 5.9.
We will also need the following technical result from [4].

Lemma 5.10 (3.3 of [4]). Let {φk} and {δk} be sequences of non-negative numbers such that φk+1 ≤
(1 + δk)φk + δk and

∑∞
k=1 δk <∞. Then {φk} converges.

Corollary 5.11. {‖Bk − I‖F}∞k=1 and {‖Hk − I‖F }∞k=1 converge, and are therefore uniformly
bounded.
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Proof. By Lemma 5.8 and Lemma 5.9, we have

‖Hk+1 − I‖F ≤ ‖Hk+1 − H̃k+1‖F + ‖H̃k+1 − I‖F ≤ (1 + κ2rk)‖Hk − I‖F + κ2rk

Set φk = ‖Hk − I‖F and δk = κ2rk in Lemma 5.10. Since
∑∞

k=1 rk <∞, the sequence {‖Hk − I‖F}
converges. The same reasoning applies to {‖Bk − I‖F}. �

Corollary 5.12. The condition numbers of {Bk}∞k=1 are uniformly bounded.

Lemma 5.13. We have lim
k→∞

ϕk = 0 and lim
k→∞

ψk = 0.

Proof. By Lemma 5.9 and Corollary 5.12, there exists a constant κ3 such that

‖B̃k+1 − I‖2F ≥ (‖Bk+1 − I‖F − ‖Bk+1 − B̃k+1‖F )2 ≥ ‖Bk+1 − I‖2F − κ3rk
Hence

∞∑

k=1

(
‖Bk − I‖2F − ‖B̃k+1 − I‖2F

)
≤

∞∑

k=1

(
‖Bk − I‖2F − ‖Bk+1 − I‖2F

)
+ κ3rk+1

≤ ‖B1 − I‖2F + κ3

∞∑

k=1

rk+1 <∞

from which we deduce that ‖Bk − I‖2F − ‖B̃k+1 − I‖2F → 0. The desired limits then follow from

Lemma 5.7, since ‖Bk − I‖2F − ‖B̃k+1 − I‖2F = ϕk + 2ψk, and ϕk, ψk ≥ 0. �

Lemma 5.14. For any wk ∈ Col(Dk),
(
1− wT

k B
2
kwk

wT
k Bkwk

)2

≤ ϕk and 0 ≤ wT
k B

3
kwk

wT
k Bkwk

−
(
wT

k B
2
kwk

wT
k Bkwk

)2

≤ ϕk + ψk

Consequently, for any sequence {wk}∞k=1 with wk ∈ Col(Dk), we have lim
k→∞

wT
k B2

kwk

wT
k
Bkwk

= 1 and

lim
k→∞

wT
k B3

kwk

wT
k
Bkwk

= 1.

Proof. For a fixed k, let B = Bk, D = Dk, and let ∆ = (DTB2D)−1 − (DTBD)−1. Recall the
definitions of P, PB from Lemma 5.7. We can write

ϕk = ‖PB −B
1
2PB

1
2 ‖2F = Tr((BD∆DTB)2) = Tr(DTB2D∆DTB2D∆)

= Tr((I −DTB2D(DTBD)−1)2)

Take a Bk-orthogonal basis {v1, . . . , vqk} for Col(Dk) with v1 = wk. The i-th diagonal entry of
(I −DTB2D(DTBD)−1)2 is then

(
1− vTi B

2vi
vTi Bvi

)2

+
∑

j 6=i

(vTi B
2vj)

2

vTi Bviv
T
j Bvj

Since every term is non-negative, we conclude that
(
1− wT

k B2wk

wT
k
Bwk

)2
≤ ϕk, which proves the first

statement. Also, notice that
∑qk

i=1

∑
j 6=i

(vT
i B2vj)

2

vT
i
BvivT

j
Bvj
≤ ϕk.

Next, write Tr(B(B
1
2PB

1
2 )) = Tr(DTB3D(DTBD)−1) and Tr((B

1
2PB

1
2 )2) = Tr((DTB2D(DTBD)−1)2).

Again taking a Bk−orthogonal basis {v1, . . . , vqk}, we have

Tr(DTB3D(DTBD)−1) =

qk∑

i=1

vTi B
3vi

vTi Bvi

Tr((DTB2D(DTBD)−1)2) =

qk∑

i=1

(
vTi B

2vi

vTi Bvi

)2

+

qk∑

i=1

∑

j 6=i

(vTi B
2vj)

2

vTi Bviv
T
j Bvj
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Thus

Tr(B(B
1
2PB

1
2 )− (B

1
2PB

1
2 )2) =

qk∑

i=1

(
vTi B

3vi
vTi Bvi

−
(
vTi B

2vi
vTi Bvi

)2
)
−

qk∑

i=1

∑

j 6=i

(vTi B
2vj)

2

vTi Bviv
T
j Bvj

≥
qk∑

i=1

(
vTi B

3vi
vTi Bvi

−
(
vTi B

2vi
vTi Bvi

)2
)
− ϕk

By the Cauchy-Schwarz inequality applied to vTB2v = 〈B 1
2 v,B

3
2 v〉, we have vT B3v

vTBv ≥
(

vT B2v
vTBv

)2
for

every v ∈ R
n. Hence 0 ≤ wT

k B3wk

wT
k
Bwk

−
(

wT
k B2wk

wT
k
Bwk

)2
≤ ϕk+ψk. The limits then follow from Lemma 5.13,

since ϕk, ψk → 0. �

Corollary 5.15. Given any wk ∈ Col(Dk),

‖(Bk − I)wk‖
‖wk‖

≤
√
2ϕk + ψk

Consequently, for any sequence {wk}∞k=1 with wk ∈ Col(Dk),

lim
k→∞

‖(Bk − I)wk‖
‖wk‖

= 0

Proof. By Lemma 5.14 and a routine calculation,

‖B
1
2

k (Bk − I)wk‖
‖B

1
2

k wk‖
=

√
wT

k B
3
kwk

wT
k Bkwk

− 2
wT

k B
2
kwk

wT
k Bkwk

+ 1

=

√
wT

k B
3
kwk

wT
k Bkwk

−
(
wT

k B
2
kwk

wT
k Bkwk

)2

+

(
1− wT

k B
2
kwk

wT
k Bkwk

)2

≤
√
2ϕk + ψk

Since the condition numbers of {Bk} are uniformly bounded, the result follows. �

Lemma 5.16. A step size of λk = 1 is eventually admissible for steps dk included in Dk.

Proof. We check that λk = 1 satisfies the Armijo-Wolfe conditions for all sufficiently large k. Let

α and β be the Armijo-Wolfe parameters and choose a constant γ such that 0 < γ <
1
2−α

1−α . By

Corollary 5.15, for all sufficiently large k, the steps dk ∈ Col(Dk) satisfy

(5.1)
‖(Bk − I)dk‖
‖dk‖

≤ γ

in which case 〈gk, dk〉 = 〈gk + dk, dk〉 − ‖dk‖2 ≤ −(1− γ)‖dk‖2.
By Taylor’s theorem, there exists a point x̃k on the line segment joining xk, xk + dk with f(xk +

dk) = f(xk) + 〈gk, dk〉 + 1
2d

T
kG(x̃k)dk. Since f(xk) ≤ f(x

(q+1)
k−1 ), the strong convexity of f implies

that ‖xk −x∗‖ ≤
√
M/m rk−1. Hence, taking ρ7 = µ

√
M/m, we have ‖G(x̃k)− I‖ ≤ µ‖x̃k−x∗‖ ≤

ρ7(rk−1 + ‖dk‖). For the step size λk = 1,

f(xk + dk)− f(xk) = α〈gk, dk〉+ (1 − α)〈gk, dk〉+
1

2
dTkG(x̃)dk

≤ α〈gk, dk〉 − ((1− α)(1 − γ)− 1/2− (ρ7/2)(rk−1 + ‖dk‖)) ‖dk‖2

Since (1 − α)(1 − γ) − 1/2 > 0 and rk−1 + ‖dk‖ → 0, a step size of λk = 1 satisfies the Armijo
condition (2.1) for all sufficiently large k.

Next, apply Taylor’s theorem to the function t 7→ 〈g(xk + tdk), dk〉 to obtain a point x̃k on the

line segment joining xk, xk + dk with 〈g(xk + dk), dk〉 = 〈gk, dk〉 + dTkG(x̃k)dk. Choosing γ = β
2−β
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in (5.1), Corollary 5.15 implies that for sufficiently large k, 〈−gk, dk〉 = 〈gk + dk,−dk〉 + ‖dk‖2 ≤
(1 − 1

2β)
−1‖dk‖2. We can also take k large enough so that 1 − ρ7(rk−1 + ‖dk‖) ≥ 0, and we then

have

〈g(xk + dk), dk〉 ≥ 〈gk, dk〉+ (1− ρ7(rk−1 + ‖dk‖))‖dk‖2

≥ (β/2 + (1 − β/2)ρ7(rk−1 + ‖dk‖))〈gk, dk〉

Thus, the Wolfe condition (2.2) is satisfied for all sufficiently large k. �

Lemma 5.16 applies only to steps dk included in Dk. However, since Block BFGS does not prefer
any particular step for inclusion in Dk, it is likely that eventually λk = 1 is admissible for all steps.
This issue reveals a subtle artifact of the proof method, and we return to discuss it in the remark
after the following proof of Theorem 5.1.

Proof. (of Theorem 5.1) Assume that the first step s
(1)
k in each block is included in Dk. Let us write

xk = x
(1)
k , dk = d

(1)
k , gk = g

(1)
k . By Lemma 5.16, eventually λk = 1 is admissible for dk, so sk = dk.

From the triangle inequality, ‖dk‖ ≤ ‖x(1)k − x∗‖+ ‖x
(2)
k − x∗‖, so

(5.2)
‖g(2)k ‖
‖dk‖

≥ m‖x(2)k − x∗‖
‖x(1)k − x∗‖+ ‖x

(2)
k − x∗‖

Next, write

‖(Bk − I)dk‖
‖dk‖

=
‖g(xk + dk)− g(xk)−G(x∗)dk − g(xk + dk)‖

‖dk‖

≥ ‖g(xk + dk)‖
‖dk‖

− ‖g(xk + dk)− g(xk)−G(x∗)dk‖
‖dk‖

By continuity of the Hessian G(x), the second term converges to 0. Thus, Corollary 5.15 implies

that
‖g

(2)
k

‖

‖dk‖
= ‖g(xk+dk)‖

‖dk‖
→ 0. We deduce from (5.2) that

‖x(2)k − x∗‖
‖x(1)k − x∗‖

→ 0

The strong convexity of f implies that 1
2m‖x−x∗‖2 ≤ f(x)−f(x∗) ≤ 1

2M‖x−x∗‖2. Since f
(i)
k ≤ f (2)

k

for i ≥ 2, Block BFGS achieves the desired superlinear convergence:

lim
k→∞

‖x(i)k − x∗‖
‖x(1)k − x∗‖

= 0 i = 2, . . . , q + 1

�

The same argument, with minimal alteration, applies to Rolling Block BFGS.

Remark. As we observed earlier, the choice to include s
(1)
k in Dk is arbitrary. The proof of Theo-

rem 5.1 holds with any selection rule for Dk as long as it guarantees
∑∞

k=1 rk <∞. Therefore, it is
likely that Theorem 5.1 and Lemma 5.16 apply to all steps. That is, eventually λk = 1 is admissible

for all steps and
‖x

(i+1)
k

−x∗‖

‖x
(i)
k

−x∗‖
→ 0. In fact, by selecting Dk in a particular way, we can ensure that

eventually λk = 1 is admissible for all steps.

Corollary 5.17. Suppose that Dk is constructed to always contain a step for which λk = 1 is not
admissible, whenever such a step exists in the k-th block. Then λk = 1 is eventually admissible for
all steps.
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Proof. When executing the k-th update, we specifically set the first column of Dk to a step dk from
the k-th block for which λk = 1 is not admissible, if any such step exists. If we could find such a step
dk for infinitely many k, then this process would produce an infinite sequence of steps dk ∈ Col(Dk)
for which λk = 1 is never eventually admissible. This contradicts Lemma 5.16. �

However, Corollary 5.17 does not show that in general, λk = 1 is eventually admissible for all
steps, as it only holds when we select steps in an adversarial manner. This example highlights an
interesting dichotomy arising from our proof method. On one hand, Theorem 5.1 and Lemma 5.16
are retrospective and apply to any sequence {Dk} that we select. This strongly suggests that they
should hold for all steps. On the other hand, the method of proof (based on analyzing the convergence

of ‖Bk − I‖2F − ‖B̃k+1 − I‖2F ) makes use only of the steps in Dk, and thus can only prove things
about the steps in Dk.

6. Modified Block BFGS for Non-Convex Optimization

Convergence theory for the classical BFGS method does not extend to non-convex functions.
However, with minor modifications, BFGS performs well for non-convex optimization and can be
shown to converge in some cases. Modifications that have been studied include:

(1) Cautious Updates (Li and Fukushima, [11])
A BFGS update is performed only if

yTk sk
‖sk‖2

≥ ǫ‖gk‖α

(2) Modified Updates (Li and Fukushima, [10])
The secant equation is modified to Bk+1sk = zk, where zk = yk + rksk and the parameter
rk is chosen so that zTk sk ≥ ǫ‖sk‖2.

(3) Damped BFGS (Powell, [15])
The secant equation is modified to Bk+1sk = zk, where zk = θkyk + (1 − θk)Bksk, and for
0 < φ < 1, the damping constant θk is determined by

θk =

{
1, if yTk sk ≥ φsTkBksk

(1−φ)sTk Bksk
sT
k
Bksk−yT

k
sk
, otherwise

This is perhaps the most widely used modified BFGS method. Unfortunately, no convergence
proof is known for this method.

We show Block BFGS converges for non-convex functions, and describe analogous modifications
for block updates. The next theorem provides a framework for proving convergence in the non-convex
setting.

Theorem 6.1. Assume f is twice differentiable and −MI � G(x) � MI for all x in the convex

hull of the level set {x ∈ R
n : f(x) ≤ f(x1)}. Suppose that {G̃k}∞k=1 is a sequence of symmetric

matrices satisfying, for all k, the conditions

(1) −MI � G̃k �MI

(2) For some constant η > 0, the matrix Dk produced by filtersteps(Sk, G̃k) satisfies D
T
k G̃kDk �

ηDT
kDk

Then we may perform Block BFGS using the updates

Bk+1 = Bk −BkDk(D
T
k BkDk)

−1DT
kBk + G̃kDk(D

T
k G̃kDk)

−1DT
k G̃k

and Block BFGS converges in the sense that lim infk ‖gk‖ = 0.

Proof. The proof follows that of Theorem 4.1, with several changes. First, note that Lemma 3.1

implies that Bk+1 remains positive definite, since filtersteps ensures that DT
k G̃kDk is positive

definite. Observe that Lemma 4.3 continues to hold, as the condition −MI � G(x) � MI for all
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x in the convex hull of the level set implies that the gradient g is Lipschitz with constant M . In

Lemma 4.5, take the constant c3 to be c3 = Tr(B1) +
qM2

η and notice that

Tr(G̃jDj(D
T
j G̃jDj)

−1DT
j G̃j) ≤

1

η
Tr(G̃jDj(D

T
j Dj)

−1DT
j G̃j) ≤

qM2

η

where the last inequality follows because Dj(D
T
j Dj)

−1DT
j is the orthogonal projection onto Col(Dj)

and has rank qj ≤ q, and ‖G̃jDj(D
T
j Dj)

−1DT
j G̃j‖ ≤ ‖G̃j‖2 =M2.

The remainder of the proof is exactly as in Theorem 4.1. �

Using this result and the next lemma, we can show Block BFGS converges for non-convex func-
tions.

Lemma 6.2. Assume f is twice differentiable and −MI � G(x) � MI for all x in the level set
{x ∈ R

n : f(x) ≤ f(x1)}. If DT
kGkDk satisfies σ2

i ≥ τ‖si‖2, where σi is the i-th diagonal entry of

the LΣLT decomposition of DT
kGkDk, then D

T
kGkDk � ηDT

kDk for η = τq

qqMq−1 .

Proof. Let G = Gk, D = Dk. Without loss of generality, we may assume the columns of D have
norm 1, as otherwise we can normalize D by right-multiplying by a positive diagonal matrix. Then
the diagonal entries σ2

i of the LΣLT decomposition of DTGD satisfy σ2
i ≥ τ .

Order the eigenvalues of DTGD as λ1 ≥ λ2 ≥ . . . ≥ λq > 0. We have

λq =
det(DTGD)
∏q−1

i=1 λi
≥ τq

(qM)q−1

Since every column of D has norm 1, the eigenvalues of DTD are bounded by Tr(DTD) = q. Hence
I � 1

qD
TD and so

DTGD � τq

(qM)q−1
I � τq

qqM q−1
DTD

�

Block BFGS (Algorithm 1) satisfies the conditions of Lemma 6.2 when we take G̃k = Gk and apply
filtersteps (Algorithm 2). Thus Theorem 6.1 shows that Block BFGS converges for non-convex
functions.

Performing updates with a filtered matrix is analogous to the cautious update (1). We can also
modify Gk by adding a diagonal matrix Λk. This is analogous to the modified update (2).

Theorem 6.3. Assume f is twice differentiable and −MI � G(x) � MI for all x in the convex

hull of the level set {x ∈ R
n : f(x) ≤ f(x1)}. Let G̃k = Gk +Λk, where Λk � (M + η)I is a diagonal

matrix satisfying DT
k (Gk + Λk)Dk � ηDT

kDk. The modified Block BFGS using G̃k converges.

Proof. Observe that such a Λk always exists, and that −MI � G̃k � (2M + η)I. The conditions of
Theorem 6.1 are satisfied, so this modified method converges. �

7. Numerical Experiments

We evaluate the performance of several block quasi-Newton methods by generating a performance
profile [5], which can be described as follows. Given a set of algorithms S and a set of problems
P , let ts,p be the cost for algorithm s to complete problem p. For each problem p, let mp be the
minimum cost to solve p of any algorithm. A performance profile is a plot comparing the functions

ρs(r) =
|{p ∈ P : ts,p/mp ≤ r}|

|P|
for all s ∈ S. Observe that ρs(r) is the fraction of problems in P that algorithm s completed within
a factor r of the cost of the best algorithm for problem p. As a reference point, we include the
classical BFGS method as one of the algorithms.
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For our inexact line search, we used the function WolfeLineSearch from minFunc [16], a mature
and widely used Matlab library for unconstrained optimization. The line search parameters were
α = 0.1 and β = 0.75, and WolfeLineSearchwas configured to use interpolation with an initial step
size λ = 1 (options LS type = 1, LS init = 0, LS interp = 1, LS multi = 0).

From preliminary experiments, we found that large values of q tend to increase numerical errors,
eventually leading to search directions dk that are not descent directions. This effect is particularly
pronounced when q ≥ √n. In creating performance profiles, we opted for q = ⌊n1/3⌋.

7.1. Convex Experiments. We compared the methods listed below.

(1) BFGS
(2) Block BFGS Variant 1, or B-BFGS1

Block BFGS (Algorithm 1). We store the full inverse Hessian approximation Hk and
compute dk = −Hkgk by a matrix-vector product. We do not perform Algorithm 2, so the
update (3.4) uses all steps.

(3) Block BFGS Variant 2, or B-BFGS2
Block BFGS (Algorithm 1), with Algorithm 2 and τ = 10−3. As in B-BFGS1, the full

Hessian approximation Hk is stored. Hk is updated by (3.4) using the steps returned by
Algorithm 2.

(4) Block BFGS with q = 1, or B-BFGS-q1
This compares the effect of using a single sketching equation as in Block BFGS updates

versus using the standard secant equation of BFGS updates.
(5) Rolling Block BFGS, or RB-BFGS

See Section 3.2. We take a smaller value q = min{3, ⌊n1/3⌋} for this method, and omit
filtering.

(6) Gradient Descent, or GD

Each algorithm is considered to have completed a problem when it reaches a solution with objective
value less than some threshold fstop. The thresholds fstop are pre-computed for each problem p by
minimizing p with minFunc to obtain a near-optimal solution f∗, and setting fstop = f∗ + 0.01|f∗|.

We measure the cost ts,p in two metrics: the number of steps, and the amount of CPU time, to
completion.

7.1.1. Logistic Regression Tests. As in [6], we ran tests on logistic regression problems, a common
classification technique in statistics. For our purposes, it suffices to describe the objective function.
Given a set of m data points (yi, xi), where yi ∈ {0, 1} is the class, and xi ∈ R

n is the vector of
features of the i-th data point, we minimize, over all weights w ∈ R

n, the loss function

(7.1) L(w) = − 1

m

m∑

i=1

logφ(yi, xi, w) +
1

2m
wTQw

φ(yi, xi, w) =

{
1

1+exp(−xT
i
w)

if yi = 1

1− 1
1+exp(−xT

i
w)

if yi = 0

where Q ≻ 0 in the ’regularization’ term. Figure 1 shows the performance profiles for this test. See
Appendix B for a list of the data sets and our choices for Q.

In Figure 1, we see that the block methods B-BFGS1, B-BFGS2, and RB-BFGS all outperform
BFGS in terms of the number of steps to completion. Considering the amount of CPU time used,
B-BFGS1 is competitive with BFGS, while B-BFGS2 and RB-BFGS are more expensive than BFGS.
This suggests that the additional curvature information added in block updates allows Block BFGS
to find better search directions, but at the cost of the update operation being more expensive. B-
BFGS-q1 and BFGS exhibit very similar performance when measured in steps, so there appears to
be little difference between using a single sketching equation and a secant equation.
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Figure 1. Logistic Regression profiles (ρs(r))
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Figure 2. Log Barrier QP profiles (ρs(r))

Interestingly, B-BFGS1 outperformed B-BFGS2, indicating that steps are being removed from
the update, which would improve the search directions. The most likely explanation is that τ = 10−3

is excessively large relative to the eigenvalues of G(x).

7.1.2. Log Barrier QP Tests. We tested problems of the form

(7.2) min
y∈Rs

F (y) =
1

2
yTQy + cT y − 1000

n∑

i=1

log(b −Ay)i

where Q � 0, c ∈ R
s, b ∈ R

n, and A ∈ R
n×s. Note that the objective value is +∞ if y does not

satisfy Ay ≤ b. In Appendix B, we explain how to derive a log barrier problem from a QP in standard
form. See Figure 2 for the performance profile. Note that problems with a barrier structure are
atypical in the context of unconstrained minimization, and are usually solved with specific interior
point methods. However, they are somewhat interesting as they can be quite challenging to solve.

Since ∇2F (y) = Q + 1000A
T
SA, where S is diagonal with entries (b − Ay)−2

i , these problems
are often extremely ill-conditioned. This leads to issues when using WolfeLineSearch, as the line
search can require many backtracking iterations, or even fail completely, when the current iterate is
near the boundary of the log barrier. This causes particular issues with block updates, as ∇2F (y)
has small numerical rank when S has a small number of extremely large entries. Consequently,
we removed problems from the test set which were ill-conditioned to the extent that even after
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performing step filtering, the line search failed at some step before reaching the optimal solution.
Quasi-Newton methods, and those using block updates with large q in particular, are poorly suited
for these ill-conditioned problems. However, we note that, although the standard BFGS method
also can fail on these problems, it is more robust than the block methods.

7.2. Non-Convex Experiments. Since non-convex functions often have multiple stationary points,
more complex behavior is possible than in the convex case. For instance, one algorithm may gener-
ally require more steps to converge, but may be taking advantage of additional information to help
avoid spurious local minima.

Let fp denote the best objective value obtained for problem p by any algorithm. To evaluate
both the early and asymptotic performance of our algorithms, we generated performance profiles
comparing the cost for each algorithm to reach a solution with objective value less than fp + ǫ|fp|
for ǫ = 0.2, ǫ = 0.1, and ǫ = 0.01. When |fp| is very small (for instance, |fp| < 10−10), we essentially
have fp = 0 and treat all solutions with objective value within 10−10 as being optimal.

We compared four different algorithms for non-convex minimization:

(1) Damped BFGS, or D-BFGS
Damped BFGS with φ = 0.2 (see Section 6).

(2) Block BFGS, or B-BFGS
Block BFGS (Algorithm 1) with q = ⌊n1/3⌋ and τ = 10−5.

(3) Block BFGS with q = 1, or B-BFGS-q1
Block BFGS (Algorithm 1) with q = 1 and τ = 10−5.

(4) Gradient Descent, or GD

7.2.1. Hyperbolic Tangent Loss Tests. This is also a classification technique; however, unlike the
logistic regression problems in Section 7.1.1, these problems are generally non-convex. Given a set
of m data points (yi, xi) where yi ∈ {0, 1} is the class, and xi ∈ R

n the features, we seek to minimize
over w ∈ R

n the loss function

L(w) =
1

m

m∑

i=1

(
1− tanh(yix

T
i w)

)
+

1

2m
‖w‖2

Figure 3 presents performance profiles for ǫ = 0.2, 0.1, 0.01, with cost measured in both steps and
CPU time. See Appendix B for a list of the data sets.

B-BFGS and gradient descent perform well at first, making rapid progress to within 0.2|fp| of
fp in the fewest number of steps. B-BFGS continues to converge quickly, generally requiring the
fewest steps to reach 0.1|fp| and 0.01|fp| of fp, while gradient descent is overtaken by BFGS and
B-BFGS-q1.

Surprisingly, all four algorithms used nearly the same amount of CPU time, with each algorithm
completing a majority of problems after using only 1% more time than the fastest algorithm.

7.2.2. Standard Benchmark Tests. This test used 19 functions from the test collection of Andrei [1],
many of which originate from the CUTEst test set. The functions are listed below, with the number
of variables n in parentheses:
arwhead (300), bdqrtic (200), cube (400), diag1 (250), dixonprice (200), edensch (300), eg2
(400), explin2 (200), fletchcr (400), genhumps (250), indef (250), mccormick (400), raydan1
(400), rosenbrock (300), sine (400), sinquad (400), tointgss (200), trid (200), whiteholst

(300).
The gradients and Hessians were computed using the automatic differentiation program ADiGator

[18].
For each of these functions, we generated 6 random starting points and tested the 4 algorithms

using each starting point, for a total of 114 problems. Figure 4 presents performance profiles for
ǫ = 0.2, 0.1, 0.01, with cost measured in steps. We see from Figure 4 that D-BFGS consistently
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Figure 3. Hyperbolic Tangent Loss profiles (ρs(r))
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Figure 4. Standard Benchmark profiles (ρs(r))

outperforms B-BFGS-q1, which suggests that Powell’s damping method is superior to cautious
updates.

8. Concluding Remarks

We have shown that Block BFGS provides the same theoretical rate of convergence as the classical
BFGS method. Further investigation is needed to determine how Block BFGS performs on a wider
range of real problems. In our experiments, we focused on a very basic implementation of Block
BFGS, but many simple heuristics for improving performance and numerical stability are possible.
In particular, it is important to select good values of q and τ based on insights from the problem
domain. We also briefly investigated the effect of using the action of the Hessian on the previous
step versus the change in gradient over the previous step (as in classical BFGS) in constructing the
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update. Further study of the benefits and drawbacks of such an approach would be of interest, as
would study of parallel implementation. We hope that this work will serve as a useful foundation
for future research on quasi-Newton methods using block updates.
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Appendix A. Derivation of the Block BFGS Update Formula

Let ‖X‖Gk
denote the matrix norm Tr(XGkX

TGk). We show that the unique solution of

(P )

{
min

H̃∈Rn×n

‖H̃ −Hk‖Gk

s.t H̃ = H̃T , H̃GkDk = Dk

is given by formula (3.4). Introduce a new variable E = H̃ −Hk, and let D = Dk, G = Gk,
H = Hk, Y = GkDk, Z = Dk −HkGkDk. We rewrite the problem (P) in terms of E and express
its Lagrangian as

L(E,Σ,Λ) = 1

2
Tr(EGETG) + Tr(Σ(E − ET )) + Tr(ΛT (EY − Z)

http://users.clas.ufl.edu/hager/coap/Pages/matlabpage.html
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html


BLOCK BFGS METHODS 23

Solving ∂L
∂E = 0 in terms of E, we obtain E = −G−1(Y ΛT +Σ− ΣT )G−1. Thus

E − ET = G−1(ΛY T − Y ΛT + 2(ΣT − Σ))G−1 = 0, from which we obtain
Σ− ΣT = 1

2 (ΛY
T − Y ΛT ). Therefore E = − 1

2G
−1(Y ΛT + ΛY T )G−1.

To solve for Λ, substituting this expression for E into the constraint EY = Z yields

(A.1) G−1(Y ΛT + ΛY T )G−1Y + 2Z = 0

Left multiplying by Y T and using the definition Y = GD, we have

(DTGD)(ΛTD) + (DTΛ)(DTGD) + 2Y TZ = 0

Now, it is easy to verify that ΛTD = −(DTGD)−1(Y TZ) is the solution. Therefore, from (A.1),
ΛY TD = −Y ΛTG−1Y − 2GZ = Y (DTGD)−1Y TZ − 2GZ. Hence,
Λ = (Y (DTGD)−1Y TZ − 2GZ)(DTGD)−1. Substituting Λ into our expression for E and
rearranging produces formula (3.4).

Appendix B. Details of Experiments

B.1. Logistic Regression Tests (7.1.1). The following 18 data sets from LIBSVM [3] were used:
a1a, a2a, a3a, a4a, australian, colon-cancer, covtype, diabetes, duke, ionosphere-scale,
madelon, mushrooms, sonar-scale, splice, svmguide3, w1a, w2a, w3a.
Each data set was partitioned into 3 disjoint subsets with at most 2000 points. For each subset, we
have a problem of the form (7.1) with the standard L2 regularizer Q = I, producing 54 standard
problems. An additional 96 problems with Q = I +Q′ were produced by adding a randomly
generated convex quadratic Q′ to one of the standard problems. Two such problems were produced
for each standard problem, except those from duke and colon-cancer (omitted for problem size).

B.2. Log Barrier QP Tests (7.1.2). Given a convex quadratic program
min
x∈Rn
{ 12xTQx+ cTx | Ax = b, x ≥ 0}, we derive a log barrier QP problem as follows. Taking a basis

N for the null space of A (of dimension s), and a solution Ax0 = b, x0 ≥ 0, the given QP is

equivalent to min
y∈Rs
{ 12yTQy + cT y | Ay ≤ b}, where Q = NTQN, c = NT (c+Qx0), b = x0 and

A = −N . Replacing the constraint by a log barrier −µ
∑n

i=1 log(b−Ay)i (with µ = 1000), we
obtain problem (7.2).
This test included 43 problems in total. There were 35 log barrier problems derived from the QP
test collection of Maros and Mészáros [13]:
cvxqp1 m, cvxqp1 s, cvxqp2 m, cvxqp2 s, cvxqp3 m, cvxqp3 s, dual1, dual2, dual3, dual4,
primal1, primal3, primal4, primalc1, primalc2, primalc5, primalc8, q25fv47, qbeaconf,
qgrow15, qgrow22, qgrow7, qisrael, qscagr7, qscfxm1, qscfxm2, qscfxm3, qscorpio, qscrs8,
qsctap1, qsctap3, qshare1b, qship08l, stadat1, stadat2.
An additional 8 problems were derived from the following LP problems in the COAP collection [8]:
adlittle, agg, agg2, agg3, bnl1, brandy, fffff800, ganges.

B.3. Hyperbolic Tangent Loss Tests (7.2.1). This test used the same data sets as the logistic
regression test, with duke omitted because of large problem size (n = 7130). As in the logistic
regression test, each data set was partitioned into 3 subsets with at most 2000 points, producing 51
loss functions. For each loss function, we tried 4 random starting points, for a total of 204
problems.
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