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Abstract

A mathematical programming approach to deal with the global con-
figuration of resource constraints is presented. A specialized parametric
programming algorithm to obtain the pareto set for the biobjective prob-
lem that appears to deal with the global configuration for 0-1-Integer Lin-
ear Programing problems is presented and implemented. Computational
results for Multiconstrained Knapsack problems and Bounded Knapsack
problems are presented.
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1 Introduction.

A new definition of bottleneck has been presented recently as follows ([1],[2]):“A
bottleneck is a modifiable specification of resources that by changing its value,
the best achievable performance of the system can be improved”. This new
definition is more general than some previous based on average shadow prices
([3],[9],[10],[12],[13]). The authors consider the case in which the decision maker
may redefine the system global configuration and then define a problem with
two objectives: maximization of the original objective and minimization of the
price of the modification. In order to consider nonlinear systems an evolutionary
algorithm is proposed to obtain an approximation of the pareto set.

In section 2 we present a mathematical programming approach to deal with
the global configuration in a 0-1-Mixed Integer Linear Programming (0-1-MILP)
problem. In section 3 we present a specialized parametric programming algo-
rithm to obtain the pareto set for the biobjective problem that appears to deal
with the global configuration of resource constraints for 0-1-Integer Linear Pro-
graming (0-1-ILP) problems. Computational results are presented in section 4.
Finally the conclusions and some extensions are presented is section 5.

A few words about our notation: If S is an optimization problem then v(S)
is its optimal value (if it exists) and F (S) is its set of feasible solutions. If we
write S(θ, · · · , γ) is a problem in (x, · · · , y) that means that x, · · · , y are the
variable vectors and θ, · · · , γ are data vectors that may change from one prob-
lem to another. The rest of the data for S are fixed and that must be clear in
the context. A vector or matrix with zeros will be denoted 0. If a property is
valid for k = 1, · · · ,K we may write that the property is valid ∀k when K is
known in the context. If D is a matrix with D ∈ ℜl×r its rows will be denoted
D1, · · · , Dl and its columns will be denoted D1, · · · , Dr. A uniform distribution
in (a, b) will be denoted U(a, b).

2 A mathematical programming approach to re-
define the global configuration

Let P be a 0-1-MILP problem in (x) defined as:

(P ) max ctx s.t.

Âx ≤ b̂, Ax ≤ b, x ≥ 0

x ∈ ℜn, xj ∈ {0, 1} ∀j ∈ J

where c ∈ ℜn, b ∈ ℜm, A ∈ ℜm×n, Â ∈ ℜs×n, b̂ ∈ ℜs and J ⊆ {1, · · · , n}.
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Let Ω = {x : Âx ≤ b̂, x ∈ ℜn, x ≥ 0, xj ∈ {0, 1} ∀j ∈ J}.

Let us suppose that F (P ) ̸= ∅ and Ω is a compact set.

Let us suppose that Ax ≤ b are resource constraints that may be redefined.
Some examples are: (i) the availability of some resources may be increased (the
capacity of a knapsack, the capacity of a plant, the number of available ma-
chines, the available time to use a machine, etc...) and (ii) some coefficients of
the matrix in the resources constraints may be reduced (the time that we need
to process a job in a machine, the units of a resource to do a job, etc...).

Let r ≥ 1. Let θ ∈ ℜr and θ ∈ ℜr with θ ≤ 0 ≤ θ. Let θ ∈ [θ, θ].

In this paper we consider linear changes as follows:

Let qj ∈ ℜr (j = 1, · · · , n), di ∈ ℜr (i = 1, · · · ,m) and Qij ∈ ℜr (i =
1, · · · ,m)(j = 1, · · · , n) and let:

c(θ)j = cj + qj
t
θ ∀j

b(θ)i = bi + di
t
θ ∀i

A(θ)ij = Aij +Qijtθ ∀(i, j)

The mathematical programming problem in (x) with the configuration re-
defined by θ ∈ ℜr is defined as follows:

(P (θ)) max c(θ)tx s.t.

A(θ)x ≤ b(θ)

x ∈ Ω

which is:

(P (θ)) max ctx+
n∑

j=1

qj
t
θxj s.t.

Aix+
n∑

j=1

Qijtθxj ≤ bi + di
t
θ ∀i

x ∈ Ω

The paper may be rewritten without any problem if we add additional con-
straints to limit the valid changes.
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Let p ∈ ℜr. Let us suppose that the price of the configuration redefined by
θ is ptθ.

The biobjective mathematical programming problem in (x, θ) suggested in
[1] and [2] is defined in this case as follows:

(BI)

max c(θ)tx, min ptθ s.t.

x ∈ F (P (θ)), θ ≤ θ ≤ θ

Since F (P (0)) ̸= ∅ it follows that F (BI) ̸= ∅.

We follow a standard linearization procedure ([7]) to deal with the terms
xjθ ∀j ∈ J in order to rewrite BI as a 0-1-Mixed Integer Bilinear Programming
(0-1-MIBLP) problem in (x, θ, δ) with the bilinear terms restricted to the con-
tinuous variables, as follows:

(BIL)

max ctx+
∑
j /∈J

qj
t
θxj +

∑
j∈J

qj
t
δj , min ptθ s.t.

Aix+
∑
j /∈J

Qijtθxj +
∑
j∈J

Qijtδj ≤ bi + di
t
θ ∀i

xjθ ≤ δj ≤ xjθ, (1− xj)θ ≤ θ − δj ≤ (1− xj)θ ∀j ∈ J

x ∈ Ω, θ ≤ θ ≤ θ, δ ∈ ℜr×n

Note that if (x, θ, δ) ∈ F (BIL) then δj = xjθ ∀j ∈ J and (x, θ) ∈ F (BI).
Also, if (x, θ) ∈ F (BI) then (x, θ, δ) ∈ F (BIL) with δj = xjθ ∀j ∈ J and the
equivalence follows immediately.

Let (x̂, θ̂, δ̂) ∈ F (BIL). Remember that (x̂, θ̂, δ̂) is an efficient solution if and

only if there is not another feasible (x, θ, δ) such that ctx ≥ ctx̂, ptθ̂ ≥ ptθ with

at least one strict inequality. The resultating criterion vector (c(θ̂)tx̂, ptθ̂) is said
to be non-dominated. The pareto set of BIL is the set of its non-dominated
solutions. The pareto set of BIL (even an approximation) is a valuable knowl-
edge to the decision maker.

From the theoretical point of view we may use 0-1-MIBLP ([8]) to generate
an approximation to the pareto set of BIL by using the same ideas that work
for 0-1-MILP problems ([16],[17]). If qj = 0 ∀j /∈ J and Qij = 0 ∀j /∈ J,∀i then
BIL is a biobjective 0-1-MILP problem and we can generate an approximation
of the pareto set by using multiobjective 0-1-MILP ([16],[17]).
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However, we do not have computational results for that general cases at this
time. In the rest of the paper we restrict the analysis to 0-1-ILP problems with
qj = 0 ∀j.

3 The pareto set of BIL for 0-1-Integer Linear
Programming problems. Case: qj = 0 ∀j.

Let us suppose that P is a 0-1-ILP problem. In this section we present algo-
rithms to obtain: (i) the exact pareto set for BIL and, for practical purpose,
(ii) an approximate pareto set for BIL.

Let us suppose that qj = 0 ∀j. Therefore P , P (θ) and BIL may be rewrit-
ten as follows:

(P ) max ctx s.t.

Ax ≤ b

x ∈ Ω = {x : Âx ≤ b̂, x ∈ {0, 1}n}

(P (θ)) max ctx s.t.

Aix+

n∑
j=1

Qijtθxj ≤ bi + di
t
θ ∀i

x ∈ Ω

BIL

max ctx, min ptθ s.t.

Aix+
n∑

j=1

Qijtδj ≤ bi + di
t
θ ∀i

xjθ ≤ δj ≤ xjθ, (1− xj)θ ≤ θ − δj ≤ (1− xj)θ ∀j

x ∈ Ω, θ ≤ θ ≤ θ, δ ∈ ℜr×n

Let w ≥ 0. If the decision maker has limited funds (w) the optimal invest-
ment may be obtained by solving the following problem in (θ):
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(OI(w)) max v(P (θ)) s.t.

ptθ ≤ w

θ ≤ θ ≤ θ

Since θ ≤ 0 ≤ θ we have that F (OI(w)) ̸= ∅.

OI(w) may be rewritten as a 0-1-MILP problem in (x, θ, δ) following the
same standard linearization procedure:

(OIL(w)) max ctx s.t.

Aix+

n∑
j=1

Qijtδj ≤ bi + di
t
θ ∀i

xjθ ≤ δj ≤ xjθ, (1− xj)θ ≤ θ − δj ≤ (1− xj)θ ∀j

ptθ ≤ w

x ∈ Ω, θ ≤ θ ≤ θ, δ ∈ ℜr×n

Let g(w) = v(OI(w)) = v(OIL(w)) ∀w ≥ 0. If 0 ≤ w1 ≤ w2 then:
F (OIL(w1)) ⊆ F (OIL(w2)) and then because of OIL(w) is a 0-1-MILP prob-
lem g is an upper semicontinuous, piecewise linear, nondecreasing and bounded
function. Also, since the objetive function depends only on binary variables
then g is a step function. We can use parametric programming ([14]) in order
to find g(w) for all w ≥ 0. Note that if we know g(w) for all w ≥ 0 then we
know the pareto set of BIL.

3.1 The parametric algorithm.

OIL(w) is a 0-1-MILP problem and is a special case of G(w), a 0-1-MILP
problem in (x, y), defined as follows:

(G(w)) max ctx s.t.

A1xx+A1yy ≤ b1 + wh

A2xx+A2yy ≤ b2

x ∈ {0, 1}n, y ≥ 0

where c, b1, b2 and 0 ≤ h are vectors with appropriate dimensions and A1x,
A1y, A2x and A2y are matrices with appropriate dimensions.

Let us suppose that F (G(0)) ̸= ∅ and H = {(x, y) : A2xx+A2yy ≤ b2, x ∈
{0, 1}n, y ≥ 0} is a bounded set.
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Let g(w) = v(G(w)) for all w ≥ 0. Note that if 0 ≤ w1 ≤ w2 then
F (G(w1)) ⊆ F (G(w2)) and again g is a nondecreasing, uppersemicontinuous
and bounded function. Also, g is a step function.

From the theorethical point of view we may use the algorithm described in
[4] in order to obtain g. However the special structure of G(w) may be used go
define a specialized algorithm following the ideas from [5].

Let G(∞) be a 0-1-MILP problem in (x, y) defined as follows:

(G(∞)) max ctx s.t.

(x, y) ∈ H

Since H is a bounded set and ∅ ̸= F (G(0)) ⊆ F (G(∞)) then there exists an
optimal solution for G(∞). Let (x1, y1) be an optimal solution for G(∞).

Since G(∞) is a relaxation of G(w) for all w ≥ 0 then g(w) = v(G(w)) ≤
v(G(∞)) = ctx1 for all w ≥ 0.

Let ŵ ≥ 0 and let (x̂, ŷ) ∈ F (G(ŵ)). Let W (x̂) a problem in (w, y) defined
as follows:

W (x̂) min w s.t (x̂, y) ∈ F (G(w)), w ≥ 0

Note that with W (x̂) we are looking for the feasibility interval for x̂. That
is: if w ∈ [v(W (x̂)),∞) then there exits y such that (x̂, y) ∈ F (G(w)).

W (x̂) may be rewritten as a Linear Programming (LP) problem in (w, y) as
follows:

(WL(x̂)) min w s.t.

A1xx̂+A1yy ≤ b1 + wh

A2xx̂+A2yy ≤ b2

y ≥ 0, w ≥ 0

Since (x̂, ŷ) ∈ F (G(ŵ)) then F (WL(x̂)) ̸= ∅ and there exists optimal solu-
tion because of w ≥ 0.

Let w1 = v(W (x1)) then x1 is an optimal solution for G(w) for all w ≥ w1

and g(w) = ctx1 for all w ≥ w1.

If w1 = 0 then we know g. Let us suppose that w1 > 0. We need an
auxiliary problem to perform a complete parametric analysis. Let ŵ ≥ 0. Let
X(ŵ) = {x : ∃ y such that (x, y) ∈ F (G(ŵ)), @ y such that (x, y) ∈
F (G(w)) ∀w such that w < ŵ}. Note that X(0) = F (G(0)). Let X ⊆ X(ŵ).
Let R(ŵ,X) a problem in (x, y) defined as follows:
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(R(ŵ,X)) max ctx s.t. (x, y) ∈ F (G(ŵ)), x /∈ X

R(ŵ,X) may be rewritten as a 0-1-MILP problem in (x, y) as follows:

(RL(ŵ,X)) max ctx s.t.

A1xx+A1yy ≤ b1 + ŵh

x ∈ H, x /∈ X

Where x /∈ X may be rewritten as usual. If x̂ ∈ X let K1(x̂) = {j : x̂j =
1, j = 1, · · · , n} and let K0(x̂) = {j : x̂j = 0, j = 1, · · · , n} then x /∈ X is
replaced by: ∑

j∈K1(x̂)

xj −
∑

K0(x̂)

xj ≤ |K1(x̂)| − 1 ∀x̂ ∈ X

Lemma 1 Let 0 < ŵ and let X ⊆ X(ŵ). Therefore: (i) F (RL(ŵ,X)) ̸= ∅,
(ii) there exists an optimal solution for RL(ŵ,X) and (iii) if (x∗, y∗) is an
optimal solution for RL(ŵ,X) and v(W (x∗)) < ŵ then g(w) = ctx∗ ∀w ∈
[v(W (x∗)), ŵ)

Proof:

(i) If F (RL(ŵ,X)) = ∅ then F (G(w)) = ∅ ∀w ∈ [0, ŵ) and X = X(ŵ).
Since F (G(0)) ̸= ∅ it follows that F (R(ŵ,X)) ̸= ∅.

(ii) Since H is a bounded set it follows that there exists an optimal solution
for RL(ŵ,X).

(iii) Let w ∈ [v(W (x∗)), ŵ) then there exists y such that (x∗, y) ∈ F (G(w)).
Let (x, y) ∈ F (G(w)) ⊆ F (G(ŵ)). We have that x /∈ X(ŵ) and then x /∈ X.
Therefore (x, y) ∈ F (RL(ŵ,X)) and ctx ≤ ctx∗, hence g(w) = v(RL(w)) =
ctx∗.

From lemma 1 and because of X(w) is a finite set for all w ≥ 0 the following
algorithm may be used to obtain g.

We use a standard branch and bound (branch and cut) algorithm and a
standard simplex algorithm according the case to solve the problems that ap-
pear when the algorithm is executed.
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The parametric algorithm (PA1)

Let (x1, y1) be an optimal solution for G(∞). Let w1 = v(W (x1)). Let
X = {x1} and k = 1.

while wk > 0
w∗ = wk

while w∗ = wk

Solve RL(wk, X). Let (x∗, y∗) be an optimal solution.
Solve WL(x∗). Let (w∗, y∗) be an optimal solution.
If w∗ = wk

X = X ∪ {x∗}
else

xk+1 = x∗, wk+1 = w∗, X = {x∗}, k = k + 1
endif

endwhile
endwhile

Note that g(w) = ctx1 for all w ∈ [w1,∞) and g(w) = ctxk+1 for all
wk+1 ≤ w < wk for all k ≥ 1.

In practice solving RL(wk, X) to optimality again and again may be a very
expensive computational task. In practice we may use a Branch and bound
(Branch and cut) algorithm with a tolerance (either a relative tolerance or an
absolute tolerance) as follows: instead to solve RL(wk, X) to optimality we
obtain (x, y) ∈ F (RL(wk, X)) such that (x, y) is an ϵ-optimal solution (either
ctx ≤ v(RL(wk, X)) ≤ ctx(1 + ϵ) or ctx ≤ v(RL(wk, X)) ≤ ctx + ϵ according
to the tolerance used). The approximate algorithm is defined if we use an ϵ-
optimal solution of RL(wk, X) instead of an optimal solution.

Note that the ϵ-optimality is valid for all w ≥ 0 because of:

(i) If w ≥ w1 then either ctx1 ≤ g(w) ≤ ctx1(1+ϵ) or ctx1 ≤ g(w) ≤ ctx1+ϵ
according to the tolerance used and

(ii) Let k ≥ 1. Let w ∈ [wk+1, wk). Let jmax be the index such that
max{ctxj : wj ≤ w, j ≥ k + 1} = ctxjmax then either ctxk+1 ≤ ctxjmax ≤
g(w) ≤ ctxk+1(1+ ϵ) or ctxk+1 ≤ ctxjmax ≤ g(w) ≤ ctxk+1+ ϵ according to the
tolerance used.

According to our computational results the parametric algorithm may be an
expensive task even if we use a tolerance. In order to save computational efforts
we design another ϵ-optimal parametric algorithm to be presented in the next
subsection.

9



3.2 The ϵ-optimal parametric algorithm

We use a standard branch and bound (branch and cut) algorithm to obtain near
optimal solutions according to the tolerance used.

3.2.1 The algorithm by using an absolute tolerance (ϵ, ϵ/2-PA2)

We use ϵ > 0 as an absolute tolerance to obtain an approximation to g and ϵ/2
as an absolute tolerance to solve either G(w) or RL(w,X) for all w and for allX.

We need to pointed out some remarks to present the algorithm.

Remark 1 Let w1, w2 with 0 ≤ w1 < w2. Let (x1, y1) ∈ F (G(w1)) and let B
such that v(G(w2)) ≤ B. If B ≤ ctx1 + ϵ then ctx1 ≤ g(w) ≤ ctx1 + ϵ for all
w ∈ [w1, w2].

Remark 2 Let w1, w2 with 0 ≤ w1 < w2. Let (x1, y1) ∈ F (G(w1)) and let B
such that v(R(w2, X(w2))) ≤ B. If B ≤ ctx1 + ϵ then ctx1 ≤ g(w) ≤ ctx1 + ϵ
for all w ∈ [w1, w2).

Remark 3 Let ŵ > 0. Let (x∗, y∗) be an ϵ/2-optimal solution for R(w,X(ŵ))
then ctx∗ ≤ g(w) ≤ ctx∗ + ϵ/2 for all w ∈ [v(W (x∗)), ŵ)

Remark 4 Let w1, w2 with 0 ≤ w1 < w2. Let (x1, y1) be an ϵ/2-optimal so-
lution for G(w1). Let (x2, y2) ∈ F (G(w2)). If v(W (x2)) ≤ w1 then ctx2 ≤
ctx1 + ϵ/2

From lemma 1, remarks 1,2,3 and 4 and because of X(w) is a finite set for
all w ≥ 0 the following algorithm is well defined and may be used to obtain an
ϵ-approximation to g.

The ϵ-optimal parametric algorithm

Let (x1, y1) be an ϵ/2-optimal solution for G(0) and let w1 = 0. Let (x2, y2)
be an ϵ/2-optimal solution for G(∞). Let w2 = v(W (x2)). Let z1, z2 be
the bounds obtained when we solve G(0) and G(∞) approximately (ctx1 ≤
v(G(0)) ≤ ctx1+z1 ≤ ctx1+ϵ/2 and ctx2 ≤ v(G(∞)) ≤ ctx2+z2 ≤ ctx2+ϵ/2).
Let k = 1 and s1 = 1.
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while
∑k

j=1 sj > 0

Select r such that zr+1 − ctxr = max{sj(zj+1 − ctxj) : j = 1, · · · , k}.
If zr+1 − ctxr ≤ ϵ

sr = 0
else

X = {xr+1}, w∗ = wr+1.
while w∗ = wr+1

Let (x∗, y∗) be an ϵ/2-optimal solution for RL(wr+1, X)
and let z∗ be the bound obtained.
Solve WL(x∗). Let (w∗, y∗) be an optimal solution.
If w∗ = wr+1 then X = X ∪ {x∗}.

endwhile
If z∗ − ctxr ≤ ϵ

sr = 0
else

Insert (w∗, ctx∗, z∗, x∗) with index r + 1:
(wj+1, c

txj+1, zj+1, xj+1, sj+1) = (wj , c
txj , zj , xj , sj) from

j = k + 2 until j = r + 2.
(wr+1, c

txr+1, zr+1, xr+1) = (max{w∗, wr}, ctx∗, z∗, x∗).
endinsert
k = k + 1, sr+1 = 0.
w = wr + 0.5(wr+1 − wr).
Let (x∗, y∗) be an ϵ/2-optimal solution for G(w) and
let z∗ be the bound obtained.
Solve WL(x∗). Let (w∗, y∗) be an optimal solution.
sleft = 1, sright = 1.
If zr+1 − ctx∗ ≤ ϵ then ssright = 0
If z∗ − ctxr ≤ ϵ then sleft = 0
Insert (w∗, ctx∗, z∗, x∗) with index r + 1
endinsert
sr = sleft, sr+1 = sright, k = k + 1

endif
endif

endwhile

The algorithm works as follows: first we solve G(0) and G(∞) to obtain
x1, x2, z2 and let w2 = v(W (x2)). Now k = 1 and because of s1 = 1 we select
r = 1.

If z2− ctx1 < ϵ then because of remark 1 we have ctx1 ≤ g(w) ≤ ctx1+ ϵ for
all w ∈ [w1, w2] = [0, v(W (x2)] and since ctx2 ≤ g(w) = g(w2) ≤ ctx2 + ϵ/2 for
all w ≥ w2 the parametric analysis is complete (s1 = 0) and the algorithm stops.

If z2 − ctx1 > ϵ the interval [w1, w2) = [0, v(W (x2))) must be evaluated
(s1 = 1).
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Next we obtain (x∗, y∗), an ϵ/2-optimal solution for RL(w2, X(w2)), and z∗

such that v(RL(w2, X(w2))) ≤ z∗.

If z∗ − ctx1 ≤ ϵ then because of remark 2 we have ctx1 ≤ g(w) ≤ ctx1 + ϵ
for all w ∈ [w1, w2) and since ctx2 ≤ g(w) = g(w2) ≤ ctx2 + ϵ/2 for all w ≥ w2

the parametric analysis is complete (s1 = 0) and the algorithm stops.

If z∗ − ctx1 > ϵ we insert (w∗, ctx∗, z∗, x∗) as follows: (w3, c
tx3, z3, x3, s3) =

(w2, c
tx2, z2, x2, s2), (w2, c

tx2, z2, x2) = (max{w∗, w2}, ctx∗, z∗, x∗) and because
of remark 3 we have ctx2 ≤ g(w) ≤ ctx2 + ϵ/2 for all w ∈ [w2, w3) and s2 = 0.
Now we have two intervals with s1 = 1 and s2 = 0.

Now let (x∗, y∗) be an ϵ/2-optimal solution for G(w1 + 0.5(w2 − w1)) and
let z∗ the bound obtained. Next we solve WL(x∗) to obtain (w∗, y∗). Now we
insert (w∗, ctx∗, z∗, x∗) and we have three intervals and according to the value
of sleft and sright we have four scenarios as follows:

(s1, s2, s3) ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)}.

In the first case the algorithm stops. In the other cases the algorithm con-
tinues by choosing the first or the second interval according the rule and so on.

When the algorithm stops we have:

(i) If w ≥ wk then ctxk ≤ g(w) ≤ ctxk + ϵ/2.

(ii) Let j ≤ k − 1. Let w ∈ [wj , wj+1) then ctxj ≤ g(w) ≤ ctxj + ϵ.

(iii) If w = wj then ctxj ≤ g(w) ≤ ctxj + ϵ/2 for all j.

Any rule to select the next interval may be used. We use the rule presented
since appears to be an appropriate choice if we stop the algorithm by using a
time limit.

Note that because of remark 4 if v(W (x∗)) ≤ wr then z∗ ≤ ctx∗ + ϵ/2 ≤
ctxr+ϵ and then if (w∗, ctx∗, z∗, x∗) is inserted the interval r will not be selected
again (sr = sleft = 0) and then the degenerate intervals will not be a problem
neither from the theoretical nor from the practical point of view.

3.2.2 The algorithm by using a relative tolerance (ϵ, ϵ1-PA3)

We use ϵ1 > 0 as a relative tolerance to solve either G(w) or RL(w,X) for all w
and for all X and ϵ = 2ϵ1+ϵ21 as a relative tolerance to obtain an approximation
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to g .

The remarks 1 to 4 may be rewritten by using a relative tolerance as follows:

Remark 5 Let w1, w2 with 0 ≤ w1 < w2. Let (x1, y1) ∈ F (G(w1)) and let B
such that v(G(w2)) ≤ B. If B ≤ ctx1(1 + ϵ) then ctx1 ≤ g(w) ≤ ctx1(1 + ϵ) for
all w ∈ [w1, w2].

Remark 6 Let w1, w2 with 0 ≤ w1 < w2. Let (x1, y1) ∈ F (G(w1)) and let
B such that v(R(w2, X(w2))) ≤ B. If B ≤ ctx1(1 + ϵ) then ctx1 ≤ g(w) ≤
ctx1(1 + ϵ) for all w ∈ [w1, w2).

Remark 7 Let ŵ > 0. Let (x∗, y∗) be an ϵ1-optimal solution for R(ŵ,X(ŵ))
then ctx∗ ≤ g(w) ≤ ctx∗(1 + ϵ1) for all w ∈ [v(W (x∗)), ŵ)

Remark 8 Let Let w1, w2 with 0 ≤ w1 < w2. Let (x1, y1) be an ϵ1-optimal
solution for G(w1). Let (x2, y2) ∈ F (G(w2)). If v(W (x2)) ≤ w1 then ctx2 ≤
ctx1(1 + ϵ1)

Let us suppose that c > 0 and (x, y) = (0, y) is not an ϵ1-optimal solution
for G(w) for all w and for all y.

From lemma 1, remarks 5,6,7 and 8 and because of X(w) is a finite set for
all w ≥ 0 the algorithm by using a relative tolerance is well defined and may be
used to obtain an ϵ-approximation to g.

The algorithm may be rewritten to use relative tolerance as follows:

(i) Let (x1, y1) be an ϵ1-optimal solution for G(0) and let w1 = 0. Let
(x2, y2) be an ϵ1-optimal solution for G(∞). Let w2 = v(W (x2)). Let z1, z2 be
the bounds obtained when we solve G(0) and G(∞) approximately by using a
standard branch and bound ( and cut) algorithm (ctx1 ≤ v(G(0)) ≤ ctx1+z1 ≤
ctx1(1 + ϵ1) and ctx2 ≤ v(G(∞)) ≤ ctx2 + z2 ≤ ctx2(1 + ϵ1)). Let k = 1 and
s1 = 1,

(ii) replace Select r such that zr+1 − ctxr = max{sj(zj+1 − ctxj) : j =

1, · · · , k} by Select r such that (zr+1−ctxr)
ctxr = max{ sj(z

j+1−ctxj)
ctxj : j = 1, · · · , k}

.

(iii) replace If zr+1 − ctxr ≤ ϵ by If zr+1−ctxr

ctxr ≤ ϵ,

(iv) replace If zr+1 − ctx∗ ≤ ϵ by If zr+1−ctx∗

ctx∗ ≤ ϵ and

(v) replace If z∗ − ctxr ≤ ϵ by If z∗−ctxr

ctxr ≤ ϵ
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When the algorithm stops we have:

(i) If w ≥ wk then ctxk ≤ g(w) ≤ ctxk(1 + ϵ1).

(ii) Let j ≤ k − 1. Let w ∈ [wj , wj+1) then ctxj ≤ g(w) ≤ ctxj(1 + ϵ).

(iii) If w = wj then ctxj ≤ g(w) ≤ ctxj(1 + ϵ1) for all j.

We use ϵ = 2ϵ1 + ϵ21 to be sure that if v(W (x∗)) ≤ wr then z∗−ctxr

ctxr ≤ ϵ
and then if (w∗, ctx∗, z∗, x∗) is inserted the interval r will not be selected again
(sr = sleft = 0).

4 Computational results

In this section we present computational results by using the parametric and
the ϵ-optimal parametric algorithms presented to obtain an approximation of g
(and as a consequence an approximation of the pareto set for BI).

The problems considered are: (i) Multidimensional Knapsack (KPm) prob-
lems ([6],[15]) and (ii) Bounded Knapsack (BKP) problems ([11]).

Because of space considerations we present results about the PA1 algorithm
with relative tolerance for KPm problems, the PA1 algorithm with absolute tol-
erance for BKP problems and the ϵ, ϵ/2-PA2 algorithm for BKP problems. The
results by using the ϵ, ϵ1-PA2 algorithm (with relative tolerance) are analogous.

4.1 Multidimensional Knapsack Problems

A set of n items with value cj (j = 1, · · · , n) and m + s resources with capac-

ities bi (i = 1, · · · ,m) and b̂i (i = 1, · · · , s) are given. Each item consumes
an amount from each resource (Aij and Âij). The 0-1 decision variables xj

indicate which items are selected. The objective is to choose a subset of items
with maximum total value. Selected items must, however, not exceed resource
capacities.

The formulation of a Multidimensional Knapsack (KPm) problem is:

(P ) max ctx s.t.

Ax ≤ b

x ∈ Ω

14



where Ω = {x : Âx ≤ b̂, x ∈ {0, 1}n} and 0 < b ∈ ℜm, 0 < b̂ ∈ ℜs, 0 ≤ A ∈
ℜm×n, 0 ≤ Â ∈ ℜs×n.

Let us suppose that the decision maker may buy additional units of the
resources and may pay in order to reduce the value of the coefficients of the
matrix. All modifications are mutually independent. We need mn + m pa-
rameters as follows: θ(i−1)n+j to define the change in the coefficient Aij (i =
1, · · · ,m)(j = 1, · · · , n) and θmn+i to define the change in the availability of
resource i (i = 1, · · · ,m).

Let θ ∈ [0, 1]
mn+n

. Let θ ∈ [0, θ]. The problem P (θ) considered is:

(P (θ)) max ctx s.t.

Aix−
n∑

j=1

Aijθ(i−1)n+jxj ≤ bi(1 + θnm+i) ∀i

x ∈ Ω

Let ptθ the price of the modification with p ∈ ℜnm+m.

The BI problem is:

(BI)

max ctx, min ptθ s.t.

Aix−
n∑

j=1

Aijθ(i−1)n+jxj ≤ bi(1 + θnm+i) ∀i

x ∈ Ω, 0 ≤ θ ≤ θ

Since all data and its modifications are mutually independent we do not need
to use the variable vector δ and BI may be rewritten as follows:

(BIL)

max ctx, min ptθ s.t.

Aix−
n∑

j=1

Aijθ(i−1)n+j ≤ bi(1 + θnm+i) ∀i

0 ≤ θ(i−1)n+j ≤ xjθ(i−1)n+j , 0 ≤ θmn+i ≤ θmn+i ∀i, ∀j

x ∈ Ω, 0 ≤ θ ≤ θ

The OI(w) problem is:

15



(OI(w)) max ctx s.t.

Aix−
n∑

j=1

Aijθ(i−1)n+jxj ≤ bi(1 + θnm+i) ∀i

ptθ ≤ w

x ∈ Ω, 0 ≤ θ ≤ θ

and OIL(w) is:

(OIL(w)) ctx s.t.

Aix−
n∑

j=1

Aijθ(i−1)n+j ≤ bi(1 + θnm+i) ∀i

0 ≤ θ(i−1)n+j ≤ xjθ(i−1)n+j , 0 ≤ θmn+i ≤ θmn+i ∀i, ∀j

ptθ ≤ w

x ∈ Ω, 0 ≤ θ ≤ θ

The original data were generated at random following standard procedures
as follows (j = 1, · · · , n) (i = 1, · · · ,m)(k = 1, · · · , s):

Aij is taken from U(1, 1000) and Âkj is taken from U(1, 1000). cj = 500uj+

(
∑m

i=1 Aij +
∑s

i=1 Âij)/(m+ s) and uj is taken from U(0, 1). bi = 0.5
∑k

j=1 Aij

and b̂i = 0.5
∑k

j=1 Âij .

Let λ ∈ [0, 1]. Let θ = 0 and let θ be the upper bound of θ generated as
follows:

θ(i−1)n+j = λuij and uij is taken from U(0, 1).

θnm+i = λui and ui is taken from U(0, 1).

The price of the modification is ptθ where p ∈ ℜnm+m is generated as follows
(i = 1, · · · ,m)(j = 1, · · · , n):

p(i−1)n+j = uij and uij is taken from U(0, 1),

pnm+i = ui and ui taken from U(0, 1).

We use the parametric algorithm (PA1) to obtain an ϵ-approximation to g
by using relative tolerance . For each (n,m, s, λ, ϵ) considered we generate 10
problems and report: the minimal (mint), average (t) and maximal time (maxt)
in seconds to perform the complete parametrical analysis, the minimal (mink),

16



average (k) and maximal (maxk) number of solutions generated, and the mini-
mal (mininc), average (inc) and maximal (maxinc) porcentual increase of the

original objective function with no limit to the funds (100× v(OI(∞))−v(P (0))
v(P (0)) ).

In Table 1 we present the results with n = 1000 and ϵ = 0.001 to define the
relative tolerance. If m+ s = 20 then we use ϵ = 0.00125.

m,s λ mint t maxt mink k maxk mininc inc maxinc
1,9 0.50 20.88 35.67 57.34 55 86.70 131 0.28 0.45 0.75

0.10 24.57 32.50 44.57 50 80.50 108 0.30 0.47 0.59
5,5 0.50 111.97 135.26 146.40 236 253.30 276 3.37 3.87 4.36

0.10 73.59 111.78 198.52 128 147.50 170 2.73 2.94 3.25
9,1 0.50 454.36 567.49 629.45 557 598.40 623 20.55 21.45 22.48

0.10 212.95 255.40 323.14 163 196.90 230 6.08 7.39 8.98
1,11 0.50 38.79 51.83 69.26 53 69.80 106 0.25 0.30 0.41

0.10 29.27 52.89 77.29 50 69.20 86 0.20 0.36 0.46
6,6 0.50 161.05 182.93 199.31 217 234.40 247 3.54 3.82 4.22

0.10 143.83 175.93 226.98 155 172.40 190 2.80 3.02 3.26
11,1 0.50 793.80 942.60 1039.00 603 638.40 685 21.41 22.11 23.30

0.10 309.08 401.58 492.24 181 200.20 222 6.27 7.36 7.96
1,13 0.50 87.43 126.12 179.08 40 47.40 65 0.12 0.17 0.23

0.10 102.41 165.54 237.98 40 51.20 81 0.10 0.22 0.37
7,7 0.50 224.89 311.70 410.79 211 224.20 236 2.83 2.91 3.03

0.10 271.08 310.09 383.89 140 165.80 182 2.03 2.64 3.05
13,1 0.50 1199.01 1298.89 1442.93 615 647.40 679 21.52 22.13 22.39

0.10 676.16 752.95 873.77 191 213.80 242 7.19 7.65 8.45
1,19 0.50 51.47 280.49 476.52 12 38.80 62 0.04 0.18 0.38

0.10 77.53 305.33 551.78 13 30.80 55 -0.00 0.12 0.28
10,10 0.50 366.19 593.38 1363.62 114 132.80 143 1.99 2.33 2.52

0.10 473.53 554.15 727.88 111 120.20 133 1.68 2.11 2.39
19,1 0.10 1450.21 1923.65 2603.48 167 178.00 187 7.03 7.46 8.25

Table 1 PA1 algorithm. n = 1000, ϵ = 0.001. If m + s = 20 then ϵ = 0.00125

In Table 2 we present the results with n = 1500 and ϵ = 0.001 to define the
relative tolerance. If m+ s = 20 then we use ϵ ∈ {0.01, 0.005}.

m,s λ mint t maxt mink k maxk mininc inc maxinc
9,1 0.10 284.97 367.12 497.22 134 175.80 231 5.94 7.12 8.89

0.50 820.69 960.15 1055.93 514 567.70 610 20.42 21.34 22.64
19,1 0.10 931.94 1379.28 2251.56 78 104.70 123 6.80 7.60 8.68

883.18 1342.54 1764.70 76 105.40 123 6.76 7.33 8.10
0.50 2012.92 2113.45 2213.99 387 388.00 389 22.44 23.04 23.64

2248.74 2354.11 2531.59 383 410.00 439 22.32 22.91 23.22

Table 2 PA1 algorithm. n = 1500, ϵ = 0.001. If m + s = 20 then ϵ ∈ {0.01, 0.005}

4.2 Bounded Knapsack Problems

The Bounded Knapsack (BKP) problem is defined as follows. Given n items
types and a knapsack with: cj the value and wj the weight af an item of type
j, Fj the availability of items of type j and W the capacity of the knapsack,
the problem is select xj (j = 1, · · · , n), the number of items of each type, in
such a manner that the total value is maximized subject to the capacity of the
knapsack and the availabilities of the items.

The formulation of a BKP problem is:

17



(P ) max ctx s.t.

wtx ≤ W

x ∈ Ω

where Ω = {x ∈ ℜn, 0 ≤ x ≤ F, x integer}

Let us suppose that the decision maker may pay in order to reduce the weight
of the items. All modifications are mutually independents. We need n parame-
ters as follows: θj to define the change in the coefficient wj (j = 1, · · · , n).

Let θ ∈ [0, 1]
n
. Let θ ∈ [0, θ]. The problem P (θ) considered is:

(P (θ)) max ctx s.t.

n∑
j=1

(wj − θjwj)xj ≤ W

x ∈ Ω

Let ptθ the price of the modification with p ∈ ℜn.

The BI problem is:

(BI)

max ctx, min ptθ s.t.

n∑
j=1

(wj − θjwj)xj ≤ W

x ∈ Ω, 0 ≤ θ ≤ θ

We may use some classical approaches [11] in order to rewrite P as 0-1-
ILP problem. However the classical transformation, designed to minimize the
number of 0-1 variables, permit redundancies (a solution admit several repre-
sentations in the 0-1 problem). Multiple redundancies may be a problem to the
parametric algorithm. Since the same solution admits several representations
we can obtain w∗ = wk again and again when we are solving RL(wk, X). Thus,
we need a transformation without redundancies as follows:

xj =

Fj∑
k=1

kxj
k,

Fj∑
k=1

xj
k ≤ 1, xj

k ∈ {0, 1} (j = 1, · · · , n)(k = 1, · · · , Fj)

18



With this transformation each solution has an unique representation in the
0-1 problem. Thus, P , P (θ) and BI may be rewritten as follows:

(P ) max
n∑

j=1

Fj∑
k=1

kcjx
j
k s.t.

n∑
j=1

Fj∑
k=1

kwjx
j
k ≤ W

Fj∑
k=1

xj
k ≤ 1 (j = 1, · · · , n)

xj
k ∈ {0, 1} (j = 1, · · · , n)(k = 1, · · · , Fj)

(P (θ)) max
n∑

j=1

Fj∑
k=1

kcjx
j
k s.t.

n∑
j=1

Fj∑
k=1

k(wj − θjwj)x
j
k ≤ W

Fj∑
k=1

xj
k ≤ 1 (j = 1, · · · , n)

xj
k ∈ {0, 1} (j = 1, · · · , n)(k = 1, · · · , Fj)

(BI)

max

n∑
j=1

Fj∑
k=1

kcjx
j
k, min ptθ s.t.

n∑
j=1

Fj∑
k=1

k(wj − θjwj)x
j
k ≤ W

Fj∑
k=1

xj
k ≤ 1 (j = 1, · · · , n)

0 ≤ θ ≤ θ

xj
k ∈ {0, 1} (j = 1, · · · , n)(k = 1, · · · , Fj), θ ∈ ℜn

Althought the modifications considered are mutually independent for the
original problem that is not the case in the 0-1 version of (BI) because the
value of θj affects the Fj variables used to represent xj . Thus, we need the δ
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variables to rewrite BI as follows:

(BIL)

max
n∑

j=1

Fj∑
k=1

kcjx
j
k, min ptθ s.t.

n∑
j=1

Fj∑
k=1

kwjx
j
k −

n∑
j=1

Fj∑
k=1

kwjδ
j
k ≤ W

Fj∑
k=1

xj
k ≤ 1 (j = 1, · · · , n)

0 ≤ δjk ≤ θjx
j
k (j = 1, · · · , n)(k = 1, · · · , Fj)

0 ≤ θj − δjk ≤ θj(1− xk
j ) (j = 1, · · · , n)(k = 1, · · · , Fj)

0 ≤ θ ≤ θ

xj
k ∈ {0, 1} (j = 1, · · · , n)(k = 1, · · · , Fj), θ ∈ ℜn, δj ∈ ℜFj

Since
∑Fj

k=1 x
j
k ≤ 1 (j = 1, · · · , n) we have θj =

∑Fj

k=1 δ
j
kx

j
k and we may

delete the constraints 0 ≤ θj − δjk ≤ θj(1− xk
j ) to rewrite (BIL) as follows:

(BIL)

max
n∑

j=1

Fj∑
k=1

kcjx
j
k, min

n∑
j=1

Fj∑
k=1

pjδ
j
k s.t.

n∑
j=1

Fj∑
k=1

kwjx
j
k −

n∑
j=1

Fj∑
k=1

kwjδ
j
k ≤ W

Fj∑
k=1

xj
k ≤ 1 (j = 1, · · · , n)

0 ≤ δjk ≤ θjx
j
k (j = 1, · · · , n)(k = 1, · · · , Fj)

xj
k ∈ {0, 1} (j = 1, · · · , n)(k = 1, · · · , Fj), δj ∈ ℜFj (j = 1, · · · , n)

and OIL(w) is:
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(OIL(w)) max

n∑
j=1

Fj∑
k=1

kcjx
j
k s.t.

n∑
j=1

Fj∑
k=1

kwjx
j
k −

n∑
j=1

Fj∑
k=1

kwjδ
j
k ≤ W

Fj∑
k=1

xj
k ≤ 1 (j = 1, · · · , n)

0 ≤ δjk ≤ θjx
j
k (j = 1, · · · , n)(k = 1, · · · , Fj)

n∑
j=1

Fj∑
k=1

pjδ
j
k ≤ w

xj
k ∈ {0, 1} (j = 1, · · · , n)(k = 1, · · · , Fj), δj ∈ ℜFj (j = 1, · · · , n)

The original data were generated at random following standard procedures
as follows (j = 1, · · · , n):

wj is taken from U(1, 1000), W = 0.5
∑n

j=1 Fjwj .

Fj is taken from U(6, 10).

Let λ ∈ [0, 1]. Let θ = 0 and let θ be the upper bound of θ defined as follows:

θj = λuj and uj is taken from U(0, 1).

The price of the modification is ptθ where p ∈ ℜn is generated as follows
(j = 1, · · · , n):

pj = uj and uj is taken from U(0, 1),

4.2.1 The general case: cj is generated at random ∀j

We generate weakly correlated problems as follows: cj is taken from
U(wj − 100, wj + 100).

We use the parametric algorithm (PA1) and the ϵ-optimal parametric algo-
rithm (ϵ, ϵ/2-PA2) to obtain an ϵ-approximation to g with absolute tolerance.
Let δ ∈ (0, 1) then we use ϵ = δv(P (0)). For each (n, λ, δ) considered we
generate 10 problems and report: the minimal (mint), average (t) and max-
imal time (maxt) in seconds to perform the complete parametrical analysis,
the minimal (mink), average (k) and maximal (maxk) number of solutions
generated, and the minimal (mininc), average (inc) and maximal (maxinc)
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porcentual increase of the original objective function with no limit to the funds

(100× v(OI(∞))−v(P (0))
v(P (0)) ).

In Table 3 we present the results. For each n the first row corresponds to
the PA1 algorithm and the second row corresponds to the ϵ, /epsilon/2-PA2
algorithm.

n λ δ mininc inc maxinc mint t maxt mink k maxk
100 0.50 0.01 29.38 34.71 44.04 86.32 153.891 275.15 725 1049.20 1840

8.72 11.47 15.63 83 101.40 125
200 0.50 0.01 33.60 36.35 39.24 76.12 130.922 193.74 300 502.20 787

16.78 18.62 20.52 89 99.80 111
500 0.25 0.01 13.86 14.89 16.11 121.52 160.992 235.49 162 220.10 385

15.42 18.28 22.45 37 41.00 49
1000 0.20 0.01 10.67 11.13 11.71 765.34 1909.32 3284.68 419 872.20 1390

26.97 34.04 43.86 27 30.20 35

Table 3 PA1 and ϵ.ϵ/2-PA2 algorthms. ϵ = δv(P (0))

In Table 4 we present the results by using the ϵ, ϵ/2-PA2 algorithm.

n λ δ mininc inc maxinc mint t maxt mink k maxk
1000 0.20 0.01 10.67 11.13 11.71 26.97 34.04 43.86 27 30.20 35

0.005 67.16 88.74 109.19 57 62.00 69
0.001 496.35 673.71 738.98 297 312.40 333

1000 0.50 0.001 34.59 35.48 36.28 1738.06 2182.40 2352.48 1007 1022.20 1043
1500 0.25 0.001 14.50 14.77 14.98 1560.45 1656.31 1800.78 407 415.80 421

Table 4 ϵ, ϵ/2-PA2 algorithm.

In Table 5 we present the results by using the ϵ, ϵ/2-PA2 algorithm. ϵ =
δv(P (0)). Only one problem for each n is presented in this table.

n λ δ inc t k
1500 0.50 0.001 36.97 4177.65 1059
2000 0.01 35.92 628.5 101
2000 0.005 36.23 1234.04 209
2500 0.01 36.47 2298.41 109
2750 36.18 1613.65 105
3000 36.49 2523.59 107

Table 5 ϵ, ϵ/2-PA2 algorithm. ϵ = δv(P (0)). Only one problem for each n.

4.2.2 The Maximun cardinality KPB problem: cj = 1 ∀j

Now we consider the special case in which we want to maximize the number of
items selected. Thus, in this case cj = 1 ∀j.

In Table 6 we present the results analogous to Table 3. For each n the first
row corresponds to the PA1 algorithm and the second row corresponds to the
ϵ, ϵ/2-PA2 algorithm. Again ϵ = δv(P (0)).
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n λ δ mininc inc maxinc mint t maxt mink k maxk
100 0.50 0.01 16.46 18.90 21.08 86.32 153.891 275.15 725 1049.20 1840

3.42 4.32 5.21 41 46.60 53
200 0.50 0.01 15.19 17.34 20.61 76.12 130.922 193.74 300 502.20 787

5.43 6.38 7.60 41 44.20 51
500 0.50 0.01 16.53 17.47 18.63 130.40 162.418 213.15 218 267.70 368

17.61 19.80 26.38 39 45.00 53
1000 0.2000 0.01 10.67 11.13 11.71 765.34 1909.32 3284.68 419 872.20 1390

26.97 34.04 43.86 27 30.20 35

Table 6 PA1 and ϵ, ϵ/2-PA2 algorithms. ϵ = δv(P (0))

Table 7 is analogous to table 4.

n λ δ mininc inc maxinc mint t maxt mink k maxk
1000 0.50 0.01 16.23 17.17 17.72 71.66 96.54 134.63 43 47.20 51

0.005 16.57 17.52 18.63 133.58 194.63 238.04 85 91.60 99
0.001 16.71 17.76 18.5 1085.91 1207.58 1454.69 413 442.67 475

1500 0.50 0.001 16.87 17.73 18.40 1810.51 1923.16 2000.73 427 441.40 455
2000 0.50 0.005 16.96 17.41 18.12 605.31 648.29 725.62 89 95.40 99

0.001 17.58 17.92 18.30 3207.21 3535.88 4080.10 431 448.20 467
3000 0.50 0.005 17.15 17.54 17.81 1525.08 1771.49 2157.04 95 99.00 103

0.0025 17.09 17.41 17.71 3172.70 4004.68 4503.58 179 188.60 195

Table 7 ϵ, ϵ/2-PA2 algorithm.ϵ = δv(P (0))

In Table 8 we present results by using the ϵ, ϵ/2-PA2 algorithm with time

limit equal to 3600 seconds. We use δ to define ϵ = δv(P (0)) and δ̂ was the

reached tolerance when the algorithm was stopped (δ̂v(P (0)) = max{sj(zj+1 −
ctxj) : j = 1, · · · , k}).

n λ δ δ̂ inc k
3000 0.25 0.0025 0.0025 7.48 81

0.50 0.0026 17.50 181
3500 0.25 0.0025 7.25 79

0.50 0.0034 17.90 151
4000 0.25 0.0025 7.38 81

0.50 0.0036 17.17 133

Table 8 ϵ, ϵ/2-PA2 algorithm with time limit equal to 3600 seconds.ϵ = δv(P (0)).

5 Conclusions and extensions.

5.1 Perfomance of the algorithms

The topic that we are studying is a new one and we do not have previous ex-
perience. Our purpose was only to show that a mathematical programming
approach may be useful to deal with the global reconfiguration of a system.

Our experimental results are preliminary since more problems should be
solved before concluding on certain topics. We consider two problems well
structured selected arbitrarily. The results are obviously biased due to the se-
lection of the problems.

According with our results our algorithms can generate an approximation
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of the pareto set of the biobjective problem suggested in [1] and [2] with a rea-
sonable computational effort. Remember that a global reconfiguration is being
considered by the decision maker. We do not need a solution in seconds. We
can wait a reasonable time to redefine the system. In our experiments the ap-
proximation was generated in less than an hour and a half for KPm problems
with up to 1500 items and 20 constraints and for BKP problems with up to 4000
items type with the number of items of each type between 6 and 10. Note that
the range of the modifications considered was very large in many cases with up
to 50% and we used a very small tolerances for some problems.

The ϵ, ϵ/2-PA2 and ϵ, ϵ1-PA3 algorithms outperformed the PA1 algorithm,
by using the absolute (relative) tolerance, by far as we expected.

5.2 Theoretical contributions and extensions.

We designed and implemented an exact and ϵ-optimal algorithms to solve the
parametric problem relative to the right hand side vector of a 0-1-MILP prob-
lem when the problem has a special structure: the objective function depends
only on binary variables. These algorithms may be used to redefine the system
global configuration of resource constraints of 0-1-ILP problems. A standard
linearization procedure was used to deal with the nonlinear terms that appear
in the biobjective problem suggested in [1] and [2]. Thus, a mathematical pro-
gramming approach may be used to redefine the system global configuration of
resource constraints.

Our approach can be considered as an extension of the mathematical pro-
gramming procedures that appear when the average shadow price (ASP) is
being used to detect bottlenecks restricted to the right hand side vector. Now
we include global modifications.

Let h ∈ ℜm with h ≥ 0. If θ ∈ ℜ, qj = 0 ∀j, Qij = 0 ∀(i, j) and di = hi

for all i, then P (θ) is exactly the parametric problem considered in [3]. Let
pθ the price of the modification with p ∈ ℜ and p ≥ 0. Under the same
assumptions let e(p) the net profit function (npf) defined in [10] as follows:
e(p) = max{v(P (θ)) − v(P (0)) − pθ : θ ≥ 0} then the npf allow us to know a
specific nondominated solution of BI.

In the general case presented in this paper (with θ ∈ ℜr, θ ≤ θ ≤ θ and
p ∈ ℜr) then the npf may be defined analogously as e(p) = max{v(P (θ)) −
v(P (0)) − ptθ : θ ≤ θ ≤ θ} and again the npf allow us to know a specific non-
dominated solution of BI.

In [1] and [2] the authors stated:
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“ Limitation 1 ASP is only applicable if objective and constraints are linear.

Limitation 2 ASP does not evaluate changes in the coefficients matrix (the
matrix A) and it is only limited to RHS.

Limitation 3 ASP does not provide information about the strategy for in-
vestment in resources, and the decision maker has to manually conduct analyses
to find the best investment strategy.”

We agree with Limitation 1. Now must be clear that a mathematical pro-
gramming approach that is an extension of the ASP procedures may be used to
overcome the limitations 2 and 3 for 0-1-ILP problems at least from the theo-
retical point of view and for problems with moderate size.

As we stated before our results may be extended to consider 0-1-MILP prob-
lems by using either multiobjective 0-1-MIBLP or multiobjective 0-1-MILP ac-
cording to the case.

If some changes to the initial configuration must be discrete, for example
with integer resource requirements ([13]) and even if some changes in the co-
efficients matrix must be discrete the algorithms may de redesigned without
problems by using θ appropriately.

Finally, the price of the modification may be defined as a piecewise linear
function by using standard methods to define the linearization of the problems.
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