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Wenhao Wu, Student Member, IEEE, Hans Mittelmann, Zhi Ding, Fellow, IEEE

Abstract—Modulation diversity (MoDiv) is a simple and prac-
tical transmission enhancement technique that utilizes different
modulation mappings to reduce packet loss rate and achieve
higher link throughput. MoDiv is particularly meaningful and
effective in hybrid-ARQ (HARQ) systems. We study the de-
ployment and optimization of MoDiv for HARQ in a MIMO-
coordinated multi-point (MIMO-CoMP) scenario under Rician
fading channel to mitigate packet loss. We formulate the de-
sign optimization of MoDiv into a quadratic three-dimensional
assignment problem (Q3AP), then solve it using a modified iter-
ated local search (ILS) method. Numerical results demonstrate
clear performance gain over simple retransmissions and over a
heuristic design under fading channels.

Index Terms—MoDiv, MIMO, CoMP, HARQ, Q3AP.

I. INTRODUCTION

In wireless data communication systems, high rate transmis-
sion under poor channel conditions often leads to reception
errors. To recover lost packets, Automatic Repeat reQuest
(ARQ) or Hybrid ARQ (HARQ) are important mechanisms
for improving reliability at both network layer [1] and PHY
layer [2]. Constellation Rearrangement (CoRe) is a pragmatic
technique that provides additional robustness via Modulation
Diversity (MoDiv) to HARQ system [3]. As linear modulations
of Q-ary constellations such as PSK, QAM are usually adopted
in practical wireless communications systems, the same string
of log2Q bits can be mapped to different symbols across the
multiple HARQ (re)transmissions. This technique has been
studied for point-to-point HARQ [4], relay networks [5], [6]
and relay-HARQ [7], [8], [9] and is shown to greatly improve
the BER performance and throughput.

Also, in recent years, coordinated multipoint (CoMP) trans-
mission has become a promising technique which has been
supported by LTE-Advanced [10]. By coordinating multi-
ple base stations/remote radio heads (RRHs) from differ-
ent cells/sectors, CoMP can effectively improve cell edge
user data rate and spectral efficiency [11]. When applied
to CoMP, MoDiv faces great opportunities and challenges
at the same time which has not been fully understood. On
the one hand, it is possible to adopt different constellation
remapping schemes at different transmitters, which could
potentially provide larger diversity gain. On the other hand,
the optimization of more than one constellation mapping for
each round of retransmission is non-trivial, especially when
perfect channel state information (CSI) is not available. In
this work, we propose a MoDiv design scheme for a CoMP
system composed of one user equipment (UE) and two coop-
erative transmitters connected to a centralized control unit. We
assume independent Rician fading MIMO channel between the
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transmitters and the UE, which is more general and practical
than existing works on MIMO-CoRe [12], [13]. The CoRe
is designed to minimize the expected bit error rate (BER)
under statistical CSI assumption after each (re)transmission.
The resulting optimization problem has a Successive Quadratic
3 Dimensional Assignment Problem (Q3AP) formulation [14].
Although Q3AP is generally NP-hard and cannot be solved
exactly except for trivially small constellations, an efficient
modified Iterated Local Search (ILS) approach is adopted.
Our numerical results demonstrate significant gains achieved
by the MoDiv techniques in various simulation settings and
performance measurements.

II. SYSTEM MODEL

Consider the constellation rearrangement (CoRe) in a
HARQ-enabled MIMO-CoMP downlink channel composed of
two transmitters and one UE. For the original transmission,
bits are mapped to constellation symbols using conventional
Gray mapping for both transmitters. However, in order to
maximize the signal space diversity as an enhancement of
beamforming, we allow different mappings of the same se-
quence of information bits at the two transmitters during the
HARQ process. We assume a HARQ protocol based on Chase
Combining (CC) and a maximum number of M retransmis-
sions. For the m-th (re)transmission, m = 0, 1, . . . ,M where
m = 0 represents the original transmission, every consecutive
log2Q bits are encoded into a label p = 0, . . . , Q−1 and then
mapped to two constellation symbols via a vector mapping
function ψ(m)[p] = [ψ

(m)
1 [p], ψ

(m)
2 [p]]T , where ψ(m)

a [p] ∈ C,
ψ
(m)
a [p] 6= ψ

(m)
a [q] if p 6= q represents a permutation of the set

of constellation symbols C (e.g. QAM, 16-QAM), a = 1, 2.
The two symbols are then transmitted at the two transmitters,
respectively. The received signal at the m-th (re)transmission
of the bit sequence corresponding to label p is:

y(m) = A(m)ψ(m)[p] + n(m)

= H
(m)
1 p1ψ

(m)
1 [p] + H

(m)
2 p2ψ

(m)
2 [p] + n(m), (1)

where H
(m)
a is a NR-by-NT,a MIMO channel between the

a-th transmitter and the UE, pa is a NT,a-by-1 linear beam-
former for the a-th transmitter, a = 1, 2, and the additive noise
n(m) ∼ CN (0, σ2I). We assume the elements of H(m)

a follow
correlated Rician distributed channel [15] independent across
retransmissions and between the two transmitters. Specifically,

H(m)
a =

√
Ka

Ka + 1
H̄a +

√
1

Ka + 1
R1/2H(m)

w,aT
1/2
a , (2)

for a = 1, 2 where the NR-by-NR matrix R and the NT,a-
by-NT,a matrix Ta are the receive and transmit covariance
matrices, respectively, while H̄a represents the line-of-sight
component and H

(m)
w,a is a random matrix composed of in-

dependent entries of CN (0, 1). Here we denote A(m) =



2

[H
(m)
1 p1,H

(m)
2 p2] as the equivalent MIMO channel from the

two transmitters to the UE during the m-th retransmission.
After the m-th retransmission, the receiver attempts to

demodulate p by combining all the symbols received so far
with the ML detection:

p∗ = arg min
p

m∑
n=0

∥∥∥∥∥y(n) −
∑
a=1,2

H(n)
a paψ

(n)
a [p]

∥∥∥∥∥
2

. (3)

III. SUCCESSIVE CONSTELLATION MAPPING DESIGN FOR
MODULATION DIVERSITY

A. A BER Upper Bound
The BER of the ML demodulator after the m-th

(re)transmission can be upper-bounded and approximated by

P
(m)
BER =

Q−1∑
p=0

Q−1∑
q=0

B[p, q]

Q
P

(m)
PEP (q|p) (4)

where B[p, q] is the Hamming distance between the binary
representation of p and q divided by log2Q as in [4]. The
computation of PPEP (q|p), the pairwise error probability
(PEP) of mistakenly decoding p into q, generally follows the
procedure in [16]:

P
(m)
PEP (q|p) = E

Q
√√√√ m∑

n=0

‖A(n)e(n)[p, q]‖2
2σ2

 (5)

where e(n)[p, q] = [e
(n)
1 [p, q], e

(n)
2 [p, q]]T = ψ(n)[p] −

ψ(n)[q]. Since the Q-function can be bounded as Q(x) ≤
e−x

2/2/2 [17], the PEP in (5) can be upper bounded by

P̃
(m)
PEP (q|p) =

1

2

m∏
n=0

E
[
exp

(
−‖A

(n)e(n)[p, q]‖2

4σ2

)]
(6)

Denote En[p, q] as the expectation in Eq. (6), which fa-
cilitates the recursion P̃

(m)
PEP (q|p) = P̃

(m−1)
PEP (q|p)Em[p, q],

P̃
(−1)
PEP (q|p) = 1/2. En[p, q] can be evaluated as follows:

Proposition 1.

En[p, q] =
(4σ2)NR exp

(
−µH

n [p, q]S−1n [p, q]µn[p, q]
)

det(Sn[p, q])
(7)

Sn[p, q] = 4σ2I +
∑
a=1,2

|e(n)a [p, q]|2pH
a Tapa

Ka + 1
R,

µn[p, q] =
∑
a=1,2

√
Ka

Ka + 1
H̄apae

(n)
a [p, q]. (8)

Proof. We have A(n)e(n)[p, q] ∼ CN (µn[p, q],Cn[p, q])
where

Cn[p, q] =
∑
a=1,2

|e(n)a [p, q]|2pH
a Tapa

Ka + 1
R. (9)

For v ∼ CN (µ,C), using the technique of completing the
square [18, Sec. 2.3.1], it is easy to show

E
[
exp(−λ‖v‖2)

]
=

exp
(
−µH(λ−1I + C)−1µ

)
det(I + λC)

(10)

which in turn leads to Proposition 1 as λ = 1/(4λ2) and
v = A(n)e(n)[p, q].

B. Successive Quadratic 3-D Assignment Problem (S-Q3AP)

We adopt a successive optimization scheme as in [4], [9],
in which ψ(m) is sequentially optimized given ψ(n), n =
0, . . . ,m− 1, for m = 1, . . . ,M :

min
ψ(m)|ψ(n),n=0,...,m−1

P̃
(m)
BER,m = 1, . . . ,M, (11)

where P̃ (m)
BER is the approximated version of P (m)

BER by substi-
tuting P (m)

PEP (q|p) with P̃ (m)
PEP (q|p). Similar to [9], denote the

3-D permutation matrix x(m) = {x(m)
pij |p, i, j = 0, . . . , Q− 1}

as an equivalent representation of ψ(m) by x
(m)
pij = 1 if

ψ
(m)
1 = ψ0[i], ψ

(m)
2 = ψ0[j] and otherwise x(m)

pij = 0, where
ψ0[·] ∈ C represents Gray mapping. We have x(m) ∈ S where

S =

x :

Q−1∑
p=0

xpij =

Q−1∑
i=0

xpij =

Q−1∑
j=0

xpij = 1

 . (12)

In other words, given x(m) ∈ S , x(m)
pij = 1 means that in the

m-th retransmission, ψ(m)
1 maps label p to the same symbol

as Gray mapping maps label i to, and ψ
(m)
2 maps label p to

the same symbols as Gray mapping maps label j to.
Then Eq. (11) can be formulated into a S-Q3AP as follows:

min
x(m)∈S

Q−1∑
p=0

Q−1∑
i=0

Q−1∑
j=0

Q−1∑
q=0

Q−1∑
k=0

Q−1∑
l=0

f (m)
pq dikjlx

(m)
pij x

(m)
qkl , (13)

f (m)
pq =

B[p, q]

Q
P̃

(m−1)
PEP (q|p) (14a)

dikjl =
(4σ2)NR exp(−µH

ikjlS
−1
ikjlµikjl)

det(Sikjl)
(14b)

Here dikjl is derived from Eq. (7)(8) with

Sikjl = 4σ2I +

(
|eik|2pH

1 T1p1

K1 + 1
+
|ejl|2pH

2 T2p2

K2 + 1

)
R,

µikjl =

√
K1

K1 + 1
H̄1p1eik +

√
K2

K2 + 1
H̄2p2ejl. (15)

and eik = ψ0[i] − ψ0[k], ejl = ψ0[j] − ψ0[l]. f (m)
pq can be

updated recursively while solving the S-Q3AP, since:

P̃
(m)
PEP (q|p) =

Q−1∑
i,k,j,l=0

P̃
(m−1)
PEP (q|p)dikjlx̂(m)

pij x̂
(m)
qkl (16)

and P̃ (−1)
PEP (q|p) = 1/2. Due to the geometry of the QAM con-

stellation, the evaluation of dikjl is actually O(Q2) instead of
O(Q4), and it only needs to be evaluated once. Consequently,
the main computational complexity lies in solving the Q3AP
problems instead of evaluating their coefficients.

The size of the search space for Eq. (11) or (13) is
(Q!)2. For typical constellations such as 16-QAM and 64-
QAM, it is impractical to apply the exact branch-and-bound
algorithm [14]. Also, our tests show that they do not have
enough symmetry to exploit for faster solution as does the
16-PSK constellation [19]. Consequently, the MoDiv problem
is solved with the ILS method [14, Sec. 5.5] extended from its
QAP version [20]. The only difference of our implementation
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from the one in these references is that, as in Eq. (13) a Q3AP
is defined with a 4-D matrix and a 2-D matrix instead of the
general Q3AP defined with a 6-D matrix [14, Eq.(2)]. The out-
line of ILS-Q3AP is as follows: starting from a random initial
mappings ψ = [ψ1, ψ2], the algorithm repeatedly executes a
local search by exchanging the mappings of 2 labels whenever
the objective function is reduced so as to lower the objective
function and update the mapping locally. When the process
hits a local minimum, it executes a perturbation step to break
from it and explore new solutions by exchanging the mappings
of kp labels, where integer kp is adaptively adjusted within
a range [kp,min, kp,max]. The perturbation is accepted with
a probability defined as in simulated annealing, after which
the local search is restarted from the new mappings until the
stopping criterion is satisfied. The algorithm is implemented in
the centralized control unit connected to the two transmitters.

IV. NUMERICAL RESULTS

Unless otherwise noted, we adopt the following settings
throughout our simulation. For the MIMO-CoMP channel, we
have NR = 1 and NT,1 = NT,2 = 2. For the correlated
Rician fading channels, we have T1 = T2 = [1, 0.7; 0, 7, 1],
H̄1 = [0.2540; 0.2457] and H̄2 = [−0.1027;−0.2320]. The
Rician coefficients are K1 = K2 = 4 by default. A simple
maximum SNR beamformer (MSNRB) [21] generalized for
MIMO channel is used at the two transmitters. The maximum
number of HARQ retransmissions is set to M = 4. Three
MoDiv schemes are compared, namely the simple retrans-
mission with no MoDiv, a heuristic CoRe scheme proposed
for HSDPA [22] generalized to our CoMP scenario by fixing
ψ1 = ψ2 and our Q3AP-based MoDiv design, denoted as
NMm, CRm and Q3APm, respectively for m retransmissions.
The original transmission using Gray mapping is labeled as
TR0. 64-QAM is considered in our simulations, for which
each Q3AP is solved with 5 random initializations and several
minutes of ILS iterations.

First we compare the upper bound and Monte-Carlo average
of the uncoded BER for different σ2 in Fig. 1 and Fig. 2.
Apparently, the BER upper bound in (4) appears to be a
descent indicator of the actual BER when comparing different
MoDiv schemes, and the Q3AP solution offers a substantial
performance gain over the other 2 schemes. For instance, at
low SNR regime Q3AP1 achieves almost the same uncoded
BER as NM2, and Q3AP3 is comparable to CR4.

In Fig. 3 and Fig. 4, the uncoded BER is plotted against
varying K under fixed σ2 = 18dB for m = 1, 2 and σ2 = 8dB
for m = 3, 4. A significant performance gain is observed for
all channel conditions ranging from heavily Rayleigh fading
(small K) to very light fading (large K).

As another practical performance measurement, the coded
BER performances of the three MoDiv schemes are compared
in a LDPC-coded system. A LDPC code of length L = 2400
and code rate r = 3/4 is used. To demonstrate the robustness
of our Q3AP-based MoDiv scheme against design parameter
mismatch, we optimize the remapping only for σ2 = 5dB
and test the coded BER for a wide range of σ2. As shown in
Fig. 5, despite of the mismatch in the design parameter σ2,
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Fig. 1. Analytical approximation results of uncoded BER.
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Fig. 2. Monte-Carlo simulation results of uncoded BER.
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Fig. 3. Analytical approximation results of uncoded BER.

our Q3AP-based MoDiv is still able to outmatches the other
two MoDiv schemes, especially in the more likely cases of a
smaller number of retransmissions. Specifically, the waterfall
curve of coded BER for Q3AP1 almost overlaps with that of
NM2, and Q3AP2 outperforms the other 2 schemes by around
1.7dB and 4dB, respectively. The average HARQ throughput
defined in [22] for the same LDPC coded system is also shown
in Fig. 6, which further verifies the performance gain of the
Q3AP-based MoDiv design approach.
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Fig. 4. Monte-Carlo simulation results of uncoded BER.
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Fig. 5. Coded BER. m = 1, 2 (top) and m = 3, 4 (bottom).
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Fig. 6. Average throughput.

V. CONCLUSION

In this work, we investigated the modulation diversity
(MoDiv) design problem for HARQ in a CoMP-MIMO sys-

tem. Aiming to minimize the bit error rate (BER) upper
bound, we formulated the MoDiv design into a quadratic three-
dimensional assignment problem (Q3AP), and presented an
efficient modified iterative local search (ILS) solution. Our
numerical tests demonstrate the performance advantage and
robustness of our MoDiv design over simply repeated use of
Gray mapping and an existing heuristic scheme.
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