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Abstract A linear program with linear complementarity constraints (LPCC) requires the minimization
of a linear objective over a set of linear constraints together with additional linear complementarity
constraints. This class has emerged as a modeling paradigm for a broad collection of problems, including
bilevel programs, Stackelberg games, inverse quadratic programs, and problems involving equilibrium
constraints. The presence of the complementarity constraints results in a nonconvex optimization prob-
lem. We develop a branch-and-cut algorithm to find a global optimum for this class of optimization
problems, where we branch directly on complementarities. We develop branching rules and feasibility
recovery procedures and demonstrate their computational effectiveness in a comparison with CPLEX.
The implementation builds on CPLEX through the use of callback routines. The computational results
show that our approach is a strong alternative to constructing an integer programming formulation using
big-M terms to represent bounds for variables, with testing conducted on general LPCCs as well as on
instances generated from bilevel programs with convex quadratic lower level problems.

Keywords linear programs with complementarity constraints · MPECs · branch-and-cut

1 Introduction

A linear program with linear complementarity constraints (LPCC), which minimizes a linear objective
function over a set of linear constraints with additional linear complementarity constraints, is a non-
convex, disjunctive optimization problem. In §1.1, we present the mathematical formulation of the general
LPCC we use throughout this paper. In §1.2, various existing algorithms designed for solving LPCCs
are reviewed. Most of these existing methods are only able to obtain a stationary solution and incapable
of ascertaining the quality of the solution. This is the major drawback for the existing solvers. In this
paper, we mainly focus on finding the global resolution of the LPCC, and we achieve this goal through
two steps:
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Step 1 Study various valid constraints by exploiting the complementarity constraints directly, and eval-
uate the benefit of these constraints on the value of the linear relaxation of the LPCC. We have
previously discussed valid constraints for the LPCC in [49], and we briefly recap these constraints
in §2.2.

Step 2 Propose a branch-and-cut algorithm to globally solve the LPCC problem, where cuts are derived
from various valid constraints studied in Step 1 and branching is imposed on the complementarity
constraints. A general LPCC solver has been developed based on this branch-and-cut approach, and
it is able to compete with the existing MIP-based solvers like CPLEX.

The branch-and-cut algorithm is introduced in §1.3, where we also outline the rest of the paper.

1.1 Statement of the Problem

We consider a general formulation of the LPCC in the form suggested by Pang and Fukushima [52].
Given vectors and matrices: c ∈ Rn, d ∈ Rm, b ∈ Rk, q ∈ Rm, A ∈ Rk×n, B ∈ Rk×m, N ∈ Rm×n and
M ∈ Rm×m, the LPCC is to find (x, y, w) ∈ Rn × Rm × Rm in order to solve to global optimality

minimize
(x,y,w)

cTx+ dT y

subject to Ax+By ≥ b
x ≥ 0

and 0 ≤ y ⊥ w := q +Nx+My ≥ 0

(1)

where a ⊥ b denotes perpendicularity between vectors a and b, i.e., aT b = 0. Without the orthogonality
condition y ⊥ w, the LPCC is a linear program (LP). The global resolution of the LPCC means the
generation of a certificate showing that the problem is in one of its 3 possible states: (a) it is infeasible,
(b) it is feasible but unbounded below, or (c) it attains a finite optimal solution. Note that problem (1)
is equivalent to 2m linear programs obtained by making each possible assignment for the complementary
variables: either yi = 0 or wi = 0 for each i = 1, . . . ,m; hence, it is not possible for an LPCC to have a
finite optimal value that is not attained.

If the feasible regions for y and w are bounded then there exist diagonal matrices Θy and Θw with
diagonal entries θyi and θwi and problem (1) can be formulated as a mixed integer program:

minimize
(x,y,z)

cTx+ dT y

subject to Ax+By ≥ b
x ≥ 0
0 ≤ y ≤ Θyz
0 ≤ q +Nx+My ≤ Θw(1− z)

and z ∈ {0, 1}m

(2)

The obvious drawback of this formulation is that in order to find θyi and θwi we need to compute valid
upper bounds of yi and wi, not to mention such upper bounds may not exist if the feasible regions
for y and/or w are unbounded. To avoid this drawback, in this paper, we present a branch-and-cut
algorithm which branches on the complementarity constraint directly. Previous work on branching on
complementarity constraints includes [11,19,30].

Problem (1) generalizes the standard linear complementarity problem (LCP) [14]: 0 ≤ y ⊥ q+My ≥ 0,
so the LPCC is NP-Hard. Moreover, affine variational constraints also lead to the problem (1) [46].
Applications of the LPCC are surveyed in [33]. Among these applications, complementarity constraints
play three principal roles during the modelling process:

1. Modelling KKT optimality conditions that must be satisfied by some of the variables. Such appli-
cations include hierarchical optimization such as Stackelberg games [55], inverse convex quadratic
programs, indefinite quadratic programs [27,31], and cross-validated support vector regression [42,
43].

2. Modelling equilibrium constraints. See for example the texts [16,46], the survey article [51], or a
recent paper on market equilibrium in electric power markets [24].

3. Modelling certain logical conditions that are required by some practical optimization problems. Such
applications include non-convex piecewise linear optimization, quantile minimization [53], and `0-
minimization [13,21].
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1.2 Previous Work on Solving LPCCs

Research on algorithms for solving an LPCC can be divided into two main areas: one concerns the
development of globally convergent algorithms with a guarantee of finding a suitable stationary point;
the other concerns the development of exact algorithms for global resolution of an LPCC. See the
survey [39] for a more detailed review.

It is noted that the methods which are able to solve a general LCP can also be extended to solve
an LPCC by using the so called sequential LCP Method. Such a procedure can be found in detail
in [40]. A complementary pivoting algorithm for an LPCC is an extension of a pivoting algorithm for
LCP which handles linear complementarity constraints just as the classic simplex algorithm for linear
programs. Such algorithms usually perform in this way: start from a feasible solution, maintain feasibility
for all iterations and try to improve the objective function. Under certain constraint qualifications, these
methods guarantee convergence to a certain stationary solution. The references [17,26,36] study and
implement this type of method to solve the general LPCC. Another way to get a stationary point is
through a so called regularization framework [54]: construct a sequence of relaxed problems controlled
by some parameter, then obtain a sequence of solutions which converge to a stationary point when the
parameter goes to the limit. Each regularized relaxed problem is solved by an NLP based algorithm such
as an interior point method. One method of regularization is to introduce a positive parameter φ and
relax the complementarity constraints in problem (1) using either {y, w ≥ 0, yTw ≤ φ} or some other
approach [13,21]. An alternative is to put a penalty for violation of the complementarity constraints
into the objective, and gradually update the penalty to infinity [44]. A homotopy method has also been
proposed [57]. The obvious drawback of these methods is that they are incapable of ascertaining the
quality of the computed solution.

The methods for global resolution of an LPCC are mainly based on an enumerative scheme. Sev-
eral branch-and-bound methods have been proposed for solving an LPCC derived from a bilevel linear
program. Bard and Moore [10] proposed a pure branch-and-bound method for solving bilevel linear pro-
grams. Hansen et al. [29] enhance this branch-and-bound scheme by exploiting the necessary optimality
condition of the inner problem. As opposed to a branch-and-bound method, the references [34,38] study
alternative ways to solve an LPCC by using a cutting plane method. Audet et al. [6] proposed a branch-
and-cut algorithm for solving bilevel linear programs. An RLT method for finding a feasible solution to a
problem with both binary and complementarity constraints is proposed in [24]. It follows from the results
of [8] that an LPCC can be lifted to an equivalent convex optimization problem so it can in principle
be solved globally using a convex optimization algorithm; the drawback to this approach is that the
convexity is over the cone of completely positive matrices which is hard to work with computationally.

It is noted that most of the existing methods for global resolution of the LPCC presume the LPCC
has a finite optimal value, and this limitation was not resolved until the paper [32]. In that paper, the
authors proposed a minimax integer programming formulation of the LPCC, and solve this system using a
Benders decomposition method. The method was extended to quadratic programs with complementarity
constraints in [7]. A branching scheme for determining boundedness of the optimal value of a linear
program with a bilinear objective function was proposed in [5].

The success of the Benders decomposition method [7,32] heavily depends on a so called sparsification
process. If the sparsification process is not successful, in the worst case it will be necessary to check
every piece of the LPCC. In this paper, we alternatively use a specialized branch-and-cut scheme which
is a more systematic enumerative process to get the global resolution of the LPCC, and our algorithm
is also able to characterize infeasible and unbounded LPCC problems as well as solve problems with
finite optimal value. Moreover we also discuss various valid constraints for the LPCC by exploiting the
complementarity structure; this topic has not been fully exploited in the literature for studying the
LPCC.

The complementarity structure of an LPCC can be generalized to SOS1 constraints, a type of special
ordered set constraint requiring that at most one of a set of variables is nonzero. Recent work on branch-
and-cut approaches to problems with SOS1 constraints include [20,22]. De Farias et al. [20] considered
problems where all the coefficients are nonnegative and their emphasis is on possible families of cut-
ting planes using a sequential lifting procedure. Fischer and Pfetsch [22] emphasize cuts and branching
techniques for problems with overlapping SOS1 constraints, that is, sets of complementarity constraints
that have variables in common; this structure can be represented with conflict graphs and can be ex-
ploited in the derivation of valid cutting planes and in the construction of sophisticated branching rules
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building on the ideas of Beale and Tomlin [11]. In our formulation, each variable appears in at most one
complementarity constraint, so the nice techniques of Fischer and Pfetsch would not be helpful.

1.3 LPCC using Branch-and-Cut

In this paper, we propose a branch-and-cut algorithm for solving the general LPCC problem (1). In §2,
we describe the preprocessing phase of our algorithm: in §2.1, a heuristic feasibility recovery procedure is
developed to recover a feasible solution of the LPCC which provides a valid upper bound of the LPCC;
and in §2.2, the strategy of generating and selecting from various types of cutting planes we studied in [49]
is discussed, which could sharpen the LP relaxation and improve the initial lower bound of LPCC. In §3,
we present the second phase of our algorithm: branch-and-bound. Various node selection strategies and
branching complementarity selection strategies are discussed in §3.1 and §3.2. Our proposed algorithm
is able to characterize infeasible and unbounded LPCC problems as well as solve problems with finite
optimal value. The algorithm is summarized in §4. In §5, we show the computational results of our
branch-and-cut algorithm on solving randomly generated LPCC instances.

In the MIP formulation (2), the binary vector z is only used to model the complementary relationship
of the LPCC, and except for the complementarity constraints it does not interact with x and y at
all. This observation motivates us to enforce the complementarities through a specialized branching
scheme, i.e., branch on complementarities directly without introducing the binary vector z. This kind of
specialized branching approach has been studied to solve several problems such as generalized assignment
problems [18], nonconvex quadratic programs [56], nonconvex piecewise linear optimization problems [41],
and problems with overlapping SOS1 constraints [20,22]. The obvious advantage of using a specialized
branching approach for solving the LPCC is that we no longer need θ in the formulation, and therefore
this approach is also applicable for the case when y or w is unbounded. In fact, even if we know such a θ
exists, the cost of computing a valid θ could be very expensive especially when m is very large. Moreover,
introducing the binary vector z will lead to an increase in both the number of variables and the number
of constraints, and these Big-M type constraints are usually not tight which will lead to a number of
violated complementarities in the solution of the relaxation.

2 Preprocessing Phase

When the initial LP relaxation is bounded below, the preprocessing phase will be invoked, consisting
of a feasibility recovery process and a cutting plane selection and management process. The feasibility
recovery process may provide a valid upper bound for the LPCC, while the cutting plane selection and
management process may provide a better lower bound for the LPCC. Both processes may provide a
good starting point for the second phase of our algorithm: branch-and-bound.

2.1 LPCC Feasibility Recovery

Finding a good feasible solution to an LPCC is an essential component of our branch-and-cut algorithm
for globally resolving the LPCC. A good upper bound can help prune nodes quickly, and avoid unnec-
essary branching. Notice that here we assume the initial LP relaxation is bounded when we apply our
feasibility recovery procedures. Our feasibility recovery procedures have some similarities to feasibility
pumps for MIP and MINLP [23].

For ease of discussion, we first introduce some notation and definitions.

Definition 1 Given any binary vector z with dimension m, we define the linear program LPCC(z) as
follows:

minimize
(x,y)

cTx+ dT y

subject to Ax+By ≥ b
x ≥ 0
0 ≤ y
0 ≤ q +Nx+My
0 ≥ yi if zi = 0
0 ≥ (q +Nx+My)i if zi = 1.

(3)
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LPCC(z) is a so-called piece of the LPCC corresponding to the binary vector z.

Definition 2 The feasibility gap of the piece of an LPCC corresponding to the binary vector z, denoted
by FG-LPCC(z), is the optimal value of the following linear program:

minimize
(x,y,w)

(1− z)T y + zTw

subject to Ax+By ≥ b
x ≥ 0
0 ≤ y
0 ≤ w := q +Nx+My

(4)

where 1 is the vector with all components equal to 1.

Based on the above two definitions, it is obvious that the following proposition is true:

Proposition 1 LPCC(z) is feasible if and only if FG-LPCC(z)=0

Definition 3 Binary vectors z and z′ are adjacent if there is exactly one component that is different
between z and z′.

Definition 4 If binary vectors z and z′ are adjacent and FG-LPCC(z) < FG-LPCC(z′), then ∆z = z−z′
is a feasibility gap descent direction for z′.

Just like mixed integer programs, it is often a good idea to recover a feasible solution based on
the LP relaxation solution. The most intuitive recovery process is to round the LP relaxation solution
into a solution that satisfies all the complementarity constraints. We use this rounding procedure to
initialize a new local search feasibility recovery process, detailed in Procedure 1. Notice that we define
search breadth as the number of candidates that we are going to select from binary vectors which are
adjacent to the initial z∗, and search depth as the maximum number of iterations that we are going
to perform for each candidate. We can set search breadth and search depth to control the local search
process. The proposed local search procedure can be used to find a feasible solution, although the quality
of the recovered feasible solution is not guaranteed. We use optimality based bound tightening [28,47,
58] to resolve this issue, refining the local search feasibility recovery procedure through the addition of
the constraints lbsearch ≤ cTx+ dT y ≤ ubsearch to (4) when computing the feasibility gap. Procedure 2
describes this refined feasibility recovery procedure. We will demonstrate the computational results of our
proposed local search feasibility recovery process in §5. See Fischer and Pfetsch [22] for primal heuristics
that can be used when a variable appears in more than one complementarity constraint.

2.2 Cutting Plane Generation and Selection

The second key step in our preprocessing phase is the generation and selection of cutting planes. We have
discussed various valid linear constraints and second order cone constraints that can be used to tighten
the initial relaxation of LPCC in [49], and have shown the computational results of these valid constraints
individually. As important as finding these cutting planes is the selection of the cuts that actually should
be added to the initial LP relaxation. In this section, we will describe our detailed procedure to generate
and select our cutting planes. Note that we will only add cutting planes at the root node, and perform
the generation of each type of cut in rounds and in the following order:

– Disjunctive cuts and Simple cuts
– Bound cuts
– Linear cuts derived from second order cone constraints

We use the computational results with these cutting planes in [49] to guide the cut generation process.
The details of generation and selection rule are described as follows.

5



input : the LP relaxation solution of the original LPCC: x∗, y∗, w∗, search depth parameter depth, search
breadth parameter breadth

output: recovered feasible LPCC solution or failed to recover the solution

Initialization: Set binary vector z∗ = 0;
for i← 1 to m do

if y∗i < w∗i then z∗i =0;
else z∗i =1;

end
Solve (4) to get FG-LPCC(z∗);
if FG-LPCC(z∗)==0 then

solve LPCC(z∗), and return the optimal solution to LPCC(z∗);
end
else

let A(z∗) denote the set of binary vectors that are adjacent to z∗;
foreach z ∈ A(z∗) do

solve (4) to get FG-LPCC(z);
insert z into a sorted queue Q with nondecreasing order on FG-LPCC(z);

end
Let rb = 0;
while Q is not empty and rb ≤ breadth do

rb = rb + 1;
pop the top element z̄ in Q, and delete this element from Q;
let z = z̄ and rd = 0;
while there exists any feasibility gap descent direction ∆z for z and rd ≤ depth do

pick a feasibility gap descent direction ∆z;
z = z +∆z;
rd = rd + 1;

end
if FG-LPCC(z)==0 then

solve LPCC(z), and return the optimal solution to LPCC(z);
end

end

end
return feasibility recovery failed;

Procedure 1: Local search feasibility recovery process

input : the known valid upper bound of LPCC ubinitial, parameter searchGapmin

output: refined feasible LPCC solution or failed to refine the known feasible solution

Initialization: Set lbsearch =optimal value of the LP relaxation of LPCC and ubsearch = ubinitial; add
lbsearch ≤ cT x+ dT y ≤ ubsearch into (4);
while ubsearch − lbsearch > searchGapmin do

solve LP relaxation of LPCC with constraints lbsearch ≤ cT x+ dT y ≤ ubsearch ;
apply Procedure 1 to recover a feasible solution;
if recovery process succeed then

update the refined feasible solution with recovered solution;
update ubsearch with the newly recovered solution;
ubsearch = (lbsearch + ubsearch)/2;

end
else

lbsearch = (lbsearch + ubsearch)/2;
end

end
if refined feasible solution has been updated then

return refined feasible solution
end
else

return feasibility refinement failed
end

Procedure 2: Refined local search feasibility recovery process
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2.2.1 Disjunctive cuts and simple cuts

These cuts exploit the disjunctive constraints: for each i, either yi ≤ 0 or wi ≤ 0. The solution to the LP
relaxation typically violates a number of these disjunctions, and disjunctive cuts can either be generated
by solving a supplemental linear program, or by examining the optimal tableau for the LP relaxation.
Based on our computational experience, it seems that general disjunctive cuts and simple cuts [9,4,6] are
the weakest cuts among our three type of cutting planes, but they are the cheapest to generate. Therefore
we generate this type of cut first. The solving time of CPLEX for our test instances became worse when
we added all of the generated disjunctive cuts or simple cuts to the root node even though the value of
the initial LP relaxation was improved by these cuts, because the initial LP became too large. Moreover,
due also to the high cost of generating general disjunctive cuts, we only generate bm/100c rounds of
general disjunctive cuts and for each round we only generate at most 3 general disjunctive cuts instead
of generating disjunctive cuts for each violated complementarity constraint.

The values of yiwi in the optimal solution to the LP relaxation are sorted in nonascending order and
we select complementarity constraints with index that corresponds to the largest three products. After
each round of generating cuts, we will remove every cut whose corresponding slack variable is basic in the
relaxed LP, in order is to keep the size of the relaxed LP small. After generating the general disjunctive
cuts, bm/10c rounds of simple cuts will be added. Since a simple cut is derived from the simplex tableau
with almost no cost, we will generate simple cuts for every violated complementarity constraint in each
round, and also remove every cut whose corresponding slack variable is basic in the relaxed LP after
each round of generating cuts.

2.2.2 Bound cuts

Upper bounds uyi and uwi on yi and wi can be used in the bound cut

uwi yi + uyiwi ≤ uwi u
y
i (5)

for any pair of complementary variables yi and wi. Strengthening the upper bounds seems very important
for the branch-and-bound routine of CPLEX for solving our instances, and the bound cuts also improve
the initial lower bound dramatically. However, the major drawback of bound cuts is that they are
very expensive to generate, especially when m, the number of complementarity constraints, is very large.
Therefore, we will only compute bounds for at most 5 pairs of complementary variables, and the selection
of these complementary variables is the same as the selection of complementarity constraints to generate
disjunctive cuts. An upper bound uyi for yi can be found by solving the linear program

uyi = maximize
(x,y,w)

yi

subject to Ax+By ≥ b
x ≥ 0
0 ≤ y ≤ uy
0 ≤ q +Nx+My = w ≤ uw
cTx+ dT y ≤ ub
uwj yj + uyjwj ≤ uwj u

y
j ∀ j with known bounds uyj , u

w
j

(6)

where ub is a known upper bound on the optimal value of the LPCC. A similar LP can be constructed
to get bounds on w.

We also investigated improving the bound cuts by splitting the variables. In particular, two versions of
problem (6) could be solved, one with the additional constraint yk = 0 and the other with the additional
constraint wk = 0, for some index k 6= i. The maximum of the optimal values of these two problems could
potentially improve on the initial upper bound. For our test instances, the additional computational work
involved in computing these improved bounds did not improve the overall computational time, so this
splitting is not included in our results.

2.2.3 Linear cuts from second order cone constraints

Based on the computational results of [49], cuts derived from a certain second order cone constraint can
significantly improve the initial lower bound of our instances with relatively low generating cost compared
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to bound cuts when n << m, provided M is positive semidefinite. These cuts arise from linearizing the
term yTNx, using McCormick inequalities [48] to tighten the linearization, and handling the yTMy term
appropriately. Details can be found in [50]. The constraints can be tightened by refining bounds. We
did not use these cuts in the computational results reported in this paper, because of difficulties with
ensuring M was regarded as numerically positive semidefinite by CPLEX.

2.3 Overall Flow of the Preprocessor

The preprocessor consists of the following steps:

1. Apply the feasibility recovery routine to recover a feasible solution.
2. Generate bm/100c rounds of general disjunctive cuts.
3. Generate bm/10c rounds of simple cuts.
4. Apply 4 bound refinements and generate bound cuts.

We apply Procedures 1 and 2 as the default feasibility recovery procedure due to run time consider-
ations. Other feasibility recovery procedures and refinements can also be invoked if required for solving
special classes of problems. The number of rounds for generating each type of cutting plane can be mod-
ified by changing the parameter settings. The current setting is based on the computational experience
in [49].

An additional preprocessing procedure undertaken at each node is the complementary variable fixing
process, which is detailed in §3.3.

3 Branch-and-Bound Phase

The branch-and-bound routine needs to be invoked to solve the problem exactly if the initial LP relaxation
is unbounded or the preprocessing phase is unable to close 100% of the gap for the bounded case. The
branching is imposed on the complementarity constraint directly, and two subproblems (nodes) will
be generated by enforcing either side of the pair of complementary variables to its lower bound zero.
Just like a branch-and-bound based MIP solver, there are two key ingredients in our branch-and-bound
routine: branching complementarity selection and node selection. Branching complementarity selection
is the procedure to select the complementarity constraint to be branched on, and it is the same as the
“variable selection” in mixed integer programming. In §3.1, we present our branching strategy which is
based on the ideas of three classic branching rules and also some new proposed ideas designed for the
LPCC problem. Node selection is the procedure to select the next subproblem from the node tree to be
processed. In §3.2, we will present and compare different node selection strategies. Besides these two key
ingredients, in §3.3 we will describe the node pre-solving procedure used in our algorithm to pre-process
the nodes during the branch-and-bound process. The general branch-and-bound routine for handling the
bounded case and unbounded case of LPCC are described in §4.1 and §4.2 respectively.

3.1 Branching Complementarity Selection

The branching rule is the key ingredient of any branch-and-bound algorithm. Good branching strategies
are extremely important in practice for solving mixed integer programs, although currently there is
no existing theoretical best branching strategy. We will first present three classic branching strategies
for solving mixed integer programs that have been studied in the literature. The reader can refer to
Linderoth and Savelsbergh [45], Fügenschuh and Martin [25] and Achterberg et al [2] for a comprehensive
study of branch-and-bound strategies for mixed integer programming. We will present our branching
strategy based on the ideas of these branching strategies. The computational results that compare various
branching strategies will be shown in §5.

We first give some definitions related to our branching routine for the LPCC problem. For easy
discussion, if the LP relaxation of the LPCC is unbounded below, we represent its lower bound as −∞.
Suppose that we have an LPCC problem Q and the set I is the index set of complementarity constraints.
If the current solution to the LP relaxation of Q is not a feasible solution to LPCC (for the unbounded
case,we consider an unbounded ray of the LP relaxation instead of solution to the LP relaxation), then
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we can pick an index i ∈ I with yiwi > 0 and obtain two subproblems (nodes): one by adding the
constraint yi ≤ 0 (named the left child node, denoted by Qyi ) and one by adding the constraint wi ≤ 0
(named the right child node, denoted by Qwi ). We refer to this as branching on complementarity i. For
the bounded case, if we denote the objective value of the LP relaxation of Q as cQ and the objective
value of the LP relaxation of its two child nodes as cQy

i
and cQw

i
respectively, then the objective value

changes caused by branching on the ith complementarity are ∆y
i = cQy

i
− cQ and ∆w

i = cQw
i
− cQ. We

usually use the improvement of objective value of the LP relaxation to measure the quality of branching
on the ith complementarity. Our implementation supports fixing multiple complementarity constraints
at one time, but by default we will only select to branch on one complementarity. Based on the results
of testing our instances and the computational results of solving various MIP problems in the literature,
multiple way branching is rarely better than two way branching.

The generic procedure for selecting the branching complementarity can be described in Procedure 3.
The score function in Step 2 of this procedure needs to evaluate the two child nodes that could be

input : the LP relaxation solution of the current processing node Q or the unbounded ray to the LP relaxation if
the LP relaxation is unbounded: x∗, y∗, w∗

output: the selected branching index i ∈ I of a complementarity constraint

1. Let Ĩ = {j ∈ I | y∗j w∗j > 0} denote the index set of violated
complementarity constraints.

2. Compute a branching score sj ∈ R+ for all candidates j ∈ Ĩ.
3. Select the selected branching index i ∈ Ĩ with si = maxk∈Ĩ{sk}.

Return selected branching index i.

Procedure 3: Generic complementarity selection procedure

generated by the branching, and map these two effectiveness values onto a single score value. Different
choices for the effectiveness values are given later. Suppose qy and qw are the effectiveness values of the
two child nodes generated by a branching. In the literature, the score function usually has one of the
following forms:

score(qy, qw) = (1− µ) ·min{qy, qw}+ µ ·max{qy, qw} (7)

or

score(qy, qw) = max{qy, ε} ·max{qw, ε} (8)

Here µ is a number between 0 and 1, and it is usually an empirically determined constant or a dynamic
parameter adjusted through the course of branching process. We chose ε = 10−6 to enable the comparison
when either qy or qw is zero. Based on the computational experience in [1], the product form is superior
to the weighted sum form for solving MIP problems. Therefore, in our algorithm, we chose to use the
product form to map the effectiveness values from two child nodes onto a single value.

In the following we will present three classic branching strategies for solving an MIP in terms of our
branching on complementarity scheme: Strong Branching (apparently originally developed in the work
leading up to [3]), Pseudocost Branching [12] and Inference Branching [1]. In fact, all of these branching
routines are just variants of Procedure 3 with different score functions.

3.1.1 Strong branching

The idea of Strong Branching [3] is to test the branching candidates by temporarily enforcing either side
of a complementarity constraint and solving the resulting LP relaxation to a certain level, then select the
one that can lead to the largest lower bound improvement. Full Strong Branching will compute ∆y

i and
∆w
i for each branching complementarity candidate i ∈ Ĩ, and use the score(∆y

i , ∆w
i ) as the effectiveness

values in the form of either (7) or (8) as its score function. Full Strong Branching can be seen as the
locally best branching strategy in terms of lower bound improvement. However the computational cost of
Full Strong Branching is very high, since in order to evaluate the score function for each complementarity
candidate, we need to solve two resulting LP relaxations to optimality. There are usually two ways to
speed up Full Strong Branching : one is to only test a subset of the candidate set instead of considering
all the candidates, and another is to perform a limited number of simplex iterations and estimate the
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objective value change based on that. In our branch-and-bound algorithm, we have implemented the Full
Strong Branching routine, and also we adopt the former idea to speed up the Full Strong Branching :
as long as the objective value of LP relaxation of either side of the child nodes hits some threshold, we
will select this branching candidate and exit the selection routine; we set the median value of the lower
bound of unsolved nodes in the current search tree as this threshold.

A version of strong branching was used by Fischer and Pfetsch [22] in their branch-and-cut approach
for problems with overlapping SOS1 constraints.

3.1.2 Pseudocost branching

Pseudocost Branching [12] uses the branching history to estimate the two objective changes of the child
nodes without actually solving them. In other words, Pseudocost Branching is a branching rule based
on the historical performance of complementarity branching on complementarities which have already
been branched. Let ςyi and ςwi be the objective gain per unit change at node Q after branching on
complementarity i by enforcing yi or wi to zero, that is

ςyi =
∆y
i

y∗i
and ςwi =

∆w
i

w∗i
(9)

where y∗i and w∗i are the violation of complementarity i corresponding to the LP relaxation solution of Q.
Let σyi denote the sum of ςyi over all the processed nodes where complementarity i has been selected
as the branching complementarity and resulting child node Qyi has been solved and was feasible. Let
ηyi denote the number of these problems, and define σwi and ηwi in the same way for the other side of
the complementarity. Then the pseudocost of branching on complementarity i can be calculated as the
arithmetic mean of objective gain per unit change:

Ψyi =
σyi
ηyi

and Ψwi =
σwi
ηwi

(10)

Therefore given the violated complementarity i corresponding to the LP relaxation of Q, it is reasonable
to use Ψyi · y∗i and Ψwi · w∗i to estimate ∆y

i and ∆w
i respectively. We call the branching rule that uses

the score function score(Ψyi · y∗i , Ψwi · w∗i ) in step 2 of Procedure 3 as Pseudocost Branching. Notice
that at the beginning of the branch-and-bound procedure, the pseudocost is uninitialized for all the
complementarities. One way to handle a complementarity with an uninitialized pseudocost is to replace
its pseudocost with the average of the pseudocosts of the complementaries whose pseudocosts have been
initialized, and set the pseudocost as 1 if all the complementarities are uninitialized. Applying strong
branching to the nodes whose tree depth level is less than a given level is another way to initialize
the pseudocosts. More recently, Achterberg et al [2] proposed a more general pseudocost initialization
method, and named the corresponding branching rule as Reliability Branching. In our implementation,
we include the pseudocost as part of our branching score, and we choose to apply strong branching to
nodes whose tree depth level is less than 7 to initialize the pseudocost.

3.1.3 Inference branching

The branching decision of strong branching and pseudocost branching are both based on the change of
objective value of the LP relaxation, while Inference Branching [1] is quite different from the above two
branching strategies. Inference Branching checks the impact of branching on changing the bounds of
other variables. As with pseudocosts, historical information is typically used to estimate the deductions
on bounds of the variables, and the inference value can be calculated as the arithmetic mean of the
number of bound deductions. The domain propagation process is a node pre-solving process to detect
the bound change of the variables and is discussed in §3.3. In our implementation, we use a similar
idea to inference branching: instead of evaluating the inference value, we estimate the complementarity
satisfaction level after branching on a complementarity, leading to the quantity sSLi below.
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3.1.4 Hybrid branching strategy for the LPCC (bounded case)

Our branching strategy for the bounded case combines the ideas of the above three classic branching
strategies, and additionally we also include some new score values into our branching score function
which are specialized for the LPCC problem.

In our implementation, the default branching strategy will apply the full strong branching strategy for
the nodes whose depth level are no larger then 7. The reason for doing that is because it is usually quite
important to make the right branching decision at the beginning, and also we can use strong branching
to initialize the pseudocosts and another score value that we will propose next. For the nodes whose tree
depth are larger than 7, we will use a weighted sum formula to combine four score values for each violated
complementarity. Among these four score values, two of them are only based on the current node Q, and
the other two are based on historical branching information. For the violated complementarity i, these
four score values are listed as follows:

1. sV Li : score of Violation Level. Suppose y∗i and w∗i are the violation of complementarity i corresponding
to the LP relaxation of Q, then we define

sV Li =
√
y∗i · w∗i

2. sEDi : score of Euclidean Distances from the LP relaxation solution of Q to the two hyperplanes
corresponding to yi = 0 and wi = 0. Recall that since y∗i ·w∗i > 0, we can represent the complementary
variables yi and wi with the non-basic variables in the optimal simplex tableau of Q

yi = y∗i −
∑
j∈NB

ayij ξj (11)

wi = w∗i −
∑
j∈NB

awij ξj (12)

We use the Euclidean distance from the LP relaxation solution to the two hyperplanes∑
j∈NB

ayij ξj = y∗i and
∑
j∈NB

awij ξj = w∗i

to define sEDi as follows:

sEDi =

√
y∗i · w∗i√
‖ayi‖ · ‖awi‖

3. sPCi : score of Pseudo Cost. We use the following small modification to the pseudcost calculation
of §3.1.2:

sPCi =
√

max{Ψyi · y∗i , ε} ·max{Ψwi · w∗i , ε}

4. sSLi : score of complementarity Satisfaction Level. We define the complementarity satisfaction level as
the proportion of the satisfied complementarities corresponding to the LP relaxation solution of the
child node after branching. Intuitively we want to select a branching complementarity that will lead
to more satisfied complementarities. To estimate this complementarity satisfaction level, we collected
the historical information to compute the average complementarity satisfaction level for both sides
of the complementarity

Φyi =
ϕyi
ηyi

and Φwi =
ϕwi
ηwi

Here ϕyi is the sum of the proportion of complementarity satisfaction levels over all the prior nodes,
where complementarity i has been selected as the branching complementarity, and ηyi is the total
number of these nodes. We define ϕwi and ηwi to be the analogous value for the other side of comple-
mentarity. Then the score of the complementarity Satisfaction Level can be calculated as

sSLi =
√
Φyi · Φwi

11



We scale the score vectors using their 2-norms, and the following formula is the branching score function
that we used to evaluate the score for each violated complementarity:

si = ωV L
(

sV Li
‖sV L‖

)
+ ωED

(
sEDi
‖sED‖

)
+ ωPC

(
sPCi
‖sPC‖

)
+ ωSL

(
sSLi
‖sSL‖

)
(13)

By default, the weight is set as ωV L = 1, ωED = 0.5, ωPC = 0.25 and ωSL = 0.5. Note that setting
different weights for each score value will lead to different branching behaviour. In §5.2, we will show the
computational results of solving our LPCC instances with different weights of the score value.

3.1.5 Hybrid branching strategy for LPCC (unbounded case)

Our branching strategy for the unbounded case is slightly simpler than the one for the bounded case. We
will still apply full strong branching to the nodes whose tree depth level is no larger than 7. However,
for the remaining unbounded nodes we will only use sV Li as the branching score to make the branching
decision.

3.2 Node Selection

In addition to selecting which complementarity to branch on, another question is which subproblem
(node) we should pick to process. There are two major criteria for selecting the next subproblem to be
processed.

1. finding feasible LPCC solutions to improve the upper bound of the LPCC problem which leads to
pruning the nodes by bounding, leading to a Depth First Search strategy.

2. improving the lower bound as fast as possible, leading to a Best-Bound strategy.

In our implementation of the branch-and-bound routine we use a Best-Bound strategy to select the
next node to be processed, since we want to solve the problem to optimality as fast as possible. Notice
that for the Best-Bound, it is possible that there are several nodes with the same lower bound. For that
case, we will select the most recently generated node as the next node to be processed.

3.3 Node Pre-solving

The major task of our node pre-solving procedure is to tighten the domains of complementary variables
yi and wi and try to fix the complementary variables. In order to facilitate the discussion, here we can
assume that each ξi in (11) and (12) is a non-negative variable with zero lower bound. Therefore we have
the following result: if ayij ≤ 0,∀j ∈ NB, then we have yi ≥ ŷi, and therefore wi = 0; if awij ≤ 0,∀j ∈ NB,
then we have wi ≥ ŵi, and therefore yi = 0. This complementary variable fixing check is performed before
we branch on the complementarity constraint.

4 General Scheme of the Branch-and-Cut Algorithm for Solving LPCC

The preprocessing routines are only invoked if the the initial LP relaxation of the LPCC has a bounded
optimal value; we refer to this as the “bounded case”. If the initial relaxation does not have a finite
optimal value then we are in the “unbounded case”. For the bounded case, the preprocessing procedure
is applied first to tighten the initial LP relaxation, then the branch-and-bound routine is invoked to solve
the LPCC to optimality; for the unbounded case, we will only apply the branch-and-bound routine, which
gives unbounded nodes higher priority than bounded nodes. A flow diagram of the overall algorithm is
given in Figure 1. The initialization step 0 sets the upper bound z̄ = +∞, the lower bound z = −∞, the
unbounded node list L̄ = ∅, and the bounded node list L = ∅. If the LP relaxation of the initial problem
is feasible then the initial problem is added to L or L̄ in box 1, as appropriate. Boxes 2, 4, 6, 8, 10, 12,
and 14 corresponding to the bounded case are the subject of §4.1, with the unbounded case boxes 3, 5,
7, 9, and 11 explained in §4.2. Box 13 is discussed in §4.3.
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Fig. 1 Flow chart of branch-and-bound procedure

4.1 Overall Flow of Branch-and-Bound for LPCC (Bounded Case)

In the bounded case, the algorithm is quite similar to the branch-and-bound routine for a mixed integer
program. If it is determined in box 1 that the initial LP relaxation is bounded then we implement a more
detailed preprocessing step in box 2, as discussed in §2. In box 4, we apply Best-Bound to pick the next
node LPCCi from L to be processed and delete LPCCi from L. The node presolving procedure from
§3.3 is implemented in box 6. The branching strategy of Section 3.1.4 is used in box 8 to select branching
complementarity j. Fathoming and pruning is performed in box 10 as follows:

Fathoming and pruning: Generate two child nodes by enforcing either yj = 0 or wj = 0 and solve
LP relaxations. For each child node:
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1. If LP relaxation solution is feasible in LPCC with objective z∗ then delete child node. Set
z̄ ← min{z̄, z∗}.

2. If LP relaxation is feasible with objective z∗ < z̄ then set the lower bound of child node as z∗

and add child node to L.
3. If LP relaxation feasible with objective z∗ ≥ z̄ or infeasible then delete child node.

The lower bound is updated in box 12. The procedure is terminated in box 14 if there are no more nodes
in the set L or if the gap between the upper and lower bound is sufficiently small.

4.2 Overall Flow of Branch-and-Bound for LPCC (Unbounded Case)

The branch-and-bound routines for solving mixed integer programs in existing MIP solvers like CPLEX
usually assume the initial LP relaxation is bounded below. Even if the initial LP relaxation is unbounded,
it is still treated as bounded below by adding an objective lower bound constraint with a very large
negative number (−1020) as its lower bound. However, our branch-and-bound routine for handling the
unbounded case of the LPCC is quite different. If the LP relaxation of a node is unbounded, we will
treat this node as an unbounded node and add it to the unbounded node list. If the unbounded node list
is non-empty, our branch-and-bound routine will always process a node in the unbounded node list first.
Notice that when we find an unbounded ray that satisfies all the complementarities, we need to check
whether this is a feasible ray to the LPCC. The LPCC is feasible with unbounded objective value if and
only if we find an unbounded feasible ray to the LPCC.

If the set L̄ of unbounded nodes is empty in box 3 then we return to the bounded case in box 4,
constructing an appropriate lower bound z. In box 5, we select the node LPCCi that is the most recently
generated from L̄ to be processed and delete LPCCi from L̄. The branching strategy of Section 3.1.5 is
used in box 7 to select branching complementarity j. Fathoming and pruning for an unbounded node is
performed in box 9 as follows:

Fathoming and pruning: Generate two child nodes by enforcing either yj = 0 or wj = 0 and solve
LP relaxations. For each child node:
1. If LP relaxation solution is feasible in LPCC with objective z∗ then delete child node. Set
z̄ ← min{z̄, z∗}.

2. If LP relaxation is feasible with objective z∗ < z̄ then set the lower bound of child node as z∗

and add child node to the bounded node list L.
3. If LP relaxation feasible with objective z∗ ≥ z̄ or infeasible then delete child node.
4. If LP relaxation is unbounded and the unbounded ray is not a feasible ray to LPCC then add

this child node to the unbounded node list L̄.
5. If LP relaxation is unbounded and the piece of LPCC corresponding to that ray is feasible

then the LPCC is unbounded.

If an unbounded piece is found in box 11 then the algorithm can be terminated; otherwise we loop back
to box 3.

4.3 The Complete Overall Scheme

A flow chart of the algorithm is exhibited in Figure 1. Each of the three possible problem states can be
returned in the termination box 13. If an unbounded feasible ray to the LPCC is found then the LPCC is
feasible with unbounded objective value. If the LPCC is not unbounded and an LPCC feasible solution is
found then the LPCC attains a finite optimal solution with optimal objective z̄. Otherwise, the problem
is infeasible.

5 Computational Results

In this section, we will present the computational results of using our proposed branch-and-cut algorithm
to solve various LPCC instances. All procedures and algorithms are developed in the C language with
the CPLEX callable library, and all LPs and convex quadratic constraint programs are solved using

14



m rankM Average gap Optimal found out of 10
100 30 0.09% 5
100 60 0.22% 2
150 30 0.0 % 10
150 100 0.06% 3
200 30 0.0 % 10
200 120 0.07% 2

Table 1 Average Computational Results of Feasibility Recovery with n = 2, k = 20. The column “Average gap” is

calculated as
LBrecovered − LPCCopt

LPCCopt
. Detailed results can be found in Table 5 in Appendix A.

CPLEX 12.6.2. We implement our algorithm through the addition of callback routines to CPLEX. As
an alternative to our approach, CPLEX allows the modeling of complementarity constraints through the
use of indicator constraints; we compare the computational performance of our algorithm with that of
using default CPLEX 12.6.2 to solve indicator constraint formulations of these LPCC instances, with
our preprocessor used for both approaches. Except for a few preliminary tests discussed in §5.2, all the
computational testing is performed on a Mac Pro with 6 dual processor Intel Xeon E5 cores and 16GB
of memory. Our branch-and-cut routine uses just one thread, while the default CPLEX 12.6.2 indicator
constraint formulation can use all 12 available threads. The relative gap for optimality is 10−6, here

the relative gap is defined as
upperbound− lowerbound

max(1, |lowerbound|)
. This is smaller than CPLEX’s default MIP

optimality tolerance and larger than its default LP tolerance. The tolerance of complementarity is 10−6,
i.e., either yi or wi for i = 1, ...,m should be less than 10−6 for any feasible LPCC solution. All runtimes
are reported in seconds.

We used three sets of test instances. The first set consists of 60 LPCC instances with n = 2 and
between 100 and 200 complementarities. The generation scheme for these problems and computational
results can be found in Appendix A, with the results discussed in sections 5.1 and 5.2. The second set
of test instances are LPCC formulations of bilevel programs, where the lower level problem is a convex
quadratic program; the formulation and results are presented in Section 5.3, with more extensive results
in Appendix B. The final set of results in Section 5.4 are for inverse quadratic programming problems,
with detailed results in Appendix C.

Source code and test instances can be found online at https://github.com/mitchjrpi/LPCCbnc

Also included with the source code is a Makefile. A user needs to have access to CPLEX in order to
be able to compile the code. Generators for the bilevel and inverse QP problems can be found on the
website; the generator uses AMPL to construct the instances.

5.1 Computational Results of the Feasibility Recovery Process

We will first apply the local search feasibility recovery process (procedure 1); if this procedure success-
fully recovers a feasible solution, then the refinement procedure (procedure 2) will be applied to refine
that feasible solution. We set the depth parameter as 5 and breadth parameter as m, i.e. the number
of complementarities, in procedure 1. Table 1 summarizes the feasibility recovery result of the 60 LPCC
instances. The computational results show that our proposed feasibility recovery procedures can suc-
cessfully recover a feasible solution for all of the 60 LPCC instances with very good quality. For most
instances, the recovered feasible solution is in fact an optimal solution. Note that as m increases, the
feasibility recovery processing time increases as well. Therefore in practice, as a preprocessing procedure,
we need to control the depth and breadth parameters in procedure 2 to reduce the time spent on the
feasibility recovery procedure.

5.2 Computational Results of Branch-and-Cut Algorithm

In this section, we will show the computational results of using our proposed branch-and-cut algorithm
to solve the 60 LPCC instances with finite global optimal values from Appendix A.
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m TimeR1
T imeR2

T imeR3
T imeR4

T imeCPLEX

(sec) (sec) (sec) (sec) (sec)
100 19.185 18.790 18.805 18.917 38.021
150 75.213 73.623 76.071 74.285 1688.160
200 308.293 296.663 287.232 291.057 5043.017

Table 2 Comparison of geometric means of solving time, using our four different branching rules and using default CPLEX

m NodeR1
NodeR2

NodeR3
NodeR4

NodeCPLEX

100 213 215 212 196 39114
150 831 863 848 757 1078311
200 3408 3301 3161 2837 1494577

Table 3 Comparison of geometric means of number of nodes in branch-and-cut tree, using our four different branching
rules and using default CPLEX
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Fig. 2 Scatter plots for CPU time (seconds) for solution of LPCCs. Horizontal axis is time for the default CPLEX indicator
constraint solver, vertical axis is time for our branch and cut algorithm. Processing times excluded. (a) All 60 instances.
(b) 37 LPCCs where default CPLEX MIP required no more than 30 seconds.

We conducted preliminary experiments with 4 different weight settings of increasing sophistication
to choose a score function (13):

R1: ωV L = 1, ωED = 0, ωPC = 0 and ωSL = 0;
R2: ωV L = 1, ωED = 0.5, ωPC = 0 and ωSL = 0.5;
R3: ωV L = 1, ωED = 0.5, ωPC = 0.25 and ωSL = 0.5;
R4: ωV L = 1, ωED = 0.5, ωPC = 0.25 and ωSL = 0.5 and apply strong branching rule to the node whose

tree depth is less or equal to 7.

These results were obtained using CPLEX 11.4 using a single core of AMD Phenom II X4 955 CPU
@ 3.2GHZ, 4GB memory and are contained in Tables 2 and 3. All four rules required far fewer nodes
than default CPLEX. Based on these results, R4 is the best branching rule in terms of the number
of nodes. Since in terms of solving time, these 4 routines are quite close, we chose R4 as our default
branch-and-bound routine.

All remaining results in the paper were obtained using CPLEX 12.6.2 with detailed results contained
in Table 6 in Appendix A. A scatter plot of the CPU time for solving the instances is given in Figure 2.
Performance profiles [15] are given in Figure 3. The preprocessing times have been excluded from these
plots. All the LPCC instances can be solved by our algorithm within thirty minutes, with 90% of them
(54/60) solved within 150 seconds. Each instance requires considerably less processing time with our
algorithm than with default CPLEX. Notice that default CPLEX is only able to solve 42 of the 60
instances within 3600 seconds. In particular, it is unable to solve 11 of our 20 LPCC instances when
m = 200 within this time limit.
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Fig. 3 Performance profile for CPU time (seconds) for solution of 60 LPCCs (preprocessing time excluded). Vertical axis
is the number of instances. Horizontal axis is ratio of time required by the given algorithm to the time required by the
better algorithm. (a) Linear scale. (b) Log scale.

The determination of a valid disjunctive cut or bound cut requires the solution of a linear programming
problem. The parameter choices given in §2.2 result in 0.3m disjunctive cuts, approximately 5m simple
cuts, and 15 bound cuts for each instance. We also experimented with not adding cutting planes in the
preprocessor, in which case both codes performed slightly worse for the larger instances (a difference of
perhaps 10% in average runtime for our branch-and-cut code).

5.3 Bilevel Test Problems

We further tested our algorithm on bilevel problems of the form

minx,v cTx + dT v
subject to Ax + Bv ≥ b

0 ≤ v ≤ u
x ∈ argminx{ 12x

TQx + vTx : Hx ≥ g, x ≥ 0}

(14)

where Q is positive semidefinite. The variables v are first stage variables, with the second stage variables
x chosen to optimize a convex quadratic subproblem that depends on v. Both sets of variables appear in
the linear objective. In addition, the first and second stage variables must satisfy the linking constraint
Ax + Bv ≥ b. By introducing KKT multipliers y and λ for the constraints in the subproblem, we can
model this problem equivalently as the LPCC

minx,v,y,λ,w cTx + dT v
subject to Ax + Bv ≥ b

Qx + v − HT y − λ = 0
0 ≤ v ≤ u
0 ≤ λ ⊥ x ≥ 0
0 ≤ y ⊥ w := Hx − g ≥ 0,

a problem equivalent to one in our standard form (1). The relationship between the dimensions in (1)
and the dimensions of the variables and constraints in (14) is as follows:

Dimensions
(1) (14)
m dimension(g) + dimension(v)
n 2 × dimension(v)
k dimension(b) + 3 × dimension(v)
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Fig. 4 Scatter plots for CPU time (seconds) for solution of LPCCs based on bilevel instances Horizontal axis is time for
default CPLEX indicator constraint solver, vertical axis is time for our branch-and-cut solver. Processing times excluded.
(a) All 90 instances. (b) 63 instances with n = 50.

Dimension of g Dimension of b Rank of Q
dim time # instances dim time # instances rank time # instances

50 12.76 16 25 39.98 16 25 19.94 31
100 30.29 15 50 51.06 16 50 161.66 32
150 41.91 16 75 15.11 16
200 266.45 16 100 259.57 15

Table 4 Average performance on bilevel instances with 50 first stage variables. Each column contains results from all 63
instances. Each average is taken over instances where the other parameters are varied.

Thus, the number of complementarity constraints is equal to the sum of the dimensions of g and v.

In our experiments, all parameters in b, c, d, g, A, B, and H were uniformly generated in the interval
(0, 1). The matrix Q was equal to the matrix product LLT , where the number of columns in L is equal
to the required rank of Q and each entry in L is chosen uniformly from the interval (−1, 1). Each entry
of u was equal to 1. Repeated problem dimensions in the table correspond to different instances. The
dimension of g varied from 50 to 200, the dimension of v and x varied from 50 to 100, the number of
complementarity constraints varied from 100 to 250, the dimension of b varied from 25 to 100, and the
rank of Q varied between 0.5 of the dimension of v and the dimension of v. Problem data for the 90
bilevel test instances can be found in Tables 7 and 8.

We gave each algorithm a time limit of 3600 seconds in addition to the preprocessing time. Detailed
performance data can be found in Tables 9 and 10. Our algorithm was able to solve all 63 instances
with dimension of v equal to 50, 16/24 of the instances with the dimension of v equal to 75, and 3/3 of
the instances with the dimension of v equal to 100. The corresponding numbers for the default CPLEX
indicator constraint code were 56/63, 2/24, and 1/3. Our algorithm was considerably faster than default
CPLEX indicator constraint code on every instance. Further, it had a smaller final gap than default
CPLEX indicator constraint code for each instance where neither code could solve the problem. There
was no instance that could be solved by default CPLEX indicator constraint code which could not also be
solved by our algorithm. A scatter plot of the CPU time for solving the instances (ignoring the common
preprocessing time) is given in Figure 4 and a performance profile is in Figure 5.

The instances become more difficult as the dimensions of v, b, and g increase, as might be expected.
The instances also become more difficult as the rank of Q increases. Table 4 contains averages of solution
times over these different parameters for the instances with the dimension of v equal to 50.

The parameter choices given in §2.2 result in 0.3m disjunctive cuts, approximately 3m simple cuts,
and 15 bound cuts for each instance. Also as in §5.2, we experimented with not adding cutting planes in
the preprocessor. Both codes performed similarly to their respective performance with the preprocessor.
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Fig. 5 Performance profile with linear scale for CPU time (seconds) for solution of LPCCs based on bilevel instances
(preprocessing time excluded). Vertical axis is the number of instances. Horizontal axis is ratio of time required by the
given algorithm to the time required by the better algorithm. (a) All 90 instances. (b) 63 instances with n = 50.

Thus, based on the results in this section and §5.2, our default implementation is to generate cutting
planes in the preprocessor.

5.4 Inverse Quadratic Programs

Jara-Moroni et al. [37] presented a DC method for finding local optima for LPCCs arising from inverse
quadratic programs [33]. The problem of interest has the form

minx,b,c ||(x, b, c)− (x̄, b̄, c̄)||1
s.t. x ∈ argminy{ 12y

TQy + cT y : Ay ≥ b}
(x, b, c) ∈ P

(15)

where x̄, b̄, and c̄ are observations of the parameters and solution of a quadratic program and P is a
polyhedron. The objective is to find (x, b, c) close to the observed values where x does solve the lower
level quadratic program. In our computational testing, we varied the number of rows m̃ and columns ñ
of A between 100 and 400 and between 5 and 90, respectively; the dimensions of all other vectors and
matrices are determined by the dimensions of A. When the matrix Q is positive definite, the inverse QP
is equivalent to the following LPCC:

minx,b,c,zx,zb,zc,λ 1T zx + 1T zb + 1T zc

s.t. Qx+ c−ATλ = 0
x+ zx ≥ x̄, −x+ zx ≥ −x̄
b+ zb ≥ b̄, −b+ zb ≥ −b̄
c+ zc ≥ c̄, −c+ zc ≥ −c̄
(x, b, c) ∈ P
0 ≤ λ ⊥ w := Ax− b ≥ 0

(16)

where λ is the vector of KKT variables for the inner QP, the variables zx, zb, z
c are used to represent

the L1 objective function in (15), and 1 represents a vector of ones of an appropriate dimension.
The instances in [37] were generated in MATLAB, whereas our instances were generated using AMPL.

Nonetheless, we closely followed their procedures except for the generation of Q. Our matrix Q ∈ Rñ×ñ
was formed as the product MMT , where M ∈ Rñ×ñ was a square matrix with exactly three nonzeroes per
row, with diagonal entries uniformly distributed between 0.5 and 1 and two off-diagonal entries uniformly
distributed between 0 and 1; this results in a positive definite matrix Q, with about 9 entries per row on
average (similar to the number of nonzeroes in a row of Q from [37]). Other parameters were generated
as in [37]: the matrix A ∈ Rm̃×ñ has an average of approximately 10 nonzero entries per row which are
uniformly distributed between 0 and 1; a vector x̃ ∈ Rñ has components distributed as Normal(0,1);
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Fig. 6 Scatter plots for CPU time (seconds) for solution of inverse quadratic programs. Horizontal axis is time for CPLEX
MIP called from AMPL and run on a single thread, vertical axis is time for our branch and cut algorithm.

vectors λ̂ ∈ Rm̃ and ŵ ∈ Rm̃ have components uniformly distributed between 0 and 10; a binary vector
v ∈ Bm̃ is generated and λ̃ ∈ Rm̃ and w̃ ∈ Rm̃ are constructed as the Hadamard products λ̃ := λ̂ • v and
w̃ := ŵ • (1 − v); vectors b̃ ∈ Rm̃ and c̃ ∈ Rñ are defined as b̃ := Ax̃ − w̃ and c̃ = AT λ̃ − Qx̃; vectors
x̄ ∈ Rñ, b̄ ∈ Rm̃, and c̄ ∈ Rñ are obtained by perturbing x̃, b̃, and c̃ respectively, using Normal (0,1)
noise; the polyhedron P is constructed as a box using simple bounds −ux1 ≤ x ≤ ux1, −ub1 ≤ b ≤ ub1,
−uc1 ≤ c ≤ uc1 with ux = 10 max{|x̃i|}, ub = 10 max{|b̃i|}, uc = 10 max{|c̃i|}; finally, upper bounds are
also imposed on λ with uλ = 10 max{|λ̃i|}. The point (x̃, b̃, c̃) with λ̃ is feasible in the resulting problem
instances of (16).

It is easy to generate explicit upper bounds on w = Ax− b from the upper bounds on x and b. Also,
explicit upper bounds on λ are imposed following [37]. Thus, this problem can be formulated directly as
a mixed integer program of the form (2). Because of this observation, our comparisons in this section are
somewhat different from the previous experiments. In particular, we make the following two changes:

– Since bounds are already available, we do not use the cutting plane generation features of the pre-
processor.

– We compare our LPCC branch-and-cut code with the CPLEX MIP solver invoked from AMPL, run
with a single thread.

Our testbed consisted of 5 sets of 5 instances: (m̃, ñ) equal to (100,75), (120,90), (150,20), (200,15),
and (400,5). A scatter plot of the results can be found in Figure 6 and performance profiles can be found
in Figure 7. Detailed computational results are contained in the Appendix, in Table 11. Our algorithm
was able to solve 23 of the 25 instances within the 3600 second time limit; the corresponding figure
for CPLEX was 18 out of 25. There was only one instance where CPLEX outperformed our code. Our
algorithm solved 20 of the 25 instances within 360 seconds, while CPLEX only solved 6 of the instances
within this time window.

6 Conclusions

The optimal solution to a linear program with complementarity constraints can in principle be found
directly using CPLEX. However, far better performance can often be obtained by adding good cut-
ting planes, by incorporating a specialized feasibility recovery routine, and especially by designing good
branching routines. Our computational results demonstrate that our code is at least an order of mag-
nitude faster than a default version of CPLEX, at least for our test set of instances. It is able to solve
instances with up to 400 complementarity constraints in reasonable amounts of time, and can reliably
solve instances with 100 complementarity constraints in less than a minute.
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40. Júdice, J.J., Faustino, A.M.: A sequential LCP method for bilevel linear programming. Annals of Operations Research
34, 89–106 (1992)

41. Keha, A.B., de Farias Jr, I.R., Nemhauser, G.L.: A branch-and-cut algorithm without binary variables for nonconvex
piecewise linear optimization. Operations Research 54(5), 847–858 (2006)

42. Kunapuli, G., Pang, J., Bennett, K.P.: Bilevel cross-validation-based model selection. In: I. Guyon, G. Crawley,
G. Dror, A. Saffari (eds.) Hands-On Pattern Recognition: Challenges in Machine Learning, vol. 1, chap. 15, pp. 345–
370. Mikrotone Publishing, Brookline, MA (2011)

43. Lee, Y., Pang, J., Mitchell, J.E.: Global resolution of the support vector machine regression parameters selection
problem with LPCC. EURO Journal on Computational Optimization 3(1), 197–261 (2015)

44. Leyffer, S., Lopez-Calva, G., Nocedal, J.: Interior methods for mathematical programs with complementarity con-
straints. SIAM Journal on Optimization 17(1), 52–77 (2006)

45. Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of strategies for mixed integer programming. INFORMS
Journal on Computing 11, 173–187 (1999)

46. Luo, Z.Q., Pang, J., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press,
Cambridge, England (1996)

47. Maranas, C.D., Floudas, C.A.: Global optimization in generalized geometric programming. Computers and Chemical
Engineering 21, 351–569 (1997)

48. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I — convex underestimat-
ing problems. Mathematical Programming 10, 147–175 (1976)

49. Mitchell, J.E., Pang, J., Yu, B.: Obtaining tighter relaxations of mathematical programs with complementarity con-
straints. In: T. Terlaky, F. Curtis (eds.) Modeling and Optimization: Theory and Applications, Springer Proceedings
in Mathematics and Statistics, vol. 21, chap. 1, pp. 1–23. Springer, New York (2012)

50. Mitchell, J.E., Pang, J., Yu, B.: Convex quadratic relaxations of nonconvex quadratically constrained quadratic pro-
grams. Optimization Methods and Software 29(1), 120–136 (2014)

51. Pang, J.: Three modeling paradigms in mathematical programming. Mathematical Programming 125(2), 297–323
(2010)

52. Pang, J., Fukushima, M.: Some feasibility issues in mathematical programs with equilibrium constraints. SIAM Journal
on Optimization 8, 673–681 (1998)

53. Pang, J., Leyffer, S.: On the global minimization of the Value-at-Risk. Optimization Methods and Software 19(5),
611–631 (2004)

54. Scholtes, S.: Convergence properties of a regularisation scheme for mathematical programs with complementarity
constraints. SIAM Journal on Optimization 11(4), 918–936 (2001)

55. Stackelberg, H.V.: The Theory of the Market Economy. Oxford University Press, Oxford (1952)

56. Vandenbussche, D., Nemhauser, G.L.: A branch-and-cut algorithm for nonconvex quadratic programs with box con-
straints. Mathematical Programming 102(3), 559–575 (2005)

57. Watson, L.T., Billups, S.C., Mitchell, J.E., Easterling, D.R.: A globally convergent probability-one homotopy for linear
programs with linear complementarity constraints. SIAM Journal on Optimization 23(2), 1167–1188 (2013)

58. Zamora, J.M., Grossmann, I.E.: A branch and contract algorithm for problems with concave univariate, bilinear and
linear fractional terms. Journal of Global Optimization 14(3), 217–249 (1999)

22



input : n,m,k,rankM ,dense
output: vector c,d,b,q; matrix A,B,N ,M

1: generate n dimension vector x̄ with value between 0 and 10, integer;

2: generate m dimension vector ȳ with value between 0 and 10, integer if index <
m

3
; 0 otherwise;

3: generate n dimension vector c with value between 0 and 10, integer;
4: generate m dimension vector d with value between 0 and 10, integer;
5: generate k × n matrix A with value between -5 and 6, integer, and the matrix density is dense;
6: generate k ×m matrix B with value between -5 and 6, integer, and the matrix density is dense;
7: generate m× n matrix N with value between -5 and 6, integer, and the matrix density is dense;
8: generate m× rankM matrix L with value between -5 and 6, integer, and the matrix density is dense; generate
m×m upper triangular matrix ∆M with value between -2 and 2, integer; Let m×m matrix
M = LLT +∆M −∆MT ;
9: generate k dimension vector ∆b with value between 1 and 11, integer; let k dimension vector b = Ax̄+Bȳ −∆b;

10: generate m dimension vector ∆q with value 0 if index <
2m

3
; integer between 1 and 11 otherwise; let m

dimension vector q = −Nx̄−Mȳ +∆q;

Procedure 4: LPCC instances generator

A LPCC Test Instances

In order to test the effectiveness of different type of valid constraints, a series of LPCC instances was randomly generated,
and Procedure 4 gives a detailed description of the generator.

Remark 1 In the initialization step of the procedure, n is the dimension of x variable; m is the dimension of y variable; k
is the dimension of b; rankM is the rank of matrix M ; dense is the density of generated matrices; we assume all instances
have the non-negativity constraint x ≥ 0 which are not included in the constraint Ax+By ≥ b; step 1 and step 2 are used
to generate a feasible LPCC solution; step 8 is to generate matrix M to be a non-symmetric positive semidefinite matrix
with rank rankM .

We generated 60 LPCC instances with 100, 150, 200 complementaries, 20 instances of each size, and with the same
parameter, we randomly generated 5 instances. For CPLEX solving LPCC instances, we used indicator constraints in
CPLEX C callable library [35] to formulate the complementarity constraints, and the CPLEX setting is default. The time
limit for CPLEX is 3600 seconds. Notice that default CPLEX is unable to solve most of our LPCC instances when m = 200
within 3600 seconds. Table 5 contains objective function value information for the 60 instances, including the effectiveness
of the preprocessing routines.

Table 6 contains performance data.

B Bilevel Test Instances

Our code solved all 63 of the instances with dimension of v equal to 50 and 18/35 of the larger instances. With extended
time, default CPLEX was able to solve all but one problem with n = 50; it still has a gap of 16.56% for problem 60 after
more than 7200 seconds of wall clock time and 47304 seconds of processor time. It solved just 6/35 of the larger instances.
Run time information can be found in Tables 9 and 10.

C Inverse QP Instances

Computational results on 25 inverse QP instances can be found in Table 11. For each set of 5 instances, the average CPU
time is listed if all the instances were solved or the number of solved instances is noted.
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Optimal LP Preprocessed bounds Relative gaps (percentages)
# m rank dense Value relaxation lower upper UB-LB UB-opt % closed
1 100 30 70 769.911528 629.002874 669.22439 770.287 13.13 0.05 71.46
2 100 30 70 752 650.929154 723.79249 754.658 4.10 0.35 27.91
3 100 30 70 690.306012 627.332027 657.571025 691 4.84 0.10 51.98
4 100 30 70 543 531.188245 539.856029 544.497 0.85 0.28 26.62
5 100 30 70 930 771.820799 896.57115 930.917 3.69 0.10 21.13
6 100 30 20 589 583.487434 588.868287 589 0.02 0.00 2.39
7 100 30 20 488 425.717966 459.942655 488 5.75 0.00 45.05
8 100 30 20 771 687.744893 745.909078 771 3.25 0.00 30.14
9 100 30 20 628 524.270776 620.866694 628 1.14 0.00 6.88

10 100 30 20 732 705.051229 729.547378 732 0.34 0.00 9.10
11 100 60 70 612.145738 606.45432 609.833638 622.283 2.03 1.66 40.62
12 100 60 70 686.130259 649.068458 675.208522 686.212 1.60 0.01 29.47
13 100 60 70 734 722.033536 733.174515 734 0.11 0.00 6.90
14 100 60 70 665.868588 657.703283 661.460391 666 0.68 0.02 53.99
15 100 60 70 984.588193 818.248599 855.932906 986 13.21 0.14 77.34
16 100 60 20 691 629.620621 664.054558 691 3.90 0.00 43.90
17 100 60 20 666.995818 631.110603 655.171515 667 1.77 0.00 32.95
18 100 60 20 756.780603 725.103749 746.527684 758 1.52 0.16 32.37
19 100 60 20 763 626.529227 722.010148 763.971 5.50 0.13 30.04
20 100 60 20 532.218697 521.894551 528.196096 533 0.90 0.15 38.96
21 150 30 70 1029 946.929565 1010.002422 1029 1.85 0.00 23.15
22 150 30 70 1160 1075.719667 1143.215912 1160 1.45 0.00 19.91
23 150 30 70 965 929.722695 957.060812 965 0.82 0.00 22.51
24 150 30 70 1242 1170.744571 1232.634488 1242 0.75 0.00 13.14
25 150 30 70 1149 1013.045865 1063.947928 1149 7.40 0.00 62.56
26 150 30 20 822.333333 790.161133 813.932095 822.333 1.02 0.00 26.11
27 150 30 20 1046 991.351886 1039.478766 1046 0.62 0.00 11.93
28 150 30 20 922 851.085225 899.489258 922 2.44 0.00 31.74
29 150 30 20 992 855.028214 921.051941 992 7.15 0.00 51.80
30 150 30 20 848 729.617101 775.254605 848 8.58 0.00 61.45
31 150 100 70 1377.072388 1263.798462 1344.135656 1377.072 2.39 0.00 29.08
32 150 100 70 837 833.238632 835.993215 837 0.12 0.00 26.77
33 150 100 70 972.779519 912.297933 951.089989 972.804 2.23 0.00 35.86
34 150 100 70 1260.57242 1206.833191 1238.300018 1261.188 1.82 0.05 41.45
35 150 100 70 1087.08492 1040.170448 1077.111477 1089 1.09 0.18 21.26
36 150 100 20 921.273479 893.518557 904.290053 923 2.03 0.19 61.19
37 150 100 20 923.772654 774.71571 879.664636 925 4.91 0.13 29.59
38 150 100 20 1139 1111.79451 1126.884941 1139 1.06 0.00 44.53
39 150 100 20 879.582356 812.660589 852.096526 879.605 3.13 0.00 41.07
40 150 100 20 1158.383138 1063.017814 1119.548217 1158.432 3.36 0.00 40.72
41 200 30 70 1580 1098.044624 1196.5995 1580 24.27 0.00 79.55
42 200 30 70 1057 1025.39776 1050.433637 1057 0.62 0.00 20.78
43 200 30 70 1577 1467.609941 1541.862973 1577 2.23 0.00 32.12
44 200 30 70 1535 1462.36974 1524.019988 1535 0.72 0.00 15.12
45 200 30 70 1153 1122.856763 1145.503839 1153 0.65 0.00 24.87
46 200 30 20 1229 1148.301545 1192.605532 1229 2.96 0.00 45.10
47 200 30 20 1350 1251.324462 1318.973919 1350 2.30 0.00 31.44
48 200 30 20 1451 1115.387691 1208.887517 1451 16.69 0.00 72.14
49 200 30 20 1345 1261.123305 1337.276135 1345 0.57 0.00 9.21
50 200 30 20 1249 1164.340236 1195.763472 1249 4.26 0.00 62.88
51 200 120 70 1726.526853 1649.267937 1701.696186 1728 1.52 0.09 32.14
52 200 120 70 1403 1337.168109 1394.142467 1403 0.63 0.00 13.45
53 200 120 70 1144.989488 1126.310832 1143.367197 1145 0.14 0.00 8.69
54 200 120 70 1542 1500.576683 1532.123758 1542 0.64 0.00 23.84
55 200 120 70 1096.255705 951.763018 1009.459289 1097 7.99 0.07 60.07
56 200 120 20 1235.593203 1183.04243 1203.799741 1237 2.69 0.11 60.50
57 200 120 20 1224.764683 1100.94521 1188.734874 1226 3.04 0.10 29.10
58 200 120 20 1145.969792 1132.996319 1140.093917 1147 0.60 0.09 45.29
59 200 120 20 1426 1399.225251 1415.85159 1429.364 0.95 0.24 37.90
60 200 120 20 1371.901959 1340.784415 1358.035244 1372 1.02 0.01 44.56

Means: 3.28 0.07 35.40

Table 5 Objective function data for the 60 instances. All instances have n = 2 and k = 20. The number of complemen-
tarities is m. The rank of M and the density of each matrix are indicated. Three relative gaps are given as percentages:
(i) the gap between the upper and lower bounds obtained through preprocessing, (ii) the gap between the upper bound
obtained from feasibility recovery and the optimal value of the LPCC, and (iii) the improvement in the gap between upper
and lower bound effected by the improvement in the LP relaxation obtained through preprocessing.
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Preprocess Our algorithm default CPLEX indicator constraint
# m rank dense time time nodes time nodes % gap
1 100 30 70 5.93 1.19 404 7.04 2704
2 100 30 70 4.71 5.70 4340 DNF 6572052 0.485
3 100 30 70 9.35 0.61 260 4.98 1775
4 100 30 70 1.79 0.13 38 1.70 185
5 100 30 70 4.80 0.46 210 4.18 1330
6 100 30 20 1.02 0.02 18 0.73 43
7 100 30 20 4.52 0.24 44 0.81 103
8 100 30 20 5.55 0.55 224 5.24 3305
9 100 30 20 3.56 0.08 32 1.04 204

10 100 30 20 0.81 0.10 30 1.16 208
11 100 60 70 1.30 0.24 88 7.08 3940
12 100 60 70 6.38 0.73 588 384.44 353435
13 100 60 70 1.21 0.10 20 1.09 49
14 100 60 70 1.21 1.06 534 9.32 4671
15 100 60 70 7.25 3.69 1322 DNF 9693517 0.125
16 100 60 20 5.29 1.01 444 2.91 907
17 100 60 20 6.02 2.06 1324 7.47 5723
18 100 60 20 1.21 0.35 206 5.55 2672
19 100 60 20 4.76 0.37 194 3.73 1011
20 100 60 20 1.00 0.37 226 2.83 708

Means: 3.88 0.95 527
21 150 30 70 24.66 2.40 448 15.58 3307
22 150 30 70 23.08 0.96 124 4.27 0
23 150 30 70 5.11 0.16 56 4.58 211
24 150 30 70 24.49 0.61 98 8.52 2163
25 150 30 70 24.69 6.17 942 685.24 207429
26 150 30 20 3.68 0.20 92 3.27 232
27 150 30 20 16.81 0.20 32 2.76 124
28 150 30 20 18.82 0.36 78 3.62 370
29 150 30 20 14.23 1.60 188 7.03 1256
30 150 30 20 18.49 3.70 682 22.30 10877
31 150 100 70 26.75 101.60 28538 DNF 13175000 0.146
32 150 100 70 4.86 0.54 192 6.31 580
33 150 100 70 27.11 29.50 8744 DNF 2323005 0.114
34 150 100 70 14.16 132.03 32124 DNF 1674151 0.206
35 150 100 70 5.21 10.90 2888 DNF 2443005 0.272
36 150 100 20 4.42 16.12 4602 DNF 15955452 0.437
37 150 100 20 22.16 15.45 3064 2338.14 845218
38 150 100 20 4.84 2.32 584 11.66 1427
39 150 100 20 22.38 4.84 976 19.74 4403
40 150 100 20 23.75 32.48 10376 2063.57 1202357

Means: 15.49 16.53 4249
41 200 30 70 126.63 1546.32 181008 DNF 1368269 0.612
42 200 30 70 12.97 0.22 38 5.50 0
43 200 30 70 76.18 1.19 66 8.43 189
44 200 30 70 15.66 1.48 262 29.50 3328
45 200 30 70 14.40 0.33 64 5.77 0
46 200 30 20 44.60 0.85 42 5.51 0
47 200 30 20 49.62 1.17 120 15.08 1714
48 200 30 20 58.34 22.07 930 1538.63 405689
49 200 30 20 39.58 0.69 48 5.75 0
50 200 30 20 48.30 2.80 196 19.23 2749
51 200 120 70 13.90 176.16 27046 DNF 748850 0.292
52 200 120 70 14.87 319.53 53786 DNF 635814 0.048
53 200 120 70 15.17 25.74 5014 DNF 1721873 0.036
54 200 120 70 13.97 47.07 7736 DNF 1350106 0.028
55 200 120 70 87.88 86.08 8646 DNF 4416595 0.168
56 200 120 20 14.61 283.36 42010 DNF 1371796 0.248
57 200 120 20 82.14 1017.50 97688 DNF 651199 0.736
58 200 120 20 12.90 11.19 1834 DNF 1233196 0.160
59 200 120 20 14.43 31.69 5188 DNF 856913 0.101
60 200 120 20 13.87 491.75 85978 DNF 710977 0.278

Means: 58.50 203.36 25885

Table 6 Performance data for the 60 instances. The final gap obtained by default CPLEX is indicated for the 18 instances
it didn’t solve (DNF) within the time limit of 3600 seconds.
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Dimensions LP Preprocess Optimal % Gap
# v b g rank(Q) relaxation lower bound value shrunk
1 50 25 50 25 0.644247 0.67043 0.708016 41.06
2 50 25 50 25 0.691488 0.742312 0.817536 40.32
3 50 25 100 25 0.758156 0.853512 0.90403 65.37
4 50 25 100 25 0.508003 0.719332 1.030281 40.46
5 50 25 150 25 0.634865 0.768284 0.930512 45.13
6 50 25 150 25 0.746323 0.939574 1.179523 44.61
7 50 25 200 25 0.834849 0.882683 0.983496 32.18
8 50 25 200 25 0.552456 0.742789 1.113869 33.90
9 50 50 50 25 0.74926 0.833068 0.974266 37.25

10 50 50 50 25 0.596532 0.680096 0.777676 46.13
11 50 50 100 25 0.74352 0.85814 1.025396 40.66
12 50 50 100 25 0.713623 0.897497 1.007106 62.65
13 50 50 150 25 0.734739 0.788571 0.884411 35.97
14 50 50 150 25 0.521193 0.682435 0.990508 34.36
15 50 50 200 25 0.754768 0.782534 0.783561 96.43
16 50 50 200 25 0.754747 0.847708 1.054281 31.04
17 50 75 50 25 0.649778 0.773429 0.945024 41.88
18 50 75 50 25 0.607476 0.880724 1.046959 62.17
19 50 75 100 25 0.720769 0.812158 0.971363 36.47
20 50 75 100 25 0.529814 0.667117 0.949297 32.73
21 50 75 150 25 0.909594 0.93072 0.933821 87.20
22 50 75 150 25 0.710307 0.836857 1.103089 32.22
23 50 75 200 25 0.718915 0.979733 1.326493 42.93
24 50 75 200 25 0.794803 0.916565 0.950861 78.02
25 50 100 50 25 0.766494 0.894661 1.086423 40.06
26 50 100 50 25 0.485909 0.627154 0.962494 29.64
27 50 100 100 25 0.767284 0.838957 0.95196 38.81
28 50 100 150 25 0.578038 0.699594 0.793066 56.53
29 50 100 150 25 0.713984 0.743964 0.760946 63.84
30 50 100 200 25 0.616827 0.867557 1.064487 56.01
31 50 100 200 25 0.651844 0.751472 0.793559 70.30
32 50 25 50 50 0.644746 0.770222 0.897356 49.67
33 50 25 50 50 0.602 0.759655 0.928742 48.25
34 50 25 100 50 0.660691 0.816037 1.03487 41.52
35 50 25 100 50 0.578159 0.804343 1.031041 49.94
36 50 25 150 50 0.69423 0.856205 1.065649 43.61
37 50 25 150 50 0.790053 0.903077 1.01511 50.22
38 50 25 200 50 0.619887 0.766884 0.977958 41.05
39 50 25 200 50 0.661197 0.876876 1.104905 48.61
40 50 50 50 50 0.57275 0.793187 1.07134 44.21
41 50 50 50 50 0.54549 0.696252 0.886063 44.27
42 50 50 100 50 0.656456 0.837083 1.073918 43.27
43 50 50 100 50 0.75742 0.844813 0.963771 42.35
44 50 50 150 50 0.67609 0.907669 1.180604 45.90
45 50 50 150 50 0.671718 0.897607 1.117394 50.68
46 50 50 200 50 0.664089 0.816423 1.043968 40.10
47 50 50 200 50 0.571399 0.856775 1.074 56.78
48 50 75 50 50 0.514044 0.699661 0.899591 48.14
49 50 75 50 50 0.647895 0.741642 0.978757 28.33
50 50 75 100 50 0.623007 0.861603 1.058687 54.76
51 50 75 100 50 0.607434 0.803321 0.940491 58.81
52 50 75 150 50 0.742589 1.022707 1.157709 67.48
53 50 75 150 50 0.706354 0.844787 0.980656 50.47
54 50 75 200 50 0.719345 0.877183 1.064428 45.74
55 50 75 200 50 0.690228 0.845069 0.968196 55.70
56 50 100 50 50 0.642142 0.838403 1.021128 51.79
57 50 100 50 50 0.530841 0.864219 1.13489 55.19
58 50 100 100 50 0.647984 0.832686 1.119443 39.18
59 50 100 100 50 0.70828 0.925214 1.182871 45.71
60 50 100 150 50 0.544611 0.755445 1.086004 38.94
61 50 100 150 50 0.71695 0.891654 0.996318 62.54
62 50 100 200 50 0.48787 0.771204 1.251992 37.08
63 50 100 200 50 0.64742 0.812777 0.970732 51.14

Table 7 Values of bilevel instances with dimension of v equal to 50.
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Dimensions LP Preprocess Optimal % Gap Final % gaps
# v b g rank(Q) relaxation lower bound value shrunk CPLEX Our code
64 75 25 50 50 0.70269 0.796622 1.015407 30.04 5.42
65 75 25 50 50 0.523934 0.662829 0.925725 34.57 solved
66 75 25 100 50 0.590782 0.727175 1.04984 29.71 17.98
67 75 25 100 50 0.619884 0.743261 1.056703 28.24 18.16
68 75 50 50 50 0.561663 0.78647 1.011143 50.01 solved
69 75 50 50 50 0.560373 0.695674 0.980867 32.18 19.20
70 75 50 100 50 0.801978 0.889381 1.041901 36.43 solved
71 75 50 100 50 0.754207 0.881563 0.959749 61.96 solved
72 75 75 50 50 0.700723 0.815533 1.026476 35.24 7.71
73 75 75 50 50 0.601257 0.699462 0.930676 29.81 6.95
74 75 75 100 50 0.346691 0.519392 0.86743 33.16 29.05
75 75 75 100 50 0.594098 0.738111 1.094845 28.76 25.26
76 100 25 50 50 0.882787 0.94306 0.992266 55.05 solved
77 100 25 50 50 0.567423 0.613049 0.732117 27.70 3.08
78 100 25 75 50 0.603912 0.639672 0.842811 14.97 20.18
79 75 25 50 75 0.475835 0.699877 no UB 5.19
80 75 25 50 75 0.524895 0.732925 0.98902 44.82 7.86
81 75 25 100 75 0.603074 0.783103 16.26 12.05
82 75 25 100 75 0.512566 0.680474 16.44 12.09
83 75 50 50 75 0.546256 0.697274 1.092166 27.66 25.04
84 75 50 50 75 0.519369 0.68752 18.61 10.53
85 75 50 100 75 0.508331 0.6817 22.22 5.29
86 75 50 100 75 0.619981 0.80781 16.37 4.28
87 75 75 50 75 0.485787 0.630083 27.69 13.95
88 75 75 50 75 0.553843 0.737812 7.31 7.04
89 75 75 100 75 0.416464 0.615691 18.33 13.76
90 75 75 100 75 0.63856 0.783523 1.02771 37.25 solved

Table 8 Values of bilevel instances with larger dimensions of v. The final gaps obtained by each code are indicated for
the instances it did not solve.
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Dimensions Preprocess Our code default CPLEX
# v b g rank(Q) time time nodes time nodes
1 50 25 50 25 4.03 0.53 152 3.52 1395
2 50 25 50 25 2.51 3.66 834 28.79 8785
3 50 25 100 25 5.50 1.13 154 36.29 21962
4 50 25 100 25 7.06 11.90 2706 364.99 512865
5 50 25 150 25 10.10 4.31 974 39.37 20765
6 50 25 150 25 14.56 16.56 4622 1072.49 966602
7 50 25 200 25 19.37 9.09 2284 706.38 463141
8 50 25 200 25 25.27 116.34 16582 444.74 245964

Means: 11.05 20.44 3538 337.07 280184
9 50 50 50 25 2.86 1.75 308 5.17 1897

10 50 50 50 25 3.89 2.68 872 43.18 22949
11 50 50 100 25 5.86 5.53 1118 22.96 12752
12 50 50 100 25 7.83 1.61 222 39.19 26333
13 50 50 150 25 11.11 6.04 1356 84.34 38741
14 50 50 150 25 13.93 16.21 3194 216.39 136792
15 50 50 200 25 7.85 0.01 2 0.46 0
16 50 50 200 25 19.89 38.52 8810 1966.71 1297588

Means: 9.15 9.04 1985 297.30 192131
17 50 75 50 25 3.68 3.07 652 8.96 7615
18 50 75 50 25 3.11 3.07 672 78.15 64029
19 50 75 100 25 8.48 9.26 2748 217.66 192307
20 50 75 100 25 8.81 12.40 3996 1035.67 833881
21 50 75 150 25 5.71 0.04 14 0.43 0
22 50 75 150 25 16.55 21.92 3628 3143.11 2896080
23 50 75 200 25 21.39 17.50 2552 2861.97 1606015
24 50 75 200 25 21.42 6.18 692 26.36 6211

Means: 11.14 9.18 1869 921.54 700767
25 50 100 50 25 4.52 8.85 1636 59.19 46175
26 50 100 50 25 5.36 9.94 2614 234.31 224258
27 50 100 100 25 5.81 5.98 716 49.56 31727
28 50 100 150 25 13.10 27.25 4164 148.25 45614
29 50 100 150 25 8.00 0.97 42 9.44 2528
30 50 100 200 25 23.57 48.67 10332 3046.81 1566417
31 50 100 200 25 13.62 8.13 824 299.12 135438

Means: 10.57 15.68 2904 549.53 293165
32 50 25 50 50 2.92 5.96 1556 64.01 36311
33 50 25 50 50 2.70 7.72 2560 70.79 55449
34 50 25 100 50 7.66 46.89 12238 112.51 56827
35 50 25 100 50 8.15 29.99 5240 840.10 686855
36 50 25 150 50 14.20 34.38 7064 ≥ 3600 2042811
37 50 25 150 50 9.58 20.46 5170 255.14 74572
38 50 25 200 50 17.34 161.83 34378 ≥ 3600 2001153
39 50 25 200 50 18.56 168.98 39694 ≥ 3600 3371704

Means: 10.14 59.53 13488
40 50 50 50 50 3.41 51.01 20124 283.70 277842
41 50 50 50 50 3.61 9.07 2420 93.89 79268
42 50 50 100 50 7.53 29.02 7926 ≥ 3600 4014451
43 50 50 100 50 7.43 13.78 4422 208.67 71494
44 50 50 150 50 13.48 96.14 14774 361.15 223345
45 50 50 150 50 15.29 153.99 21876 581.26 360898
46 50 50 200 50 17.46 248.31 48162 1008.91 465121
47 50 50 200 50 25.74 143.38 26886 1165.71 648962

Means: 11.74 93.09 18324
48 50 75 50 50 3.48 9.82 3334 43.88 23923
49 50 75 50 50 3.67 22.58 6612 131.80 87870
50 50 75 100 50 9.70 14.07 2166 28.00 8436
51 50 75 100 50 7.12 4.84 662 101.97 46016
52 50 75 150 50 13.43 2.39 232 3.83 926
53 50 75 150 50 12.51 32.03 5386 178.99 118337
54 50 75 200 50 21.96 56.51 5864 1881.67 904828
55 50 75 200 50 21.35 26.14 4890 194.52 64333

Means: 11.65 21.05 3643
56 50 100 50 50 4.87 13.45 3284 272.87 190537
57 50 100 50 50 5.85 51.07 19014 ≥ 3600 30944839
58 50 100 100 50 8.08 120.59 33178 2334.10 1597429
59 50 100 100 50 9.86 147.33 28058 2008.30 1283510
60 50 100 150 50 16.61 218.98 48542 ≥ 3600 3310389
61 50 100 150 50 11.40 18.82 2662 46.03 13536
62 50 100 200 50 21.63 3122.24 323810 ≥ 3600 13525363
63 50 100 200 50 22.05 91.29 9660 353.94 122675

Means: 12.54 472.97 58526

Table 9 Performance on bilevel instances with dimension of v equal to 50.
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Dimensions Preprocess Our code default CPLEX
# v b g rank(Q) time time nodes time nodes
64 75 25 50 50 11.47 290.70 75616 ≥ 3600 12455384
65 75 25 50 50 7.73 299.37 68770 ≥ 3600 17447435
66 75 25 100 50 20.20 396.67 86638 ≥ 3600 14159416
67 75 25 100 50 16.82 934.03 159358 ≥ 3600 7263261

Means: 14.06 480.19 97596
68 75 50 50 50 12.75 89.09 19502 ≥ 3600 31475242
69 75 50 50 50 10.46 139.84 28866 ≥ 3600 1747600
70 75 50 100 50 13.46 51.33 7478 ≥ 3600 4579441
71 75 50 100 50 17.91 5.75 362 3585.51 1415201

Means: 13.65 71.50 14052
72 75 75 50 50 9.32 94.15 16830 ≥ 3600 4006474
73 75 75 50 50 11.50 86.90 15076 ≥ 3600 3636937
74 75 75 100 50 21.87 2519.64 267744 ≥ 3600 1185965
75 75 75 100 50 24.30 1569.69 197996 ≥ 3600 1144374

Means: 16.75 1067.60 124412
76 100 25 50 50 8.99 6.78 408 155.29 27742
77 100 25 50 50 8.18 79.48 5450 ≥ 3600 2647874
78 100 25 75 50 26.23 1030.75 100044 ≥ 3600 1049577

Means: 14.47 372.34 35301
79 75 25 50 75 8.50 ≥ 3600 542572 ≥ 3600 3248691
80 75 25 50 75 11.67 1197.30 212828 ≥ 3600 2730181
81 75 25 100 75 16.93 ≥ 3600 449218 ≥ 3600 13374465
82 75 25 100 75 22.19 ≥ 3600 268486 ≥ 3600 13553753
83 75 50 50 75 10.94 3587.62 445828 ≥ 3600 2126574
84 75 50 50 75 12.60 ≥ 3600 488384 ≥ 3600 1758366
85 75 50 100 75 22.05 ≥ 3600 408186 ≥ 3600 1269948
86 75 50 100 75 19.24 ≥ 3600 429360 ≥ 3600 1389433
87 75 75 50 75 12.25 ≥ 3600 442694 ≥ 3600 1984975
88 75 75 50 75 11.15 ≥ 3600 463366 ≥ 3600 2227245
89 75 75 100 75 24.20 ≥ 3600 276876 ≥ 3600 1390365
90 75 75 100 75 20.69 1221.35 107572 3537.29 1604647

Table 10 Performance on bilevel instances with larger dimensions of v.
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m̃ ñ instance time for our code CPLEX MIP time CPLEX MIP cuts
GF MIR L&P IB

100 75 a 303.58 3504.84 5 3 2
100 75 b 304.58 2686.84 22 1
100 75 c 60.38 69.09 11 1
100 75 d 328.71 3600.00 19
100 75 e 94.91 182.61 11 1

mean or success 218.43 4 of 5

120 90 a 271.24 1314.80 9 7
120 90 b 250.26 3600.00 14 2
120 90 c 126.13 209.95 7 5
120 90 d 215.09 3600.00 16
120 90 e 1101.49 3864.48 11 8

mean or success 392.84 2 of 5

150 20 a 55.12 702.95 5
150 20 b 486.00 3263.58 7
150 20 c 163.54 3319.01 4
150 20 d 49.13 1260.59 6
150 20 e 3605.77 3781.06 1

success 4 of 5 4 of 5

200 15 a 154.11 1057.09 7
200 15 b 81.65 477.30 1
200 15 c 3604.85 3600.00 4
200 15 d 128.41 365.59 7 1
200 15 e 47.71 224.61 5

success 4 of 5 4 of 5

400 5 a 225.54 1573.05 7
400 5 b 1797.89 3600.00 17
400 5 c 238.79 183.92 21
400 5 d 252.45 388.98 20
400 5 e 47.45 224.18 5

mean or success 512.42 4 of 5

Table 11 Performance on 25 inverse quadratic programs. Mean solution time is listed for each set of five problems solved
successfully by a code; otherwise, the number of solved instances is given. The number of cutting planes added by CPLEX
MIP is also reported; GF are Gomory fractional cuts, MIR are mixed integer rounding cuts, L&P are lift-and-project cuts,
and IB are implicit bound cuts.
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