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Abstract

We consider the 0–1 Knapsack Problem with Setups. We propose an exact
approach which handles the structure of the ILP formulation of the problem.
It relies on partitioning the variables set into two levels and exploiting this
partitioning. The proposed approach favorably compares to the algorithms
in literature and to solver CPLEX 12.5 applied to the ILP formulation. It
turns out to be very effective and capable of solving to optimality, within
limited CPU time, all instances with up to 100000 variables.
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1. Introduction

The 0–1 Knapsack Problem (KP) is one of the paradigmatic problems
in combinatorial optimization where a set of items with given profits and
weights is available and the aim is to select a subset of the items in order
to maximize the total profit without exceeding a known knapsack capacity.
KP has been strongly investigated both from a theoretical and a practical
point of view (we cite here, among others, two pioneering works [16]-[17], two
books [10]-[13] and a comprehensive survey [12]).

The 0–1 Knapsack Problem with Setups (KPS - originally introduced in
[6]) can be seen as a generalization of KP where items belong to disjoint
families (or classes) and can be selected only if the corresponding family is
activated. The selection of a family involves setup costs and resource con-
sumptions thus affecting both the objective function and the capacity con-
straint. KPS has many applications of interest such as make–to–order pro-
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duction contexts, cargo loading and product category management among
others and more generally for allocation resources problems involving classes
of elements (see, e.g., [7]). Another application of KPS is originated within
the smart-home paradigm where the goal of an efficient management of the
buildings energy consumptions is a strong component (see Project FLEXME-
TER funded by the European Commission under H2020 [9]). Here energy
providers are requested to manage peak demands while satisfying an aggre-
gated demand curve in order to avoid blackouts due to high peak demands.
In this context, it may be required to shut down several home appliances
whenever a Demand Response event for overall exceeding energy consump-
tion is identified. This corresponds to select the best appliances to be shut
down taking into account their relevance and their energy consumption and
the goal is also to minimize the houses involved in this shut down. By de-
noting as families the houses that we do not want to be affected by the shut
down and as items their appliances, we derive another practical application
of KPS.

Several variants of KP have been tackled in the literature. We refer to
the work in [11] for a survey on non-standard knapsack problems. In [6],
the authors consider the case with setup costs and profits of items being
either positive or negative. A pseudo-polynomial time dynamic program-
ming approach and a two-phase enumerative scheme are proposed. Given
the pseudo–polynomial time algorithm of [6], and since KPS contains KP
as a special case, i.e. when the number of families is equal to 1, KPS is
NP–hard in the ordinary sense. In [2], a variant of KPS with fractional items
is analyzed and the authors propose both heuristic methods and an exact
algorithm based on cross decomposition techniques. In [14], several dynamic
programming algorithms have been proposed for the bounded set-up knap-
sack problem. In [3], algorithms for tackling the so called Fixed Charge
Knapsack Problem (FCKP) are presented. FCKP is a special case of KPS
without setup capacity consumptions. In [15], a survey on the literature of
the KPS variants is provided and a branch and bound scheme is presented.

In [5], a metaheuristic–based algorithm (cross entropy) is introduced to
address KPS with more than one copy per item. In [18], a branch and bound
algorithm is devised for KPS. That algorithm is capable of tackling instances
with up to 10000 variables even though several large correlated instances ran
out of memory. The current state of the art exact approach for KPS is the
one in [7] where an improved dynamic programming procedure is proposed.
The procedure favorably compares to solver CPLEX 12.5 and manages to
solve to optimality instances with up to 10000 items which turn out to be
harder than the ones proposed in [18]. Further references can be found in
[7].
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In this paper we propose an exact approach for KPS relying on an effec-
tive exploration of the solution space which exploits the partitioning of the
variables set into two levels. The proposed approach is capable of solving to
optimality, in limited time, all instances with up to 100000 variables. The
method strongly outperforms both the state of the art approach proposed in
[7] and the solver CPLEX 12.5 applied to the standard ILP formulation of
KPS. The paper is organized as follows. In Section 2, the linear program-
ming formulation of the problem is briefly described. We present the exact
approach in Section 3. In Section 4 computational results are discussed.
Section 5 concludes the paper with final remarks.

2. Notation and problem formulation

KPS can be expressed as follows. A set of N families of items is given to-
gether with a knapsack with capacity b. Each family i ∈ {1...N} is composed
of ni items and characterized by a non-negative integer fi that represents the
family setup cost and a non-negative integer di that represents the family
setup capacity consumption, respectively. Each item j ∈ {1..ni} of a family i
presents a non-negative integer profit pij and a non-negative integer capacity
consumption wij. The goal is to maximize the total profit of the selected
items minus the fixed costs incurred for setting-up the selected families with-
out exceeding the knapsack capacity b.

Let us associate with each item j of family i a binary variable xij such
that xij = 1 if item j of family i is placed in the knapsack, else xij = 0. Also,
let us associate with each family i a binary variable yi such that yi = 1 if
the knapsack is setup to accept items belonging to family i, else yi = 0. The
following ILP formulation of KPS (denoted KPS1) holds.

KPS1:

maximize
N∑
i=1

ni∑
j=1

pijxij −
N∑
i=1

fiyi (1)

subject to
N∑
i=1

ni∑
j=1

wijxij +
N∑
i=1

diyi ≤ b (2)

xij ≤ yi ∀ j = 1, . . . , ni, ∀ i = 1, . . . , N (3)

xij ∈ {0, 1} ∀ j = 1, . . . , ni, ∀ i = 1, . . . , N (4)

yi ∈ {0, 1} ∀ i = 1, . . . , N (5)

Here, the objective function (1) maximizes the sum of the profits of the
selected items minus the costs induced by the selected families; the capacity
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constraint (2) guarantees that the sum of weights for the selected items and
families does not exceed the capacity value b; constraints (3) ensure that an
item can be chosen if and only if the corresponding family is activated; finally
constraints (4,5) indicate that all variables are binary.

3. An exact solution approach

3.1. Rationale and preliminaries

Let denote by KPSLP the continuous relaxation of KPS1. It is known
[18] that there exists at least one optimal solution of KPSLP where there is
at most one fractional variable yi while there are typically many fractional
variables xij. As an example, we tested an instance from [7] with 10000 vari-
ables and 30 families: the optimal continuous solution presents 1 fractional
variable yi and 330 fractional variables xij. Then, a branch on any fractional
xij induced always continuous solutions with more than 300 fractional xj and
1 fractional yi (often different from the one related to the original problem).
Besides, a branch on the fractional yi, induced again fractional continuous
solutions (always more than 300 fractional xij and another fractional yi).
This, presumably, is the main reason for which a standard ILP solver runs
already into difficulties on several instances of KPS1 with 1000 jobs (see Sec-
tion 4). Our approach instead aims to exploit the structure of KPS, where
the set of variables is partitioned into two levels, variables yi (first level vari-
ables) and variables xij (second level variables). The practical hardness of
the problem comes from these two sets of variables that must be properly
combined to reach an optimal solution. At the same time, once the families
are chosen, KPS boils down to a standard KP. Even if KP is known to be
weakly NP–Hard, in practice it is well handled by nowadays ILP solvers (for
a comprehensive survey, see [10],[12], and [13]). Notice that, the idea of using
approaches based on the repeated solution of NP–hard subproblems is not
new. For instance, in [1], the famous shifting bottleneck procedure for the job
shop problem was based on the repeated solution of a single machine problem
with release times and tails that, though being NP–hard in the strong sense,
is well solved in practice by the exact algorithm of [4]. Here, as the selection
of the families induces problems that are tractable in practice, we focus on an
efficient exploration of the solution space defined by the first level variables.

In particular, we propose an exact approach based on the idea of identi-
fying the exact number of families that may lead to an optimal solution and
seek for solutions within this range. Three main steps are involved. In the
first step an initial feasible solution is computed and a standard variables
fixing procedure is applied by means of the reduced costs of the non–basic
variables in the optimal solution of the continuous relaxation of the problem.
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The second step concerns the detection of the range of the possible optimal
number of families. This leads to the identification of sub–problems that
are tackled in the third phase. We use an ILP solver (CPLEX 12.5) along
the procedures of our approach. In the following subsections we describe the
three steps of the approach whose pseudo code is presented in Algorithm 1.

3.2. Initial feasible solution computation and variables fixing

We start by considering KPSLP where, in addition, we require the sum of
the selected families to be integer. Thus, we get the following model (denoted
by KPS2).

KPS2:

maximize
N∑
i=1

ni∑
j=1

pijxij −
N∑
i=1

fiyi (6)

subject to (2), (3)

N∑
i=1

yi = k (7)

0 ≤ xij ≤ 1 ∀ j = 1, . . . , ni, ∀ i = 1, . . . , N (8)

0 ≤ yi ≤ 1 ∀ i = 1, . . . , N (9)

k ∈ N (10)

Here, the integrality constraints on variables xij and yi of KPS1 are re-
placed by the inclusion in [0,1] while constraint (7) forces the sum of the
families to take an integer value through the integer variable k. The opti-
mal solution of this problem gives an upper bound on the KPS optimum.
Moreover, the optimal value of k, denoted by k∗, provides a first guess on the
total number of families to include in a solution. Then, we consider again
model KPS1 with the additional constraint that the number of the families
to activate is fixed to a value S and we remove the integrality constraints
on variables xij only. Correspondingly, we get hereafter the following model
(denoted by KPS3).
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KPS3:

maximize
N∑
i=1

ni∑
j=1

pijxij −
N∑
i=1

fiyi (11)

subject to (2), (3)

N∑
i=1

yi = S (12)

0 ≤ xij ≤ 1 ∀ j = 1, . . . , ni ∀ i = 1, . . . , N (13)

yi ∈ {0, 1} ∀ i = 1, . . . , N (14)

We may expect that problem KPS3 is easy to solve as only the yi variables
are binary and the number of families is relatively limited. Further, the solu-
tion space is restricted to the hyperplane representing the sum S expressed
by constraint (12). This argument shows up to hold in practice. We first
solve KPS3 by setting S = k∗. The optimal solution provides a feasible
combination of yi, denoted by 0–1 vector y′.
If we consider the combination y′ in KPS1, we induce a KP with the capac-
ity constraint and objective function modified according to the setups of the
families. For the sake of simplicity, hereafter we refer to

KPS1(y
′) = KPS1 ∩ (yi = y′i) ∀ i = 1, . . . , N (15)

as the standard knapsack problem related to any specific combination of fam-
ilies encoded by vector y′.
Solving KPS1(y

′) provides a first feasible solution for KPS. Let denote this
solution by LB′ = zopt(KPS1(y

′)). These parts of the approach are sketched
in lines 2–6 of Algorithm 1.
Then, we solve KPSLP . Let indicate the optimal value of KPSLP by
zopt(KPSLP ) and the optimal values of variables xij and yi by xLP

ij and
yLPi respectively. Let rxij

and ryi be the reduced costs of non basic variables
in the optimal solution of KPSLP . We apply then standard variable-fixing
techniques from Integer Linear Programming. It is well known (see, for in-
stance, [8]) that, if the gap between the best feasible solution available and
the optimal solution value of the continuous relaxation solution is not su-
perior to the absolute value of a non basic variable reduced cost, then the
related variable can be fixed to the value it has in the continuous relaxation
solution. Correspondingly, we evaluate the reduced costs of all non basic
variables in the optimal solution of KPSLP . Then, the following constraints
are added to the models (lines 7–8 of Algorithm 1):
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∀ i, j : |rxij
| ≥ zopt(KPSLP )− LB′, xij = xLP

ij (16)

∀ i : |ryi | ≥ zopt(KPSLP )− LB′, yi = yLPi (17)

3.3. Identifying the relevant sums of the families

Given the first solution LB′, the number of families in an optimal solution
can be bounded straightforwardly by solving two continuous problems. More
precisely, we minimize and maximize

∑
yi subject to constraints (2), (3) and

to an additional constraint ensuring that the total profit must be strictly
greater than the current solution value. The corresponding ILP formulations
(denoted by KPSmin and KPSmax respectively) are as follows.

KPSmin (KPSmax):

min (max)
N∑
i=1

yi (18)

subject to (2), (3)

N∑
i=1

ni∑
j=1

pijxij −
N∑
i=1

fiyi ≥ LB′ + 1 (19)

0 ≤ xij ≤ 1 ∀ j = 1, . . . , ni, ∀ i = 1, . . . , N (20)

0 ≤ yi ≤ 1 ∀ i = 1, . . . , N (21)

Ceiling and flooring the optimal solution values of the above problems
yield Smin = dzopt(KPSmin)e and Smax = bzopt(KPSmax)c, namely the lower
and upper bound on the number of families possibly leading to an optimal
solution of KPS. The second step of the approach is summarized in lines 9–12
of Algorithm 1.

3.4. Solving sub–problems

The third step consists in exploring sub–problems for the possible values
of S in the range [Smin, Smax] (for–loop in lines 13–24 of Algorithm 1).

For each sub–problem we first solve KPS3 and find a combination of
families ȳ as in paragraph 3.2 (lines 14–15 of Algorithm 1). Then we solve
KPS1(ȳ) and if its optimal value is greater than the current best feasible
solution value, we update the latter one (lines 17–20 of Algorithm 1). We
solve to optimality a KP, but indeed ȳ is not guaranteed to be optimal for
KPS1. So we search for another possible combination of yi within the sub–
problem by adding to KPS3 the constraint
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N∑
i=1

ȳiyi ≤ S − 1 (22)

This is a cut in the solution space imposing that at least one of the
families of the previous combination must be discarded. We solve KPS3 with
one more constraint and apply the same procedure until the upper bound
provided by solving KPS3 is not superior to the current best solution value
or the problem becomes infeasible (while–loop in lines 16–23 of Algorithm 1).
We note that KPS3 can turn out to be difficult to solve as long as further
constraints on variables yi are added. Nevertheless, additional cuts showed
up to be reasonably limited. Once all sub–problems have been investigated,
an optimal solution of KPS is obtained.

Algorithm 1 Exact solution approach
1: Input: KPS instance.

. Find first solution and fix variables
2: k∗ ← solve KPS2;
3: S ← k∗;
4: (UB′, y′)← solve KPS3;
5: LB′ ← solve KPS1(y′);
6: Best = LB′;
7: Solve KPSLP ;
8: Apply (16, 17) and fix variables;
9: zmin ← solve KPSmin; . Identify the range of families

10: zmax ← solve KPSmax;
11: Smin = dzmine;
12: Smax = bzmaxc;
13: for all s in [Smin, Smax] do . Solve sub–problems
14: S = s;
15: (UB, ȳ)← solve KPS3;
16: while UB ≥ Best + 1 do
17: LB ← solve KPS1(ȳ);
18: if LB > Best then
19: Best = LB;
20: end if

21: add (
N∑
i=1

ȳiyi ≤ S − 1) to KPS3;

22: (UB, ȳ)← solve KPS3;
23: end while
24: end for
25: return Best;

We note in Algorithm 1 that steps 1–12 are executed only once, requiring
the solution of problems KPS2, KPS3, KPS1(y

′), KPSLP , KPSmin and
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KPSmax and the variable fixing (that takes O(
∑N

i=1 ni) time) induced by
constraints (16, 17). Also, the for–loop in lines 13–24 is repeated [Smax −
Smin+1] = O(N) times where in each iteration KPS3 is solved once and then
the while–loop in lines 16–23 is iteratively applied requiring the solution first
of KPS1(ȳ) and then of KPS3 until UB ≤ Best. Thus the bottleneck of
the algorithm is indeed the total number of times the while–loop is executed
which could be potentially large but computational testing indicates that
this number is very small in practice (never superior to 33 for instances with
up to 100000 items).

4. Computational Results

All tests have been conducted on an Intel i5 CPU @ 3.3 GHz with 4 GB
of RAM. The ILP solver used has been CPLEX 12.5 and the code has been
implemented in C++ programming language. We generated the instances
according to the scheme provided in [18]. In addition, we also considered the
instances available in [7].

In the scheme provided in [18], the number of families N is 50 and 100.
The cardinalities ni of the families are integers uniformly distributed in the
ranges [40, 60] and [90, 110]. Setup costs and weights are given by

fi = e1

(
ni∑
j=1

pij

)
(23)

di = e2

(
ni∑
j=1

wij

)
(24)

where e1 and e2 are uniformly distributed in the intervals [0.05, 0.15], [0.15,
0.25], [0.25, 0.35] and [0.35, 0.45]. In the uncorrelated instances, both the
items weights wij and profits pij are integer randomly distributed in the
range [10, 10000]. In the correlated instances the profits are integer randomly
distributed in the range[wij-1000, wij+1000], but if the profits are less than
10, then they range in the interval [10, 100]. The capacity b is an integer

randomly distributed in the range

[
0.4

(
N∑
i=1

ni∑
j=1

wij

)
, 0.6

(
N∑
i=1

ni∑
j=1

wij

)]
.
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CPLEX 12.5 Exact approach
Average Max Average Max Max

N ni Setup time (s) time (s) #Opt time (s) time (s) #Sub–pb #Opt
50 [40-60] [0.05-0.15] 0.31 0.38 10 0.50 0.64 1 10

[0.15-0.25] 0.34 0.42 10 0.53 0.62 1 10
[0.25-0.35] 0.45 0.59 10 0.57 0.62 1 10
[0.35-0.45] 0.35 0.56 10 0.45 0.57 1 10

50 [90-110] [0.05-0.15] 0.49 0.66 10 0.71 0.91 1 10
[0.15-0.25] 0.73 0.97 10 0.90 1.03 1 10
[0.25-0.35] 2.15 10.41 10 0.96 1.15 1 10
[0.35-0.45] 1.12 2.68 10 0.86 1.26 1 10

100 [40-60] [0.05-0.15] 0.45 0.66 10 0.67 0.88 1 10
[0.15-0.25] 0.69 0.91 10 0.82 1.00 1 10
[0.25-0.35] 0.65 1.03 10 0.80 1.17 1 10
[0.35-0.45] 0.65 0.89 10 0.76 0.97 1 10

100 [90-110] [0.05-0.15] 0.98 1.33 10 1.16 1.58 1 10
[0.15-0.25] 1.86 3.25 10 1.73 2.22 1 10
[0.25-0.35] 1.35 2.15 10 1.49 1.75 1 10
[0.35-0.45] 1.33 2.08 10 1.52 2.41 1 10

Table 1: KPS uncorrelated instances with wij and pij in [10, 10000]: time (s) and number
of optima.

CPLEX 12.5 Exact approach
Average Max Average Max Max

N ni Setup time (s) time (s) #Opt time (s) time (s) #Sub–pb #Opt
50 [40-60] [0.05-0.15] 1.02 2.53 10 0.72 1.14 2 10

[0.15-0.25] 0.67 0.97 10 0.59 0.89 2 10
[0.25-0.35] 0.63 1.45 10 0.61 0.78 1 10
[0.35-0.45] 0.96 2.62 10 0.65 0.81 2 10

50 [90-110] [0.05-0.15] 3.53 13.14 10 0.99 1.31 1 10
[0.15-0.25] 7.65 22.17 10 1.18 1.47 1 10
[0.25-0.35] 3.41 10.87 10 1.15 1.42 1 10
[0.35-0.45] 9.46 39.08 10 1.27 1.81 1 10

100 [40-60] [0.05-0.15] 1.51 5.40 10 0.81 1.08 1 10
[0.15-0.25] 1.95 7.13 10 0.98 1.31 1 10
[0.25-0.35] 1.01 2.48 10 1.04 1.37 2 10
[0.35-0.45] 1.37 2.50 10 1.17 1.76 2 10

100 [90-110] [0.05-0.15] 11.15 71.98 10 1.93 2.59 1 10
[0.15-0.25] 31.14 173.21 10 2.00 2.50 1 10
[0.25-0.35] 71.22 652.02 10 2.30 4.57 2 10
[0.35-0.45] 15.32 42.56 10 2.18 3.40 2 10

Table 2: KPS correlated instances with wij in [10, 10000] and pij in [wij−1000, wij+1000]:
time (s) and number of optima.

We compared the solutions reached by CPLEX 12.5 running on KPS1

to the solutions obtained with our approach over 10 instances within each
category. The results are reported in Tables 1 and 2 in terms of average and
maximum CPU time and of the number of optima reached within a time
limit of 1200 seconds. We also report the maximum number of the relevant
sub–problems, that is Smax − Smin + 1, identified by our approach.

Uncorrelated instances show up to be very easy to solve for both our
approach and CPLEX 12.5. We remark that the same consideration applies
to the instances in [6], which are uncorrelated with positive or negative profits
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of the items and setup costs. As mentioned in [18], these instances are
not difficult, since a preprocessing step allows to reduce the problem size
considerably.

For the correlated instances, CPLEX 12.5 solves to optimality all the
instances but performs slightly worse. Our exact approach reaches the opti-
mum over all instances in no more than 5 seconds. We note that the method
proposed in [18] requires significantly higher computational time and runs
out-of-memory in several cases for similar correlated instances. So, even if
we could not manage to obtain from the authors of [18] their instances, we
can reasonably expect that our method significantly outperforms also their
approach.

We further tested a stronger correlation between the profits of the items
and their weights. More precisely, we generated instances with wij integer
uniformly distributed in the range [10, 100], while the profits of items are
pij = wij + 10. The results are provided in Table 3.

CPLEX 12.5 Exact approach
Average Max Average Max Max

N ni Setup time (s) time (s) #Opt time (s) time (s) #Sub–pb #Opt
50 [40-60] [0.05-0.15] 126.17 1200.00 9 1.80 4.91 2 10

[0.15-0.25] 6.76 34.10 10 1.41 3.46 2 10
[0.25-0.35] 4.25 10.06 10 1.20 2.43 3 10
[0.35-0.45] 2.47 6.91 10 0.83 1.68 2 10

50 [90-110] [0.05-0.15] 701.84 1200.00 5 2.13 4.52 2 10
[0.15-0.25] 241.20 1200.00 9 2.70 9.86 2 10
[0.25-0.35] 307.96 1200.00 9 2.10 4.84 2 10
[0.35-0.45] 28.75 214.94 10 1.49 2.14 1 10

100 [40-60] [0.05-0.15] 30.66 157.59 10 9.48 65.13 2 10
[0.15-0.25] 18.85 100.34 10 3.83 13.62 2 10
[0.25-0.35] 5.55 14.49 10 2.29 5.29 2 10
[0.35-0.45] 9.65 24.24 10 2.69 7.00 3 10

100 [90-110] [0.05-0.15] 498.44 1200.00 7 5.56 11.92 2 10
[0.15-0.25] 197.00 1200.00 9 5.35 10.66 2 10
[0.25-0.35] 267.26 1200.00 9 6.40 22.07 2 10
[0.35-0.45] 188.75 1200.00 9 5.37 9.95 2 10

Table 3: KPS correlated instances with wij in [10, 100] and pij = wij + 10: time (s) and
number of optima.

These instances turned out to be harder to be solved than the correlated
instances in Table 2. A reasonable interpretation is that in [18] a weaker cor-
relation is considered and weights vary in a much wider range ([10, 10000]),
increasing the probability of having items particularly better than others.
Nevertheless our approach still manages to handle all instances in very rea-
sonable computational time, while CPLEX 12.5 is not capable of reaching
all the optima. It is quite evident from our testing that one of the strength
of our approach is the capacity of drastically limiting the number of sub-
problems to be explored in the last step of the algorithm. A natural question
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that may arise is whether this last task can be accomplished just by letting
an ILP solver tackle the sub-problems. It would indicate to what extent the
procedure devised in the third step of our method provides an effective con-
tribution in solving the problem. We investigated this aspect by exploring
the behaviour of the approach if CPLEX 12.5 is launched (with a time limit
of 1200 seconds) on each of the subproblems of the third step of the method,
that is the subroblems of subsection 3.4. We denote as Exact approach (II)
this last version of the proposed approach.

We then compared the two versions of the proposed approach to the
dynamic programming proposed in [7] and to CPLEX 12.5 over a set of
instances proposed in [7]. These instances involve a high level of correlation
between profits and weights with wij integer uniformly distributed in the
range [10,100] and pij = wij + 10. In Table 4, we report the performances
of CPLEX 12.5, of the two versions of our approach and of the dynamic
programming procedure proposed in [7]. The number of families varies from
5 to 30 and the total number of items n from 500 to 10000. Within each
category, 10 instances were tested.

Exact approach (II)
CPLEX 12.5 Exact approach Dynamic Progr. from [7] using CPLEX 12.5

for solving subproblems
Average Max Average Max Max Average Max Average Max

N n time (s) time (s) #Opt time (s) time (s) #Sub–pb #Opt time (s)∗ time (s)∗ #Opt time (s) time (s) #Opt
5 500 44.17 218.18 10 0.43 0.72 2 10 0.31 0.49 10 4.11 34.45 10

1000 568.37 1200.00 7 0.51 0.66 1 10 0.92 1.06 10 192.25 1200.00 9
2500 1106.42 1200.00 1 0.98 1.28 1 10 5.34 5.71 10 3.25 11.40 10
5000 929.04 1200.00 3 1.57 1.84 1 10 20.81 21.52 10 126.53 1200.00 9

10000 987.01 1200.00 2 3.03 3.67 1 10 83.93 85.19 10 17.98 58.52 10
10 500 71.73 423.98 10 0.46 0.64 2 10 1.50 11.32 10 1.11 5.83 10

1000 1200.00 1200.00 0 0.47 0.67 2 10 1.27 1.38 10 0.61 0.91 10
2500 1200.00 1200.00 0 0.84 1.01 1 10 7.33 7.72 10 121.28 1200.00 9
5000 825.85 1200.00 4 1.47 1.62 1 10 29.18 30.52 10 633.70 1200.00 5

10000 1200.00 1200.00 0 3.10 3.48 1 10 149.73 154.61 10 966.57 1200.00 2
20 500 382.23 1200.00 7 0.61 1.14 2 10 0.56 0.78 10 6.04 55.21 10

1000 50.76 229.96 10 0.51 0.87 1 10 2.15 2.63 10 1.60 9.33 10
2500 1200.00 1200.00 0 0.88 1.40 2 10 13.01 13.68 10 1.18 1.69 10
5000 1054.83 1200.00 2 1.58 1.95 1 10 53.45 54.99 10 19.53 173.16 10

10000 1200.00 1200.00 0 2.96 3.74 1 10 346.58 353.68 10 143.82 1200.00 9
30 500 237.75 1200.00 9 1.62 4.73 5 10 0.76 0.89 10 5.51 37.41 10

1000 499.63 1200.00 8 0.87 1.95 2 10 3.32 3.63 10 2.44 17.33 10
2500 1175.79 1200.00 1 0.99 1.25 2 10 19.58 20.20 10 3.39 13.21 10
5000 380.40 1200.00 8 1.62 2.59 1 10 79.76 83.42 10 4.73 23.68 10

10000 907.74 1200.00 5 4.82 8.07 2 10 526.61 549.03 10 37.36 249.21 10

Table 4: KPS benchmark instances (from [7]): time (s) and number of optima.

These instances involve a lower number of families and show up to be
harder for CPLEX 12.5 than the previous ones. Nevertheless, even though
CPLEX 12.5 runs out of time in most of the large instances, our method
is able to find all optima with limited computational effort. The dynamic
programming algorithm is capable of reaching all the optima as well. However
the computational times are much larger and increase with the size of the
instances. We remark that tests in [7] were carried out on a slightly less
performing machine (an asterisk is introduced in the table to point out that
times refer to another machine, namely an Intel core TMi3 CPU @ 2.1 GHZ
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with 2GB of RAM). Anyhow given these results, it is very reasonable to
assume that the differences in the performances would remain significant
even if the algorithms were launched on the same machine.

Eventually, we tested the scalability of our approach on larger instances
with e1 = e2 uniformly ranging in the interval [0.15, 0.25], wij integer uni-

formly distributed in the range [10,100] and pij = wij+10, b = 0.5

(
N∑
i=1

ni∑
j=1

wij

)
with number of families and items up to 200 and 100000 respectively. The
results are reported in Table 5.

CPLEX 12.5 Exact approach
Average Max Average Max Max

N n time (s) time (s) #Opt time (s) time (s) #Sub–pb #Opt
5 20000 380.64 1200.00 7 6.93 12.20 1 10

50000 630.15 1200.00 5 55.49 97.38 1 10
100000 752.66 1200.00 6 285.74 542.94 1 10

10 20000 374.49 1200.00 7 4.38 8.21 1 10
50000 427.40 1200.00 7 27.14 52.92 1 10

100000 731.80 1200.00 5 135.99 390.62 1 10
20 20000 1031.29 1200.00 2 6.35 9.16 1 10

50000 1190.44 1200.00 1 26.98 43.01 1 10
100000 1095.40 1200.00 1 102.92 231.63 1 10

30 20000 736.75 1200.00 4 9.40 14.49 1 10
50000 749.91 1200.00 4 31.84 39.87 1 10

100000 1092.11 1200.00 2 127.39 179.67 1 10
50 20000 685.84 1200.00 5 8.27 14.81 2 10

50000 1196.78 1200.00 1 51.06 87.31 2 10
100000 1139.12 1200.00 1 147.89 218.74 2 10

100 20000 750.62 1200.00 5 18.34 59.61 2 10
50000 1116.64 1200.00 1 89.39 497.89 1 10

100000 1090.48 1200.00 1 128.84 272.81 2 10
200 20000 367.69 1200.00 8 19.94 43.13 2 10

50000 966.37 1200.00 3 105.39 284.50 1 10
100000 1113.78 1200.00 1 163.02 359.18 2 10

Table 5: KPS larger instances: time (s) and number of optima.

We notice that our approach effectively applies also to these larger in-
stances, requiring approximately 540 seconds in the worst-case instance with
100000 items. CPLEX 12.5 fails to reach the optimum within the time limit
of 1200 seconds in more than 60% of the instances of Table 5.

The extensive computational experience performed confirms the effective-
ness of our exact approach, which strongly outperforms CPLEX 12.5 and the
algorithms in literature. The approach is capable of solving to optimality all
instances within the time limit.

5. Conclusions

In this paper we propose an exact approach for KPS based on an effective
exploration of a specific set of variables that leads to solve standard knapsack
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problems. The presented approach proves to be very effective and capable
of handling instances with up to 100000 items and 200 families with little
computational effort while previous approaches were limited to instances with
up to 10000 items. The approach outperforms CPLEX 12.5 and favorably
compares to the algorithms available in literature.

In future work we will investigate to what extent the proposed approach
could be applied to other variants of KPS and to other combinatorial opti-
mization problems involving two sets of variables.
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