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Abstract

This paper discusses joint rectangular geometric chance constrained pro-
grams. When the stochastic parameters are elliptically distributed and pair-
wise independent, we present a reformulation of the joint rectangular geo-
metric chance constrained programs. As the reformulation is not convex,
we propose new convex approximations based on variable transformation to-
gether with piecewise linear approximation method. Our results show that
the approximations are tight.
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1. Introduction

A rectangular geometric program can be formulated as

(GP ) min
t∈RM

++

g0(t)

s.t. αk ≤ gk(t) ≤ βk, k = 1, . . . , K,

where αk, βk ∈ R, k = 1, . . . , K and

gk(t) =

Ik∑
i=1

cki

M∏
j=1

t
akij
j , k = 0, . . . , K. (1)
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Usually, cki
∏M

j=1 t
akij
j is called a monomial where cki , i = 1, . . . , Ik, k =

0, . . . , K, are nonnegative and gk(t), k = 0, . . . , K, are called posynomials.
We require that 0 < αk < βk, ∀k = 1, . . . , K. When αk ≤ 0, k = 1, . . . , K,

the rectangular geometric program is equivalent to geometric programs dis-
cussed in [6, 17, 2].

Both geometric programs and rectangular geometric programs are not
convex with respect to t. However, geometric programs are convex with
respect to {r : rj = log tj, j = 1, . . . ,M}. Hence, interior point method
can be efficiently used to solve geometric programs. To the best of our
knowledge, there is no possible variable transformation method to derive a
convex equivalent reformulation.

Stochastic geometric programming is used to model geometric problems
when some of the parameters are not known precisely. Stochastic geometric
programs with individual probabilistic constraints are discussed in [5] and
[19] where the authors showed that an individual probabilistic constraint
is equivalent to several deterministic constraints involving posynomials and
common additional slack variables. In this case, the parameters akij, ∀k, i, j,
are deterministic and cki ,∀k, i, are uncorrelated normally distributed ran-
dom variables. Liu et al. [13] discussed stochastic geometric programs with
joint probabilistic constraints and proposed tractable approximations by us-
ing piecewise linear functions and the sequential convex optimization algo-
rithm under the same assumption as in [5].

When akij ∈ {0, 1}, ∀k, i, j and
∑

j a
k
ij = 1,∀k, i, stochastic geometric pro-

grams are equivalent to stochastic linear programs. The latter were first
considered by Miller and Wagner [14]. Prékopa [18] proposed the concept of
log-concavity and showed the convexity of joint chance constraint problems
under log-concavity distributions, e.g., the normal distribution. Later, the
concepts of r-concave function and r-decreasing function are proposed by
Dentcheva et al. [4] and Henrion and Strugarek [10], respectively, which can
be used to show the convexity of chance constraint problems under discrete
distributions and with dependence between different rows. For the rectan-
gular case, Van Ackooij et al. [20] discussed the joint separable rectangular
chance constrained problems for the underlying normally distributed random
vector, and provided a derivative formula for probabilities of rectangles.

However, for complex distributions, the joint chance constraint problems
are nonconvex and difficult to compute. Hence, approximation methods are
widely used. Nemirovski and Shapiro [15] and Luedtke and Ahmed [12]
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proposed a mix-integer programming approach for chance constraint prob-
lems by using the sample average approximation method. Nemirovski and
Shapiro [16] proposed the Bernstein approximation approach for the chance
constrained problems, which is convex and tractable. Ben-tal et al. [1]
showed that conditional value-at-risk function can be used to construct con-
vex approximations for chance constrained problems. Cheng and Lisser [3]
proposed a piecewise linear approximation approach for normally distributed
linear programs with joint probabilistic constraints. This piecewise linear ap-
proach is improved by Liu et al. [13], and used for joint geometric chance
constrained programming under the normal distribution. To the best of our
knowledge, there is no research on the joint rectangular geometric chance
constrained programs.

In this paper, we consider the following joint rectangular geometric chance
constrained programs

(SGP ) min
t∈RM

++

E

[
I0∑
i=1

c0i

M∏
j=1

t
a0ij
j

]
(2)

s.t. P

(
αk ≤

Ik∑
i=1

cki

M∏
j=1

t
akij
j ≤ βk, k = 1, . . . , K

)
≥ 1− ϵ. (3)

where 1− ϵ is a prespecified probability with ϵ < 0.5.
We introduce the program under the elliptical distribution assumption in

Section 2. In Section 3, new convex approximations are proposed based on
variable transformation together with piecewise linear approximation method.

2. Elliptically distributed stochastic geometric problems

In this paper, we consider the joint rectangular geometric chance con-
strained programs under the elliptical distribution assumption.

Assumption 1. We suppose that the coefficients akij, k = 1, . . . , K, i =
1, . . . , Ik, j = 1, . . . ,M , are deterministic and the parameter ck = [ck1, c

k
2, . . . , c

k
Ik
]

follows a multivariate elliptical distribution EllipIk(µ
k,Γk, φk) with µk =

[µk
1, µ

k
2, . . . , µ

k
Ik
]⊤ ≥ 0, and Γk = {σk

i,p, i, p = 1, . . . , Ik} positive definite,
k = 1, . . . , K. Moreover, we assume that ck, k = 1, . . . , K are pairwise
independent.
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Definition 1. A L-dimensional random vector ξ follows an elliptical dis-
tribution EllipL(µ,Γ, φ) if its characteristic function is given by Eeiz⊤c =
eiz

⊤µφ(z⊤Γz) where φ is the characteristic generator function, µ is the loca-
tion parameter, and Γ is the scale matrix.

Elliptical distributions include normal distribution with φ(t) = exp{−1
2
t},

student’s t distribution with φ(t) varying with its degree of freedom [11],
Cauchy distribution with φ(t) = exp{−

√
t}, Laplace distribution with φ(t) =

(1 + 1
2
t)−1, and logistic distribution with φ(t) = 2π

√
t

eπ
√

t−e−π
√
t
. The mean value

of an elliptical distribution EllipL(µ,Γ, φ) is µ, and its covariance matrix is
E(r2)
rank(Γ)

Γ, where r is the random radius [7].

Proposition 1. If a L-dimensional random vector ξ follows an elliptical
distribution EllipL(µ,Γ, φ), then for any (L × N)-matrix A and any N-
vector b, Aξ+b follows an N-dimensional elliptical distribution EllipN(Aµ+
b, AΓA⊤, φ).

Moreover, we have some restrictions on ϵ as follows.

Assumption 2. We assume that

• ϕ′
φk

(Φ−1
φk

(1−ϵ))

ϕφk
(Φ−1

φk
(1−ϵ))

Φ−1
φk
(1− ϵ) < −1, k = 1, . . . , K,

• (Φ−1
φk
(1− ϵ))2σk

i,p − µk
i µ

k
p ≥ 0, i, p = 1, . . . , Ik, k = 1, . . . , K,

• 2σk
i,p

(
1− ϕ′

φk
(Φ−1

φk
(z))

ϕφk
(Φ−1

φk
(z))

Φ−1
φk
(z)

)(
(Φ−1

φk
(z))2σk

i,p − µk
i µ

k
p

)
−(2σk

i,pΦ
−1
φk
(z))2 ≥

0, 1− ϵ ≤ z ≤ 1, i, p = 1, . . . , Ik, k = 1, . . . , K.

Here, Φφ(·) and ϕφ(·) are the distribution function and the density func-
tion of an univariate standard elliptical distribution Ellip1(0, I, φ), where I is
the identity matrix. Φ−1

φ (·) is the inverse function of Φφ(·), i.e., the quantile
of the standard elliptical distribution, and ϕ′

φ(·) is the first order derivative
of ϕφ(·)

Theorem 1. Given Assumption 1, the joint rectangular geometric chance
constrained programs (SGP ) can be equivalently reformulated as
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(SGPr)

min
t∈RM

++

I0∑
i=1

µ0
i

M∏
j=1

t
a0ij
j (4)

s.t. Φ−1
φk
(z+k )

√√√√ Ik∑
i=1

Ik∑
p=1

σk
i,p

M∏
j=1

t
akij+akpj
j −

Ik∑
i=1

µk
i

M∏
j=1

t
akij
j ≤ −αk, k = 1, . . . , K.(5)

Φ−1
φk
(z−k )

√√√√ Ik∑
i=1

Ik∑
p=1

σk
i,p

M∏
j=1

t
akij+akpj
j +

Ik∑
i=1

µk
i

M∏
j=1

t
akij
j ≤ βk, k = 1, . . . , K,(6)

z+k + z−k − 1 ≥ yk, 0 ≤ z+k , z
−
k ≤ 1, k = 1, . . . , K, (7)

K∏
k=1

yk ≥ 1− ϵ, 0 ≤ yk ≤ 1, k = 1, . . . , K. (8)

Proof. As cki are pairwise independent, constraint (3) is equivalent to

K∏
k=1

P

(
αk ≤

Ik∑
i=1

cki

M∏
j=1

t
akij
j ≤ βk

)
≥ 1− ϵ. (9)

By introducing auxiliary variables yk ∈ R+, k = 1, . . . , K, (9) can be equiv-
alently written as

P

(
αk ≤

Ik∑
i=1

cki

M∏
j=1

t
akij
j ≤ βk

)
≥ yk, k = 1, . . . , K, (10)

and ∏K
k=1 yk ≥ 1− ϵ, 0 ≤ yk ≤ 1, k = 1, . . . , K. (11)

(10) is also equivalent to

P

(
Ik∑
i=1

cki

M∏
j=1

t
akij
j ≥ αk

)
+ P

(
Ik∑
i=1

cki

M∏
j=1

t
akij
j ≤ βk

)
− 1 ≥ yk, k = 1, . . . , K.(12)
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Let z+k , z
−
k ∈ R+, k = 1, . . . , K, be two additional auxiliary variables. Con-

straint (12) can be equivalently expressed by

P

(
Ik∑
i=1

cki

M∏
j=1

t
akij
j ≥ αk

)
≥ z+k , k = 1, . . . , K, (13)

P

(
Ik∑
i=1

cki

M∏
j=1

t
akij
j ≤ βk

)
≥ z−k , k = 1, . . . , K, (14)

z+k + z−k − 1 ≥ yk, 0 ≤ z+k , z
−
k ≤ 1, k = 1, . . . , K. (15)

From proposition 1, we know that
∑Ik

i=1 c
k
i

∏M
j=1 t

akij
j follows an elliptical

distributionEllip1(
∑Ik

i=1 µ
k
i

∏M
j=1 t

akij
j ,
∑Ik

i=1

∑Ik
p=1 σ

k
i,p

∏M
j=1 t

akij+akpj
j , φk). By the

quantile transformation, constraint (13) is equivalent to

−
∑Ik

i=1 µ
k
i

∏M
j=1 t

akij
j + Φ−1

φk
(z+k )

√∑Ik
i=1

∑Ik
p=1 σ

k
i,p

∏M
j=1 t

akij+akpj
j ≤ −αk, k = 1, . . . , K,

and constraint (14) is equivalent to∑Ik
i=1 µ

k
i

∏M
j=1 t

akij
j + Φ−1

φk
(z−k )

√∑Ik
i=1

∑Ik
p=1 σ

k
i,p

∏M
j=1 t

akij+akpj
j ≤ βk, k = 1, . . . , K.

This gives the equivalent reformulation of the joint constrained problem. As
ck ∼ EllipIk(µ

k,Γk, φk), its expected value is µk. Hence, from the additivity
property of the expectation operator, we can get the equivalent reformulation
of the objective function.

In (SGPr), both constraints (5) and (6) are nonconvex constraints. In
the next section, we propose inner and outer convex approximations.

3. Convex approximations of constraints (5) and (6)

3.1. Convex approximations of constraint (5)

We first denote

wk =

[
M∏
j=1

t
ak1j
j , . . . ,

M∏
j=1

t
akIkj

j

]
, k = 1, . . . , K.

Constraint (5) can be reformulated as

−(µk)⊤wk + Φ−1
φk
(z+k )

√
(wk)⊤Γkwk ≤ −αk, k = 1, . . . , K. (16)

6



As we assume that ϵ ≤ 0.5 and ck follows a symmetric distribution, it is
easy to see that (µk)⊤wk − αk ≥ 0. Hence, (16) is equivalent to

(Φ−1
φk
(z+k ))

2((wk)⊤Γkw
k) ≤ ((µk)⊤wk − αk)

2, k = 1, . . . , K,

which can be reformulated as

(wk)⊤
(
(Φ−1

φk
(z+k ))

2Γk − µk(µk)⊤
)
wk + 2αk(µ

k)⊤wk ≤ α2
k, k = 1, . . . , K.(17)

As wk =

[∏M
j=1 t

ak1j
j , . . . ,

∏M
j=1 t

akIkj

j

]
, k = 1, . . . , K, constraint (17) is

equivalent to

2αk

Ik∑
i=1

µk
i

M∏
j=1

t
akij
j +

Ik∑
i=1

Ik∑
p=1

((Φ−1
φk
(z+k ))

2σk
i,p − µk

i µ
k
p)

M∏
j=1

t
akij+akpj
j ≤ α2

k,

k = 1, ...K. (18)

From (7) and (8), we know that z+k ≥ 1−ϵ ≥ 0.5. Moreover, we know from
Assumption 2 that (Φ−1

φk
(z+k ))

2σk
i,p−µk

i µ
k
p ≥ (Φ−1

φk
(1−ϵ))2σk

i,p−µk
i µ

k
p ≥ 0, for all

z+k ∈ [1− ϵ, 1), i, p = 1, . . . , Ik, k = 1, . . . , K. Hence, given Assumption 2, we
can apply the standard variable transformation rj = log(tj), j = 1, . . . ,M ,
to (18). Therefore, we have an equivalent formulation of (18)

2αk

Ik∑
i=1

µk
i exp

{
M∑
j=1

akijrj

}
+

Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj)

+ log((Φ−1
φk
(z+k ))

2σk
i,p − µk

i µ
k
p)

}
≤ α2

k, k = 1, . . . , K. (19)

Proposition 2. Given Assumption 2, fi,p,k(z
+
k ) = log((Φ−1

φk
(z+k ))

2σk
i,p−µk

i µ
k
p)

is monotone increasing and convex for z+k ∈ [1 − ϵ, 1), i, p = 1, . . . , Ik, k =
1, . . . , K.

Proof. From the continuity and differentiability of Φ−1
φk
, we know that fi,p,k(z

+
k )
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is differential and its first and second orders derivatives are

f ′
i,p,k(z

+
k ) =

dfi,p,k(z
+
k )

dz+k
=

2σk
i,pΦ

−1
φk
(z+k )

ϕφk
(Φ−1

φk
(1− ϵ))((Φ−1

φk
(z+k ))

2σk
i,p − µk

i µ
k
p)

f ′′
i,p,k(z

+
k ) =

d2fi,p,k(z
+
k )

d(z+k )
2

=

2σk
i,p

(
1− ϕ′

φk
(Φ−1

φk
(z+k ))

ϕφk
(Φ−1

φk
(z+k ))

Φ−1
φk
(z+k )

)(
(Φ−1

φk
(z+k ))

2σk
i,p − µk

i µ
k
p

)
−
(
2σk

i,pΦ
−1
φk
(z+k )

)2
(ϕφk

(Φ−1
φk
(z+k )))

2((Φ−1
φk
(z+k ))

2σk
i,p − µk

i µ
k
p)

2
.

From Assumption 2, we know that
dfi,p,k(z

+
k )

dz+k
≥ 0 and fi,p,k(z

+
k ) is monotone

increasing for z+k ∈ [1−ϵ, 1), i, p = 1, . . . , Ik, k = 1, . . . , K. From Assumption

2, we know that
d2fi,p,k(z

+
k )

d(z+k )2
≥ 0 and fi,p,k(z

+
k ) is convex for z+k ∈ [1 − ϵ, 1),

i, p = 1, . . . , Ik, k = 1, . . . , K.

Thanks to the convexity and the monotonicity of fi,p,k(z
+
k ), we use the

piecewise linear approximation method to find an inner approximation of
fi,p,k(z

+
k ) [13]. Then, we propose a piecewise linear approximation method

to find an outer approximation of fi,p,k(z
+
k ).

We choose S different linear functions:

FL
s,i,p,k(z

+
k ) = ds,i,p,kz

+
k + bs,i,p,k, s = 1, . . . , S,

which are the tangent segments of fi,p,k(z
+
k ) at given points in [1− ϵ, 1), e.g.,

ξ1, ξ2, . . . , ξS. Here, we choose ξS = 1 − δ, where δ is a very small positive
real number. We have

ds,i,p,k = f ′
i,p,k(ξs)

and

bs,i,p,k = fi,p,k(ξs)− f ′
i,p,k(ξs)ξs, s = 1, . . . , S.

Then, we use the piecewise linear function

FL
i,p,k(z

+
k ) = max

s=1,...,S
FL
s,i,p,k(z

+
k ),

to approximate fi,p,k(z
+
k ).
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Proposition 3. Given Assumption 2, FL
i,p,k(z

+
k ) ≤ fi,p,k(z

+
k ), ∀z

+
k ∈ [1−ϵ, 1).

Proof. The proof can be drawn from the convexity of fi,p,k(z
+
k ) shown in

Proposition 2.

We use the piecewise linear function FL
i,p,k(z

+
k ) to replace log((Φ

−1
φk
(z+k ))

2σk
i,p−

µk
i µ

k
p) in (19). Hence, we have the following convex approximation of con-

straint (5):



2αk

Ik∑
i=1

µk
i exp

{
M∑
j=1

akijrj

}
+

Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj)

+ ωL
i,p,k

}
≤ α2

k, k = 1, . . . , K,

ds,i,p,kz
+
k + bs,i,p,k ≤ ωL

i,p,k, s = 1, . . . , S, i, p = 1, . . . , Ik, k = 1, . . . , K.
(20)

As log((Φ−1
φk
(z+k ))

2σk
i,p − µk

i µ
k
p) is convex, (20) provides an inner approxima-

tion.
To get an outer approximation of the function fi,p,k(z

+
k ), we sort 1 −

ϵ, ξ1, ξ2, . . . , ξS in increasing order and denote the sorted array ξ̃1, ξ̃2, . . . , ξ̃S+1.
The segments

FU
s,i,p,k(z

+
k ) = d̃s,i,p,kz

+
k + b̃s,i,p,k, s = 1, . . . , S,

form a piecewise linear function

FU
i,p,k(z

+
k ) = max

s=1,...,S
FU
s,i,p,k(z

+
k ).

Here,

d̃s,i,p,k =
fi,p,k(ξ̃s+1)− fi,p,k(ξ̃s)

ξ̃s+1 − ξ̃s

and

b̃s,i,p,k = −d̃s,i,p,kξ̃s + fi,p,k(ξ̃s), s = 1, . . . , S.
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Using the piecewise linear function FU
i,p,k(z

+
k ) leads to the following convex

approximation of constraint (5):

2αk

Ik∑
i=1

µk
i exp

{
M∑
j=1

akijrj

}
+

Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj)

+ ωU
i,p,k

}
≤ α2

k, k = 1, . . . , K,

d̃s,i,p,kz
+
k + b̃s,i,p,k ≤ ωU

i,p,k, s = 1, . . . , S, i, p = 1, . . . , Ik, k = 1, . . . , K.
(21)

As log((Φ−1
φk
(z+k ))

2σk
i,p − µk

i µ
k
p) is convex, (21) provides an outer approxima-

tion.

3.2. Convex approximation of constraint (6)

In constraint (6), the terms

√∑Ik
i=1

∑Ik
p=1 σ

k
i,p

∏M
j=1 t

akij+akpj
j and

∑Ik
i=1 µ

k
i

∏M
j=1 t

akij
j

are convex with respect to rj = log(tj), j = 1, . . . ,M .
From [10], we know that Φ−1

φk
(z−k ) is convex with respect to z−k on [1−ϵ, 1),

if ϕφk
is 0-decreasing with some threshold t∗(0) > 0, and ϵ < 1−Φφk

(t∗(0)).
The definition of r-decreasing and t∗(0) can be found in [10]. Hence, given
some conditions, constraint (6) is a biconvex constraint on [1−ϵ, 1). One can
use the sequential convex approach to solve this problem. However, Φ−1

φk
(z−k )

cannot be expressed analytically, it is still not easy to compute the optimal
z−k with fixed tj. In this paper, we use the piecewise linear approximation
method proposed in [13], and its modified approximation method to find
tight lower and upper bounds of (6).

We first make the standard variable transformation rj = log(tj), j =
1, . . . ,M to (6) in order to get an equivalent formulation of (6)√√√√ Ik∑

i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj) + 2 log(Φ−1
φk
(z−k ))

}

+

Ik∑
i=1

µk
i exp

{
M∑
j=1

akijrj

}
≤ βk, k = 1, . . . , K. (22)

Lemma 1. Given Assumption 2, log(Φ−1
φk
(z−k )) is monotone increasing and

convex on [1− ϵ, 1).

10



Proof. The first order and second order derivatives of log(Φ−1
φk
(z−k )) are

d(log(Φ−1
φk
(z−k )))

dz−k
=

1

Φ−1
φk
(z−k )ϕφk

(Φ−1
φk
(z−k ))

,

and

d2(log(Φ−1
φk
(z−k )))

d(z−k )
2

= −
1 + Φ−1

φk
(z−k )

ϕ′
φk

(Φ−1
φk

(z−k ))

ϕφk
(Φ−1

φk
(z−k ))

(Φ−1
φk
(z−k )ϕφk

(Φ−1
φk
(z−k )))

2
.

According to Assumption 2,
ϕ′
φk

(Φ−1
φk

(1−ϵ))

ϕφk
(Φ−1

φk
(1−ϵ))

Φ−1
φk
(1− ϵ) < −1, k = 1, . . . , K.

As
ϕ′
φk

(Φ−1
φk

(x))

ϕφk
(Φ−1

φk
(x))

Φ−1
φk
(x) is decreasing for x ∈ [1−ϵ, 1), we have 1+Φ−1

φk
(z−k )

ϕ′
φk

(Φ−1
φk

(z−k ))

ϕφk
(Φ−1

φk
(z−k ))

<

0, for z−k ∈ [1−ϵ, 1), k = 1, . . . , K. Hence, the second order derivative is larger
than or equal to 0, and log(Φ−1

φk
(z−k )) is convex on [1 − ϵ, 1), k = 1, . . . , K.

Finally, the monotonicity follows directly from the non-negativeness of the
first order derivative.

From the convexity and monotonicity, we can use the piecewise linear
approximation methods introduced in the last section to find tight piece-
wise linear approximations for log(Φ−1

φk
(z−k )). We choose S different linear

functions:
GL

s,k(z
−
k ) = ls,kz

−
k + qs,k, s = 1, . . . , S,

which are the tangent segments of log(Φ−1
φk
(z−k )) at ξ1, ξ2, . . . , ξS, respectively.

We have

ls,k =
1

ϕφk
(Φ−1

φk
(ξs))

and

qs,k = Φ−1
φk
(ξs)−

ξs
ϕφk

(Φ−1
φk
(ξs))

, s = 1, . . . , S.

Then, we use the piecewise linear function

GL
k (z

−
k ) = max

s=1,...,S
GL

s,k(z
−
k ),

11



to approximate log(Φ−1
φk
(z−k )), and derive the following convex approximation

of (22):

Ik∑
i=1

µk
i exp

{
M∑
j=1

akijrj

}
+

√√√√ Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj) + 2ω̃L
k

}
≤ βk, k = 1, . . . , K,

ls,kz
−
k + qs,k ≤ ω̃L

k , s = 1, . . . , S, k = 1, . . . , K.
(23)

As log(Φ−1
φk
(z−k )) is convex, (23) provides an inner approximation.

Moreover, we use the segments

GU
s,k(z

−
k ) = l̃s,kz

−
k + q̃s,k, s = 1, . . . , S,

between ξ̃1, ξ̃2, . . . , ξ̃S+1 to form a piecewise linear function

GU
k (z

−
k ) = max

s=1,...,S
GU

s,k(z
−
k ).

Here,

l̃s,k =
log(Φ−1

φk
(ξ̃s+1))− log(Φ−1

φk
(ξ̃s))

ξ̃s+1 − ξ̃s
,

and

q̃s,k = −l̃s,kξ̃s + log(Φ−1
φk
(ξ̃s)), s = 1, . . . , S.

Using the piecewise linear function GU
k (z

−
k ) to replace log(Φ−1

φk
(z−k )) in

(22) gives the following convex approximation of the constraint (22):

Ik∑
i=1

µk
i exp

{
M∑
j=1

akijrj

}
+

√√√√ Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj) + 2ω̃U
k

}
≤ βk, k = 1, . . . , K,

l̃s,kz
−
k + q̃s,k ≤ ω̃U

k , s = 1, . . . , S, k = 1, . . . , K.
(24)

As log(Φ−1
φk
(z−k )) is convex, (24) provides an outer approximation.

12



3.3. Main result

Theorem 2. Given Assumptions 1 and 2, we have the following convex ap-
proximations for the joint rectangular geometric chance constrained programs
(SGP ):

(SGPL)

min
r,z+,z−,x,ωL,ω̃L

I0∑
i=1

µ0
i exp

{
M∑
j=1

a0ijrj

}

s.t. 2αk

Ik∑
i=1

µk
i exp

{
M∑
j=1

akijrj

}
+

Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj)

+ωL
i,p,k

}
≤ α2

k, k = 1, . . . , K,

ds,i,p,kz
+
k + bs,i,p,k ≤ ωi,p,k, s = 1, . . . , S, i, p = 1, . . . , Ik, k = 1, . . . , K,

Ik∑
i=1

µk
i exp

{
M∑
j=1

akijrj

}
+

√√√√ Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj) + 2ω̃L
k

}
≤ βk, k = 1, . . . , K,

ls,kz
−
k + qs,k ≤ ω̃L

k , s = 1, . . . , S, k = 1, . . . , K,

z+k + z−k − 1 ≥ exk , 0 ≤ z+k , z
−
k ≤ 1, k = 1, . . . , K,

K∑
k=1

xk ≥ log(1− ϵ), xk ≤ 0, k = 1, . . . , K.

13



(SGPU)

min
r,z+,z−,x,ωU ,ω̃U

I0∑
i=1

µ0
i exp

{
M∑
j=1

a0ijrj

}

s.t. 2αk

Ik∑
i=1

µk
i exp

{
M∑
j=1

akijrj

}
+

Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj)

+ωU
i,p,k

}
≤ α2

k, k = 1, . . . , K,

d̃s,i,p,kz
+
k + b̃s,i,p,k ≤ ωU

i,p,k, s = 1, . . . , S, i, p = 1, . . . , Ik, k = 1, . . . , K,

Ik∑
i=1

µk
i exp

{
M∑
j=1

akijrj

}
+

√√√√ Ik∑
i=1

Ik∑
p=1

exp

{
M∑
j=1

(akijrj + akpjrj) + 2ω̃U
k

}
≤ βk, k = 1, . . . , K,

l̃s,kz
−
k + q̃s,k ≤ ω̃U

k , s = 1, . . . , S, k = 1, . . . , K,

z+k + z−k − 1 ≥ exk , 0 ≤ z+k , z
−
k ≤ 1, k = 1, . . . , K,

K∑
k=1

xk ≥ log(1− ϵ), xk ≤ 0, k = 1, . . . , K.

The optimal value of the approximation problem (SGPL) is a lower bound
of problem (SGP ). The optimal value of the approximation problem (SGPU)
is an upper bound of problem (SGP ). Moreover, when S goes to infinity,
both (SGPL) and (SGPU) are reformulations of (SGP ).

Proof. (SGPL) is obtained from the reformulation (SGPr) of (SGP ) and the
two outer approximations (20) and (23). Besides, we transform the variable
y into xk = log(yk), k = 1, . . . , K. The outer approximations guarantee that
the feasible region of (SGPL) contains the feasible region of (SGP ). Hence
the optimal value of (SGPL) is a lower bound of problem (SGP ).

Meanwhile, (SGPI) is obtained from the reformulation (SGPr) of (SGP ),
the two inner approximations (21) and (24) and the variable transformation
xk = log(yk), k = 1, . . . , K. The inner approximations guarantee that the
feasible region of (SGPU) is contained in the feasible region of (SGP ). Hence
the optimal value of (SGPU) is an upper bound of problem (SGP ).

14



Moreover, when S goes to infinity, FL(z+k ) and FU(z+k ) are close enough
to log((Φ−1

φk
(z+k ))

2σk
i,p − µk

i µ
k
p), and GL(z−k ) and GU(z−k ) are close enough to

log(Φ−1
φk
(z−k )). From the convexity of the six terms, the distance between

the feasible sets of (SGPL) and (SGP ) (of (SGPU) and (SGP )) is small
enough when S goes to infinity. This means (SGPL) and (SGPU) are both
reformulations of (SGP ) when S goes to infinity.

Both (SGPL) and (SGPU) are convex programming problems. Interior
point methods can be used to solve them efficiently.

4. Numerical experiments

We test the performances of our approximation methods by consider-
ing a stochastic rectangular shape optimization problem with a joint chance
constraints.

We maximize hwζ, the volume of a box-shaped structure with height h,
width w and depth ζ. We have a joint rectangular chance constraint on the
total wall area 2(hw + hζ), and the floor area wζ.

P
(

αwallAwall ≤ 2hw + 2hζ ≤ βwallAwall

αflrAflr ≤ wζ ≤ βflrAflr

)
≥ 1− ϵ.

Here the upper and lower limits on the total wall area and the floor area are
considered as random variables. Meanwhile, we suppose the upper limits are
proportional to the lower limits. Moreover, there are some lower and upper
bounds on the aspect ratios h/w and w/ζ. This example is a generalization
of the shape optimization problem with random parameters in [13]. It can
be formulated as a standard rectangular geometric stochastic program as
follows:

(SCP ) min
h,w,ζ

h−1w−1ζ−1

s.t. P
(

αwall ≤ (2/Awall)hw + (2/Awall)hζ ≤ βwall

αflr ≤ (1/Aflr)wζ ≤ βflr

)
≥ 1− ϵ,

γwhh
−1w ≤ 1, (1/γhw)hw

−1 ≤ 1,

γwζwζ
−1 ≤ 1, (1/γζw)w

−1ζ ≤ 1.

In our experiments, we set γwh = γwζ = 0.5, γhw = γζw = 2, ϵ = 5%,
αwall = 1, βwall = 2, αflr = 1 and βflr = 2.
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We first test normal distribution in the elliptical distribution group. We
assume 2/Awall ∼ N(0.01, 0.01), 1/Aflr ∼ N(0.01, 0.01), and 2/Awall and
1/Aflr are independent.

For this simple example, we can easily verity that Assumption 2 holds.
We solve six groups of piecewise linear approximation problems, (SGPU)
and (SGPL), to compute six groups of lower and upper bounds for problem
(SCP ).

The first column in Table 1 gives the number of segments S used in
(SGPU) and (SGPL). The second and third columns give the numbers of
variables and the numbers of constraints of (SGPU), respectively. The sixth
and seventh columns give the numbers of variables and the numbers of con-
straints of (SGPL), respectively. The forth and the fifth columns give the
upper bounds and the CPU times of (SGPU), respectively. The eighth and
the ninth columns give the lower bounds and the CPU times of (SGPL),
respectively. We use Sedumi solver from CVX package [9] to solve the ap-
proximation problems with Matlab R2012b, on a PC with a 2.6 Ghz Intel
Core i7-5600U CPU and 12.0 GB RAM. For better illustration, we compute
the gaps of the two piecewise linear approximation bounds, which are the
percentage differences between these lower bounds and the upper bound,
and show them in the last column.

[Table 1 near here]

We then assume 2/Awall follows a Student’s t distribution with the loca-
tion parameter µ2/Awall

= 0.01, the scale parameter Γ2/Awall
= 0.01 and the

degree of freedom v2/Awall
= 4. 1/Aflr follows a Student’s t distribution with

the location parameter µ1/Aflr
= 0.01, the scale parameter Γ1/Aflr

= 0.01 and
the degree of freedom v1/Aflr

= 4. We further assume that 2/Awall and 1/Aflr

are pairwise independent.
We solve seven groups of piecewise linear approximation problems, (SGPU)

and (SGPL), to compute seven groups of lower and upper bounds for problem
(SCP ). Similarly to Table 1, we show the number of segments, the bounds,
the CPU times, the problem scales and the gaps in Table 2.

[Table 2 near here]
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From Table 1, we can see that as the number of segments S increases,
the gap of the corresponding piecewise linear approximation bounds for the
problem with normal distribution becomes smaller. When the number of
segments is equal to 10, the gap is tight. For the Student’s t distribution in
Table 2, the gap decreases when the number of segments increases. When
S = 500, the gap is very small. As the Student’s t distribution has heavier
tail than the normal distribution, the convergence rate of the piecewise linear
approximations in the tail part is not as fast as for the normal distribution.

Notice that the CPU time does not increase proportionally with the in-
crease of S. When S = 500, the CPU time is less than 6 second.
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Table 1: Computational results of approximations for normal distribution
S Var. Con. UB CPU(s) Var. Con. LB CPU(s) Gap(%)
1 16 18 5.9119 1.2795 19 19 5.7587 1.2102 2.66
2 16 25 5.8188 0.9406 19 26 5.7587 1.0237 1.04
5 16 46 5.7644 0.9360 19 47 5.7639 1.0676 0.01
10 16 81 5.7645 1.1247 19 82 5.7643 0.9494 0.00
20 16 151 5.7644 1.2374 19 152 5.7643 1.2228 0.00
100 16 711 5.7644 2.0650 19 712 5.7643 1.9789 0.00
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Table 2: Computational results of approximations for Student’s t distribution
S Var. Con. UB CPU(s) Var. Con. LB CPU(s) Gap(%)
1 16 18 13.8794 1.1772 19 19 5.8498 1.2815 137.26
2 16 25 8.8903 1.0984 19 26 5.8498 1.1373 51.98
5 16 46 6.0468 0.9796 19 47 5.8699 0.8857 3.01
10 16 81 5.9111 1.0510 19 82 5.8716 1.0800 0.67
20 16 152 5.8915 1.2446 19 152 5.8717 1.0739 0.34
100 16 711 5.8760 2.1234 19 712 5.8717 1.8112 0.07
500 16 3511 5.8725 5.9124 19 3512 5.8717 5.7727 0.01
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